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We investigate the phase diagram of quantum gravity with a vertex expansion about constantly-curved
backgrounds. The graviton two- and three-point function are evaluated with a spectral sum on a sphere. We
obtain, for the first time, curvature-dependent UV fixed point functions of the dynamical fluctuation
couplings g�ðRÞ, μ�ðRÞ, and λ�3ðRÞ, and the background fðRÞ-potential. Based on these fixed point
functions we compute solutions to the quantum and the background equation of motion with and without
standard model matter. We have checked that the solutions are robust against changes of the truncation.
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I. INTRODUCTION

Modern theoretical physics is built upon two pillars,
namely quantum field theory and general relativity.
Theories of quantum gravity aim at the unification of
gravity with quantum dynamics. A candidate for a quantum
theory of gravity is the asymptotic safety scenario, which
goes back to Weinberg’s idea in 1976 [1]. Its construction is
based on a nontrivial ultraviolet fixed point in the renorm-
alization group flow. The fixed point of asymptotic safety
implies coupling constants that are finite at arbitrarily high
energy scales, while they depend only on a finite number of
free parameters. Hence, an asymptotically safe quantum
field theory does not necessarily have a scale of maximal
validity and thus can potentially describe physical inter-
actions at the most fundamental level. The possibility of an
interacting ultraviolet fixed point in quantum gravity
attracted increasing attention over the last two decades.
Beginning with the pioneering work by Reuter [2], good
evidence for its existence was found in pure gravity setups
as well as in systems with gravity coupled to gauge and
matter fields [3–70]. For reviews see [71–76].
Most studies on asymptotically safe quantum gravity are

based on the functional renormalization group (FRG), [77]
and [78,79]. In its modern form as a flow equation for the
effective action Γ½ϕ� of the theory it constitutes a powerful
method for nonperturbative calculations in continuum
quantum field theory. Here ϕ is a superfield that comprises

all fields in the theory. This formulation, as all formulations
based on metric correlation functions, demands the intro-
duction of a background metric ḡμν and a corresponding
fluctuation field hμν. Inevitably, correlation functions as well
as the effective action depend separately on these fields. Note
however, that it is the correlation functions of the fluctuation
field that carry the dynamics of the system. Indeed, the flow
equation for the effective action is directly proportional to the
two-point function (propagator) of the fluctuation field in a
general background. Phrased differently, the solution of the
flow equation requires the knowledge of two-point and
higher correlation functions of the fluctuation field. This
already entails that the correlation functions of the back-
ground field and mixed correlations of background and
fluctuation can only be constructed on the basis of the pure
fluctuation field correlations. More details on these impor-
tant relation and a brief overview of the current state is
provided in Sec. II.
Our setup is detailed in Sec. III A and allows for the

computation and the distinction of the background and
quantum equation of motion (EoM). We argue that these
equations have a common solution at a vanishing infrared
FRG cutoff scale k ¼ 0 due to background independence.
In turn, the solutions to the background and quantum EoM
do not agree at a finite cutoff scale k ≠ 0, which signals the
loss of background independence in the presence of the
FRG-regulator. This is also seen in our explicit computa-
tions at the ultraviolet fixed point. We further argue that the
quantum EoM, and not the background EoM, should be
used to determine the self-consistent background at finite k.
Solutions to the background EoM appear as minimum

in the background potential fðRÞ/R2, which we compute
for the first time from the dynamical background-
dependent fluctuation couplings without a background
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field approximation. In the present work we compute the
ultraviolet fixed point background potential f�ðRÞ.
Interestingly, in the pure quantum gravity setting we do
not find a solution to the background EoM, while a solution
appears at small positive curvature for standard model
matter content. The quantum EoM on the other hand has a
solution also in the pure quantum gravity setting.
This work is organized as follows: In Sec. II we discuss

the importance of background independence and its mani-
festation in the current framework. This includes a brief
overview and description of the results obtained in the
literature. In Sec. III A we introduce the FRG with a
particular focus on the background and quantum EoM
and the Nielsen identity that relates them. We furthermore
introduce the vertex expansion used in this work. In Sec. IV
we construct an approximate momentum space on spherical
curved backgrounds. This allows us to use previously
developed techniques that were based on running correla-
tion functions in momentum space. In Sec. V we present
our results, which include the nontrivial ultraviolet fixed
point functions for the dynamical couplings as well as a
detailed discussion of the background and quantum EoM.
In Sec. VI we summarize our results. The technical details
are specified in the Appendices.

II. BACKGROUND INDEPENDENCE
IN QUANTUM GRAVITY

Most applications of the FRG to quantum gravity to date
do not resolve the difference between background and
fluctuation field and employ the background field approxi-
mation. There only one metric gμν ¼ ḡμν þ hμν is used in
the effective action. However, the non-trivial interplay of
the metric fluctuations with the background plays a
decisive role for background independence of the theory.
These nontrivial relations are governed by nontrivial split-
Ward or Nielsen identities (NIs), see e.g. [15–17,80–88] for
formal progress and applications in scalar theories, gauge
theories and gravity. Accordingly, the background field
approximation violates the NIs, which leads to the seem-
ingly contradictory situation that it is at odds with back-
ground independence even though it only features one
metric. In the past decade quite some progress has been
made in overcoming the background field approximation,
see [3–21,80–88].

A. Approaches to fluctuation and background
correlation functions

All these works should be seen in the context of gaining
background independence and physical diffeomorphism
invariance in asymptotically safe gravity. Here we briefly
summarize the state of the art within the different
approaches.
(1) One approach utilizes the fact that the NIs relate

background metric correlations to fluctuation ones. This

leaves us with a system of one type of correlations and it is
possible to solve the system of flow equations for fluctuation
correlation functions either directly or implicitly. This
strategy has been set up and pursued in [15–17,80–88]
for generic theories within the background field approach. At
present, applications in gravity still utilize the background
field approximation beyond either the first order, or the
second order in the fluctuation field [15]. Such a closure of
the flow equation with the background field approximation
is mandatory and all approaches aim at introducing this
approximation on a high order of the fluctuation field. Note
in this context that it is only the second and higher order n-
point functions of the fluctuation field that drive the flow.
(2a) A second approach utilizes the fact that the

dynamics of the system is carried by the correlation
functions of the fluctuation field. This is also reflected
by the fact that the system of flow equations for the
fluctuation correlations is closed. Consequently one may
solve these flows for a specific background metric that
facilitates the computation, e.g. the flat background. Then,
background correlations are computed within an expansion
or extension about the flat background in order to access
the physical background that solves the quantum EoM.
This strategy has been set up and pursued in [3–8,10–14]
for gravity, also guided by successful applications in non-
Abelian gauge theories, see e.g. [89–93]. At present,
fluctuation correlations up to the four-point function have
been included [11], as well as a full fluctuation effective
potential [14]. First results in a Taylor expansion of the
background about a flat one have been presented in [12].
(2b) A third approach avoids the latter step of extending

the results to physical backgrounds by computing instantly
the flow equations for the fluctuation correlation functions
for general backgrounds. This has been investigated in
[18–21]. As in the other approaches, the background field
approximation has been used for higher correlation func-
tions. At present, this holds for all correlation functions
beyond the one-point function of the fluctuation field.

III. GENERAL FRAMEWORK

In the present work we develop an approach in the class
(2b). The present work does a qualitative step towards
background independence and diffeomorphism invariance
in asymptotically safe gravity by computing fluctuation
correlation functions up to the three-point function as well
as the full fðRÞ-potential of the background field. As
already mentioned in the introduction, we compute the
fixed point potential f�ðRÞ for k → ∞ but the present
approach also allows for its computation in the physical
limit k → 0. This potential certainly has interesting appli-
cations in cosmology. The interplay of asymptotically safe
gravity and cosmology is investigated in e.g. [75,94–116],
and we hope to add to this in the near future.
The present approach is built on the vertex expansion

setup to quantum gravity put forward in [3–8,10–14].
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However, instead of expanding about the flat background,
we consider for the first time coupling constants of the
dynamical graviton field as arbitrary functions of the
background curvature. We restrict ourselves to spherical
backgrounds. A key point for this is the construction of an
approximate momentum space, which allows us to utilize
the previously developed techniques of running metric
correlators in momentum space. With the resulting curva-
ture-dependent dynamical couplings we find viable ultra-
violet fixed point functions for all curvatures of the
spherical background considered. Interestingly these fixed
point functions of the effective couplings are almost
curvature independent: the couplings try to counterbalance
the explicit curvature dependence and thus try to keep the
fixed point curvature independent. The fixed point func-
tions provide further evidence in favour of the asymptotic
safety scenario.

