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We develop a formalism to help calculate in quantum field theory the departures from the description of a
system by classical field equations. We apply the formalism to a homogeneous condensate with attractive
contact interactions and to a homogeneous self-gravitating condensate in critical expansion. In their
classical descriptions, such condensates persist forever. We show that in their quantum description,
parametric resonance causes quanta to jump in pairs out of the condensate into all modes with wave vector
less than some critical value. We calculate, in each case, the time scale over which the homogeneous
condensate is depleted and after which a classical description is invalid. We argue that the duration of
classicality of inhomogeneous condensates is shorter than that of homogeneous condensates.
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I. INTRODUCTION

The identity of dark matter remains one of the foremost
questions in science today [1]. One of the leading candi-
dates is the QCD axion, which has the double virtue of
solving the strong CP problem of the standard model of
elementary particles [2,3] and of being naturally produced
with a very low velocity dispersion in the early Universe
[4], so that it behaves as cold dark matter from the point of
view of structure formation [5]. Several other candidates,
called axionlike particles (ALPs) or weakly interacting slim
particles (WISPs), have properties similar to axions as far
as the dark matter problem is concerned [6]. ALPs with a
mass of order 10−21 eV, called ultralight ALPs (ULALPs),
have been proposed as a solution to the problems that
ordinary cold dark matter is thought to have on small scales
[7]. Axion dark matter has enormous quantum degeneracy,
of order 1061 [8] or more. The degeneracy of ULALP dark
matter is even higher [9]. In most discussions of axion or
ALP dark matter, the particles are described by classical
field equations. The underlying assumption appears to be
that a huge degeneracy ensures the correctness of a classical
field description.
However it was found in Refs. [8,10–12] that cold dark

matter axions thermalize, as a result of their gravitational
self-interactions, on time scales shorter than the age of the
Universe after the photon temperature has dropped to
approximately one keV. When they thermalize, all the
conditions for their Bose-Einstein condensation are

satisfied, and it is natural to assume that this is indeed
what happens. Axion thermalization implies that the axion
fluid does not obey classical field equations since the
outcome of thermalization in classical field theory is a UV
catastrophe, wherein each mode has average energy kBT no
matter how high the mode’s oscillation frequency, whereas
the outcome of thermalization of a Bosonic quantum field
is to produce a Bose-Einstein distribution. On sufficiently
short time scales, the axion fluid does obey classical fields
equations. It behaves then like ordinary cold dark matter on
all length scales longer than a certain Jeans length [13,14];
see Eq. (4.18) below. However, on longer time scales, the
axion fluid thermalizes. When thermalizing, the axion fluid
behaves differently from ordinary cold dark matter since it
forms a Bose-Einstein condensate, i.e., almost all axions go
to the lowest energy state available to them. Ordinary cold
dark matter particles, weakly interacting massive particles
(WIMPs), and sterile neutrinos [1] do not have that
property.
Axion thermalization has implications for observation. It

was found [10] that the axions which are about to fall into a
galactic potential well thermalize sufficiently fast that they
almost all go to their lowest energy state consistent with the
total angular momentum they acquired from tidal torquing.
That state is one of rigid rotation in the angular variables
(different from rigid body rotation but similar to the
rotation of water going down a drain), implying that the

velocity field has vorticity (∇⃗ × v⃗ ≠ 0). In contrast, ordi-
nary cold dark matter falls into gravitational potential wells
with an irrotational velocity field [15]. The inner caustics of
galactic halos are different in the two cases. If the particles
fall in with net overall rotation, the inner caustics are rings
whose cross section is a section of the elliptic umbilic
catastrophe, called caustic rings for short [16,17]. If the
particles fall in with an irrotational velocity field, the inner

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 043531 (2018)

2470-0010=2018=97(4)=043531(23) 043531-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.043531&domain=pdf&date_stamp=2018-02-27
https://doi.org/10.1103/PhysRevD.97.043531
https://doi.org/10.1103/PhysRevD.97.043531
https://doi.org/10.1103/PhysRevD.97.043531
https://doi.org/10.1103/PhysRevD.97.043531
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


caustics have a tentlike structure [15] quite distinct from
caustic rings. Observational evidence had been found
for caustic rings. The evidence is summarized in
Ref. [18]. It was shown [19,20] that axion thermalization
and Bose-Einstein condensation explains the evidence for
caustic rings of dark matter in disk galaxies in detail and in
all its aspects, i.e., it explains not only why the inner
caustics are rings and why they are in the galactic plane but
it also correctly accounts for the overall size of the rings and
the relative sizes of the several rings in a single halo.
Finally, it was shown that axion dark matter thermalization
and Bose-Einstein condensation provide a solution [20] to
the galactic angular momentum problem [21], the tendency
of galactic halos built of ordinary cold dark matter (CDM)
and baryons to be too concentrated at their centers. An
argument exists therefore that the dark matter is axions, at
least in part. Reference [20] estimates that the axion
fraction of dark matter is 35% or more.
All the above claimed successes notwithstanding, axion

thermalization and Bose-Einstein condensation are difficult
topics from a theoretical point of view. Thermalization by
gravity is unusual because gravity is long range and, more
disturbingly, because it causes instability. Bose-Einstein
condensation means that a macroscopically large number of
particles go to their lowest energy state. But if the system is
unstable it is not clear in general what is the lowest
energy state. The idea that dark matter axions form a
Bose-Einstein condensate was critiqued in Refs. [22–24]. It
was concluded in Ref. [24] that “while a Bose-Einstein
condensate is formed, the claim of long-range correlation is
unjustified.”
In Sec. II of this paper, we aim to clarify aspects of Bose-

Einstein condensation that appear to cause confusion, at
least as far as dark matter axions are concerned. One issue
is whether a Bose-Einstein condensate needs to be homo-
geneous (i.e., translationally invariant as is a condensate of
zero momentum particles). We answer this question neg-
atively. A Bose-Einstein condensate can be, and generally
is, inhomogeneous. Nonetheless, merely by virtue of being
a Bose-Einstein condensate, it is correlated over its whole
extent, and its extent can be arbitrarily large compared to its
scale of inhomogeneity.
A second question is whether Bose-Einstein condensa-

tion can be described by classical field equations. We state
the following to be true. The behavior of the condensate is
described by classical field equations on time scales short
compared to its rethermalization time scale. However when
the condensate rethermalizes, as it must if situated in a
time-dependent background or if it is unstable, it does not
obey classical field equations. A phenomenon akin to Bose-
Einstein condensation does exist in classical field theory
when a UV cutoff is imposed on the wave vectors, i.e., all
modes with wave vector k > kmax are removed from the
theory. kmax is related to the critical temperature Tcrit for
Bose-Einstein condensation in the quantum field theory.

