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Motivated by the search for geometric observables in nonperturbative quantum gravity, we define a
notion of coarse-grained Ricci curvature. It is based on a particular way of extracting the local Ricci
curvature of a smooth Riemannian manifold by comparing the distance between pairs of spheres with that
of their centers. The quantum Ricci curvature is designed for use on non-smooth and discrete metric spaces,
and to satisfy the key criteria of scalability and computability. We test the prescription on a variety of
regular and random piecewise flat spaces, mostly in two dimensions. This enables us to quantify its
behavior for short lattices distances and compare its large-scale behavior with that of constantly curved
model spaces. On the triangulated spaces considered, the quantum Ricci curvature has good averaging
properties and reproduces classical characteristics on scales large compared to the discretization scale.
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I. THE CASE FOR QUANTUM OBSERVABLES

A crucial ingredient for understanding the physics of
nonperturbative quantum gravity are observables that
capture the properties of spacetime in a diffeomorphism-
invariant and background-independent manner, all the way
down to the Planck scale. Thus far, there are very few
quantities we know of that fit the bill.
The nonperturbative path-integral approach of causal

dynamical triangulations (CDT) has proven a fertile ground
for defining and studying such observables [1]. First, the
manifest coordinate-invariance of the underlying piecewise
flat Regge geometries (the “triangulations”) makes this
approach purely geometric, in keeping with the spirit of
Einstein’s classical theory. By contrast, quantum formula-
tions that use a differentiable manifold or some regularized
version thereof as part of their background structure usually
require a choice of coordinates to do explicit computations.
In this case, the implementation of a suitable gauge fixing
and the consistent treatment of diffeomorphism symmetry
in the quantum theory often face protracted difficulties.
Second, CDT provides a well-defined computational
framework, in which the expectation values of observables

can be measured and studied systematically in the limit
as the UV cutoff—the so-called “lattice spacing” a—is
removed.
This has enabled the operational definition and quanti-

tative evaluation of several interesting observables. Among
them, the spectral dimension [2] is perhaps the best known.
It only requires the existence of an operator of Laplace-type
and is therefore relatively straightforward to implement in a
variety of ways also in other quantum gravity approaches
(see [3,4] and references therein). Measurements of the
spectral dimension of the quantum geometry generated in
CDT quantum gravity first exhibited the phenomenon of
“dynamical dimensional reduction” of spacetime from its
classical value of 4 on macroscopic scales to a value
compatible with 2 on the Planck scale. Other observables
used to characterize the micro- and macroscopic properties
of quantum spacetime are its Hausdorff dimension and
the so-called volume profile of the universe, i.e., its three-
volume as a function of cosmological proper time [5]. The
latter has also been investigated recently with the help of
functional renormalization group techniques [6].
It would clearly be desirable to have more observables

that characterize some analogue of local geometry in the
Planckian regime, beyond the notions of generalized
dimensions currently in use. Note that these dimensions
have a number of nice properties that we may want other
observables to possess also. They can be defined opera-
tionally through length and volume measurements, which
do not require the presence of a smooth metric gμνðxÞ, but
can be performed on piecewise flat manifolds and even
more general metric spaces. At the same time, they can also
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be implemented on a smooth D-dimensional metric mani-
fold to determine its local dimension, in which case they
simply reproduce the value D of its topological dimension.
In other words, the generalized dimensions possess a
well-defined classical limit, which justifies calling them
“dimension” in the first place, even when using them in a
nonclassical, nonsmooth context.
Another property of the generalized dimensions is that

they can be scaled, in the sense that one and the same
measuring prescription can be implemented at various
length scales to extract an “effective dimension” associated
with that scale. For example, one may obtain a Hausdorff
dimension DH of some metric space by measuring the
leading-order behavior of the volumes VðrÞ of geodesic
balls of radius r as a function of r. The exponent DH

extracted from a power law of the form VðrÞ ∝ rDH will
then in general depend on the scale r. Of course, care is
required when interpreting “dimension” away from a
regime where it behaves classically. Note also that, by
using the word “observable,” we do not mean to imply any
link to concrete quantum gravity phenomenology but only
a quantity that is operationally well defined in a non-
perturbative context. Lastly, when working in the context
of dynamical triangulations, the usual logic of a “lattice”
regularization1 applies: measurements at or near the cutoff
scale a are discarded because of their dependence on the
details of the regularization, like the shape of the elemen-
tary building blocks. Furthermore, we are only interested in
continuum properties, that is, properties that persist in the
limit where the regulators are removed. Most quantities one
can define on the lattice will have no continuum analogue,
and will not exhibit characteristic scaling behavior in the
limit as a → 0 that would allow us to identify them with
dimensionful, physically interesting continuum quantities.2

In the present work, we will introduce a new geometric
observable that has many of the desirable properties just
described, a quasilocal quantity we call the “quantum Ricci
curvature.” It is defined in purely geometric terms, without
invoking any particular coordinate system, and has a well-
defined classical meaning; in fact, we will construct it
first on smooth Riemannian spaces. It also scales, in the
sense that the quantity we will define operationally is the
“quantum Ricci curvature at a given length scale.” The seed
of the idea owes much to the work of Ollivier on discrete or
coarse-grained Ricci curvature [7,8]. However, we had to

alter his prescription quite substantially to make it suitable
for application in nonperturbative quantum gravity.
After giving a brief motivation for studying quantum

implementations of curvature in the next section, we
present our explicit construction of the classical version
of quantum Ricci curvature in Sec. III. In Sec. IV, we
perform a quantitative analysis of this quantity on smooth,
two-dimensional, constantly curved model spaces, in order
to understand that the prescription is meaningful and to
establish a reference frame for the evaluation of the
quantum Ricci curvature on nonsmooth spaces. Since
our ultimate goal is the nonperturbative quantum theory,
in the formulation of CDT, we then implement our
curvature construction on a variety of piecewise flat spaces.
This allows us to understand the differences between
continuum and discrete spaces and to quantify short-
distance lattice artifacts. Several regular lattices in two
and three dimensions are treated in Sec. V, and a variety of
two-dimensional, equilateral random triangulations based
on Delaunay triangulations in Sec. VI. This demonstrates
the computational feasibility of quantum Ricci curvature
and illustrates its behavior under spatial averaging. Our
conclusions and outlook are presented in Sec. VII.

II. THE CASE FOR (QUANTUM) CURVATURE

The key notion by which we understand and quantify the
nontrivial local properties of classical spacetime is that of
curvature. While most of our intuition about curvature
comes from studying two-dimensional surfaces imbedded
in three-dimensional Euclidean space, intrinsic curvature in
four dimensions—as captured by the Riemann curvature
tensor Rκ

λμνðxÞ—is a complex and rather unintuitive
quantity. Moreover, the components of the curvature tensor
are not elementary, but derived quantities, depending on the
second derivatives of the metric tensor, which requires
gμνðxÞ to be at least twice differentiable. In situations where
the metric structure is not of this type, it is clear that the
definition of curvature will in general have to be modified
to remain a meaningful concept. This will also be the case
for the type of “quantum geometry” we are interested in,
which is obtained as a continuum limit of an ensemble of
piecewise flat geometries.
We will introduce below a specific notion of coarse-

grained Ricci curvature that can be used in the context of
nonperturbative, background-independent quantum grav-
ity. Like the dynamical dimensions mentioned above, the
construction is in terms of measurements of volumes and
distances. As a consequence, it is robust and scalable, and
can be implemented in a straightforward way on piecewise
flat spaces, like those of dynamical triangulations.
Note that we are not interested in investigating a

classical limit in which a sequence of triangulated spaces
approaches a given smooth, classical metric manifold,
and where one can then ask whether and how a particular
notion of piecewise flat curvature converges to its smooth

1We put “lattice” in inverted commas, because the notion is
potentially misleading in the context of piecewise flat spaces.
In such a formulation, space(-time) itself is not a lattice, but
perfectly continuous. Nevertheless, since CDTworks with a small
number of standardized simplicial building blocks, it is natural to
measure lengths only along edges and in integer multiples of a
unit edge length, as a convenient approximation.

2The lattice spacing a has the dimension of length. In what
follows, we will for simplicity often work with dimensionless
lattice units, which amounts to “setting a equal to 1.”
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counterpart. Instead, in the gravitational path integral one
considers a whole ensemble of spacetimes, and looks for
continuum limits in which relevant observables exhibit a
physically interesting scaling behavior, and where most of
the details of the regularization become irrelevant.
There are already notions of curvature that have been used

in this context, based on the concept of a deficit angle, a
simplicial implementation of describing the sectional curva-
ture of two-dimensional subspaces. Regge calculus works
with a standard expression for the scalar curvature in terms
of deficit angles [9]. Its integrated version appears in a
simplicial analogue of the Einstein-Hilbert action, which is
also used in quantum Regge calculus and dynamical
triangulations [10]. In the context of Regge calculus, related
simplicial representations have been constructed for more
complicated curvature tensors (see, for example, [11–13]).
However, these expressions are not well suited as

quantum observables in our sense. The main issue is that
the underlying notion of curvature defect is defined at the
cutoff scale only. It does not scale since there is no obvious
way of defining a coarse-grained deficit angle. In non-
perturbative quantum gravity models of the kind we are
considering, integrated versions of the simplicial scalar
curvature for D > 2 tend to be highly divergent in the
continuum limit. This happens because the density of the
curvature defects grows as the lattice spacing a goes to
zero, while the individual deficit angles do not “average
out” on coarse-grained scales. The alternative curvature
observable we will define and implement in this work both
scales and has a better averaging behavior, as we will
demonstrate explicitly.
The generalized notion of Ricci curvature introduced in the

next section is not based on measuring deficit angles, but—
in a D-dimensional space—involves the average distance
between two overlapping (D − 1)-dimensional spheres. The
construction is inspired by the observation that on a smooth,
compact Riemannian spacewith positive Ricci curvature, the
distance between two small spheres of radius ϵ is smaller than
the distance between their two centers (see [8] and references
therein). The construction is entirely geometric and can be
implemented in a straightforward way on simplicial mani-
folds, using geodesic link distance (or dual geodesic link
distance) and the natural volume measure, counting the D-
simplices. An important criterion that guided our search for a
curvature observable is ease of implementation and low
computational cost, in view of the fact that we are interested
in evaluating it on noninfinitesimal neighborhoods and in a
quantum-gravitational context. Note that since it is natural to
measure lengths and volumes in DT in terms of discrete units,
measuring them is often reduced to counting, further sim-
plifying implementation.

III. A MEASURE OF CURVATURE

To motivate our construction, we begin with the case of
a smooth, D-dimensional Riemannian manifold ðM; gμνÞ.