A. FRG and Nielsen identities for gravity

In order to compute correlation functions in quantum
gravity we utilize the FRG approach to gravity [2]. In this
approach the functional integral involves a momentum
dependent mass function Rk, which acts as an infrared
regulator suppressing momenta p2 ≲ k2 relative to the
cutoff scale k. This leads to a scale-dependent effective
action Γk½ḡ;ϕ�, which includes contributions from high
momentum fluctuations. Here the dynamical metric gμν ¼
ḡμν þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ZhGN

p
hμν is expanded around a nondynamical

background metric ḡ with the fluctuations h. The fluc-
tuation field is rescaled with Newton’s coupling such that it
has the standard mass-dimension one of a bosonic field.
In this work we utilize a linear metric split and we restrict ḡ
to spherical backgrounds. Combined with ghost fields c, c̄
we denote the fluctuation superfield ϕ ¼ ðh; c; c̄Þ. The
scale-dependence of Γk is then dictated by the flow
equation [77–79],

∂tΓk ¼
1

2
Tr½Ghh;k∂tRh;k� − Tr½Gc̄c;k∂tRc;k�; ð1Þ

with the graviton and ghost regulators Rh;k and Rc;k

respectively. The regulator terms are diagonal (symplectic)
in field space, hence the diagonal graviton and (symplectic)
ghost propagators, Ghh;k and Gc̄c;k, read

Gk ¼ ðΓð0;2Þ
k þ RkÞ−1; ð2Þ

with the general one-particle irreducible correlation func-
tions given as derivatives of the effective action,

Γðn;mÞ½ḡ; h� ¼ δΓ½ḡ; h�
δḡnδhm

: ð3Þ

In (1) we have introduced the derivative with respect to the
RG time t ¼ log k/kin where kin is a reference scale, usually

taken to be the initial scale. The trace implies integrals over
continuous and sums over discrete indices.
An important issue in quantum gravity is the background

independence of physical observables. They are expect-
ation values of diffeomorphism invariant operators, and
hence do not depend on the gauge fixing. Examples for
such observables are correlations of the curvature scalar.
Another relevant example is the free energy of the theory,
− logZ½ḡ; J ¼ 0�, with δZ½ḡ; J ¼ 0�/δḡ ¼ 0. These observ-
ables cannot depend on the choice of the background
metric, which only enters via the gauge fixing. The latter
fact is encoded in the NI for the effective action: The
difference between background derivatives and fluctuation
derivatives is proportional to derivatives of the gauge fixing
sector,

NI¼ δΓ
δḡμν

−
δΓ
δhμν

−
��

δ

δḡμν
−

δ

δĥμν

�
ðSgfþSghÞ

�
¼0; ð4Þ

where Sgf is the gauge fixing term and Sgh is the

corresponding ghost term, and hμν ¼ hĥμνi. Note that (4)
is nothing but the Dyson-Schwinger equation for the
difference of derivatives with respect to ḡ and h. For
the fully diffeomorphism-invariant Vilkovisky-deWitt or
geometrical effective action the relation (4) is even more
concise: the split is not linear and we have g ¼ ḡþ fðḡ; hÞ,
where fðḡ; hÞ ¼ ffiffiffiffiffiffiffi

GN
p

hþOðh2Þ depends on the
Vilkovisky connection. The NI then reads

NIgeo ¼
δΓgeo

δḡμν
− Cðḡ; hÞ δΓgeo

δhμν
¼ 0; ð5Þ

where Cðḡ; hÞ is the expectation value of the (covariant)
derivative of hðḡ; gÞ, for a discussion in the present FRG
setting see [15,82–84].
The NIs, (4) and (5), entail that in both cases the effective

action is not a function of g ¼ ḡþ h or g ¼ ḡþ fðḡ; hÞ
respectively. This property holds for general splits, and
prevents the simple expansion of the effective action in
terms of diffeomorphism invariants. Apart from this dis-
appointing consequence of the NIs, it also entails good
news: the effective action only depends on one field as
background and fluctuation derivatives are connected.
An important property that follows from background

independence is the fact that a solution of the background
equation of motion (EoM)

δΓ½ḡ; h�
δḡμν

����
ḡ¼ḡeom;h¼0

¼ 0; ð6Þ

is also one of the quantum EoM,

δΓ½ḡ; h�
δhμν

����
ḡ¼ḡeom;h¼0

¼ 0: ð7Þ
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see e.g. [93] for a discussion of this in Yang-Mills theories.
In (6) and (7) we have already taken the standard choice
h ¼ 0 but the statement hold for general combinations
ḡEoMðhÞ that solves either of the equations. The concise
form (5) for the geometrical effective action makes it
apparent that a solution of either EoM, (6) or (7), also
entails a solution of the other one. Note that at h ¼ 0 we
have Cðḡ; 0Þ ¼ 1.
Even though less apparent, the same holds true for the

effective action in the linear split: to that end we solve the
quantum EoM (7) as an equation for ḡeomðhÞ. As the current
J in the generating functional simply is J ¼ δΓ/δh, the
quantum EoM implies the vanishing of J and the effective
action is given by Γ½ḡeomð0Þ; 0� ¼ − logZ½ḡ; J ¼ 0�, the
free energy. However, we have already discussed that
logZ½ḡ; 0� is background-independent and it follows that
(6) holds.
The above properties and relations are a cornerstone of

the background formalism as they encode background
independence of observables. The NIs also link back-
ground diffeomorphism invariance to the Slavnov-Taylor
identities (STIs) that hold for diffeomorphism transforma-
tions of the fluctuation field: the quantum deformation of
classical diffeomorphism symmetry is either encoded in the
expectation value of the gauge fixing sector or in the
expectation value Cðḡ; hÞ.
At finite k, the regulator term introduces a genuine

dependence on the background field. Then logZk½ḡ; 0� is
not background independent. Consequently the STIs turns
into modified STIs (mSTIs) and the NIs turn into modified
NIs (mNIs). For the linear split, the mNI reads

mNI ¼ NI −
1

2
Tr

�
1ffiffiffī
g

p δ
ffiffiffī
g

p
Rk½ḡ�

δḡμν
Gk

�
¼ 0; ð8Þ

see [80,81] for details and [117] for an application to
quantum gravity. Importantly the right-hand side of (8)
signals the loss of background independence. It is propor-
tional to the regulator and vanishes for k → 0 where
background independence is restored. A similar violation
of background independence linear in the regulator is
present in the geometrical approach, see [15,82–84].
In summary this leaves us with nonequivalent solutions

to the EoMs in the presence of the regulator: a solution of
the quantum EoM (7) does not solve the background EoM
(6). However, typically the asymptotically safe UV regime
of quantum gravity is accessed in the limit k → ∞ as this
already encodes the important scaling information in this
regime. In the present paper we also follow this strategy and
hence we have to deal with different solutions of back-
ground and quantum EoMs, if they exist at all. Note that the
right-hand side of the mNI is simply the expectation value
of the background derivative of the regulator term.
Accordingly it is the background EoM that is deformed
directly by the presence of the regulator while the quantum

EoM feels its influence only indirectly. Therefore it is
suggestive to estimate the physical UV-limit of the EoM in
the limit k → 0 by the quantum EoM in the limit k → ∞.
Studies in asymptotically safe quantum gravity have

focused so far on finding solutions to (6). For instance in
[116] they did not find a solution to (6) in a polynomial
expansion with the background field approximation. Other
approaches with the background field approximation found
a solution with the exponential parametrization [118,119]
and within the geometrical approach [43,49]. In this work
we are for the first time able to disentangle (6) and (7) in a
quantum gravity setting and look for separate solutions to
the EoMs.
We disentangle the background and fluctuation field by

expanding the scale dependent effective action around a
background according to

Γk½ḡ; h� ¼
X∞
n¼0

1

n!
Γð0;nÞ
k ½ḡ; h ¼ 0�hn: ð9Þ

The flow equations that govern the scale-dependence of the
vertex functions are obtained by n field derivatives of
the flow equation for the effective action (1). They are
depicted in a diagrammatic language in Fig. 1 for cases
n ¼ 2 and n ¼ 3. These flow equations are familiar from
computations on a flat background [3,5,6,11], here how-
ever all propagators and vertices depend nontrivially on the
background.
From here on we drop the index k to improve read-

ability, the scale dependence of the couplings, correlation
functions and wave function renormalizations is implicitly
understood.