We emphasize however that the relationship kmax and Tcrit
necessarily involves a constant, such as ℏ, with a dimension
of action. Furthermore, if we replace the quantum axion
field by a cutoff classical field, even if a phenomenon
similar to Bose-Einstein condensation does occur, there is
no proof or expectation that the cutoff classical theory
reproduces the other predictions of the quantum theory. In
particular, the phenomenology of caustic rings cannot be
reproduced in the classical field theory, with or without
cutoff, because vorticity (the circulation of the velocity field
along a closed curve) is conserved in classical field theory.
In contrast, the production of vorticity and the appearance
of caustic rings is the expected behavior of the quantum
axion fluid.
A broadly relevant question is the following: over what

time scale is a classical description of a highly degenerate
but self-interacting Bosonic system valid? We call that time
scale the duration of classicality of the system. Two of us
(PS and ET) have recently [25] addressed this by numeri-
cally integrating the equations of motion of a toy model
consisting of five interacting quantum oscillators. In all the
cases simulated, the duration of classicality was found to be
shorter or at most of order the thermal relaxation time τ.
A summaryof the results ofRef. [25] is included inSec. II. B.
We add however new simulations in which only one of the
five oscillators is excited in the initial state. According to its
classical evolution, this state persists forever. According to
its quantum evolution, the state has a finite lifetime because
the quanta jump out of the initially excited oscillator into the
four others. The new simulations parallel our analytical
treatment of the homogeneous condensate with attractive
contact interactions in Sec. III and of the homogeneous self-
gravitating condensate in critical expansion in Sec. IV.
In Sec. III, we develop a formalism to help calculate the

quantum evolution of a scalar field that is described in its
initial state by a classical solution. A classical solution
corresponds to one mode of the quantum field. In the initial
state, all quanta are placed into that single mode. However,
the quantum field has an infinite number of other modes.
We expand the quantum field into a complete orthonormal
set of modes built around an arbitrary classical solution. We
derive the Hamiltonian in terms of the associated creation
and annihilation operators. The formalism is applicable to
any condensate described by a classical solution.
We first apply the formalism to the homoge-

neous condensate in λϕ4 theory, with λ > 0 and λ < 0,
in Sec. III. The condensate is unstable when λ < 0.
Nonetheless, in its classical description, the homogeneous
condensate persists forever. In its quantum description, the
homogeneous condensate is depleted by parametric reso-
nance. We obtain the time scale over which the condensate
is depleted, which is in effect its duration of classicality.
In Sec. IV, we apply the formalism to a homogeneous
self-gravitating condensate in critical expansion. Again, in
its classical description, the condensate persists forever
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whereas it is depleted by parametric resonance in its
quantum description. Here too, we derive the time scale
over which the condensate is depleted, and after which a
classical description is invalid. In the self-gravity case, the
instability grows as a power of time, whereas it grows
exponentially fast in λϕ4 theory with λ < 0. The results we
derive in Secs. III and IVare all exact statements in the limit
where the number of quanta N in the condensate is very
large compared to the number of quanta not in the
condensate.
Although we only analyze the behavior of homogeneous

condensates in this paper, we expect our conclusions to
apply to inhomogeneous condensates as well. Indeed, a
homogeneous condensate can be seen as a limiting case of
inhomogeneous condensates. Since homogeneous conden-
sates are depleted by parametric resonance, the same must
be true for inhomogeneous condensates, at least in the limit
of small deviations away from homogeneity. In fact, in our
simulations of the five oscillator toy model, we find that
the condensates which persist forever according to their
classical evolution are the condensates with the longest
duration of classicality in their quantum evolution. We
explain this result on the basis of analytical arguments. By
analogy, we expect inhomogeneous condensates to have
shorter durations of classicality than homogeneous ones.
Related topics were discussed in two recent papers

[26,27]. Inter alia, Ref. [26] solves the classical equations
of motion for an initially almost homogeneous condensate
with attractive contact interactions numerically on a lattice.
If it were strictly homogeneous, the condensate would
persist forever. Perturbations are introduced to mimic
quantum fluctuations. As the perturbations grow, the
condensate is depleted in a manner which is qualitatively
consistent with our quantum field theory treatment.
Reference [27] discusses, as we do, the duration of
classicality of the cosmic axion fluid. The conclusions
of Ref. [27] differ from ours.
A brief outline of our paper is as follows. In Sec. II, we

discuss Bose-Einstein condensation and analyze four issues
which may cause confusion when the interactions are
attractive, as is the case for dark matter axions. In
Sec. III, we introduce a formalism to calculate in quantum
field theory the departures from a description of a system
by classical field equations. We apply it to the homo-
geneous condensate in λϕ4 theory in the repulsive (λ > 0)
and attractive (λ < 0) cases. In Sec. IV, we apply the
formalism to a homogeneous self-gravitating condensate
in critical expansion. In Sec. V, we summarize our
conclusions.