The eventual application we have in mind is DT or CDT
quantum gravity (the latter after “Wick rotation”, such that
the spacetimes summed over in the path integral have
positive definite metric [1]). However, we do not see any
obstacles to implementing it in other discrete metric
settings. Consider two points p, p0 ∈ M, which are a
geodesic distance δ ≥ 0 apart. The two ϵ-spheres Sϵp and
Sϵp0 around p and p0 consist of those points in M that are a
distance ϵ ≥ 0 away from the centers p and p0, respectively.
The parameters δ and ϵ must be sufficiently small for the
ϵ-spheres to have the topology of SD−1-spheres and such
that p0 can be written uniquely as p0 ¼ exppðδvÞ in terms of
the exponential map, where v is a unit vector in the tangent
space TpM.
There are various ways of defining the distance between

the two spheres Sϵp and Sϵp0 . For example, parallel transport
of tangent vectors in TpM to Tp0M along the geodesic
connecting the centers p and p0 can be used to identify
points on the two spheres pairwise in a unique way.
Suppose q is the image q ¼ exppðϵwÞ of the point p under
the exponential mapping in the direction of the unit vector
w ∈ TpM. Parallel-transporting the vector w to p0 yields
another unit vector, w0 ∈ Tp0M, which therefore points to a
point q0 on the sphere Sϵp0 in the sense that q0 ¼ expp0 ðϵw0Þ
(see Fig. 1). Again, for this construction to be well defined
and unique, both δ and ϵ must be sufficiently small, which
we will assume is the case. Assuming for simplicity that v
and w are orthogonal, the distance between the two points q
and q0 is given by [7]

dðq; q0Þ ¼ δ

�
1 −

ϵ2

2
Kðv; wÞ þOðϵ3 þ δϵ2Þ

�
; ð1Þ

in the limit ðδ; ϵÞ → ð0; 0Þ, where the sectional curvature
Kðv; wÞ is the Gaussian curvature of the two-dimensional
surface of geodesics whose tangent vector at p lies in the
span of v and w. Recall that the sectional curvature is

FIG. 1. Two nearby spheres Sϵp and Sϵp0 of radius ϵ whose
centers are a small distance δ along the unit vector v apart.
Parallel transport of a unit vector w at p along the geodesic of
length δ connecting p and p0 yields another unit vector w0. The
distance between the points q and q0 in flat space is equal to δ,
while in the presence of curvature the lowest-order deviation from
δ is given by formula (1).
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defined in terms of the Riemann curvature tensor R and the
scalar product h·; ·i on M as

Kðv; wÞ ¼ hRðv; wÞw; vi
hv; vihw;wi − hv; wi2 ; ð2Þ

where the denominator simplifies to 1 for orthonormal
vectors v and w.
If Sϵp is mapped to Sϵp0 using parallel transport, as

described above, a point q ∈ Sϵp and its image q0 ∈ Sϵp0

are on average a distance

dðSϵp; Sϵp0 Þ ¼ δ

�
1 −

ϵ2

2D
Ricðv; vÞ þOðϵ3 þ δϵ2Þ

�
; ð3Þ

apart in the limit ðδ; ϵÞ → ð0; 0Þ [8]. On the right-hand side
of (3), Ricðv; vÞ denotes the Ricci curvature associated
with the unit vector v, given as the sum of the sectional
curvatures of all planes containing v. In terms of an
orthonormal basis fei; i ¼ 1;…; Dg, it can be written as

Ricðe1; e1Þ ¼
XD
i¼2

Kðe1; eiÞ; ð4Þ

say. Expression (3) is obtained by integrating the point
distances corresponding to all unit vectors w and dividing
by the volume of the unit (D − 1)-sphere. Equivalently, one
can integrate over the sphere of radius ϵ with respect to the
induced measure and divide by the sphere volume.
For a variety of reasons the prescription (3) is not

particularly suited to extracting curvature from a simplicial
manifold. Although the underlying parallel transport can
be implemented straightforwardly, as was shown in [14]
for the case of dynamical triangulations, local coordinate
systems generally cannot be extended beyond pairs of
adjacent building blocks. Geodesics between vertices
further than one unit distance apart are in general non-
unique. Moreover, if we consider only the distances
between the vertices contained in nearby ϵ-spheres—as
is natural in a simplicial context—their number will
typically be different for different spheres.3 This means
that we cannot associate them pairwise in a one-to-one
fashion, as was done to obtain (3).
Instead of the sphere distance (3) on smooth manifolds,

we will use a more robust notion of “average sphere
distance” that can be implemented also on more general
metric spaces and not just in the limit of small distances.
For this purpose, we will from now on interpret an
“ϵ-sphere” Sϵp as the set of all points at distance ϵ from

a given center point p, regardless of whether they form
a sphere topologically. On a D-dimensional Riemannian
manifold, the average sphere distance d̄ of two ϵ-spheres
centered at points p and p0 is simply defined as

d̄ðSϵp; Sϵp0 Þ ≔ 1

volðSϵpÞ
1

volðSϵp0 Þ
Z
Sϵp

dD−1q
ffiffiffi
h

p

×
Z
Sϵ
p0
dD−1q0

ffiffiffiffi
h0

p
dðq; q0Þ; ð5Þ

where h and h0 are the determinants of the metrics induced
on the two (D − 1)-dimensional “spheres”, which are also
used to compute the sphere volumes volðSÞ, and dðq; q0Þ
denotes the geodesic distance between the points q and q0.
Note that d̄ is not a proper distance in the mathematical
sense. Although it is positive, symmetric and satisfies the
triangle inequality, the average distance of an ϵ-sphere to
itself does not vanish, unless ϵ ¼ 0.
For the definition (5) to be meaningful, it is not essential

that the two spheres have the same radius, but this is the
only case we will consider in the following. More specifi-
cally, our definition of “quantum Ricci curvature” will be
based on pairs of overlapping spheres whose common
radius is equal to the distance between their centers, ϵ ¼ δ.
This is not a unique choice, but a natural and convenient
one if one is interested in a scalable curvature observable
associated with a single scale δ. Adapting the definition (5)
to a piecewise flat manifold made from equilateral sim-
plices (a typical DT configuration), we have

d̄ðSϵp; Sϵp0 Þ ¼ 1

N0ðSϵpÞ
1

N0ðSϵp0 Þ
X
q∈Sϵp

X
q0∈Sϵ

p0

dðq; q0Þ; ð6Þ

where N0ðSϵpÞ is the number of vertices at link distance ϵ
from the central vertex p and dðq; q0Þ now denotes the
geodesic link distance between the vertices q and q0,
i.e., the number of links in the shortest path along links
from q to q0.
We will extract a notion of quantum Ricci curvature4

Kqðp; p0Þ, associated with a pair of points p and p0

separated by a distance δ, by comparing the average
distance of the two δ-spheres centered at p and p0 with
δ according to

d̄ðSδp; Sδp0 Þ
δ

¼ cqð1 − Kqðp; p0ÞÞ; δ ¼ dðp; p0Þ; ð7Þ

3We should put “spheres” in inverted commas here, since the
vertices and other (sub-) simplices at integer link distance ϵ from
a chosen vertex do not in general form a topological (D − 1)-
sphere, but a disconnected space.

4The explicit construction and implementations described in
what follows are not primarily of a quantum nature. However, the
motivation and intended main application of this work is non-
perturbative quantum gravity, justifying the label “quantum”
(see also Sec. VII for further comments). A genuine quantum-
gravitational application will be presented in [15].
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where cq is a positive constant, which depends on the
metric space under consideration, and Kq captures any
nontrivial dependence on δ. This construction is similar to
Ollivier’s “coarse Ricci curvature” [7], specialized to a pair
of spheres, but using the average distance (5) or (6) instead
of the L1-transportation distance. The latter is a genuine
distance, but expensive to compute, because it is defined
through an optimization. Since computability is an impor-
tant requirement for the application we have in mind, we
are using the average distance instead. In the next section,
we will evaluate d̄/δ for some classical, constantly curved
model spaces and for noninfinitesimal distances and show
that—unlike for the corresponding quantity in [7]—the
constant cq in (7) in general is not equal to 1.

IV. SMOOTH MODEL SPACES

To develop a better understanding for the generalized
Ricci curvature Kq, we will begin by evaluating it on
smooth, constantly curved Riemannian manifolds, starting
with the flat, spherical and hyperbolic spaces in D ¼ 2
dimensions.

Consider a pair of spheres (circles) of radius ϵ in two-
dimensional flat, Euclidean space, whose centers are a
distance δ apart, not necessarily equal to ϵ. We will use an
angular parameter α ∈ ½0; 2π½ to uniquely label points
qα along the sphere Sϵp and the corresponding points q0α
on Sϵp0 . Our convention is to measure the angle around p in
anticlockwise direction from the geodesic connecting p and
p0. Otherwise the situation is like that depicted in Fig. 1.
For the sphere distance, we compute

dðSϵp; Sϵp0 Þ ¼ 1

2π

Z
2π

0

dα dðqα; q0αÞ ¼
1

2π

Z
2π

0

dα δ ¼ δ;

ð8Þ

independent of ϵ, since in flat space all point pairs ðqα; q0αÞ
are exactly a distance δ apart. The result (8) is consistent
with the right-hand side of Eq. (3), because in flat space
Ricðv; vÞ vanishes identically for all vectors v. The com-
putation of the average distance of the two spheres involves
a double integral,

d̄ðSϵp; Sϵp0 Þ ¼ 1

ð2πÞ2
Z

2π

0

dα
Z

2π

0

dβ dðqα; q0βÞ ¼
1

ð2πÞ2
Z

2π

0

dα
Z

2π

0

dβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδþ ϵðcos β − cos αÞÞ2 þ ϵ2ðsin β − sin αÞ2

q
; ð9Þ

where the two angles α and β label arbitrary pairs of points
ðqα; q0βÞ ∈ Sϵp × Sϵp0 . Since we are unable to evaluate the
integrals in (9) analytically, we resort to a numerical
evaluation. Figure 2 shows contour plots of the sphere
distance and the average sphere distance as functions of δ
and ϵ. Note that for δ ¼ ϵ, the case we will be considering
for the quantum Ricci curvature, expression (9) is purely
linear in δ. This corresponds to the diagonal in the plot on
the right in Fig. 2. Numerically, the average sphere distance
in this case evaluates to

d̄ðSδp; Sδp0 Þ ≈ 1.5746δ ðflat caseÞ: ð10Þ

Comparing with the sphere distance of relation (8), we see
that the constant prefactor of δ has changed from 1 to
cq ≈ 1.5746. For smooth Riemannian manifolds, the
coefficient of δ in the power expansion of d̄ðSδp; Sδp0 Þ is
universal and depends only on the dimension of M. For
instance, an analogous calculation for the average sphere
distance (for ϵ ¼ δ) in three-dimensional flat space yields
d̄ ≈ 1.6250δ.
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FIG. 2. Contour plots of the distance between two circles on a two-dimensional flat space, as function of the circle radius ϵ and the
distance δ of their centers. Left: sphere distance (8). Right: average sphere distance (9).
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Next, we consider pairs of ϵ-circles on a constantly
curved two-sphere of embedding radius ρ. In other words,
we can think of the two-sphere as consisting of all points
ðx; y; zÞ ∈ IR3 satisfying x2 þ y2 þ z2 ¼ ρ2. Points on the
two-sphere can also be described by two angles θ ∈ ½0; π�
and φ ∈ ½0; 2π½. Recall that geodesics on S2 are arcs of
great circles and that the geodesic distance between two
points ðθi;φiÞ, i ¼ 1, 2, is given by

dððθ1;φ1Þ; ðθ2;φ2ÞÞ ¼ ρ arccosðcos θ1 cos θ2
þ sin θ1 sin θ2 cosðφ2 − φ1ÞÞ: ð11Þ

The sphere distance of two ϵ-circles whose centers are a
distance δ apart is given by

dðSϵp; Sϵp0 Þ ¼ 1

2π

Z
2π

0

dα ρ arccos

�
cos

δ

ρ
þ sin2αsin2

�
ϵ

ρ

�

×

�
1 − cos

δ

ρ

��
: ð12Þ

Expanding the integrand on the right-hand side of (12),
which is the curved-space analogue of the distance
dðqα; q0αÞ in the flat-space integral (8), for small δ and ϵ
leads to