B. Background independence in nonperturbative
expansion schemes

It is important to discuss the relations of the approaches
described in Sec. II in particular for future developments
and the full resolution of physical background independ-
ence. This chapter extends a similar discussion from
[11] in the context of modified STIs for diffeomorphism

FIG. 1. Displayed are the diagrammatic representations of the
flows of the graviton two- and three-point functions. Double and
dashed lines represent dressed graviton and ghost propagators
respectively, while filled circles denote dressed vertices. Crossed
circles stand for regulator insertions. All quantities are explicit
background curvature dependent and carry further background
curvature dependence via the spectral value of the respective
vertex/propagator.
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transformations to NIs. Despite its importance one may
skip this chapter for a first reading as its results are not
necessary for the derivations and computations presented in
this work.
We have technically very different options to access

physical background independence of quantum gravity.
Seemingly they have different advantages and disadvan-
tages. For example, approach (1) via the NIs has the charm
of directly implementing background independence. In
turn, the results of (2b) may apparently not satisfy the NIs.
For resolving this issue it is instructive to discuss

approach (2a). There the fluctuation correlation functions
are computed for a specific background. Results for general
backgrounds have then to be obtained with an expansion/
extension of the results for the specific background. This
could be done via the NIs in which case background
independence is guaranteed. This procedure for guarantee-
ing STIs and NIs has been discussed in detail in [120] in the
context of non-Abelian gauge theories, and in [11] for
gravity. We briefly repeat and extend the structural argu-
ment presented there: First we notice that the functional
equations for all correlation functions can be cast in the
form

Γðn;mÞ½ḡ; h� ¼ FRGn;m½fΓði≤n;2≤j≤mþ2Þ½ḡ; h�g; ḡ�: ð10Þ

Equation (10) follows from integrating the functional
renormalization group equations for Γðn;mÞ, which have
precisely the same structure for all theories: the flows of
Γðn;mÞ are given by one-loop diagrams with full propagators
and full vertices. The latter are given in terms of the
correlation functions fΓði≤n;2≤j≤mþ2Þg, see e.g. [83,120].
This also entails that the lowest fluctuation correlation
function that contributes to the diagrams is the two-point
function, i.e. the propagator.
In gravity (10) follows straightforwardly from (1) by

integrating the flow equation and taking ḡ- and h-derivatives.
As a side remark we note that the order of derivatives on
the right-hand side is different within other functional
approaches. For example, for Dyson-Schwinger equations
(DSE) the right-hand side DSEn;m for the Γðn;mÞ depends on
fΓði≤n;j≤mþr−2Þg and contain up to r − 2-loop diagrams.
Here r is the highest order of the field in the classical action,
see e.g. [83]. In typical examples of renormalizable theories
we have r ¼ 3, 4, but in gravity we have r ¼ ∞. This singles
out the flow equation for gravity as the only functional
approach that only connects a finite order of correlation
functions in each equation. The coupling of the whole tower
of equations then comes from the highest order correlation
functions on the right-hand side. In turn, each DSE already
contains all orders on the right-hand side of (10), that is
2 ≤ j without upper bound. Similar statements as for the
DSE hold for 2PI or nPI hierarchies.
Importantly, for all functional approaches the right-hand

side of (10) goes only up to the same order of background

metric derivatives, i ≤ n. This allows us to view (10) as
functional relations for the highest order background metric
correlation functions that have as an input fΓðn−1;mÞg.
Moreover, the NI relates a derivative with respect to ḡ to
one with respect to h. For emphasizing the similarities to
the functional relations (10) we rewrite the NI. For
simplicity we use the linear split NI, (4) and (8),

Γðn;mÞ½ḡ; h� ¼ Γðn−1;mþ1Þ½ḡ; h�
þN n;m½G; fΓði≤n−1;j≤mþ1Þ½ḡ; h�g; ḡ�; ð11Þ

where N stands for the expectation value in (4), and
additionally for the regulator loop in (8), and we have
singled out the propagator G for elucidating the orders of
the correlation functions on both sides. Importantly, (11)
makes the fact apparent that for the NI, (4) and (8), the
order of background derivatives is at most n − 1. Note also
that (11) is nothing but the difference of the Dyson-
Schwinger equation for h and ḡ derivatives. In this differ-
ence the terms with the higher vertices with j ≥ mþ 2
drop out.
In summary this leaves us with two towers of functional

relations. While the first one, (10) describes the full set of
correlation functions, the second one, (11) can be used to
iteratively solve the tower of mixed fluctuation-background
correlations on the basis of the fluctuating correlation
functions fΓð0;mÞg. In both cases we can solve the system
for the higher-order correlations of the background on the
basis of the lower order correlations. If we use (11) with an
iteration starting with the results from the flow equation for
fΓð0;mÞ½ḡsp; h�g for a specific background ḡsp, this closure of
the system automatically satisfies the NI. Accordingly, any
set of fluctuation correlation functions fΓð0;mÞ½ḡsp; h�g can
be iteratively extended to a full set of fluctuation-
background correlation functions in an iterative procedure.
Note that this procedure can be also applied to the
case (2b).
While this seems to indicate that satisfying the symmetry

identities is not relevant (it can be done for all inputs), it
points at a more intricate structure already known from
non-Abelian gauge theories. To that end let us assume we
have derived a global unique solution of all correlation
functions within this iterative procedure starting from the
fluctuations correlation functions. If no approximation is
involved, this solution automatically would satisfy the full
set of functional relations for fΓðn;mÞg that can be derived
from the flow equation. However, in the presence of
approximations these additional functional relations re-
present infinite many additional constraints on the iterative
solution. These constraints are bound to fail in generic
nonperturbative approximation schemes as any functional
relation triggers specific resummations in given approx-
imations. It is a priori not clear which of the functional
relations are more important. Note also that typically the
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iterative solutions of the symmetry identities are bound to
violate the locality constraints of local quantum field
theories that are tightly connected to the unitarity of the
theory. In conclusion it is fair to say that only a combination
of all approaches is likely to provide a final resolution of
physical background independence and diffeomorphism
invariance in combination with unitarity.

IV. VERTICES IN CURVED BACKGROUNDS

This section contains technical details about the con-
struction of an approximate momentum space and the
vertex flow equations on curved backgrounds. If one is not
interested in these details, one may proceed to Sec. V.

A. Spectral decomposition

We extend our previous expansion schemes about the
flat Euclidean background to one that allows for arbitrary
constant curvatures. To that end we first discuss the
procedure at the example of the propagators: propagators
for nontrivial metrics ḡ with constant curvature can be
written in terms of the scalar Laplacian Δḡ ¼ −∇̄2 and
curvature terms proportional to the background scalar
curvature R̄,

G ¼ GðΔḡ; R̄Þ: ð12Þ

For the flat metric (12) reduces to Gðp2; 0Þ, where p2 are
the continuous spectral values of the flat scalar Laplacian.
In a spectral basis the propagator is diagonal and reads for
general curvatures

hφλjGjφλijλ¼p2 ¼ Gðp2; R̄Þ; ð13Þ

and λ ¼ p2 are the discrete or continuous eigenvalues for
the given metric, and fjφλ¼p2ig is the orthonormal com-
plete basis of eigenfunctions of the scalar Laplacian

Δḡjφλi ¼ λjφλ¼p2i; ð14Þ

see Appendix A for explicit expression for the propagator.
The tricky part in this representation are the vertices, which
are operators that map n vectors onto the real numbers. For
example the three-point function can be written in a spectral
representation in terms of an expansion in the tensor basis
with eigenfunctions of Δḡ,

Γð3Þ ¼
XZ

λ1;λ2;λ3

Γð3Þðλ1; λ2; λ3; R̄Þhφλ1 j ⊗ hφλ2 j ⊗ hφλ3 j; ð15Þ

where the spectral values in general also depend on the
curvature and

PR
runs over discrete or continuous spectral

values. Also,
PR

may also include a nontrivial spectral
measure weight μðλÞ. The representation of the higher

n-point functions follows straightforwardly from (15).
Inserting this into the flow equation of the inverse propa-
gator, we arrive at

∂tΓð2Þðλ; R̄Þ ¼ −
1

2

XZ
λ1

Γð4Þðλ; λ; λ1; λ1; R̄ÞðG _RkGÞðλ1; R̄Þ

þ
XZ
λ2;λ3

Γð3Þðλ; λ2; λ3; R̄ÞGðλ2; R̄Þ

× ðG _RkGÞðλ3; R̄ÞΓð3Þðλ3; λ2; λ; R̄Þ; ð16Þ

where we denoted _Rk ¼ ∂tRk. The vertex functions ΓðnÞ are
complicated functions of λi.
On a flat background, the eigenfunctions of the Laplace

operator are also eigenfunctions of the partial derivatives
and the representation of the vertex functions follows
trivially. On a curved background, however, the covariant
derivatives do not commute with the Laplace operator and
the representation of uncontracted covariant derivatives on
the set of functions fjφλ¼p2ig is complicated. One could
tackle this problem with e.g. off-diagonal heat-kernel
methods, but then a derivative expansion in momenta
and curvature is necessary [12].
In this work we construct an approximate momentum

space on a curved background, which facilitates compu-
tations considerably and allows for full momentum and
curvature dependences. In order to derive the vertex
functions, we first take functional derivatives with respect
to the Einstein-Hilbert action on an arbitrary background.
The result is a function depending on the Laplacian,
products of covariant derivatives with respect to coinciding
or different spacetime points and explicit curvature terms.
In the expression for the vertex functions we symmetrize all
covariant derivatives, which produces further R̄-terms