II. BOSE-EINSTEIN CONDENSATION

This section gives a brief description of the phenomenon
of Bose-Einstein condensation, emphasizing the necessary
and sufficient conditions for its occurrence, and the reason
why it occurs. We follow this with a discussion of four

subtopics which appear occasionally to cause confusion in
discussions of Bose-Einstein condensation of dark matter
axions.
Consider a system of N identical bosons in thermal

equilibrium under the constraint that the total number of
particles is conserved. A standard textbook derivation
yields the average occupation number hN ji of particle
state j in the limit of a huge number of particles (the so-
called thermodynamic limit),

hN ji ¼
1

e
1
Tðϵj−μÞ − 1

; ð2:1Þ

where T is the temperature, μ the chemical potential, and ϵj
(j ¼ 0; 1; 2; 3…) the energy of particle state j. We will
assume that the particle states are ordered so that
ϵ0 < ϵ1 < ϵ2 < …. The hN ji maximize the system
entropy for a given total energy E ¼PjN jϵj and total
number of particles N ¼PjN j. Since all hN ji ≥ 0, it is
necessary that μ < ϵ0 for Eq. (2.1) to make sense. On the
other hand, the total number of particles NðT; μÞ ¼P

jhN ji is an increasing function of μ for fixed T since
each hN ji is. So, if N is increased while T is held fixed, μ
must increase but it can not become larger than ϵ0. In the
systems of interest to us, the total number of particles in
excited (j > 0) states has for μ ¼ ϵ0 a finite value

NexðT; μ ¼ ϵ0Þ ¼
X
j>0

1

e
1
Tðϵj−ϵ0Þ − 1

: ð2:2Þ

[In one and two spatial dimensions, NexðT; μ ¼ ϵ0Þ may be
infinite because of an infrared divergence but this comment
is not relevant to the systems in three spatial dimensions
that interest us.] Consider what happens when, at fixed T,N
is made larger than NexðT; μ ¼ ϵ0Þ. The only possible
system response is for the extra N − NexðT; μ ¼ ϵ0Þ par-
ticles to go to the ground state (j ¼ 0). Indeed the average
occupation number hN 0i of that state becomes arbitrarily
large as μ approaches ϵ0 from below.
From the above, we deduce four conditions for Bose-

Einstein condensation: (i) the system comprises a large
number of identical bosons, hereafter called particles for
short, (ii) the number of particles is conserved, (iii) the
particles are sufficiently degenerate, and (iv) the particles
are in thermal equilibrium. The number of particles has to
be sufficiently large [condition (i)] for the system to be in
the thermodynamic limit. The number of particles has to be
conserved [condition (ii)] but only on the time scale of
thermalization. It need not be absolutely conserved. For
example, it is irrelevant to Bose-Einstein condensation in
dilute gases whether baryons are absolutely stable. The
only thing that matters is that they are stable on the time
scale of the condensation process. (Whether they decay
tomorrow is irrelevant to their condensation this minute.)
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Dark matter axions are not absolutely stable since they
decay to two photons. However, their lifetime is much
longer than the age of the Universe and so is the time scale
of all other axion number changing processes. Condition
(iii) is satisfied if the degeneracy, i.e., the average occu-
pation number hN ji of those states that are occupied, is
larger than some critical number of order one. For systems
in thermal equilibrium, this condition is the requirement
that the temperature is lower than some critical temperature.
The critical temperature is such that the interparticle
distance is of order the thermal de Broglie wavelength.
Thermal equilibrium is generally taken for granted in
discussions of Bose-Einstein condensation in liquid 4He
and dilute gases because these systems thermalize very
quickly. For these systems, condition (iv) is readily satisfied
but condition (iii) is difficult to achieve because of the low
temperatures required. The reverse situation pertains to
dark matter axions. Axions thermalize only very slowly,
perhaps on the time scale of the age of the Universe, or not
at all, because axions are very weakly interacting. On the
other hand, their quantum degeneracy is enormous with
N ∼ 1061. For these reasons, we state condition (iii) inde-
pendently and ahead of condition (iv).
Thermalization involves interactions and requires time.

We define the relaxation time τ to be the time scale over
which the distribution fN jg of the particles over the particle
states changes completely, each N j changing by order
100%. Whether condition (iv) for Bose-Einstein condensa-
tion is satisfied is an issue of time scales. Let us assume that
the first three conditions are satisfied and that the system is
out of equilibrium, i.e., the system is in a state of entropy less
than allowed. The system will then thermalize on the time
scale τ, increasing its entropy. It forms a Bose-Einstein
condensate (BEC) because the state of highest entropy,
given that the first three conditions are satisfied, is one in
which a fraction of order one of the particles is in the lowest
energy available state and the remaining particles in a
thermal distribution in excited states. The entropy increases
when a BEC forms. The process is irreversible.
We now discuss four aspects of Bose-Einstein conden-

sation that appear sometimes to be sources of confusion in
the literature and must be clarified especially in the context
of cosmic axion Bose-Einstein condensation.

A. Quantum mechanics is essential

It is possible within classical field theory to produce a
phenomenon similar to Bose-Einstein condensation by
introducing a cutoff kUV on the wave vectors of the field
modes. Indeed the classical physics analog of Eq. (2.1) is

hN ji ¼
T

ϵj − μ
: ð2:3Þ

When μ approaches ϵ0 from below, provided T ≠ 0, hN 0i
diverges as it does for the Bose-Einstein distribution.

However in classical field theory, the energy gets distrib-
uted equally over all field modes. If there is no cutoff, the
specific heat per unit volume diverges because, in any finite
volume, the field has an infinite number of modes with
large wave vectors k⃗. In other words, T ¼ 0 in any finite
volume containing finite energy in thermal equilibrium.
To produce a phenomenon resembling Bose-Einstein

condensation in classical field theory, a cutoff is introduced
by hand with value fixed so that

Tcrit ∼
k2UV
2m

; ð2:4Þ

wherem is the boson mass and Tcrit the critical temperature
that is naturally present in the quantum theory. The number
of modes per unit volume is finite then, of order k3UV/ð2πÞ3.
As a result, T ≠ 0 in the cutoff field theory and N 0 → ∞
when μ approaches ϵ0 from below. However, this does not
mean that the cutoff classical field theory has any validity
beyond producing some form of Bose-Einstein condensa-
tion. The cutoff is not meant to be present in any real sense.
In general, the cutoff classical field theory differs from the
quantum field theory, and when the two make different
predictions, it is the latter that is to be believed not the
former. In particular, as discussed in Ref. [20], the classical
theory conserves vorticity, i.e., the circulation of the
velocity field along a closed path Γ