δ

2π

Z
2π

0

dα

�
1 −

1

2

�
ϵ

ρ

�
2

sin2αþ
�
ϵ

ρ

�
4
�
1

6
sin2α −

1

8
sin4α

�
−

1

24

�
ϵ

ρ

�
2
�
δ

ρ

�
2

sin2αþ h:o:

�

¼ δ

�
1 −

1

4

�
ϵ

ρ

�
2

þ 7

192

�
ϵ

ρ

�
4

−
1

48

�
ϵ

ρ

�
2
�
δ

ρ

�
2

þ h:o:

�
;

ð13Þ
where h.o. denotes terms of combined δ- and ϵ-order of at least six. Given that the Ricci curvature Ricðv; vÞ on the two-
sphere is 1/ρ2 for any unit vector v, we see that the integration result in (13) is consistent with the general formula (3) for
D ¼ 2. Considering next the average sphere distance and again using Eq. (11), we find

d̄ðSϵp; Sϵp0 Þ ¼ ρ

ð2πÞ2
Z

2π

0

dα
Z

2π

0

dβ arccos

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2

�
ϵ

ρ

�
sin2α

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2

�
ϵ

ρ

�
sin2β

s

× cos

�
δ

ρ
þ arctan

�
tan

ϵ

ρ
cos β

�
− arctan

�
tan

ϵ

ρ
cos α

��
þ sin2

�
ϵ

ρ

�
sin α sin β

!
: ð14Þ

Setting ϵ ¼ δ and expanding this expression for small δ
results in

d̄ðSδp; Sδp0 Þ ≈ δ

�
1.5746 − 0.1440

�
δ

ρ

�
2

− 0.0239

�
δ

ρ

�
4

þO

��
δ

ρ

�
6
��

; ð15Þ

where the coefficients were determined by numerical
integration. At linear order in δ the same constant appears
as in the flat case of Eq. (10). The next-to-leading order is
proportional to the Ricci curvature with a negative coef-
ficient, which is qualitatively similar to the behavior (13)
of the corresponding expansion of the sphere distance.
The contour plots for both types of sphere distance are
shown in Fig. 3, as functions of δ/ρ and ϵ/ρ, both taking
values in the interval ½0; 2π�. Note that the plots are
symmetric under both δ ↦ 2πρ − δ and ϵ ↦ 2πρ − ϵ, a
property that can be read off easily from their analytic
expressions (12) and (14).
Lastly, we consider circle distances on the negatively

curved hyperbolic space in two dimensions, defined as the

set of all points ðx; y; zÞ ∈ IR3 satisfying −x2 − y2 þ z2 ¼
ρ2 and z > 0. Points on this space can be parametrized
by a hyperbolic angle θ ∈ ½0;∞½ and an ordinary angle
φ ∈ ½0; 2π½, which are related to the Euclidean coordinates
by θ ¼ arccoshðz/ρÞ and φ ¼ arctanðy/xÞ. The geodesic
distance between two such points ðθi;φiÞ, i ¼ 1, 2, is
given by

dððθ1;φ1Þ; ðθ2;φ2ÞÞ ¼ ρ arccoshðcosh θ1 cosh θ2
− sinh θ1 sinh θ2 cosðφ2 − φ1ÞÞ:

ð16Þ

From this, we obtain the sphere distance of two ϵ-circles
at distance δ as a straightforward hyperbolic version of
formula (12), namely,

dðSϵp;Sϵp0 Þ ¼ 1

2π

Z
2π

0

dαρarccosh

�
cosh

δ

ρ
þ sin2αsinh2

�
ϵ

ρ

�

×

�
cosh

δ

ρ
−1

��
; ð17Þ

N. KLITGAARD and R. LOLL PHYS. REV. D 97, 046008 (2018)

046008-6



whose expansion for small δ and ϵ is given by

δ

2π

Z
2π

0

dα

�
1þ 1

2

�
ϵ

ρ

�
2

sin2αþ
�
ϵ

ρ

�
4
�
1

6
sin2α −

1

8
sin4α

�
−

1

24

�
ϵ

ρ

�
2
�
δ

ρ

�
2

sin2αþ h:o:

�

¼ δ

�
1þ 1

4

�
ϵ

ρ

�
2

þ 7

192

�
ϵ

ρ

�
4

−
1

48

�
ϵ

ρ

�
2
�
δ

ρ

�
2

þ h:o:

�
; ð18Þ

which to this order is identical with the corresponding formula (13), apart from the sign of the term proportional to δϵ2.
Comparing this term with Eq. (3) leads to Ricðv; vÞ ¼ −1/ρ2, which is the well-known result for the Ricci curvature on
hyperbolic space. The average sphere distance in hyperbolic space is given by the double integral

d̄ðSϵp; Sϵp0 Þ ¼ ρ

ð2πÞ2
Z

2π

0

dα
Z

2π

0

dβ arccosh

�
ðcos β − cos αÞ sinh ϵ

ρ
cosh

ϵ

ρ
sinh

δ

ρ

þ cosh2
�
ϵ

ρ

�
cosh

δ

ρ
− sinh2

�
ϵ

ρ

��
sin α sin β þ cos α cos β cosh

δ

ρ

��
: ð19Þ

Setting ϵ ¼ δ and expanding this expression for small δ
gives

d̄ðSδp; Sδp0 Þ ≈ δð1.5746þ 0.1440

�
δ

ρ

�
2

− 0.0239

�
δ

ρ

�
4

þO

��
δ

ρ

�
6
��

; ð20Þ

where the coefficients were again determined by numerical
integration. Comparing this with the corresponding ex-
pansion (15) for the spherical case, we observe the same
behavior as for the sphere distances: the expansions to this
order are the same, only the term proportional to δ3 has its
sign reversed because of the opposite sign of the Ricci
curvature.

Figure 4 juxtaposes the behavior of the sphere distance
and the average sphere distance as functions of both δ/ρ
and ϵ/ρ. The ranges of these hyperbolic angles have been
chosen identical to the sphere case of Fig. 3 for ease of
comparison. The three plot pairs of Figs. 2, 3 and 4
illustrate the behavior of the two sphere distances
dðSϵp; Sϵp0 Þ and d̄ðSϵp; Sϵp0 Þ for large values of δ and ϵ, and
specifically the qualitative similarity along the diagonal
δ ¼ ϵ in all three cases, which is relevant for our definition
of quantum Ricci curvature. Figure 5 shows the behavior
along the diagonal of the sphere distance and the average
sphere distance for all three two-dimensional model spaces,
while Fig. 6 compares the corresponding normalized
distances, where we have divided by δ. Again, the graphs
illustrate the similarities in behavior of the sphere and the
average sphere distances. One feature of the latter is that
the three curves are genuinely disjoint for δ > 0. For the
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FIG. 3. Contour plots of the distance between two circles on a two-dimensional space of constant positive curvature, as function of the
circle radius ϵ and the distance δ of their centers, both rescaled by the curvature radius ρ. Left: sphere distance (12). Right: average
sphere distance (14).
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FIG. 5. Comparing sphere distance (left) and average sphere distance (right) for ϵ ¼ δ, as function of δ ∈ ½0; 2π�, for the three
constantly curved model spaces: hyperbolic (top), flat (middle) and spherical (bottom). The curvature radius ρ has been set to 1.

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

d

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

d

FIG. 6. Comparing the normalized versions of sphere distance (left) and average sphere distance (right) for ϵ ¼ δ, as function of
δ ∈ ½0; 2π�, for the three constantly curved model spaces: hyperbolic (top), flat (middle) and spherical (bottom). The curvature radius ρ
has been set to 1.
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FIG. 4. Contour plots of the distance between two circles on a two-dimensional space of constant negative curvature, as function of the
circle radius ϵ and the distance δ of their centers, both rescaled by the curvature radius ρ. Left: sphere distance (17). Right: average
sphere distance (19).
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homogeneous and isotropic spaces we are considering
presently, we can simplify the scaling relation (7) to

d̄ðSδp; Sδp0 Þ
δ

¼ cqð1 − KqðδÞÞ; ð21Þ

We observe here that the constant cq can be determined
uniquely and assumes the same value cq ≈ 1.5746 for all
of the three smooth model spaces in two dimensions.
Furthermore, we have established that the “quantum Ricci
curvature” KqðδÞ vanishes on flat space, and has a non-
trivial behavior on the spaces of constant positive and
negative curvature (Fig. 6). It is negative and monotonically
decreasing on the negatively curved space, and is positive
and monotonically increasing up to δ/ρ ≈ 2.095 on the
positively curved space.
The two curves pertaining to the hyperbolic case in Fig. 6

both asymptote to 3, as can also be established straight-
forwardly by considering the limit δ → ∞ of the expres-
sions for d/δ and d̄/δ in Eqs. (17) and (19). The plots on the
right in both Figs. 5 and 6 will serve as reference when we
determine the curvature properties of more general spaces.