∇̄μ∇̄ν ¼ 1

2
f∇̄μ; ∇̄νg þ R̄-terms: ð17Þ

In the curved momentum space approximation here, the
product of symmetrized covariant derivatives acts on the set
fjφλ¼p2ig according to

∇̄1 · ∇̄2 ¼ pg · qg ¼
ffiffiffiffiffi
p2

q ffiffiffiffiffi
q2

q
x; with x ¼ cos θflat;

ð18Þ

with an integration measure
R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − sin2 θ
p

d cos θ. The
integration measure is chosen such that in the limit
R̄ → 0 precisely the flat results are obtained. As a conse-
quence, in this approximation

PR
factorizes into an angular

integration and a sum/integration over the spectral values
of Δḡ. According to (18), external spectral values are
described by the angle to the internal one and their absolute
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values, which appear as parameters that can be treated as
real numbers. We emphasize that this curved momentum
space approximation has the correct flat background limit
by construction and is correct for all terms that contain only
Laplace operators. A comparison of the approximation as a
function of the background curvature is detailed in
Appendix C. With the above approximation associated
with covariant derivatives, we arrive at a relatively simple
flat-background-type representation of the flow equation in
terms of angular integrals and spectral values p2

i ¼ λi

∂tΓð2Þðλ; R̄Þ

¼ −
1

2

XZ
λ1

Z
dΩΓð4Þðλ; λ1; x; R̄ÞðG _RkGÞðλ1; R̄Þ

þ
XZ
λ1

Z
dΩΓð3Þðλ; λ1; x; R̄ÞG

�
λ1 þ λþ

ffiffiffiffiffiffiffi
λλ1

p
x; R̄

	

× ðG _RkGÞðλ1; R̄ÞΓð3Þðλ; λ1; x; R̄Þ: ð19Þ

The total R̄-dependence of the flow equation enters via the
explicit R̄-terms in the vertex functions, the symmetrized
covariant derivatives and the spectral values. The gener-
alization to flows of higher-order vertex functions is
straightforward.

B. Vertex construction

The basic ingredients in the flow equations in Fig. 1 are
the vertex functions ΓðnÞ. We build on the parametrization
for vertex functions introduced in [5,6,11,121]. In contrast
to earlier truncations with vertex expansions around a flat
background, all quantities exhibit explicit R̄-dependence.
Hence, our general ansatz is given by

Γðϕ1…ϕnÞðp; R̄Þ ¼ Sðϕ1…ϕnÞ
EH ðp;GnðR̄Þ;ΛnðR̄Þ; R̄Þ; ð20Þ

where p ¼ ðp1;…; pnÞ is the collection of spectral values
of the external legs and SEH is the gauge-fixed Einstein-
Hilbert action

SEH ¼ 1

16πGN

Z
d4x

ffiffiffi
g

p ð2Λ − RÞ þ Sgf þ Sgh: ð21Þ

We employ a De-Donder-type linear gauge condition in the
Landau limit, α ¼ β ¼ 0.
In (20) the Newton’s constant and the cosmological

constant of the classical gauge fixed Einstein Hilbert action
are getting replaced with GnðR̄Þ and ΛnðR̄Þ, respectively.
They parametrize the gravitational coupling and the
momentum-independent part of the n-point function.
Note that the graviton n-point function in (20) is propor-
tional to Gn/2−1

n as well as to Zn/2
h due to the rescaling of the

graviton fluctuation field to a field with mass dimension
one. This is captured with the split gμν ¼ ḡμν þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ZhGN

p
hμν.

The wave function renormalization is in general momentum
and background-curvature dependent, Zh ¼ Zhðp2; R̄Þ.
The propagator is a pure function of Δḡ and R̄, while the

vertices with n > 2 are functions of Δḡ, ∇̄μ, R̄, R̄μν and
R̄μνρσ. Restricting ourselves to a background sphere, the
dependence on the Ricci- and the Riemann-tensor reduces
to a dependence on the constant background curvature R̄.
With the approximation constructed in the last section, we
deal with the covariant derivatives ∇̄μ in the vertices. We set
the anomalous dimensions

ηϕi
ðp2; R̄Þ ≔ −∂t lnZϕi

ðp2; R̄Þ; ð22Þ

throughout this work equal to zero. In the flat computation
[6,11] this approximation led to qualitatively reasonable
results. The graviton three-point function is evaluated at the
point of symmetric spectral values,

p ≔ jp1j ¼ jp2j; θflat ¼ 2π/3: ð23Þ

We also introduce the dimensionless variables

r≔ R̄k−2; g≔Gk2; μ≔−2Λ2k−2; λ3≔Λ3k−2: ð24Þ

From the graviton two-point function we extract the mass-
parameter μðrÞ, while from the graviton three-point func-
tion we extract the gravitational coupling gðrÞ and the
coupling of its momentum independent part λ3ðrÞ. In
Appendix B we give a derivation and display the flow
equations. In summary the set of couplings in the present
truncation is given by

ðgðrÞ; μðrÞ; λ3ðrÞÞ: ð25Þ

C. Flow equations and trace evaluation

With the construction presented in the last sections, we
are left with an explicit expression for the flow of the two-
and the three-point function. The flow of the two-point is of
the form (19) and the three-point function has a similar
form according to the diagrammatic representation in
Fig. 1. After projection the resulting flow equations take
the form (B5) and (B6). In this work we are interested in the
fixed point equations, which are differential equations with
respect to r due to the dependence on the background
curvature. According to the factorization property of the
approximate curved momentum space construction, we
evaluate the angular integration in a straightforward manner
in complete analogy to a flat background computation. We
are then left with the evaluation of traces of the form

XZ
λ

fðλ; rÞ; ð26Þ
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for functions of the curvature r and the spectral value λ as
well as the couplings. In order to include the effects of the
background curvature we perform a spectral sum over a
four-sphere. On a four-sphere the spectrum of the scalar
Laplacian is given by

ωðlÞ ¼ lð3þ lÞ
12

r; ð27Þ

with multiplicities

m ¼ ð2lþ 3Þðlþ 2Þ!
6l!

; ð28Þ

with l taking integer values l ≥ 0. Since we are left with
only scalar spectral values we replace the spectral values by

λ → ωðlÞ; ð29Þ

and replace

XZ
λ
→ V−1

Xlmax

l¼2

mðlÞ; ð30Þ

where the exact sum is achieved for lmax ¼ ∞ and we
divide by the volume of a four sphere V ¼ 384π2

k4r2 . Note, that
we exclude the zero modes and start the spectral sum at
l ¼ 2. This does not affect the result for small curvature r.
Performing the spectral sums one then obtains the traces.
However, in most cases a closed form for the sums cannot
be obtained and we have to resort to cutting the spectral
sums off at a finite value lmax. Nonetheless since each trace
involves a regulator function that cuts modes off at order
ωðlÞ ≈ k2 for nonzero r the spectral sum is only sensitive to
the modesωðlÞ < k2, which are finite in number. However,
in the limit of vanishing curvature the spectral sum needs to
be extended to infinite order, as all modes are only regulator
suppressed for large r according to expð−λnrÞ, but become
important once r ≈ 1/λn. In fact, we need the limit r → 0 in
order to set the boundary conditions of the fixed-point
differential equations. It is obvious that there is only one
physical initial conditions that fixes the solution of the fixed
point differential equation uniquely, and that is the initial
condition obtained from the flat background limit. In fact, a
proper initial condition is also necessary from a math-
ematical point of view if one requires a finite derivative,
g0ðrÞ < ∞. One infers from (B5) and (B6), that the
derivative of gðrÞ diverges in the limit r → 0 if the initial
conditions are not chosen appropriately. However, as
argued above, this limit cannot be calculated in practice
with spectral sums as all modes contribute. In the small-
curvature region the trace is evaluated by the early-time
heat-kernel expansion where the leading order gives the
flat-background momentum integrals. In this case we write
the Laplace transform

XZ
λ
fðλ; rÞ ¼ 1

V

Z
∞

0

dsTr½e−sΔg �f̃ðs; rÞ; ð31Þ

and one expands the trace of the heat kernel in the scalar
curvature r and the explicit dependence on r coming from
f̃ðs; rÞ. For small curvature the early-time heat-kernel
expansion is given by

1

V

Z
∞

0

dsTr½e−sΔg �f̃ðs; rÞ ¼ 1

ð4πÞ2


Q2½f� þQ1½f�

r
6
þ� � �

�
;

ð32Þ

where for n > 0

Qn½f� ¼
1

ΓðnÞ
Z

dλλn−1fðλ; rÞ: ð33Þ

Using this heat-kernel expansion we translate the physical
initial condition to finite r where we connect to the spectral
sum. In particular we determine the curvature-dependent
couplings as polynomials in the curvature r. The heat
kernel provides the asymptotic limit r → 0 which can be
reproduced by the spectral sum in the limit lmax → ∞.
Thus, while the spectral sum with finite lmax captures the
large r behavior of the trace, the heat kernel expanded to a
finite order in r captures the small r behavior. Both connect
smoothly for finite but small r, for details see Appendix D.