C½Γ�≡
I
Γ
dr⃗ · v⃗ðr⃗; tÞ; ð2:5Þ

whereas the quantum theory does not. Conservation of
vorticity in classical field theory follows from the con-
tinuity and single valuedness of the wave function, and
holds whether or not a wave vector cutoff is introduced. In
contrast, vorticity is not conserved in the quantum field
theory because quanta can jump between modes of differ-
ent vorticity. The creation of vorticity is essential to explain
the phenomenology of caustic rings and solve the galactic
angular momentum problem [20].
It is pertinent, we believe, to remark that Eq. (2.4) does

not make sense unless a quantity with a dimension of
action, such as ℏ, is introduced by hand. The classical field
theory does not have a notion of particles nor therefore of
particle mass, even after the wave vector cutoff kUV has
been introduced. It has only modes with dispersion law

ωðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ c2k⃗ · k⃗

q
; ð2:6Þ

where ω0 is the angular frequency of oscillation of the k⃗¼0
mode. In the quantum theory, the particle mass is given by

m ¼ ω0ℏ/c2; ð2:7Þ
but in the classical theory, with or without cutoff, there is no
such thing as particle mass. Likewise, Eq. (2.4) should be
written
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Tcrit ∼
ðℏkUVÞ2

2m
ð2:8Þ

to be dimensionally consistent.

B. How long is a classical description valid?

Granted that the outcome of thermalization in a degen-
erate Bosonic system is different from that of its classical
analog, one may still ask how long a classical description of
such a system is accurate. This question was the topic of a
recent paper by two of us [25], in which it was shown by
analytical arguments and numerical simulation of a toy
model that the duration of classicality of a degenerate
interacting Bosonic system is of order, and not longer than,
its thermalization time τ. We summarize some results of
Ref. [25] here and add toy model simulations that are
analogous to our analytical calculations in Secs. III and IV.
A general Bosonic system that conserves the number of

quanta has a Hamiltonian of the form

H ¼
X
j

ωja
†
jaj þ

1

4

X
jkln

Λln
jka

†
ja

†
kalan; ð2:9Þ

where the aj and a†j are annihilation and creation operators
satisfying canonical equal-time commutation relations.
One might add to the rhs of Eq. (2.9) terms of the form
a†a†a†aaa, and so forth, but this would not alter the
discussion in a significant way.N j ¼ a†jaj is the number of
quanta in oscillator j. In the Heisenberg picture, the
annihilation operators ajðtÞ satisfy the equations of motion

i _aj ¼ ½aj; H� ¼ ωjaj þ
1

2

X
kln

Λln
jka

†
kalan: ð2:10Þ

The classical description of the system is obtained by
replacing the ajðtÞ with c-numbers AjðtÞ. They satisfy

i _Aj ¼ ωjAj þ
1

2

X
kln

Λln
jkA

�
kAlAn: ð2:11Þ

The classical analogs of the quantum state occupation
numbers N j are Nj ¼ A�

jAj. The question is: given the
same initial values, how long do the classical analogs NjðtÞ
track the expectation values hN jðtÞi of the quantum
operators? We call “duration of classicality” the time scale
over which the classical description accurately describes
the quantum system within some margin of error, say 20%.
To address this issue, a toy model of five quantum

oscillators was simulated numerically [25]. The toy model
had been previously discussed and simulated in Ref. [10] to
verify numerically the validity of formulas that estimate the
rate of thermalization in the “condensed regime”, defined
by the condition Γ > δϵ, where Γ is the thermalization rate
and δϵ the energy dispersion of the quanta in the system.
The dark matter axion fluid thermalizes in the condensed
regime. The Hamiltonian of the toy model has the form

given in Eq. (2.9) with ωj ¼ jω1 (j ¼ 1, 2, 3, 4, 5) and
Λln
jk ¼ 0 unless jþ k ¼ lþ n. Nonzero values are given to

Λ23
14, Λ24

15, Λ34
25, Λ

13
22, Λ24

33, Λ15
33, and Λ35

44, and their conjugates

Λln
jk ¼ Λjk�

ln . The Schrödinger equation

i∂tjΨðtÞi ¼ HjΨðtÞi ð2:12Þ
was solvednumerically for a largevariety of initial conditions.
In all cases, it was found that the duration of classicality is less
than or at most of order the relaxation time τ, defined as the
time scale over which the distribution of the quanta over the
oscillators changes completely. Figure 1 shows in its top panel
thequantumevolutionof the initial state jN 1;N 2;…;N 5i ¼
j12; 25; 4; 12; 1i as an example. The figure shows that the
expectationvalues hN jimove towards their thermal averages
on the expected time scale τ ¼ 1/Γ, which is of order 0.4
given the coupling strengths Λln

jk in the simulation [10]. The
thermal averages are shown by the dots on the right side of
Fig. 1 (top panel). The bottom panel of Fig. 1 shows the
classical evolution of the initial state ðA1;A2;…;A5Þ¼
ð ffiffiffiffiffi

12
p

;
ffiffiffiffiffi
25

p
;
ffiffiffi
4

p
;
ffiffiffiffiffi
12

p
;
ffiffiffi
1

p Þ, in which the Nj and their time
derivatives _Nj have the same initial values as their quantum
analogues in the top panel. Figure 1 shows that the classical
evolution tracks the quantum evolution only for a time of
order and relatively short compared to, τ.
The toy model can be made to behave analogously to

the homogeneous quantum field condensates discussed in
Secs. III and IV. The homogeneous condensates persist
indefinitely in their classical description but have a finite
lifetime in their quantum description. Initial states with the
analogousproperty in the toymodel are j0; N; 0; 0; 0i. In their
classical evolution, these statespersist indefinitelybecause the
interaction term on the rhs of Eq. (2.11) vanishes. In their
quantumevolution, the quanta in the secondoscillator jump in
pairs to the first and third oscillators and thence to the fourth
and fifth oscillators. Figure 2 shows the hN jðtÞi as a function
of time forN ¼ 100 in panel (a), contrasted with the constant
Nj in panel (b). For the generic initial states simulated in
Ref. [25], the relaxation rate is of order Γ ∼ Λ

ffiffi
I

p
N for both

the classical andquantumevolutions,where I is thenumber of
relevant interaction terms on the rhs of Eq. (2.9), andΛ andN
are typical values of the interaction strengths and of the
quantumoccupationnumbers[10].For thespecial initial states
j0; N; 0; 0; 0i, the relaxation rate vanishes according to the
classical evolution but is of orderΓ ∼ jΛ22