V. CURVATURE ON REGULAR LATTICES

In this and the next section, we will develop a better
understanding of the behavior of the quantum Ricci curva-
ture on continuous but nonsmooth metric spaces. Since the
eventual application we have in mind are causal dynamical
triangulations, we will focus on piecewise flat spaces
consisting of a single type of equilateral building block.
In such a setting, the evaluation of the curvature assumes a
combinatorial character, because volume measurements
reduce to a counting of building blocks (which all have
equal size), and measuring the geodesic (link) distance
between two vertices v1 and v2 by definition amounts to
a counting of one-dimensional edges in the shortest path
linking v1 and v2. We treat these spaces as approximations to
smooth spaces and therefore will be particularly interested in
the behavior of curvature on scales that are large compared to
the length a of an edge of a building block. An important
part of our analysis will be to obtain an estimate of the scale δ
above which short-scale, so-called “lattice artifacts” become
irrelevant, by which one means a dependence of the results
on the specifics of the shape of the individual building blocks
and of the local “gluing rules” bywhich themetric spaces are
assembled from them.
The spaces we investigate in this section are flat, regular

lattices, and can be regarded as tilings or subdivisions into
equal building blocks of flat, Euclidean space. We will
treat the square, hexagonal and honeycomb lattices in two
dimensions and the cubic and face-centered cubic lattices in
three dimensions. To determine their quantum Ricci cur-
vature, we will use a straightforward implementation of the
average sphere distance (5) on these spaces, which is given

by formula (6) for two overlapping spheres Sδ whose radii
are equal to the distance between their centers, ϵ ¼ δ. Some
of the calculations are sufficiently simple to be done
analytically, as we will see below.
To illustrate what is involved computationally, we will

first consider the two-dimensional square lattice. Its ver-
tices are all points with integer coordinates ðx; yÞ, and the
geodesic link distance between two such points is the
number of edges of the shortest path between them.
Figure 7 shows a pair of overlapping δ-spheres, whose
average distance one wants to compute as a function of the
scale δ. Since the setup is invariant under discrete lattice
translation in both the x and y directions, one can without
loss of generality put the center of the sphere Sδp at the
origin, such that p ¼ ð0; 0Þ. Note that the link distance
between two points p ¼ ðx; yÞ and p0 ¼ ðx0; y0Þ is given by

dðp; p0Þ ¼ jx − x0j þ jy − y0j: ð22Þ

As an intermediate step to computing the sphere distance,
one can work out the distance of an arbitrary point ðx; yÞ
to the δ-sphere Sδ0 centered at (0,0), defined as dðSδ0; pÞ ≔P

q∈Sδ
0
dðq; pÞ. Because of the lattice symmetries, it is

sufficient to compute this distance for a point p ¼ ðx; yÞ
lying in the positive quadrant, where x ≥ 0 and y ≥ 0.
Distinguishing between four different cases, depending on
the location of p, one finds

dðSδ0;pÞ¼

8>>><
>>>:

4δðxþyÞ; x≥ δ;y≥δ

4δxþ2δ2þ2y2; x≥ δ;0≤y<δ

4δyþ2δ2þ2x2; 0≤x< δ;y≥ δ

4δ2þ2x2þ2y2; 0≤x< δ;0≤y<δ:

ð23Þ

If the centers of the two spheres share the same x- or the
same y-coordinate, the shortest path between their centers

FIG. 7. Two overlapping spheres Sδp and Sδp0 of radius δ ¼ 3 on a
square lattice, whose center vertices p and p0 are a link distance
δ ¼ 3 apart. Each sphere consists of 12 vertices. The diagonal
edges between the sphere vertices are drawn for ease of visuali-
zation only and are not part of the spheres or the underlying lattice.
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is a straight line segment, as in the example shown in Fig. 7.
Taking into account that the volume of a δ-sphere is given
by 4δ (the number of vertices contained in the sphere of
radius δ), one obtains for the average sphere distance in this
particular case

d̄ðSδp; Sδp0 Þ ¼ 7

4
δþ 1

8δ
¼ 1.75δþ 0.125

1

δ
: ð24Þ

Recall that in the continuum case of the previous section,
the corresponding expression for the flat case had a term
linear in δ, and no higher-order terms. Equation (24) for
the square lattice has the same features, but with an
additional term proportional to 1/δ. It will be suppressed
with increasing δ and therefore can be interpreted as a
short-scale lattice discretization effect. On the hexagonal
lattice, which consists of equilateral triangles, the analo-
gous scaling relation turns out to be

d̄ðSδp; Sδp0 Þ ¼ 44

27
δþ 1

27δ
≈ 1.6296δþ 0.0370

1

δ
; ð25Þ

where again we have considered overlapping spheres
whose centers are connected by a straight sequence of
edges. The fact that the coefficients of the linear terms in
(24) and (25) differ from the continuum value of 1.5746 is
due to two effects. First, the use of link distance instead of
Euclidean distance leads to an overestimation of distances
except those along straight sequences of links. Second,
the shape of a “sphere” on a square or hexagonal lattice
differs significantly from that of a round sphere, which
affects results. The fact that a hexagon is closer in shape to a
sphere may explain that the coefficient is closer to the
continuum value.
We have also investigated the honeycomb lattice. By

eliminating every other vertex from it—keeping only
vertices whose pairwise link distance is even—one obtains
a hexagonal lattice. This implies that the results for the
average sphere distance on the honeycomb lattice for even δ
will be the same as two times those for the hexagonal lattice
for δ/2. The case of odd δ is slightly more involved and can
be treated separately. The complete result for the honey-
comb lattice is given by

d̄ðSδp; Sδp0 Þ ¼
(

44
27
δþ 1

18
þ 7

27δ −
1

18δ2
δ odd;

44
27
δþ 4

27δ δ even:
ð26Þ

Figure 8 shows the plots for the normalized average sphere
distance d̄/δ for the three flat lattices. We observe that in
all cases the curves start out at slightly elevated values
for small δ and then quickly settle down to a constant, as
one would expect from a flat-space behavior, where the
value of the constant depends on the lattice chosen. These
differences are to be expected, because on large scales the
geodesic link distance scales with a different constant

relative to the “true” geodesic distance in the continuum,
depending on the type of lattice. If one wanted to take the
short-scale geometry of these lattices seriously, one would
say that they exhibit negative quantum Ricci curvature for
small δ. Note that this phenomenon also occurs for the
coarse Ollivier-Ricci curvature, which is negative when
evaluated at δ ¼ 1 on a regular honeycomb lattice, say [16].
As mentioned above, our computations for the average

sphere distance did not use the most general configuration
of two overlapping spheres at distance δ, but only pairs of
spheres whose centers are aligned along a straight line.
In the earlier example of the square lattice depicted in
Fig. 7, these would be pairs of spheres whose centers share
the same x-coordinate, p ¼ ð0; 0Þ and p0 ¼ ð0; δÞ, or the
same y-coordinate, with p ¼ ð0; 0Þ and p0 ¼ ðδ; 0Þ. For
the square and hexagonal lattices, we have repeated the
calculation of d̄ for the most general case, where the
shortest path connecting the two centers can be a zigzag
path.5 On the square lattice, this would be the case for
center coordinates p¼ð0;0Þ and p0 ¼ ðx;yÞ with 0<x<δ,
0 < y < δ and xþ y ¼ δ, say. For a given distance δ, there
are now many more sphere configurations to consider and
an analytic evaluation is less straightforward. Instead, we
have used the computer to calculate d̄/δ based on this more
general set of configurations. One would a priori expect
that the underlying improved averaging over lattice direc-
tions leads to results closer to those of the continuum. This
is indeed the case, as illustrated by the data shown in Fig. 9.
The convergence behavior is similar to that depicted in
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FIG. 8. Normalized average sphere distance d̄ðSδp; Sδp0 Þ/δ on the
square, hexagonal and honeycomb lattices in two dimensions,
marked by triangles, squares and crosses respectively, as function
of δ. The straight horizontal line is that of flat continuum space,
and is included for comparison.

5On the honeycomb lattice, there are no straight paths in the
sense of Euclidean flat space, but there is an analogue of the
preferred “straight” directions of the other lattice types, which
was used to compute the formulas (26).

N. KLITGAARD and R. LOLL PHYS. REV. D 97, 046008 (2018)

046008-10



Fig. 8, but the constant asymptotic values 1.625 for the
square lattice and 1.583 for the hexagonal lattice are closer
to the value found in the continuum.
Turning finally to three-dimensional lattices, a similar

derivation for the flat cubic lattice leads to an average
sphere distance

d̄ðSδp; Sδp0 Þ ¼ 82δ5 þ 90δ3 þ 23δ

10ð1þ 2δ2Þ2 ¼ 41

20
δþ 1

5δ
þO

��
1

δ

�
3
�
;

ð27Þ

where again we have considered only those configurations
where the centers of the two overlapping two-spheres are
separated by a straight sequence of δ lattice edges. To
determine the distance between the spheres, we averaged
over the distances between all pairs of vertices contained
in the two spheres. The result (27) strongly resembles the
behavior in two dimensions, with an asymptotically linear
behavior in δ and positive “correction terms” for small δ.
Again the coefficient of the linear term, 41/20 ¼ 2.05 is
larger than the corresponding continuum value 1.6250.
We have also investigated the face-centered cubic lattice,

which is associated with a closest packing of spheres in
three dimensions. To construct it, one starts with a single
layer of spheres, arranged in a closest packing with respect
to two dimensions, the x-y plane, say. The centers of
the spheres can be thought of as the vertices of a two-
dimensional lattice, whose edges correspond to pairs of
neighboring spheres. Since each sphere has six neighbors,
this results in the two-dimensional regular hexagonal lattice
we already discussed above. On top of the lowest layer, we
stack another, identical layer of spheres in the z direction.
Since there are twice as many gaps in the lower layer as

there are spheres in the second layer, there are two
possibilities of placing the second layer, corresponding
to two different displacements of the spheres relative to
those of the first layer. Each sphere in the lower layer has
three neighboring spheres in the second layer, and vice
versa. There are two different choices for how to add a third
layer of spheres. The first possibility is to align the centers
of the spheres in the x-y directions with those of the first
layer, and the second possibility—the one chosen by us—is
to displace the centers in the same direction and by the
same amount in the x-y plane as in the step from the first to
the second layer. Repeating the same step for subsequent
layers, one obtains a regular three-dimensional lattice with
discrete period 3 in the z direction, the so-called face-
centered cubic lattice, all of whose vertices have order 12.
We were able to derive an explicit formula for the

average sphere distance on this lattice, for the case that
the centers of the spheres lie in the same hexagonal layer
and are connected by a straight sequence of lattice edges.
The result is given by

d̄ðSδp; Sδp0 Þ ¼ 3547δ5 þ 1705δ3 þ 148δ

80ð1þ 5δ2Þ2

¼ 3547

2000
δþ 1431

10000δ
þO

��
1

δ

�
3
�
; ð28Þ

and therefore structurally similar to the result for the cubic
lattice, Eq. (27). The coefficient of the linear term is
3547/2000 ≈ 1.77, which is closer to the continuum value
than that of the cubic lattice. This resembles the situation
we encountered in two dimensions, namely, that the
lattice with the higher coordination number (in this case
12 instead of 8) appears to give a better approximation to
the continuum.
To summarize, evaluating the average sphere distance on

several flat regular lattices, viewed as discrete approxima-
tions to continuum flat space, leads to consistent results: up
to short-distance lattice artifacts, which are confined to a
region δ≲ 5, the behavior of d̄ is essentially linear in δ,
compatible with a vanishing quantum Ricci curvature
KqðδÞ in Eq. (21). In all the cases we have investigated,
the constant cq in the same scaling law is in the vicinity of
and larger than the corresponding continuum value.