V. RESULTS

In this section we present the results of the given setup.
First, we discuss the fixed point solutions of the beta
functions related to the fluctuation field couplings. In our
approach with curvature-dependent couplings, these sol-
utions are fixed point functions. Subsequently, we analyse
the background effective potential, which is calculated on
the solution of the fluctuation field fixed point solution,
with and without standard model matter content. Last we
look for solution of the quantum EoM and compare to
solutions of the background EoM.

A. Fixed point solutions

The beta functions for a coupling giðrÞ in the present
framework are partial differential equations. Schematically,
the equation a coupling gi takes the form

∂tgiðrÞ ¼ giðrÞAðgj; ηhÞ þ 2rg0iðrÞ þ Flowgiðgj; rÞ; ð34Þ

with a coefficient A that depends on the other scale-depend
parameters gj. For explicit expressions we refer to
Appendix B. The fixed point equations are then obtained
by setting ∂tgiðrÞ≡ 0 and we are left with a system of
ordinary differential equations. The initial condition is
imposed at r ¼ 0 and is chosen such that it matches the
computation in a flat background [6]. For details see
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Sec. IV C. The UV fixed point values for a flat background,
giðrÞ ¼ gi;0, are given by

ðg�0; λ�3;0; μ�0Þ ¼ ð0.60;−0.12;−0.38Þ: ð35Þ

with the critical exponents θ, which are the negative
eigenvalues of the stability matrix,

ðθi;0Þ ¼ ð−3.5; 2.1� 2.1iÞ: ð36Þ

These values differ slightly from the ones in [6] since we
use the gauge parameter β ¼ 0 and the exponential regu-
lator, see (A5). Taking this difference into account, the
agreement is remarkable and highlights the insensitivity of
our results with respect to the gauge and the regulator.
In order to display our results, it is convenient and

meaningful to introduce effective couplings that include the
explicit r dependence in the respective graviton n-point
functions. According to (A6) and (B6), these are given by

geffðrÞ ¼ gðrÞ;

μeffðrÞ ¼ μðrÞ þ 2

3
r;

λ3;effðrÞ ¼ λ3ðrÞ þ
1

6
r: ð37Þ

The interpretation and relevance of these effective cou-
plings can be inferred for instance from the graviton two-
point function. In terms of μeffðrÞ, the transverse-traceless
part of the graviton two-point function reads

Γð0;2Þ ¼ ðΔþ μeffðrÞÞ; ð38Þ

i.e. it comprises the nonkinetic part of the correlator. As an
aside, we mention that one could define λ3;eff alternatively
via (B5). The difference between the effective coupling
for λ3 in (B6) and (B5) arises from the different tensor
projections. We choose to define λ3;eff via (B6) since the
flow equation for g is more important in this system.
The full, r-dependent fixed point solutions ðg�ðrÞ;

μ�effðrÞ; λ�3;effðrÞÞ are displayed in Fig. 2. We find a fixed
point solution with all desired properties. First of all, the
fixed point solution is characterized by a positive gravita-
tional coupling gðrÞ > 0, which decreases towards larger
background curvatures. In order to get a feeling for the
physical meaning of this behaviour, we consider the
quantity GðRÞR ¼ gðrÞr, i.e. the dimensionful Newton’s
coupling times the curvature. As this product is dimension-
less, it can in principle be used to define an observable.
In particular, we expect that this quantity is finite at the
fixed point, which implies g�ðrÞ ∼ 1/r. One might interpret
our fixed solution g�ðrÞ as an onset of such a behavior.
The solutions for the mass-parameter μeffðrÞ and λ3;effðrÞ
are almost curvature independent, which implies that the
implicit curvature dependence cancels with the explicit one.

Consequently, the behaviour is not so different from the one
of the computation on a flat background.
The full solution shown in Fig. 2 can be expanded in

powers of the dimensionless curvature, g�i ðrÞ ¼ g�i;0 þ
g�i;1rþOðr2Þ. The zeroth order is displayed in (35) and
to linear order in r we find

ðg�1; λ�3;1; μ�1Þ ¼ ð−0.44;−0.09;−0.79Þ: ð39Þ

with the critical exponents θ given by

ðθi;1Þ ¼ ð−5.7; 0.27� 3.1iÞ: ð40Þ

We find two further UV attractive directions in the linear
order of the background curvature. Further attractive
directions of the UV fixed point that are linear in the
background curvature were also found in [12].

B. Background potential

In the previous section we have presented the fixed point
solution for the fluctuation field couplings. All background
quantities depend on these dynamical couplings and have
to be evaluated on the above solution. Along these lines we
calculate a background field potential at the fixed point.
The flow of the background potential is completely
determined by the dynamical couplings of the two-point
function. In particular, the background flow equation reads

∂tΓ½ḡ; 0� ¼
1

2
Tr½G∂tRk�hh − Tr½G∂tRk�c̄cjϕ¼0: ð41Þ

On a sphere, the background effective action is given by

Γ½ḡ; 0� ¼
Z

d4x
ffiffiffī
g

p
k4fðR̄/k2Þ ¼ 384π2

r2
fðrÞ: ð42Þ

FIG. 2. Fixed point function solution for the system ðg�ðrÞ;
μ�effðrÞ; λ�3;effðrÞÞ with the boundary condition from the first-order
heat kernel. The solutions are stable in the whole investigated
region. Note, that the effective couplings according to (37) are
displayed.
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Denoting the right-hand side of (41) by F ðr; μðrÞÞ we
obtain a flow equation for the function fðrÞ given by

384π2

r2
ð∂tf þ 4fðrÞ − 2rf0ðrÞÞ ¼ F ðr; μðrÞÞ: ð43Þ

If we then look at the fixed point for f�ðrÞ we find

384π2

r2
ð4f�ðrÞ − 2rf�0ðrÞÞ ¼ F ðr; μ�ðrÞÞ: ð44Þ

One then notes that the left-hand side is just the background
EoM for fðrÞ-gravity on a constant curvature background.
Thus when the function F ðr; μ�ðrÞÞ vanishes we have a
solution to the background EoM at the fixed point given by

F ðr0; μ�ðr0ÞÞ ¼ 0: ð45Þ

Equivalently we can look for a minimum of the function
fðrÞ/r2. In Fig. 3 we plot the background potential fðrÞ/r2
for our full solution (left panel) as well as in comparison
with other approximations (right panel). There we use
μ�effðrÞ ¼ μ�0 and μ�ðrÞ ¼ μ�0 as given in (35). The first is
seen to be a good approximation from Fig. 2 while the latter
reduces our computation to an Einstein-Hilbert approxi-
mation. We observe that in the full solution and in the
μ�effðrÞ ¼ μ�0 approximation there are no solutions to the
background EoM within the investigated curvature regime.
This absence of a constant curvature solution is in agree-
ment with studies of fðRÞ gravity in the background field
approximation [116], although solutions have been found
in calculations exploiting the exponential parametrization
[118,119] and within the geometrical approach [43,49].
For the approximation μ�ðrÞ ¼ μ�0, which corresponds to a
pure Einstein-Hilbert computation, we find a minimum at

r0 ¼ 0.97. This is again in agreement with computations in
the background field approximation [122,123].
In a polynomial expansion around r ¼ 0 the background

potential of the full solution would take the form

fðrÞ ¼ 0.0065 − 0.0065rþOðr2Þ; ð46Þ

and consequently we obtain fixed point values of the
background Newton’s coupling and the background cos-
mological constant according to