13jN/ logðNÞ accord-
ing to the quantum evolution. The factor logðNÞ appears
because the relaxation of these special states is limited by the
initial process2þ 2 → 1þ 3,which acts as a bottleneck.The
2þ 2 → 1þ 3 process causes the occupation numbers of the
first and third oscillators to grow as ejΛ22

13
jNt, the difference

between the classical and quantum evolutions being only that
the growth is seeded in the quantum evolution, whereas it is
unseeded in the classical evolution. Applying the methods of
Secs. III and IV to the toy model, one finds
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hN 1i ¼ hN 3i ¼ sinh2ðγtÞ ð2:13Þ
with γ ¼ 1

2
jΛ22

13jN, and therefore

hN 2i ¼ N − 2 sinh2ðγtÞ ð2:14Þ
for t sufficiently small that the condensate has not been
depleted much yet. The dotted lines in Fig. 2 show hN 2ðtÞi,
hN 1ðtÞi, and hN 3ðtÞiaccordingtoEqs. (2.13)and (2.14).The
behavior of our toy model condensate is consistent with the
discussion of a similar toy model condensate in Ref. [28].
In summary, the duration of classicality of the initial state

j0; N; 0; 0; 0i, which persists indefinitely according to its
classical evolution, is a factor logðNÞ longer than the
duration of classicality of generic states jN 1;N 2;N 3;N 4;
N 5i. The j0; N; 0; 0; 0i state is the toy model analog of the
homogeneous condensates discussed in Secs. III and IV.

Those homogeneous condensates also persist forever
according to their classical evolution, but have a finite
duration of classicality according to their quantum evolu-
tion. We expect the duration of classicality of inhomo-
geneous condensates to be shorter than that of homogeneous
condensates for the same reason that the duration of
classicality of generic toy model initial states is shorter
than that of the j0; N; 0; 0; 0i initial state, the reason being
the absence in the case of generic states of the thermalization
bottleneck that is present for the initial state j0; N; 0; 0; 0i.

C. Homogeneity is not a necessary outcome or criterion

Contrary to statements appearing occasionally in the
literature, the condensed state need not be a state of
momentum p⃗ ¼ 0. Generally, it is not. The state p⃗ ¼ 0 is

FIG. 1. Quantum (top) and classical (bottom) time evolution of the occupation numbers in the toy system described in the text for
the initial state j12; 25; 4; 12; 1i. The dots on the right in the top panel indicate the thermal averages in the quantum case. The quantum
system approaches the thermal averages on the expected time scale. The classical evolution tracks the quantum evolution only very
briefly and does not equilibrate. This figure is taken from Ref. [25].
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homogeneous and minimizes the kinetic energy ωp⃗ ¼ p⃗·p⃗
2m

of a particle in empty space. But in general (1) space is not
empty and (2) the particle energies ϵj that appear in Eq. (2.1)
differ from the frequencies ωj that appear in Eq. (2.9)
because of interactions. Even in empty space, the lowest
energy available state need not be the zero momentum state.
Lack of homogeneity is no impediment to Bose-Einsten

condensation. Figure 3 shows a Bose-Einstein condensate
that is highly inhomogeneous on some length scale d but
extends over a much larger length scale L. It may be
realized by placing superfluid 4He in a long tube with
various obstructions on the length scale d inside the tube.
Although inhomogeneous on the length scale d, the
condensate has long range correlations on the length scale
L, as we now show explicitly.

For a general system undergoing Bose-Einstein con-
densation, let ujðx⃗; tÞ be the wave function of the particle
state with energy ϵj. The wave functions form a complete
orthonormal set,

Z
V
d3xujðx⃗; tÞ�ukðx⃗; tÞ ¼ δkjX
j

ujðx⃗; tÞ�ujðy⃗; tÞ ¼ δðx⃗ − y⃗Þ: ð2:15Þ

The quantum scalar field ϕðx⃗; tÞ describing the particles
undergoing Bose-Einstein condensation, and its canoni-
cally conjugate field πðx⃗; tÞ may be expanded in terms of
those wave functions,

FIG. 2. Quantum (top) and classical (bottom) evolution of the initial state j0; 100; 0; 0; 0i. In its classical evolution, this state persists
indefinitely. In its quantum evolution, the state thermalizes. The dotted lines show the predictions of Eqs. (2.13) and (2.14). After a
time of order 0.1, these equations are inaccurate because quanta jump from the first and third oscillators back to the second oscillator
and from the third to the fourth and fifth oscillators.
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ϕðx⃗; tÞ ¼
X
j

1ffiffiffiffiffiffiffi
2m

p ½ujðx⃗; tÞbjðtÞ þ ujðx⃗; tÞ�bjðtÞ†�

πðx⃗; tÞ ¼
X
j

ffiffiffiffi
m
2

r
1

i
½ujðx⃗ÞbjðtÞ − ujðx⃗; tÞ�bjðtÞ†�; ð2:16Þ

where the bjðtÞ and b†jðtÞ are annihilation and creation
operators satisfying canonical equal time commutation
relations. Note that the bjðtÞ and b†jðtÞ in Eq. (2.16) are

different from the ajðtÞ and a†jðtÞ in the previous section
since the latter annihilate and create particles in eigenstates
of the free Hamiltonian, whereas the bjðtÞ and b†jðtÞ
annihilate and create particles in eigenstates of the one-
particle Hamiltonian in which the interactions of the one
particle with all the other particles are derived from the full
Hamiltonian using mean field theory.
A general system state may be written

jΨi ¼
X
fN jg

cðfN jgÞjfN jgit; ð2:17Þ

where fN jg is an arbitrary distribution of the occupation
numbers over the particle states,

jfN jgit ¼
Y
j

1ffiffiffiffiffiffiffiffi
N j!

q ðbjðtÞ†ÞN j j0i; ð2:18Þ

and j0i is the empty state. Since the total number of
particles is conserved, we may take jΨi to be an eigenstate
of the total number operator