VI. CURVATURE ON RANDOM
TRIANGULATIONS

As a next step we consider classes of random triangu-
lations that in general carry nonvanishing quantum
Ricci curvature. They are still well behaved in the sense
of not deviating too much from smooth spaces. The
triangulations are two-dimensional, made of equilateral
Euclidean triangles and are obtained from Delaunay trian-
gulations of flat and constantly curved spaces of either
signature. Their small-scale behavior depends on the local
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FIG. 9. Normalized average sphere distance d̄ðSδp; Sδp0 Þ/δ on
two-dimensional flat lattices, averaged over lattice directions as
described in the text. Triangles and squares mark the data points
for the square and hexagonal lattices respectively. The straight
horizontal line is that of flat continuum space.
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random structure, but their properties on large scales reflect
the geometry of the smooth spaces they are approximating.
Recall that a Delaunay triangulation in the plane is a

triangulation of a finite point set P ⊂ IR2 (constituting the
vertices of the triangulation) if the circumcircle of every
triangle contains no points of P in its interior. The circum-
circle of a triangle is defined as the unique circle containing
the three vertices of the triangle (see Fig. 10). Because of
their nice geometric properties Delaunay triangulations
appear in numerous applications. Compared to other trian-
gulations of the same point set P ⊂ IR2, the (essentially
unique6) Delaunay triangulation of P maximizes the mini-
mum angle, which means that thin, elongated triangles tend
to be avoided. Note that analogous constructions of
Delaunay triangulations exist in higher dimensions too.
In all cases, we will proceed in three steps, first

generating a point set P with the help of a Poisson disc
sampling. Poisson disc sampling generates a tightly packed
point collection with a specified minimal distance dmin
between any two of its points. Second, we construct a
Delaunay triangulation that has these points as vertices.
Because of the nature of the Poisson disc sampling, the
edge lengths of this Delaunay triangulation are clustered
relatively compactly around some average edge length. The
third step consists in setting all edge lengths to 1 and

thereby making the triangulations equilateral before start-
ing to measure average sphere distances on them. This is
motivated by the fact that we are interested in exploiting the
simplicity of the combinatorial aspects of the prescription
(6), which also holds in CDT quantum gravity, the physical
application we are primarily interested in. Adjusting the
edge lengths in this way will alter the local metric proper-
ties of the triangulations. However, this appears to have
only a mild effect, which is confined to smaller scales, as
we will see when examining the results of the quantum
Ricci curvature measurements.

A. Flat case

We begin by sketching the procedure for the case of
random triangulations approximating flat space, where we
will use an auxiliary regular grid to speed up the Poisson
disc sampling, following [17]. We refer the interested
reader to reference [17] for further details on the con-
struction. For the process to be meaningful, we must
confine ourselves to a finite region of flat space, which
we choose to be a square of approximate side length 100
dmin. All subsequent operations will take place inside this
square.7 Furthermore, the square is overlaid by a regular

square grid whose cells have side length dmin/
ffiffiffi
2

p
. This

ensures that each cell will contain at most one point of the
point set P to be constructed. The grid forms an auxiliary
structure in the Poisson disc sampling and the subsequent
triangulation.
Starting from an initial point p0 at the center of the

square, say, we systematically build up a point set P. The
process is characterized by the minimal distance dmin and
by another integer k, which is chosen a priori and will
determine the density of P. A step in the algorithm consists
in picking a point p from the set of points already selected
to lie in P. Given p, we randomly pick a new point q in
the annulus between radii dmin and 2dmin around p. If the
Euclidean distance of q to any other already selected point
is smaller than or equal to dmin, the point is discarded,
otherwise it is added to the set of points selected to lie in P.
For fixed p, we generate k new random points in this way,
which we either keep or discard. A larger k will lead to a
denser and more uniform set P at the end of the algorithm,
but also to an increase in the overall time needed to generate
the points. We used k ¼ 30. Next, another point p0 is taken
from the already selected point set and the procedure is
repeated by choosing k times a random point in the annulus

FIG. 10. A Delaunay triangulation in the plane, together with
the circumcircles of its constituting triangles. By definition, no
circumcircle contains any vertices of the triangulation in its
interior.

6The uniqueness is up to sets of more thanDþ 1 vertices (inD
dimensions) that fall on the same circle, without other vertices
inside the circle. For a local configuration of this type, any valid
internal substructure will lead to a Delaunay triangulation. In our
construction, this degeneracy cannot occur.

7Since we have only treated the computation of sphere
distances for interior points, we make sure that during measure-
ments we stay well away from any boundaries. It would take us
too far to give a detailed description of the boundary construction
for our triangulations. Suffice it to say that it involved a one-
dimensional Poisson process with minimal distance dmin, and that
we performed detailed numerical tests to make sure unwanted
boundary effects are negligible.
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around p0. Note that a point p can only serve once as the
base point for such a search, lying at the center of an
annulus. The process ends when all points in the selected
set have acted as a base point. The final point set is the
searched-for P. Note that the presence of the grid structure
simplifies the test of whether a point q should be discarded,
because only a finite number of cells (20 cells excluding the
cell where q itself is located) around q need to be checked
for points that are potentially too close to q, see Fig. 11 for
illustration.
The same grid structure is also used during the con-

struction of the Delaunay triangulation of a given set P.
Following [17], we first generate a discrete clustering of all
cells, where each cell C is associated with the vertex in P
that is closest to the center of C in terms of Euclidean
distance. This results in a clustering of the cells of the
square grid, with as many clusters as there are vertices in P.
The algorithm proceeds by examining each vertex of the
square grid in turn, by picking for each cell its lower left-
hand corner point, say. Each corner point x is then assigned
an index between 1 and 4, counting the number of distinct
clusters meeting at x. The index is 1 if all four cells meeting
at x belong to the same cluster, it is 2 if the four cells belong
to two different clusters, and analogous for index 3 and 4,
see [17] for further explanations and illustrations.
The point of this clustering is that it allows for the

straightforward construction of a triangulation that is
“almost Delaunay”. To obtain it, we draw for each corner
point with index 3 a triangle connecting the corresponding
three vertices of P. Next, we draw for each corner point
with index 4 the quadrilateral spanned by the correspond-
ing four vertices. There are then two ways to add an interior
link to obtain a pair of adjacent triangles. Of those, we
choose the interior link for which the angle sum of
the quadrilateral at the corners met by the link is larger
than π. This is a necessary condition for a Delaunay
triangulation, and equivalent to the circumcircle condition
mentioned earlier. After dealing with all corner points of
index 3 and 4 in this manner, one obtains a triangulation
which in general is not quite a Delaunay triangulation, but

can be transformed into one by systematically checking the
local Delaunay property for every link, and performing link
flips wherever necessary, as shown in reference [17].

B. Nonflat case

The procedure outlined in the previous subsection must
be adapted for random triangulations approximating non-
flat spaces. The first step will again be to construct a point
set P by Poisson disc sampling, this time on a constantly
curved, smooth model space, the two-dimensional sphere
or (a subset of) two-dimensional hyperbolic space. In both
cases we have found it convenient to parametrize points
in these spaces by the Cartesian coordinates ðx; y; zÞ of
their embeddings into IR3, as described in Sec. IV above.
Introducing the notation

q1 · q2 ≡ ðx1; y1; z1Þ · ðx2; y2; z2Þ
¼ x1x2 þ y1y2 þ z1z2 ð29Þ

for the scalar product (the flat Euclidean metric) of
elements qi ∈ IR3, recall that we defined the two-sphere
as all points q with q · q ¼ ρ2. On this two-sphere, the
flat metric (29) induces a constantly curved metric with
curvature þ1/ρ2. All distance measurements, including
those occurring during the Poisson disc sampling on the
sphere, have to be done with respect to this nontrivial
metric. Similarly, introducing the notation

q1 � q2 ≡ ðx1; y1; z1Þ � ðx2; y2; z2Þ
¼ x1x2 þ y1y2 − z1z2 ð30Þ

for the indefinite scalar product (the flat three-dimensional
Minkowski metric) for elements qi ∈ IR3, we define
hyperbolic space as all points q for which q � q ¼ −ρ2
and z > 0. On this upper sheet of the two-dimensional
hyperboloid, the metric (30) induces a constantly curved,
positive definite metric with curvature −1/ρ2. Again, this
nontrivial metric must be used when measuring geodesic
distances on the two-dimensional hyperbolic space.
Note that for a pair of points ðp; qÞ on the two-sphere,

given in terms of their Cartesian coordinates, their geodesic
distance on the sphere can be expressed with the help of the
scalar product (29) as

dðp; qÞ ¼ ρ arccos

�
p · q
ρ2

�
: ð31Þ

In a similar fashion, the geodesic distance of two points
ðp; qÞ on hyperbolic space, given in terms of their Cartesian
coordinates is

dðp; qÞ ¼ ρ arccosh

�
−
p � q
ρ2

�
; ð32Þ

FIG. 11. Using the auxiliary square lattice: during the con-
struction of the initial point set P, only the 20 cells shown
surrounding the cell of a new candidate point q need to be
checked for the presence of other points within radius dmin.
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using the inner product (30). The minus sign in the
argument of the inverse hyperbolic cosine comes from
our choice of overall sign in the Minkowskian scalar
product (30). Relevant for the construction of an annulus
around some point p on the two-sphere—needed in the
Poisson disc sampling—is the fact that the set of all points
at a constant distance d from p on the sphere also forms a
planar circle in the embedding space IR3. This is made
explicit by expressing the scalar product p · q in Eq. (31)
in terms of the three-dimensional Euclidean distance
deuðp; qÞ of the two points, leading to

deuðp; qÞ ¼ 2ρ sin

�
dðp; qÞ
2ρ

�
: ð33Þ

This is an injective relation between d and deu as long as
d < πρ, a condition that in our applications was always
satisfied.
When implementing the Poisson disc sampling on the

sphere, after picking a point p to serve as the center of an
annulus, we parametrize the neighborhood of p in terms of
a two-dimensional system of radial coordinates ðr;φÞ
centered at p, such that the inner and outer boundary of
the annulus (at geodesic distances dmin and 2dmin) are
circles of constant radius r. Like in the flat case, points in
the annulus are then created randomly and uniformly, this
time with respect to the appropriate measure on the two-
sphere, expressed in terms of the variables r and φ. For each
newly created point, we perform a test to make sure that its
distance to all other points already included in the set P is
larger than dmin. If this is the case, the point is added to the
set, otherwise it is discarded. We did not attempt to set up
suitable analogues of the square grid on the sphere or the
hyperboloid to speed up this part of the algorithm, and
instead simply computed the distance of a given candidate
point to all other points. Since we considered only
relatively small configurations with up to 20.000 points,
the resulting increase in computational complexity to
Oðn2Þ could be handled without problems.
The Poisson disc sampling in the hyperbolic case