ḡ� ¼ 3.0; λ̄� ¼ 0.50: ð47Þ

Note that λ̄ ¼ 1
2
is not a pole in our computation: the pole is

only present in the graviton mass parameter μðrÞ.
Surprisingly the fixed point value of ḡ� is rather large.
We compare these values with the pure Einstein-Hilbert
approximation, see blue dashed line in Fig. 3. We find

fEHðrÞ ¼ 0.0065 − 0.021rþOðr2Þ; ð48Þ

and consequently

ḡ�EH ¼ 0.94; λ̄�EH ¼ 0.15: ð49Þ

These values are comparable to standard Einstein-Hilbert
computations in the background field approximation as
well as in fluctuation computations. Thus the large values
in (47) are indeed triggered by the nontrivial r dependence
of the couplings.
We investigate the stability of the present results by

treating μ�effðrÞ as a free parameter without curvature
dependence. In this case, μ�effðrÞ ¼ μ�0 is a good approxi-
mation for our best solution as discussed above. By varying
this parameter we see for which values a solution to the
background EoM exists. With reference to Fig. 4 we find

FIG. 3. Displayed are background potentials f�ðrÞ/r2 obtained from the fixed point solution μ�ðrÞ (left and right panel) and from the
approximations μ�effðrÞ ¼ μ�0 and μ

�ðrÞ ¼ μ�0 (right panel). All curves are obtained with the condition f
�ðr ¼ 1.4Þ ¼ 0. Other conditions

just shift the potential f�ðrÞ/r2 by a constant. The full solution does not contain a minimum, it becomes asymptotically flat. The
approximation μ�effðrÞ ¼ μ�0 is qualitatively very good, see also Fig. 2. The approximation μ�ðrÞ ¼ μ�0 corresponds to a pure Einstein-
Hilbert computation. Here we find a minimum at r0 ¼ 0.97.
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that solutions exist for positive curvature when 0.255≲
μ�eff ≲ 0.77 and for negative curvature for μ�eff ≳ 0.77. For
μ�eff ≲ 0.255 there are no solutions. The transition of the
minimum from positive to negative curvature is depicted in
the left panel of Fig. 4 while the full disappearance of the
minimum is depicted in the right panel. The computed
value of μ�0 ¼ −0.38, see (35), is far away from the value
where the solution appears. Thus we conclude that the
absence of a minimum in the background potential in our
full pure gravity computation is rather stable with respect to
changes in the truncation.

1. Dependence on matter

Matter can potentially have a significant influence on the
properties of the UV fixed point, see e.g. [7,13,59,63–65].
In the present work matter influences the existence of a
minimum in the background potential in two ways: On the
one hand it has an influence on the fixed point values of the
fluctuation couplings, where in particular the influence on
μ�effðrÞ is important. On the other hand it has a direct
influence on the background potential via the background
matter loops. Both these effects have been studied in a
fluctuation computation on a flat background, see [7] for
scalars and fermions and [13] for gauge bosons.
Consequently we adapt the analysis to curved backgrounds
under the assumption that the effective graviton mass
parameter μeffðrÞ remains a almost curvature independent
in these extended systems, similar to the results displayed
in Sec. VA.
Combining the results of [7,13] for standard model

matter content (Ns ¼ 4, Nf ¼ 22.5, and Nv ¼ 12) gives
a UV fixed point at

ðg�0; λ�3;0; μ�0ÞSM ¼ ð0.17; 0.15;−0.71Þ; ð50Þ

and will be reported in [124]. For the present analysis only
the value μ�0;SM is important since we now use μ�effðrÞ ¼
μ�0;SM as an input for the background potential. The matter

content seemingly pushes μ�eff in the wrong direction,
cf. Fig. 4. However, the matter content has also a huge
influence on the background equations. The combined result
is displayed in Fig. 5. Indeed we find a minimum in the
background potential at small curvature, r0 ¼ 0.11. Also in
the Einstein-Hilbert approximation, i.e. μ�ðrÞ¼μ�0;SM, we
find a minimum at r0;EH ¼ 0.05. With standard model matter
content the full solution and the Einstein-Hilbert approxi-
mation are very similar. This comes as a surprise as the
difference was rather significant without matter content,
cf. Fig. 3.

C. Quantum equation of motion

In this section we evaluate the graviton one-point
function and thus look for solutions to the quantum
EoM (7). As discussed in Sec. III A the solution to this
equation leads to self-consistent backgrounds that improve
the convergence of the Taylor series. Moreover, it has been

FIG. 4. Fixed point background potential for different constant input values of μ�effðrÞ. The minimum that corresponds to the solution
of the background equation of motion is at r > 0 for μ�effðrÞ≲ 0.77, while for μ�effðrÞ≳ 0.77 it is at r < 0 (left panel). For μ�effðrÞ≲ 0.25
the minimum vanishes completely, while for μ�effðrÞ ¼ 0.26 the minimum is located at r0 ¼ 1.1 (right panel).

FIG. 5. Depicted is the fixed point background potential if
standard model matter content is included. In the full solution as
well as in the Einstein-Hilbert solution we find a minimum at
small background curvature, r0 ¼ 0.11 and r0;EH ¼ 0.05, respec-
tively, which corresponds to the solution of the background
equation of motion.
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also argued there that the quantum EoM in the limit k → ∞
should be seen as an estimate for the solution of the UV
EoM in the physical limit k → 0 where background and
quantum EoM agree due to background independence.
Within the present setup the only invariant linear in the

fluctuation field is given by f1ðrÞhtr with some function f1
that is determined by the fluctuation couplings. An invari-
ant linear in the transverse traceless mode does not exist
due to our restriction to a spherical background and thus the
absence of terms like rμνhttμν. Consequently we evaluate (7)
with a projection on the trace mode of the graviton.
In straight analogy to the background EoM (42) we

parametrize the one-point function by

ΓðhtrÞ½ḡ; 0� ¼
Z

d4x
ffiffiffī
g

p
k3f1ðR̄/k2Þ ¼

384π2

kr2
f1ðrÞ: ð51Þ

We denote again the right-hand side by F 1ðr; μðrÞÞ. This
time, however, we obtain at a different differential equation
for f1 due to the different mass-dimensions of ḡ and h.
Thus f1 obeys the fixed point equation

384π2

r2
ð3f�1ðrÞ − 2rf�01 ðrÞÞ ¼ F 1ðr; μ�ðrÞÞ: ð52Þ

We solve this equation with the initial condition that f�1ðrÞ
is finite at r ¼ 0. Consequently we combine a heat kernel
expansion around r ¼ 0 up to the order r3 with a spectral
sum evaluation for large, positive curvature. For results at
negative curvature we rely on the heat kernel expansion,
but from a comparison of the heat kernel results with the
spectral sum at positive curvature we can estimate the
radius of convergence of the heat kernel. We estimate
the latter by the range where the relative change is in the
sub percent regime. We find that the radius of convergence
is approximately given by rconv ≈ 1. The radius of con-
vergence increases for larger μ�effðrÞ.
The resulting fixed point functions f�1ðrÞ are shown in

Fig. 6. For our best result μ�effðrÞ ¼ μ�0 ¼ −0.38, f�1ðrÞ has a
root at negative curvature, r0 ¼ −1.0, which corresponds to
a solution to the quantum EoM. The result lies within the
radius of convergence of the heat-kernel expansion and
thus we consider it trustworthy.
We again check the stability of the solution by treating

μ�effðrÞ as a constant free input parameter. For more positive
values, μ�eff > μ�0, the root of f�1ðrÞ moves toward larger
curvature, but always remains negative. In the limit
μ�eff → ∞ the root is located at r0 ¼ −0.42. For more
negative values, μ�eff < μ�0 the root of f�1ðrÞ moves toward
smaller curvature and eventually the root disappears at
μ�eff ¼ −0.62, cf. Fig. 6. This result has to be taken very
careful since at μ�eff ¼ −0.62 the root is located at r0 ¼
−2.2 and thus lies outside of the radius of convergence of
heat kernel. At μ�eff ¼ −0.71 a new solution appears at
positive curvature, r0 ¼ 2.7. This root remains also for
more negative values of μ�eff until the pole at μ

�
eff ¼ −1. The

roots at positive curvature are obtained with the spectral
sum and thus do not rely on the radius of convergence of
the heat kernel.
We have visualized the existence of a solution to the

background and quantum EoM in Fig. 7. The quantum
EoM has almost always a solution, only in the range
−0.71 < μ�eff < −0.62 no solution exists. This range may
even disappear with better truncations or an improved
computation at large negative curvature. The background
EoM on the other hand only allows for a solution for
μ�eff > 0.26, and thus in a region that is very unusual for
pure gravity computations.

FIG. 6. Shown is the fixed point function f�1ðrÞ for different
constant input values of μ�effðrÞ. The zeros in these functions
correspond to solutions to the quantum equations of motion (7).
Our best result μ�effðrÞ ¼ μ�0 ¼ −0.38 has a solution at negative
curvature, r0 ¼ −1.0.