X
j

bjðtÞ†bjðtÞjΨi ¼ NjΨi; ð2:19Þ

in which case, cðfN jgÞ ¼ 0 unless
P

jN j ¼ N. In the
state jΨi, the field ϕðx⃗; tÞ has an equal-time correlation
function

hΨjϕðx⃗;tÞϕðy⃗;tÞjΨi

¼
X
fN jg

X
fN 0

jg
c�ðfN jgÞcðfN 0

jgÞ
X
k;l

1

2m

· ½ukðx⃗;tÞ�ulðy⃗;tÞthfN jgjb†kðtÞblðtÞjfN 0
jgit

þukðx⃗;tÞulðy⃗;tÞ�thfN jgjbkðtÞb†l ðtÞjfN 0
jgit�: ð2:20Þ

If a Bose-Einstein condensate has formed, the lowest
energy available state has an occupation number N0 of
order N. In that case, cðfN jgÞ ¼ 0 unless N 0 ≃ N0, and
therefore,

hΨjϕðx⃗; tÞϕðy⃗; tÞjΨi

¼ N0

2m
ðu0ðx⃗; tÞ�u0ðy⃗; tÞ þ u0ðx⃗; tÞu0ðy⃗; tÞ�Þ þ � � � ;

ð2:21Þ

where the dots are contributions, from particle states other
than the condensed state, that fall off exponentially or as a
power law with distance jx⃗ − y⃗j≡ r. The contribution from
the condensed state does not fall with distance r. Instead,
for given y⃗, it has support wherever u0ðx⃗; tÞ has support.
Thus, any Bose-Einstein condensate is correlated over the
whole extent of the condensate.

D. What state do the particles condense into?

Since thermalization is a condition for Bose-Einstein
condensation, it follows that the state the particles condense
into is the lowest energy state that is available to them
through the thermalizing interactions. In general, it is not
the lowest energy state in an absolute sense. For example, if
a beaker of superfluid 4He sits on a table, a macroscopically
large number of atoms are in a condensed state. This
condensed state is certainly not the lowest energy state
since its energy can be lowered by placing the beaker on the
floor. It is, however, the lowest energy state available to the
4He atoms through the thermalizing interactions.
As was already mentioned, the condensed state need not

be stable. Ideally, however, it ought to be stable on the
thermalization time scale. A complicating factor is that
thermalization is rarely complete. Fortunately, Bose-
Einstein condensation occurs immediately and explosively
on the thermalization time scale. The rate at which particles
move to the condensed state is proportional to the number
of particles that are already in the condensed state [29]. The
time scale over which a complete Bose-Einstein distribu-
tion is established is generally much longer than the time
scale over which the Bose-Einstein condensate forms [12].
Nonetheless, in the case of Bose-Einstein condensation

of dark matter axions, we have to deal with the compli-
cation that the axion fluid is made unstable by the very
interaction that thermalizes it. After Bose-Einstein con-
densation has occurred, further thermalization is required

d

L

FIG. 3. Cartoon of superfluid 4He filling a tube of length L with
various obstructions inside that make the fluid inhomogeneous on
the length scale d. Although inhomogeneous on scale d, the fluid
is correlated on scale L, which may be arbitrarily large compared
to d. Likewise, the Bose-Einstein condensate of dark matter
axions may be correlated on the scale of the horizon although
inhomogeneous on the scale of galaxies.
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because the instability causes the lowest energy available
state to change with time. Our paper is motivated by the
question what is the outcome of thermalization while
density perturbations grow and how does this outcome
differ from the predictions of cosmological perturbation
theory with ordinary CDM.
In the remainder of this paper, we construct a formalism

that allows one to discuss more clearly the thermalization
of a fluid made unstable, and therefore inhomogeneous, by
the very interactions that thermalize it. In Sec. III, we
discuss the evolution of a highly degenerate Bose fluid with
attractive λϕ4 interactions ðλ < 0Þ. In Sec. IV, we discuss
the evolution of a highly degenerate Bose fluid with
gravitational self-interactions. We discuss the λϕ4 case
first because it is somewhat simpler.

III. ATTRACTIVE CONTACT INTERACTIONS

In this section, we introduce a formalism to analyze the
thermalization and evolution of a highly degenerate Bose
fluid with attractive contact interactions. The interactions
play the double role of rendering the fluid unstable and of
thermalizing it. This section is mainly a warmup exercise
preliminary to analyzing the thermalization and evolution
of a highly degenerate Bose fluid with gravitational self-
interactions in the next section. It may also be useful in the
analysis of some condensed matter systems.
The model we analyze is λϕ4 theory. Its Hamiltonian is

H ¼
Z

d3x

�
1

2
ðπÞ2 þ 1

2
ð∇⃗ϕÞ2 þ 1

2
m2ϕ2 þ λ

4!
∶ϕ4∶

�
;

ð3:1Þ

where ϕðx⃗; tÞ and πðx⃗; tÞ are conjugate Hermitian scalar
fields satisfying canonical equal time commutation rela-
tions. The double colon ∶:::∶ symbol in the last term of
Eq. (3.1) indicates normal ordering. That term describes
contact interactions. They are repulsive if λ > 0 and
attractive if λ < 0. The ϕ and π fields satisfy the equations
of motion

∂tϕ ¼ π; ∂tπ −∇2ϕþm2ϕþ λ

6
∶ ϕ3∶ ¼ 0: ð3:2Þ

We will concern ourselves only with the nonrelativistic
regime of the theory. The nonrelativistic limit is obtained by
setting

ϕðx⃗; tÞ ¼ 1ffiffiffiffiffiffiffi
2m

p ½ψðx⃗; tÞe−imt þ ψðx⃗; tÞ†eimt�

πðx⃗; tÞ ¼
ffiffiffiffi
m
2

r
ð−iÞ½ψðx⃗; tÞe−imt − ψðx⃗; tÞ†eimt�; ð3:3Þ

neglecting terms of order ∂tψ versus terms of order mψ,
and ignoring terms proportional to e2imt and e−2imt that

oscillate so fast in time that they effectively average to zero.
ψðx⃗; tÞ is a non-Hermitian scalar field satisfying the equal
time commutation relations