proceeds along similar lines, the only minor difference
being that the set of all points equidistant to a given point p
on the hyperboloid do in general not lie on a circle with
respect to the Euclidean metric of the embedding IR3. To
nevertheless be able to use a straightforward generalization
of the procedure on flat space and the sphere, we boost the
center p of an annulus to the lowest point ð0; 0; ρÞ of the
hyperboloid, because in this case the set of all points
equidistant to p does lie on a planar circle in the embedding
space. We can again introduce a spherical coordinate
system on a local, two-dimensional neighborhood of p
and implement the disc sampling as before, with respect
to the induced, nontrivial measure on the hyperboloid.
Once a candidate point has been chosen randomly from the
annulus, it is boosted back, after which the usual distance

check to all other points is performed with the help
of Eq. (32).
The next step consists in generating Delaunay triangu-

lations from the point sets P we have constructed on the
curved spaces using Poisson disc sampling, as described
above. In the curved context, we again define a Delaunay
triangulation through the property that any (geodesic)
circumcircle of the triangulation built from P does not
have any elements of P inside. This construction remains
meaningful—in the sense of resembling the procedure in
flat space—as long as the size of the triangles is small
compared to the curvature radius of the constantly curved
spaces we are considering, which was always the case.
The code we used to generate the triangulations is based

on reference [18], which makes use of Voronoi diagrams
(also called Voronoi or Dirichlet tessellations). Recall that
the Voronoi diagram associated with a finite point set P, for
simplicity taken to lie in the Euclidean plane, partitions the
plane into cells. Each cell is associated with a point p ∈ P
and consists of all points in IR2 that are closer to p than to
any other point of P, so that each cell has the shape of a
convex polygon. The set of all line segments forming the
borders between adjacent cells forms a graph whose
vertices are tri- or higher-valent. A generic point set, like
the random sets P we construct with the help of the Poisson
disc sampling, has a unique, trivalent “Voronoi graph”
associated with it, which in turn is dual to the unique
Delaunay triangulation constructed from the same point set.
An analogous construction also goes through for the
“mildly curved” spaces we are considering, with the
Euclidean distance substituted by the appropriate geodesic
distance on these spaces. Note that the vertices of the
Voronoi diagram coincide with the centers of the circum-
circles of the dual Delaunay triangulation.
The algorithm in [18] proceeds iteratively, adding in each

step a vertex to an already existing Delaunay triangulation.
Data are stored and manipulated referring to the vertices of
the triangulation as well as to the (dual) vertices of the
Voronoi diagram, which also means that the new elements
of the latter have to be computed and updated in each step.
The beauty of the setup lies in the fact that these updates
only affect small local neighborhoods of the triangulation.
We will not describe details of the algorithm here, which
can be found in [18] for Euclidean spaces, but only describe
the modifications that are necessary in the curved case.
First, we need to choose an initial Delaunay triangula-

tion. For the case of positive curvature, we pick four
vertices on the sphere which span an equilateral tetrahedron
in the embedding IR3, and connect them by geodesic arcs
on the sphere. Obviously, the length of these initial edges is
much larger than dmin, but they quickly disappear as the
algorithm progresses, since it includes the creation and
removal of links in each step. By contrast, for the case of
negative curvature, since the upper sheet of the hyperboloid
has infinite volume, we must impose a cutoff to make the
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construction well defined. Our prescription was to
consider only points with embedding space coordinate
z ≤ zmax ¼ 3ρ. Just like in flat space, we therefore are
dealing with a spatial region with a boundary. Vertices on
the boundary z ¼ 3 were again generated with a one-
dimensional Poisson sampling of geodesic distances in the
interval ½dmin; 2dmin�. The initial triangulation of this hyper-
bolic disc is obtained by connecting each boundary vertex
to the apex ð0; 0; ρÞ of the hyperboloid by a geodesic line
segment. The length of these segments exceeds 2dmin, but
again this does not seem to leave any imprint on the final
triangulations.
Second, we need an effective method to compute the

locations of the vertices of the Voronoi diagram dual to a
given Delaunay triangulation. More specifically, we must
determine the center of a circumcircle spanned by a triple
of vertices of the triangulation, which requires a simple
application of linear algebra. Put briefly, for both the sphere
and the hyperboloid one first identifies the plane in IR3

spanned by the difference vectors of the three vertices,
using the cross product of vectors or a Gram-Schmidt
procedure respectively. One then looks for the axis through
the origin in IR3 which is perpendicular to that plane, using
the inner products (29) or (30) as appropriate, and finally
determines the point in which the axis meets the sphere or
the hyperboloid.

C. Measurement method

For all three types of geometry, the final step in
constructing the triangulations that we will use for explor-
ing our curvature prescription is to set all edge lengths of
the Delaunay triangulations to unity. To give a quantitative
impression of the distribution of edge lengths l before
making the triangulation equilateral, Fig. 12 shows a
sample from a Delaunay triangulation of flat space. The
edge lengths are distributed rather evenly across the interval
½dmin; 2dmin�, increasing somewhat in the vicinity of dmin,
which by construction constitutes a kinematical lower
bound, and decreasing towards longer lengths. The fact
that very few edge lengths exceed 2dmin reflects the well-
behaved geometry of the triangulation.
Before embarking on the curvature measurements, we

measured some other geometric properties of the triangu-
lations to check whether they are roughly in line with those
of the corresponding continuum geometries. For all three
types of geometry, we measured the distribution of the
vertex order,8 and also determined the scaling of the size of
geodesic spheres (circles in our case) as function of their
geodesic radius, and compared it to the corresponding
continuum behavior. For the spherical case, we also
measured the distribution of diameters, where the diameter

at a vertex is defined as the distance to the furthest vertex
in the triangulation. By and large, these quantities behave
as expected from a comparison with their continuum
counterparts, as will be discussed below. This indicates
that the configurations continue to be “nice” and compat-
ible with an overall spatial uniformity also after removing
the differences between length assignments from the
Delaunay triangulations.
We then collected data on the average sphere distances

d̄ðSδp; Sδp0 Þ as a function of the geodesic (integer) link
distance δ in the range δ ∈ ½1; 15� for a given type of
geometry (flat, spherical or hyperbolic), by averaging in
each case over a set of ten independent triangulations,
and over the location and relative orientation of pairs of
spheres Sδp and Sδp0 .
For a given triangulated configuration, the latter averages

were implemented as follows. After picking a vertex p in
the triangulation, we constructed its δ-sphere Sδp, consisting
of all vertices at link distance δ from p, and determined
the total number of vertices in the sphere. For each of
the vertices p0 ∈ Sδp in turn, we then constructed a new δ-
sphere Sδp0 centered at p0 and measured the average sphere

distance d̄ðSδp; Sδp0 Þ. Averaging the resulting data over p0 for
given p implies an averaging over directions around p on
the underlying space, thus removing directional informa-
tion and producing an effective Ricci scalar curvature.
Since we modeled our triangulations on isotropic con-
tinuum spaces, we expect them to be (approximately)
isotropic too. Averaging over directions in this case is
trivial and will just contribute to reducing numerical errors.
The way we picked a sequence of initial points p for a

given configuration, for which the set of measurements just
described was performed for all δ ≤ 15, was by simply
using the first 20 points that were created during the
Poisson disc sampling for this geometry. Recall that for
the flat and hyperbolic spaces, which both have a boundary,
we chose the initial point for the disc sampling to coincide

FIG. 12. Probability distribution pðlÞ of edge lengths l in a
Delaunay triangulation of flat space with 6.200 vertices, binned in
intervals of 0.1 dmin.

8In two dimensions, the vertex order (the number of links
meeting at a vertex) is a direct measure of the deficit angle and
therefore of the local Gaussian curvature at a vertex.
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with the center of the space. Since points generated
subsequently always lie within an annulus of a previously
generated point, this implies that the first 20 points from
such a sequence will be clustered not too far away from the
center. This was done mainly to avoid that the measure-
ments run into the boundary of the triangulation.9 It also
means that our measurements will inevitably have some
spatial overlap, and therefore not all data will be indepen-
dent. However, since we also averaged over different
configurations, we do not think that this procedure leads
to any systematic errors.

D. Measurement results

Starting with the flat case, we investigated ten indepen-
dent configurations, each with approximately 6.200 verti-
ces. Figure 13 shows the distribution of the order nv of
interior vertices of a sample triangulation. It is centered
around 6, with more than 90% of vertices having co-
ordination number 5, 6 or 7. The construction makes it
impossible to have internal vertices of order smaller than 4,
which explains why 4 is the lowest order observed. In the
measurements considered we did not encounter vertices
whose order was above 10. This is different from what
happens in quantum configurations, like those appearing in
dynamical triangulations, where the order distribution
typically has a long tail at high vertex orders. The absence
of this feature for the Delaunay triangulations is another
indicator of their well-behaved nature.
A first check of the flat character of the triangulations is a

measurement of the scaling behavior of geodesic circles, as
explained in the previous subsection. We will denote the
(discrete) volume of a circle of geodesic radius δ—equal to
the number of vertices contained in the circle—by νðδÞ.
A linear dependence on δ indicates flat-space behavior, the
corresponding relation in the continuum being νðδÞ ¼ 2πδ.
In a context where distances are discretized because of
the presence of building blocks of standard size, the

proportionality constant on the right-hand side of this
equation will typically not be equal to 2π, as is illustrated
by the two-dimensional hexagonal lattice, one of the regular
lattices we explored in Sec. V, for which we have νðδÞ ¼ 6δ.
This is a consequence of the lattice structure, where geodesic
distances are not measured along straight lines in the
conventional continuum sense, and where geodesic spheres
are not smooth objects either. The data for the circle volume
νðδÞ collected from the ten configurations are displayed in
Fig. 14, together with a best linear fit for the average circle
volume, given by νðδÞ ¼ 7.48ð5Þδ. In the δ-range consid-
ered, the quality of the fit is good, showing that the behavior
is compatible with that of a flat space on scales sufficiently
large relative to the lattice spacing.
Our measurements of the normalized average sphere

distance d̄/δ on the random triangulations at hand are
shown in Fig. 15, where we have included the data for the
regular hexagonal lattice and the constant continuum result
for flat space for comparison. The behavior of the random
triangulation is qualitatively similar to that of the hexagonal
lattice: for small δ ≥ 1, d̄/δ has initially a maximum, then
decreases, and for δ≳ 5 settles to an approximately
constant value, consistent with flat-space behavior.
Unlike what we saw for the regular flat lattices, this value
is now slightly below that for continuum flat space, and lies
at approximately 1.55. The amplitude of the initial over-
shoot is in the same ballpark as those for the regular lattices
(Fig. 8). From this point of view, any nontrivial curvature
that is present in the random triangulation on short scales is
mixed with and indistinguishable from the pure discretiza-
tion effects of the flat lattices, as far as the quantum Ricci
curvature is concerned.
To construct random triangulations modeled on nonflat

spaces, we set without loss of generality the curvature
radius of the underlying sphere and hyperboloid to one,
ρ ¼ 1. Choosing different values of dmin for the Poisson
disc sampling then amounts to different degrees of fine-
graining of the resulting triangulations with respect to this

FIG. 14. The (averaged) size νðδÞ of circles as a function
of their radius δ, on a geometry obtained by setting the edge
lengths of a flat Delaunay triangulation to unity, including the
best linear fit.