FIG. 7. Visualization of the existence of a solution to the background and quantum equation of motion in dependence on the parameter
μeff . Solutions at positive curvature (r > 0) and negative curvature (r < 0) are distinguished.
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VI. SUMMARY AND OUTLOOK

In this work we have developed an approach to asymp-
totically safe gravity with nontrivial backgrounds. As a
first application of the novel approach we computed the
fðRÞ-potential and discussed solutions of the equations of
motion.
We have also given a discussion of functional approaches

to quantum gravity that take into account the necessary
background independence of the theory. We have dis-
cussed, for the first time in quantum gravity, that back-
ground independence and diffeomorphism invariance can
be achieved iteratively in any approximation scheme, based
on a similar argument in non-Abelian gauge theories, see
Sec. II. We have also emphasized the relevance of aiming
for solutions that satisfy all functional relations. We have
argued that this is tightly bound to the question of unitarity.
The approach is based on a vertex expansion of the

effective action about nontrivial backgrounds, which at
present are restricted to constantly curved backgrounds.
Our explicit results are based on a truncation that includes
the flow of the graviton two- and three-point function and
thus the couplings g, λ3, and μ. The construction of an
approximate momentum space, cf. (18), allowed us to
evaluate these couplings without a derivative expansion in
momentum p or curvature r. In this work we focused on the
curvature dependence and thus all couplings are functions
of the curvature, gðrÞ, λ3ðrÞ, and μðrÞ. The flow equations
for these coupling functions were obtained with spectral
sums on a sphere. The results are smoothly connected to
known results at vanishing background curvature with heat-
kernel methods.
As one main result we found UV fixed point functions

that confirm the asymptotic safety of the present system.
Interestingly, the effective fixed point couplings, λ�3;effðrÞ
and μ�effðrÞ, cf. (37), turned out to be almost curvature
independent over the investigated range: the couplings
counterbalance the explicit curvature dependence of the
n-point functions.
We have also discussed the background and the quantum

equation of motion, (6) and (7), in Sec. III. At k ¼ 0, their
solutions agree due to background independence. In turn, at
finite k the solutions to background and quantum equations
of motion differ due to a regulator contribution to the
modified Nielsen identity. This signals the breaking of
background independence in the presence of the cutoff. We
have argued in the present work that at finite cutoff it is the
solution of the quantum equation of motion that relates
directly to the physical solution of the equation of motion at
vanishing cutoff.
We explicitly evaluated both equations of motion with

the UV fixed point functions and indeed found different
solutions: The background equation of motion does not
feature a solution. Only with standard model matter content
a solution at small curvature is present. The quantum
equation of motion exhibits already a solution at negative

curvature without any matter content. We have checked the
stability of these statements by scanning for solutions in the
parameter μ�eff. The background equation of motion without
matter features a solution only for very large values of μ�eff ,
far away from most values observed in pure quantum
gravity truncations. On the other hand the quantum
equation of motion has a solution for almost all μ�eff .
This indicates that the existence of a solution seems to
be robust with respect to changes in the truncation. We have
visualized this behavior in Fig. 7.
The discussion of the equation of motion leads us

directly to a specific observable: the effective action,
evaluated on the equation of motion. In standard quantum
field theories this is the free energy, and it is gauge and
parametrization independent. For the present approach
this is discussed in Sec. III A. We therefore expect only
a mild dependence on these choices within sensible
approximations to the full effective action. Indeed, this
has been observed in the background field approximation
[125,126]. It would be interesting to see whether this
property is also holds in the present approach that goes
beyond the background field approximation. At finite
cutoff this investigation can be done by studying the gauge
and parametrization independence of the effective action
evaluated on the quantum equation of motion. This will be
discussed elsewhere.
Possible improvements of the present work involve the

inclusion of momentum- and curvature-dependent anoma-
lous dimensions as well as the inclusion of further R2- and
R2
μν-tensor structures in the generating vertices. It would be

very interesting to extend the present work to more general
backgrounds. Moreover, the present approach also allows
us to take the limit k → 0. This allows us, for the first time,
to directly discuss asymptotically safe physics directly for
the physically relevant cutoff scale k ¼ 0. Applications
range from asymptotically safe cosmology with the quan-
tum fðRÞ potential as well as the UV-behavior and
phenomenology of the asymptotically safe (extensions of
the) standard model. We hope to report on these applica-
tions in the near future.
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APPENDIX A: PROPAGATOR

We use the standard York decomposition to invert the
two-point functions. The York-decomposition for the
graviton is given by
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hμν ¼ httμν þ
1

d
ḡμνhtr þ 2∇̄ðμξνÞ þ



∇̄μ∇̄ν −

ḡμν
d

∇̄2

�
σ:

ðA1Þ

and for the ghost by

cμ ¼ cT
μ þ ∇̄μη; ðA2Þ

and analogously for the antighost. With the field redefini-
tions according to [24,44,51]

ξμ →
1ffiffiffiffiffiffiffiffiffiffiffiffi
Δ̄ − R̄

4

q ξμ;

σ →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ̄2 − Δ̄ R̄
3

q σ;

η →
1

Δ̄
η; ðA3Þ

we cancel the nontrivial Jacobians and achieve that all field
modes have the same mass dimension. We choose the
gauge α ¼ β ¼ 0 and choose the regulator proportional to
the two-point function

Rk ¼ Γð2ÞjΛ→0;R→0 · rkðp2Þ: ðA4Þ

Here and in the following in this Appendix, p2 always
refers to the dimensionless spectral values of the scalar
Laplacian. For the regulator shape function rk, we choose
an exponential regulator

rkðxÞ ¼
e−x

2

x
: ðA5Þ

The propagator has the form

G ¼ 32π

Zh

0
BBBBB@

1
p2ð1þrkðp2ÞÞþμþ2

3
r

0 0 0

0 0 0 0

0 0
−8
3

p2ð1þrkðp2ÞÞþ2
3
μ

0

0 0 0 0

1
CCCCCA
;

ðA6Þ

where the first entry is the transverse traceless mode and the
third entry is the trace mode. All other modes vanish due to
Landau gauge, α ¼ 0. Furthermore, we get the following
expressions for the background flow of the different
graviton modes, where still the spectral sum/integral or
heat-kernel expansion has to be performed,

1

2
Tr½G∂tR�htt ¼

r2

768π2
p2ð∂trkðp2Þ − ηhrkðp2ÞÞ
p2ð1þ rkðp2ÞÞ þ μþ 2

3
r
;

1

2
Tr½G∂tR�ξ ¼

r2

768π2
p2ð∂trkðp2Þ − ηhrkðp2ÞÞ
p2ð1þ rkðp2ÞÞ − 1

4
r

;

1

2
Tr½G∂tR�htr ¼

r2

768π2
p2ð∂trkðp2Þ − ηhrkðp2ÞÞ
p2ð1þ rkðp2ÞÞ þ 2

3
μ

;

1

2
Tr½G∂tR�σ ¼

r2

768π2
p2ð∂trkðp2Þ − ηhrkðp2ÞÞ
p2ð1þ rkðp2ÞÞ − 1

3
r

: ðA7Þ

And for the ghosts

−Tr½G∂tR�c ¼ −
r2

384π2
p2ð∂trkðp2Þ − ηcrkðp2ÞÞ

p2ðrkðp2Þ þ 1Þ − r
4

;

−Tr½G∂tR�η ¼ −
r2

384π2
p2ð∂trkðp2Þ − ηcrkðp2ÞÞ
p2ðrkðp2Þ þ 1Þ − 1

3
r

: ðA8Þ

APPENDIX B: FLOW EQUATIONS

The flow equation for the transverse traceless part of the
graviton two-point function is given by

1

32π
∂t



Zhk2



μþ p2 þ 2

3
r

��
¼ k2ZhFlow

ð2hÞ
tt ðp2Þ:

ðB1Þ

Here we suppressed the dependences of the couplings on
e.g. background curvature r or spectral values p2 to improve
readability. All dependences are as in Sec. IV B. The
expression Flow is used as in [11] and stands here and in
the following for the dimensionless right-hand side of the
flow equation divided by appropriate powers of the wave
function renormalizations. The superscript specifies the
n-point function, while the subscript refers to the tensor
projection.
From (B1) we obtain the flow equation for the transverse

traceless graviton mass parameter

∂tμ ¼ ðηh − 2Þμþ 2

3
ηhrþ 2rμ0 þ 32πFlowð2hÞ

tt ðp2 ¼ 0Þ;
ðB2Þ

where the 0 refers to a derivative with respect to r. The
graviton three-point function is projected in straight anal-
ogy to the flat computation [6]. We focus on the transverse
traceless part and define the two projection operators ΠΛ
and ΠG as

ΠΛ ¼ Π3
ttS

ð3hÞ
EH ðp2 ¼ 0; r ¼ 0Þ;