½ψðx⃗; tÞ;ψðy⃗; tÞ� ¼ 0; ½ψðx⃗; tÞ;ψðy⃗; tÞ†� ¼ δ3ðx⃗ − y⃗Þ;
ð3:4Þ

and the equation of motion

i∂tψ ¼ −
1

2m
∇2ψ þ λ

8m2
ψ†ψψ : ð3:5Þ

Note that the number of particles is conserved in the
nonrelativistic limit even though the number of particles is
not conserved in the original theory, Eq. (3.1).
We expand the ψ field

ψðx⃗; tÞ ¼
X
α⃗

uα⃗ðx⃗; tÞaα⃗ðtÞ ð3:6Þ

in an orthonormal and complete set of wave functions
uα⃗ðx⃗; tÞ, labeled by α⃗. Thus,Z

V
d3xuα⃗ðx⃗; tÞ�uβ⃗ðx⃗; tÞ ¼ δβ⃗α⃗ andX
α⃗

uα⃗ðx⃗; tÞ�uα⃗ðy⃗; tÞ ¼ δ3ðx⃗ − y⃗Þ; ð3:7Þ

where V is the volume of space where the theory is defined.
The aα⃗ðtÞ and aα⃗ðtÞ† are annihilation and creation operators
satisfying equal time commutation relations

½aα⃗ðtÞ; aβ⃗ðtÞ� ¼ 0; ½aα⃗ðtÞ; aβ⃗ðtÞ†� ¼ δβ⃗α⃗; ð3:8Þ

and the equation of motion

i∂taα⃗ ¼
X
β⃗

Mβ⃗
α⃗aβ⃗ þ

1

2

X
β⃗;γ⃗;δ⃗

Λγ⃗ δ⃗

α⃗ β⃗
a†
β⃗
aγ⃗aδ⃗ ð3:9Þ

with

Mβ⃗
α⃗ðtÞ ¼

Z
V
d3xuα⃗ðx⃗; tÞ�

�
−i∂t −

1

2m
∇2

�
uβ⃗ðx⃗; tÞ

Λγ⃗ δ⃗

α⃗ β⃗
ðtÞ ¼ λ

4m2

Z
V
d3xuα⃗ðx⃗; tÞ�uβ⃗ðx⃗; tÞ�uγ⃗ðx⃗; tÞuδ⃗ðx⃗; tÞ:

ð3:10Þ

In the nonrelativistic limit, the above equations are exact for
any orthonormal complete set of states uα⃗.

A. Classical description

The classical description is obtained by replacing the
quantum field ψðx⃗; tÞ by a wave function Ψðx⃗; tÞ. Ψ
satisfies the c-number version of Eq. (3.5)
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i∂tΨ ¼ −
1

2m
∇2Ψþ λ

8m2
jΨj2Ψ ð3:11Þ

called the Schrödinger-Gross-Pitaevskii equation. (Although
wave functions are historically associated with a quantum
mechanical description, from the point of view of quantum
field theory, a wave function is merely a solution of the
classical field equations in the nonrelativistic limit.) Thewave
function may be written

Ψðx⃗; tÞ ¼ Aðx⃗; tÞeiβðx⃗;tÞ; ð3:12Þ

where Aðx⃗; tÞ and βðx⃗; tÞ are real. The wave function Ψ
describes a fluid of number density

nðx⃗; tÞ ¼ Aðx⃗; tÞ2 ð3:13Þ

and velocity

v⃗ðx⃗; tÞ ¼ 1

m
∇⃗βðx⃗; tÞ: ð3:14Þ

Equation (3.11) implies the continuity equation

∂tnþ ∇⃗ · ðnv⃗Þ ¼ 0 ð3:15Þ

and the Euler-like equation

∂tv⃗þ ðv⃗ · ∇⃗Þv ¼ −
1

m
∇⃗V − ∇⃗q; ð3:16Þ

where

Vðx⃗; tÞ ¼ λ

8m2
nðx⃗; tÞ ð3:17Þ

and

qðx⃗; tÞ ¼ −
1

2m2

∇2
ffiffiffi
n

pffiffiffi
n

p : ð3:18Þ

qðx⃗; tÞ is sometimes called “quantum pressure”. Except for

the −∇⃗q term, Eq. (3.16) is the Euler equation for a fluid of

classical particlesmoving in the potentialV. The−∇⃗q term is
a consequence of the underlying wave nature of the fluid and
accounts, for example, for the tendency of a wave packet to
spread.
Equation (3.11) admits the homogeneous solution

Ψ0 ¼
ffiffiffiffiffi
n0

p
e−iδωt; ð3:19Þ

where

δω ¼ λn0
8m2

: ð3:20Þ

Consider small perturbations about that solution

Ψðx⃗; tÞ ¼ Ψ0ðtÞ þ Ψ1ðx⃗; tÞ: ð3:21Þ

To lowest order, the perturbations satisfy

i∂tΨ1 ¼ −
1

2m
∇2Ψ1 þ δωð2Ψ1 þ e−2iδωtΨ�

1Þ: ð3:22Þ

We decompose the perturbation in Fourier modes as
follows:

Ψ1ðx⃗; tÞ ¼ e−iδωt
X
k⃗

Ck⃗ðtÞeik⃗·x⃗: ð3:23Þ

The Fourier amplitudes satisfy

i∂tCk⃗ðtÞ ¼
�
k2

2m
þ δω

�
Ck⃗ðtÞ þ δωC−k⃗ðtÞ�: ð3:24Þ

The solutions may be written

Ck⃗ðtÞ ¼ sk⃗ðtÞ þ rk⃗ðtÞ ð3:25Þ

with

s−k⃗ðtÞ� ¼ sk⃗ðtÞ and r−k⃗ðtÞ� ¼ −rk⃗ðtÞ: ð3:26Þ

Equations (3.24) imply that

rk⃗ðtÞ ¼
2mi
k2

∂tsk⃗ðtÞ ð3:27Þ

and that sk⃗ðtÞ is a solution of

∂2
t sk⃗ðtÞ ¼ −

k2

2m

�
k2

2m
þ 2δω

�
sk⃗ðtÞ: ð3:28Þ

We now discuss the repulsive (λ > 0) and attractive (λ < 0)
cases separately.
For λ > 0, the perturbations oscillate with an angular

frequency

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2m

�
k2

2m
þ λn0
4m2

�s
: ð3:29Þ

For long wavelengths, i.e., k ≪ kc ≡
ffiffiffiffiffi
λn0
2m

q
, the dispersion

law is linear

ωðkÞ ¼ vsk ð3:30Þ

with sound speed
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vs ¼
ffiffiffiffiffiffiffiffiffi
λn0
8m3

r
; ð3:31Þ

whereas for short wavelengths (k ≫ kc), the dispersion law
is quadratic. The most general solution to Eq. (3.22) is
Eq. (3.23) with