FIG. 13. Distribution pðnvÞ of the vertex order nv of interior
vertices of a Delaunay triangulation of a piece of flat space with
6.200 vertices.

9We always made sure by additional checks that the minimal
distance to the boundary of any point p was larger than 2δ.
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continuum reference scale. A smaller dmin corresponds to a
finer-grained triangulation and therefore to a smaller value
of the local curvature. After setting the edge lengths to 1,
we expect to see these differences reflected in terms of
lattice units. That is, we expect our measurements to be
governed by an “effective curvature radius” ρeff in lattice
units, which is inversely proportional to dmin. Moreover,
by rescaling the results for random triangulations with
different fine-grainings in such a way that their effective
curvature radii coincide, we expect their measurement data
to fall on top of each other.
We have studied the situation in considerable detail for

the case of the sphere, where we have worked with three
distinct continuum cutoffs, dmin ¼ 0.1, 0.05 and 0.025, and
three different types of measurements from which an
effective curvature radius can be extracted. Before embark-
ing on these, we determined the vertex order distributions
for the Delaunay triangulations of the sphere and found that
for all three sizes considered they are almost indistinguish-
able from that of flat space depicted in Fig. 13.
We then measured the distribution of diameters Δ of the

triangulations obtained after setting l ¼ 1 for all edges, a
quantity defined in subsection VI C above. In all cases the
distributions are very narrow, further supporting the close-
ness of the configurations to round continuum spheres. An
example is shown in Fig. 16 for a triangulation constructed
with dmin ¼ 0.025. For dmin ¼ 0.1, 0.05, 0.025, the average
diameters (averaged over ten configurations) were mea-
sured to be Δ ¼ 21.5ð1Þ, 42.9(1) and 85.5(1), which after
division by π leads to the effective radii ρeff ¼ 6.84ð4Þ;
13.65ð3Þ and 27.22(3) respectively. Note that (within
measuring accuracy) subsequent values differ by a factor
of 2, as one would expect for consistency. As we will see

below, these values are slightly, but systematically smaller
(by about 7%) than those extracted from circle and
curvature scaling, which do agree mutually. A possible
explanation is that—unlike the latter quantities—the diam-
eter by construction probes the largest scales of the lattices,
and therefore is subject to systematic finite-size effects.
Next, we investigated the scaling of circle sizes νðδÞ as a

function of their geodesic radius δ, and compared them
to the continuum formula νðδÞ ¼ 2πρ sinðδρÞ. This gives us
another way of extracting an effective curvature radius.
However, in view of the analogous results for the flat
case, we expect the overall factor to deviate from 2π.
Furthermore, we have found that a (small) offset in δ
improves the quality of the fits. The need for such a shift
may have to do with the fact that for topological reasons (by
virtue of the Gauss-Bonnet theorem for the two-sphere), the
data is forced to go through the point νð1Þ ¼ 6, resulting in
a distortion for small δ. The fitting function we have used is

νðδÞ ¼ cρeff sin

�
δ

ρeff
þ s

�
; ð34Þ

for constants c and s. Figure 17 illustrates the situation
for the two larger values of dmin. In both cases, the sine
function fits the data well. For comparison, we have also
included linear fits to the data, but these are clearly inferior.
Obviously, within the limited range of δ-values we are

exploring, it becomes more difficult to distinguish between
flat and curved space as the (effective) curvature radius
increases. This is illustrated by our last set of measure-
ments, corresponding to dmin ¼ 0.025, where within meas-
uring accuracy the sine and linear functions fit the data
about equally well. Not surprisingly, our estimate for the
effective curvature radius has very large error bars. Table I
summarizes the values for the constants s and c and the
effective curvature radius ρeff obtained from best fits of
νðδÞ, for the three different values of dmin.
The constant c is approximately constant, which is

consistent with having a single, overall scale factor for
the length of geodesic circles, compared to the continuum,
independent of sphere size. The values lie within one

FIG. 15. Normalized average sphere distance d̄/δ as a function
of the scale δ, measured on random triangulations modeled on flat
space (red data points with error bars). For comparison, we have
included the corresponding data for the flat hexagonal lattice
(blue dots) of Fig. 9 and the horizontal line marking the constant
value of continuum flat space (grey).

FIG. 16. Distribution pðΔÞ of diameters Δ of a sample
spherical triangulation, generated using dmin ¼ 0.025.

INTRODUCING QUANTUM RICCI CURVATURE PHYS. REV. D 97, 046008 (2018)

046008-17



standard deviation from the corresponding value 7.48(5)
we found in the flat case.
Turning now to the measurements of the average sphere

distance d̄ðSδp; Sδp0 Þ, Fig. 18 shows averaged values for the

normalized quantity d̄/δ for the three spherical triangula-
tions, including the data for the flat random triangulation
(from Fig. 15) for comparison. Qualitatively, the behavior
is as one would expect from the continuum: when moving
to larger distances δ, the ratio d̄/δ for the spheres goes to
smaller values. The deviation from the horizontal flat-case
line is largest for the smallest sphere, whose positive
curvature is largest. For the largest sphere, the deviation
from the flat case can be seen quite clearly for the largest
measured values of δ, unlike the data from the circle scaling
that did not allow us to distinguish between the two cases.
In order to make a quantitative comparison with the

continuum, we would like to fit the data to curves of d̄/δ for
continuum spheres. However, we need to account for the
observed difference in the constant cq of Eq. (7) between
the continuum geometries on the one hand and regular
lattices and triangulations modeled on constantly curved
spaces on the other. This requires an additional rescaling
of d̄/δ. There are two simple ways of achieving this, by
applying either a multiplicative scaling or a constant,
additive shift to d̄/δ. As we will see, both types of fit lead
to similar results. To fix the additional matching parameter
between continuum and discrete data, we require all curves
to go through the data reference point at δ ¼ 5. It is natural
to anchor the curves at this point, because it is the

approximate location on the δ axis where lattice artifacts
seize to be significant.
In either case, one is left with a one-parameter set of

continuum curves, corresponding to different values of ρ.
Among this set, we looked for the curve which best fitted
our data, using a χ2-fit for data points in the interval
δ ∈ ½6; 15�. The smaller the sphere, the better is the quality
of the fit.
The results for the effective curvature radius extracted

from fitting to continuum spheres are collected in Table II.
We see that the two different types of fit lead to essentially
identical results. Rescaling and combining the data for all
three spherical configurations illustrates well that they can
be fitted to a single continuum curve, modulo short-scale
deviations (Fig. 19), supporting the existence of a universal
underlying function fðδ/ρÞ.
To combine the data and obtain the joint curve, we first

multiplied the δ-values of the data set for dmin ¼ 0.1 by a
factor 4, and that of dmin ¼ 0.05 by a factor 2, bringing
them to the linear scale of the largest sphere. The fit was
obtained by considering the set of continuum curves going
through the data point with δ ¼ 5 of the largest sphere and

FIG. 17. The (averaged) size νðδÞ of circles as a function of their radius δ on spherical triangulations, for dmin ¼ 0.1 (left) and
dmin ¼ 0.05 (right). We have included best fits to a function of the form cρeff sinð δ

ρeff
þ sÞ (grey curves), and to a linear function

(blue curves).

TABLE I. The parameters s, c and ρeff obtained from fitting
circle sizes to the functional form cρeff sinð δ

ρeff
þ sÞ, on spherical

configurations of different sizes.

dmin s c ρeff

0.1 −4.1ð7Þ × 10−2 7.5(1) 7.26(7)
0.05 −1.9ð3Þ × 10−2 7.6(4) 15.6(5)
0.025 −6ð2Þ × 10−3 7.4(23) 47(17)

FIG. 18. Normalized average sphere distance d̄/δ as a function
of the scale δ, measured on random triangulations modeled on
continuum spheres of three different sizes. From top to bottom:
“flat” random triangulation measured previously (for reference);
large sphere (dmin ¼ 0.025), medium-size sphere (dmin ¼ 0.05),
and small sphere (dmin ¼ 0.1).
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subsequently doing a χ2-fit involving the 10 data points for
the largest δ-values for each of the three spheres, i.e., a total
of 30 data points. The curvature radius associated with the
combined curve is ρ ¼ 29.0ð3Þ, corresponding to ρ ¼
14.55 for the medium-sized sphere and ρ ¼ 7.27 for the
small sphere, in very good agreement with the effective
curvature radii we extracted from individual spheres and
from measuring circle volumes. However, it is worth noting
that obtaining the curvature radius from the prescription for
quantum Ricci curvature for the same size of triangulation
seems to give better results than obtaining it through circle
scaling, despite the fact that the latter uses three instead of
two fitting parameters.
Lastly, we report on the curvature analysis of the

configurations obtained from the Delaunay triangulations
on the two-dimensional hyperboloid. We performed mea-
surements on ten independent configurations, which we
constructed using dmin ¼ 0.04. We had to restrict the δ-
range to δ ≤ 13 to avoid coming too close to the boundary
of the triangulations. The distribution of the interior vertex
order resembles closely that of the flat and spherical cases.
Next, we measured circle sizes νðδÞ as a function of their
radius δ. Following what we did in the spherical case, we
used a three-parameter fit to extract an effective curvature
radius ρeff . Substituting the sine by a hyperbolic sine
function, we chose as a fitting function

νðδÞ ¼ c̃ρeff sinh

�
δ

ρeff
þ s̃

�
: ð35Þ

The continuum scaling would correspond to the special
case νðδÞ ¼ 2πρ sinhðδρÞ. From a best fit, we have deter-

mined the three parameters as s̃ ¼ −1.69ð17Þ × 10−2,
c̃ ¼ 7.4ð3Þ and ρeff ¼ 15.0ð5Þ. Like in the spherical case,
the shift s̃ is small. The measured data are plotted in Fig. 20,
together with the hyperbolic sine fit (35) and a linear fit
through the origin for comparison. The former clearly fits
the data better, providing further evidence that our trian-
gulations approximate constantly curved continuum spaces
also for negative curvature.
The measurements of the normalized average sphere

distance for the hyperbolic case are shown in Fig. 21. We
again performed two fits, a multiplicative and an additive
rescaling of d̄/δ, combined with the requirement that curves
should pass through the data point at δ ¼ 5. Both result in a
very good match with the data; the best fit for the additive
rescaling is displayed in Fig. 21. (It is barely distinguish-
able from the fit for multiplicative scaling.) As in previous
measurements, there is a short-distance regime where d̄/δ
exhibits an “overshoot”. From best matching for the data
points δ ∈ ½6; 13�, we determined the effective curvature
radius as ρeff ¼ 18.0ð3Þ for the additive fit and ρeff ¼
17.9ð4Þ for the multiplicative fit. Both are in excellent
agreement with each other, but not with the value we
extracted from the circle scaling.
Comparing with the data for the smallest sphere, and

using the fact that we expect the product dmin · ρeff to be
approximately constant, one would expect the effective
curvature radius in the hyperbolic case to lie in the interval
[18.0, 18.5]. While the data coming from measuring
the quantum Ricci curvature are perfectly compatible with
this estimate, the data from the circle scaling are off by six
standard deviations. The only plausible explanation we
have at this stage is that the hyperbolic case suffers from
finite-size effects, due to the exponential growth of the

FIG. 19. Measurements of d̄/δ and best fit (using a multipli-
cative shift) to the corresponding data of a two-dimensional
continuum sphere, for the combined and rescaled data of all three
spheres. Error bars are smaller than dot sizes.