ΠG ¼ Π3
ttS

ð3hÞ
EH ðΛ ¼ 0; r ¼ 0Þ; ðB3Þ
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which we use for the projection on λ3 and g, respectively.
The resulting flow equations are

∂t



Z3/2
h k2

ffiffiffi
g

p 

5

2304
rþ 5

192
λ3 −

9

4096
p2

��

¼ k2Z3/2
h Flowð3hÞ

Λ ðp2Þ;

∂t



Z3/2
h k2

ffiffiffi
g

p 

−

3

8192
r −

9

4096
λ3 þ

171

32768
p2

��

¼ k2Z3/2
h Flowð3hÞ

G ðp2Þ: ðB4Þ

The flow of λ3 is extracted at vanishing spectral value
p2 ¼ 0, while the flow of g is extracted with a derivative
with respect to the dimensionless spectral value p2 at
p ¼ 0. The result is

∂tλ3¼−2λ3þ2rλ03þ


3

2
ηhþ

1

2

2g−∂tgþ2rg0

g

�

λ3þ

1

12
r
�

þ 3

80

ð32πÞ2ffiffiffi
g

p
k

Flowð3hÞ
Λ ðp2¼0Þ; ðB5Þ

∂tg ¼ 2gþ 2rg0 þ 3ηhg −
24

19
ð∂p2ηhjp2¼0Þ



λ3 þ

1

6
r

�
g

þ 64

171
ð32πÞ2 ffiffiffi

g
p

k∂p2Flowð3hÞ
G jp2¼0: ðB6Þ

The derivation of the flow equations in this section
required contractions of very large tensor structures. These
contractions were computed with the help of the symbolic
manipulation system FORM [127,128]. We furthermore
used the Mathematica packages XPERT [129] for the
generation of vertex functions, and the FORMTRACER
[130] to trace diagrams.

APPENDIX C: CHECK OF APPROXIMATIONS

In Sec. IVA we have explained that all vertices in a
curved background contain uncontracted covariant deriv-
atives. We have circumvented this issue by using the
approximation displayed in (18). This problem reoccurs
during the contraction of the diagrams, since the usual
York-decomposition projection operators Πi are needed,
with i ∈ ftt; tr;…g. The projection operators are functions
of the background Laplacian and the background covariant
derivative ΠiðΔ̄; ∇̄Þ, where the latter covariant derivatives
are again approximated by (17) and (18). This however
causes us to mix up the different spin Laplacians, spin-two
Δ2 and spin-zero Δ0. Other Laplacians do not occur since
the graviton propagator only has a nonvanishing transverse
traceless and trace mode. In the this work we choose to use
the spin-zero Laplacian.
For the background flow this mixing of Laplacians does

not occur since the propagator is not a function of the
covariant derivative. Hence we use the background flow to

estimate the error of our approximation. Here we focus on
the transverse traceless and the trace part since these are the
relevant modes in the fluctuation computation. The exact
result with our regulator is given by

Tr½G∂tR�tt;tr ¼
Xlmax

l¼2

m2ðlÞðG∂tRÞttðΔ2ðlÞÞ

þ
Xlmax

l¼0

m0ðlÞðG∂tRÞtrðΔ0ðlÞÞ; ðC1Þ

while we compare it to the approximations

ðC1Þ ≈
Xlmax

l¼0

m0ðlÞð5ðG∂tRÞtt þ ðG∂tRÞtrÞðΔ0ðlÞÞ ðC2Þ

≈
Xlmax

l¼2

m0ðlÞð5ðG∂tRÞtt þ ðG∂tRÞtrÞðΔ0ðlÞÞ ðC3Þ

≈
Xlmax

l¼2

m2ðlÞ


ðG∂tRÞttþ

1

5
ðG∂tRÞtr

�
ðΔ2ðlÞÞ: ðC4Þ

Here lmax is chosen such that the trace is fully converged in
the investigated curvature range and the factors 5 and 1

5

appear due to the five transverse traceless modes compared
to the one trace mode.
The results are shown in Fig. 8 in the left panel. For small

background curvature r all results agree qualitatively well.
For large background curvature the difference is becoming
more significant. This can be easily understood: in the exact
result (C1) only the trace mode is equipped with a zero
mode, while in the first approximation (C2) all modes are
equipped with a zero mode. In contrast in the second and
third approximation, (C3) and (C4), no mode is equipped
with a zero mode. The zero modes dominate for large
curvature and thus it is clear that the approximation fails in
this regime.
In other words, the symmetrized products of covariant

derivatives in the projectors are effectively commuting in
our approximation. The transverse traceless projection
basically traces out the degrees of freedom of the transverse
traceless mode and leaves us with a scalar quantity. With
this approximation, there is an ambiguity related to the
Laplace operator, which can be chosen as the spin-zero or
spin-two Laplacian. As already mentioned we choose to
use the spin-zero Laplacian without zero modes, i.e.
approximation (C3).
In the right panel of Fig. 8 we compare these different

choices for one particular diagram of the graviton two-point
function, where the exact result is not available within our
truncation. We observe that the results are almost identical
for small curvature, i.e. r < 2. For r > 2 the results differ
qualitatively due to the different treatment of the zero
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modes. We conclude that the validity of our approximation
is bound by r < 2.

APPENDIX D: INSENSITIVITY ON INITIAL
CONDITIONS

As explained in Sec. IV C we have to give initial
conditions to the beta function since they are the first-
order linear differential equations. In principle the initial
condition has to be given at vanishing curvature r ¼ 0 since
there are the divergences of the differential equations.
However the spectral sum converges only point wise and
the number of modes that have to be included grows
exponentially towards r → 0. Consequently we give the
initial conditions at some finite rstart that should be close to
r ¼ 0. The value there is obtained by expanding the heat
kernel expansion (32). One can then check that the spectral
sum and heat kernel agree in the small background

curvature regime where both methods converge
[122,123]. In this Appendix we discus the sensitivity of
the fixed point functions to the choice of rstart.
The initial condition for some coupling gi is determined

from the zero and first order of the heat-kernel expansion
around r ¼ 0, i.e. by g�i ðrstartÞ ¼ g�i;0 þ rstartg�i;1 where g�i;0
and g�i;1 are determined by the heat-kernel computation and
the solutions are displayed in (35) and (39). On the one
hand the quality of this initial condition gets worse for large
rstart since this is a linear approximation of the curvature
dependence of the couplings. On the other hand the quality
also gets worse for too small rstart since we are too close to
the singularity at r ¼ 0. Consequently we have to find a
region in between where the fixed point functions for the
couplings are stable against small variations of rstart.
From the chosen rstart we integrate the differential equa-

tions upwards to large r. Integrating down would quickly run
into the singularity at r ¼ 0. In Fig. 9 we display the resulting

FIG. 8. Comparison of the trace evaluation using different Laplacians and starting with different eigenvalues. In particular we compare
the spin-two Laplacian Δ2 and the spin-zero Laplacian Δ0 and further we start once from the zero mode and once start from the l ¼ 2
mode. In the left panel we display the background flow Tr½G∂tR� of the combined transverse traceless and trace mode, where also the
exact solution is computed. In the right panel we display the self-energy diagram of the two-point function, which is the second diagram
in Fig. 1. From these results we infer that this particular approximation is qualitatively reliable in the range r < 2.

FIG. 9. Comparison of fixed point functions with initial condition at different curvature values rstart ∈ f0.01; 0.03; 0.05; 0.07g. In the
left panel we compare the fixed point functions of the Newton’s coupling gðrÞ and in the right panel the effective graviton mass
parameter μeffðrÞ ¼ μðrÞ þ 2

3
r. Both fixed point functions show only a small dependence on the initial condition. All initial conditions

are determined by g�i ðrstartÞ ¼ g�i;0 þ rstartg�i;1, where the zeroth and linear order in r of the couplings are given by (35) and (39).
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fixedpoint functions for g�ðrÞ andμ�effðrÞ for different choices
of rstart∈f0.01;0.03;0.05;0.07g. We observe that the fixed
point functions for g�ðrÞ (left panel of Fig. 9) agree almost
perfectly for all chosen start values. Only for rstart ¼ 0.01 we
observe a tiny deviation. For the fixed point functions of

μ�effðrÞ (right panel of Fig. 9) we observe larger, but still small
deviations. Again for rstart ¼ 0.01 the deviations are the
largest. We conclude that the this start value is too close to
the singularity at r ¼ 0. The results in this work were
computed with rstart ¼ 0.03.
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[59] P. Donà, A. Eichhorn, and R. Percacci, Phys. Rev. D 89,
084035 (2014).

[60] R. Percacci and G. P. Vacca, Eur. Phys. J. C 75, 188 (2015).
[61] K.-y. Oda and M. Yamada, Classical Quantum Gravity 33,

125011 (2016).
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