TABLE II. Effective curvature radius ρeff of triangulations
modeled on spheres, extracted from measuring the normalized
average sphere distance, and fitting to continuum spheres, using
an additive or multiplicative shift of the data, as described in the
text.

dmin ρeff , additive fit ρeff , multiplicative fit

0.1 7.41(12) 7.35(9)
0.05 14.31(24) 14.27(21)
0.025 29.1(10) 29.0(13)

FIG. 20. The (averaged) size νðδÞ of circles as a function of
their radius δ on geometries obtained by setting the edge lengths
of Delaunay triangulations on a hyperboloid to unity, including
best fits to a function of the form c̃ρeff sinhð δ

ρeff
þ s̃Þ (grey curve),

and to a linear function (blue curve).
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volume with the radius, which for the volumes we are
considering affect the circle scaling, but apparently not the
average sphere distances. This question can be settled by
going to larger lattices, which is beyond the scope of our
present work. However, the encouraging message is that in
comparison, the measurement of the quantum Ricci curva-
ture again appears to be more robust.

VII. SUMMARY, CONCLUSIONS AND OUTLOOK

In this paper, we have defined a new way of quantifying
the curvature properties of metric spaces in terms of
“quantum Ricci curvature.” Our starting point was the
known observation that on smooth spaces the distance
between two spheres in general differs from the distance
between their centers in a way that depends on the Ricci
curvature. Building on this observation, we constructed a
curvature observable that is scalable and straightforward
to compute, as we have demonstrated in many explicit
examples. We defined the quantum Ricci curvature initially
on purely classical, Riemannian manifolds, using a gener-
alized notion of distance between spheres, based on
averaging over both spheres. This replaces the transporta-
tion distance (sometimes also called Wasserstein distance)
used in the Ollivier curvature [7,8]. A main motivation was
computability, especially in view of the fact that we want to
evaluate the curvature also on large scales.
One could investigate the properties of quantum Ricci

curvature in the classical continuum context in greater
detail, but the prime aim of our current study was to show
its feasibility in generalized, nonsmooth settings, preparing
the ground for its application in fully fledged quantum
gravity. We limited our continuum analysis to the evalu-
ation of the quantum Ricci curvature on two-dimensional
spaces of constant curvature, which gave us a first

quantitative grasp of the large-scale behavior of this
quantity. Note that, on a two-dimensional Riemannian
manifold, the local Ricci curvature Ricðv; vÞ, for any vector
v, coincides (up to a factor of 2) with the Ricci scalar.10 The
characteristic behavior of the normalized average sphere
distance for positive, zero and negative curvature shown in
Fig. 6 also served as a benchmark for our subsequent
curvature measurements on nonsmooth spaces.
We described in Sec. II the challenge of defining a

meaningful notion of curvature on nonsmooth metric
spaces, which in general lack a differentiable structure
and the tensorial quantities that go with it. This raises the
question of how a genuine tensor like the Ricci curvature
Rðv; vÞ associated with a vector v can be represented. The
analogue of a vector v of length δ in our implementation of
the quantum Ricci curvature is given by a pair of over-
lapping spheres or balls of radius δ. When δ is an integer,
like in the piecewise flat spaces we considered, the smallest
value where the quantum Ricci curvature can be evaluated
is δ ¼ 1, which is why we call it a “quasilocal” quantity.
Our analysis of the quantum Ricci curvature on piece-

wise flat spaces was motivated directly by the nonpertur-
bative quantum theory formulated in terms of causal
dynamical triangulations. As already emphasized in the
introduction, the triangular building blocks in that case
play the role of a short-distance regulator: the space of all
D-dimensional spacetimes—the configuration space of the
gravitational path integral—is approximated by a space of
simplicial manifolds whose building blocks are equilateral
D-simplices of some fixed edge length a. Since the details
of the chosen regularization should not matter in the final
continuum theory, physically interesting continuum limits
a → 0 should not depend on them at any scale, including
the Planck scale. We discard measurements near the cutoff
a as “discretization artifacts,” because they usually bear a
strong imprint of these details. In this respect, our per-
spective on generalized Ricci curvature is different from
that frequently taken in discrete mathematics and network
theory, where the discrete, short-scale structure in itself is
the primary focus of interest. This is also the case in recent
implementations of Ricci curvature à la Ollivier in attempts
to construct a theory of quantum gravity from specific
statistical ensembles of random graphs or networks [19]
(see also [20] for related ideas).
With the large-scale perspective in mind, we first studied

the behavior of the quantum Ricci curvature on regular
flat lattices in two and three dimensions. These structures
are “flat”, in the sense that they can be imbedded in flat
Euclidean space, from which they inherit their (unit) edge
length assignments. We can treat these lattices as piecewise

FIG. 21. Normalized average sphere distance d̄/δ as a function
of the scale δ, measured on random triangulations modeled on a
continuum hyperboloid (blue), shown together with a best fit of
the corresponding curve in the continuum (red).

10This is no longer true in higher dimensions, where the
evaluation of the normalized average sphere distance for infini-
tesimal δ ¼ ϵ at order δ3 yields a linear combination of the Ricci
curvature and the Ricci scalar [15].
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flat structures and work with the discrete geodesic link
distance to compute lengths and geodesic spheres, thus
providing a first test of the quantum Ricci curvature in a
discretized setting.
All regular lattices we investigated display some common

characteristics. They have a short-distance regime where the
normalized average sphere distance d̄/δ starts out at some
maximum value for δ ¼ 1 and then decreases rapidly until
about δ ¼ 5, where the d̄/δ-curve enters its flat regime. The
presence (in our interpretation) of lattice artifacts below
δ ¼ 5 means that we should not consider the limit δ → 0
to extract the constant cq of relation (7), as we did in the
continuum, but rather evaluate d̄/δ at δ ¼ 5, or elsewhere in
the constant region. Following this logic, we found that the
value of cq differs from the corresponding value in the
smooth case, and also depends on the lattice type.
Since the regular lattices can be thought of as simple

discretizations of flat space, onewould expect them to behave
like flat spaces in the continuum sense on scales that are
sufficiently large in terms of lattice units. The corresponding
lattice- and discretization-independent analogue of this
behavior appears to be the vanishing of the quantum Ricci
curvature, Kq ¼ 0 (or, equivalently, the constancy of the
quantity d̄/δ), providing further justification for the ansatz (7).
The equilateral random triangulations we investigated

next probe different properties of the quantum Ricci
curvature. We constructed these triangulations with the
intention of having them resemble constantly curved
continuum spaces on large scales, while introducing
random curvature fluctuations on small scales. It is not a
foregone conclusion that the local small-scale curvature
will “average out” on coarse-grained scales with respect to
any measure of curvature, but this is exactly what we
observed when evaluating the quantum Ricci curvature as a
function of the scale δ.
For the triangulated spaces modeled on Delaunay trian-

gulations of flat space, the results for the normalized
average sphere distance resembled closely those of the
regular flat lattices. Within measuring accuracy, the d̄/δ-
curve is flat for distances δ≳ 5, signaling a vanishing of
the quantum Ricci curvature. For smaller δ, applying
formula (7), the quantum Ricci curvature is nominally
negative, but since we have already identified this region as
dominated by lattice artifacts, this statement has little
physical significance. The same is true for the short-
distance behavior of the equilateral random triangulations
modeled on Delaunay triangulations of curved spaces. The
measurements of the normalized average sphere distances
for δ ≥ 5 in these cases could be matched well to the
corresponding continuum curves for spheres and hyper-
boloids. After performing a single shift in d̄/δ to account for
the a priori unknown cq-value of a given type of piecewise
flat space, we extracted effective curvature radii from a
best matching to the continuum curves. All results were

consistent with each other (e.g., for different sphere sizes)
and consistent with the behavior of the constantly curved
continuum spaces they were meant to approximate in the
first place. We also noted in passing that extracting the
effective curvature radius from measuring the quantum
Ricci curvature seems to give more accurate results than
obtaining it from the scaling of sphere sizes.
To summarize, our analytical and numerical investiga-

tions of the novel quantum Ricci curvature on “nice”
equilateral triangulations of moderate size, mostly in two
dimensions, have demonstrated that it can be implemented
and measured in a straightforward way. Lattice artifacts are
confined to a scale of about five lattice spacings, above
which the behavior of the quantum Ricci curvature con-
forms with continuum expectations. In other words, away
from the cutoff scale it is sensitive to neither lattice
discretization effects nor the local curvature defects we
introduced by removing the link length information from
the Delaunay triangulations. In our view, the observed
robustness of the quantum Ricci curvature has to do with
the fact that the underlying normalized average sphere
distance d̄/δ is a dimensionless quotient of two quantities of
the same kind, namely, an average distance and a distance,
which will be affected by lattice discretization effects in a
similar way.
These promising results pave the way for an evaluation

of the quantum Ricci curvature on a nonperturbative
quantum ensemble of spacetimes, like that of causal
dynamical triangulations. Of course, to obtain a proper
quantum observable, we must perform a suitable average
over spacetime points. This will then in turn be evaluated in
the sense of eigenvalues, that is, by averaging over the
spacetime configurations in the ensemble. Our implemen-
tation of quantum Ricci curvature in two-dimensional
quantum gravity in terms of dynamical triangulations
demonstrates that such a procedure is feasible and mean-
ingful, even in a situation where the underlying geometric
configurations are very far removed from smooth classical
spaces [15]. The results obtained in this case further
underline the robustness and good behavior under averag-
ing of the quantum Ricci curvature we found in the work
presented here.
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