Ck⃗ðtÞ¼ck⃗

�
k2

2m
þωðkÞ

�
e−iωðkÞtþc�

−k⃗

�
k2

2m
−ωðkÞ

�
eiωðkÞt;

ð3:32Þ

where the ck⃗ are complex numbers which can be deter-
mined in terms of the initial perturbation Ψ1ðx⃗; 0Þ.
In the attractive case (λ ¼ −jλj), there is a critical

wavelength 2π
kJ
, similar to a Jeans length for gravitational

interactions, with

kJ ¼
ffiffiffiffiffiffiffiffiffiffi
jλjn0
2m

r
: ð3:33Þ

For k > kJ, the perturbations oscillate with an angular
frequency

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2m

�
k2

2m
−
jλjn0
4m2

�s
: ð3:34Þ

They are described by the same equations as in the previous
paragraph.
For k < kJ, the perturbations are unstable. They grow

and decay at the rate

γðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2m

�jλjn0
4m2

−
k2

2m

�s
¼ k

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2J − k2

q
: ð3:35Þ

The solutions to Eq. (3.24) are

Ck⃗ðtÞ¼
�
k2

2m
þ iγðkÞ

�
ck⃗;þe

γðkÞtþ
�
k2

2m
− iγðkÞ

�
ck⃗;−e

−γðkÞt;

ð3:36Þ

where ck⃗;� are complex numbers subject to the constraint
ck⃗;� ¼ c�

−k⃗;�. The instability occurs because the attractive

contact forces produce a tendency of quanta to move
towards regions of high density, and hence, crowd places
that are already crowded. This tendency overcomes the
effect of quantum pressure on length scales larger than k−1J .

B. Quantum evolution

Consider a particular solution of the classical equations
of motion. We ask: for how long does it provide an accurate
description of the quantum system? A solution Ψðx⃗; tÞ
of the Schrödinger- Gross-Pitaevskii equation (3.11) is a

particular mode of the quantum field. When this and only
this mode is highly occupied, the classical description is
very accurate, corrections being of order 1/N, where N is
the occupation number of the mode. The question
is whether the quanta stay in the mode Ψðx⃗; tÞ. And, if
they do not stay in that mode, what is the rate at which they
leave it.
To address these issues, we introduce a set of modes that

are similar to Ψðx⃗; tÞ but differ from it by long wavelength
modulations,

uk⃗ðx⃗; tÞ ¼ 1ffiffiffiffi
N

p Ψðx⃗; tÞeik⃗·χ⃗ðx⃗;tÞ: ð3:37Þ

The χ⃗ðx⃗; tÞ are comoving coordinates chosen so that the
density in χ⃗ space is constant in both space and time. Thus,

d3N
dχ3

¼ nðx⃗; tÞ
Jðx⃗; tÞ ¼ n0; ð3:38Þ

where n0 is a constant, nðx⃗; tÞ is the physical space density
implied by Ψðx⃗; tÞ [Eq. (3.13)], and

Jðx⃗; tÞ ¼
���� det

�∂χ⃗
∂x⃗
����� ð3:39Þ

is the Jacobian of the map. The χ⃗ðx⃗; tÞ can be constructed as
follows. The wave function Ψðx⃗; tÞ implies a velocity field
v⃗ðx⃗; tÞ, given by Eq. (3.14), and hence, a map x⃗ðχ⃗; tÞ

∂x⃗
∂t
����
χ⃗

¼ v⃗ðx⃗ðχ⃗; tÞ; tÞ: ð3:40Þ

If v⃗ðx⃗; tÞ were the velocity field of a flow of particles, χ⃗
would label individual particles in the flow. For example, χ⃗
may be the position of the particle at some initial time t�.
The map χ⃗ðx⃗; tÞ is the inverse of x⃗ðχ⃗; tÞ. This construction
ensures that the density in χ⃗ space is time independent.
Furthermore, it is always possible to change variables χ⃗ →
χ⃗0 such that the density in χ⃗0 space is χ⃗0 independent as well.
We choose the region in χ⃗ space where the theory is

defined to be a cube of volume V0 ¼ L3
0 with periodic

boundary conditions at its surface. Thus, the wave vectors
appearing in Eq. (3.37) are k⃗ ¼ 2π

L0
ðn1; n2; n3Þ, where the

nj ¼ 0;�1;�2; ::. (j ¼ 1, 2, 3). We have then

Z
V
d3xuk⃗ðx⃗;tÞ�uk⃗0 ðx⃗;tÞ¼ 1

V0

Z
V0

d3χeiðk⃗
0−k⃗Þ·χ⃗ ¼δk⃗

0

k⃗
; ð3:41Þ

i.e., the uk⃗ðx⃗; tÞ form a complete orthonormal set. We
expand the quantum field

ψðx⃗; tÞ ¼
X
k⃗

uk⃗ðx⃗; tÞak⃗ðtÞ: ð3:42Þ
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Equations (3.8)–(3.10) apply with the indices α⃗ replaced
by the χ⃗-space wave vectors k⃗. Substituting Eq. (3.37),
we have

Λk⃗3k⃗4
k⃗1k⃗2

ðtÞ ¼ λ

4m2N2

Z
V
d3xðnðx⃗; tÞÞ2eiðk⃗3þk⃗4−k⃗1−k⃗2Þ·χ⃗ðx⃗;tÞ

¼ λ

4m2N
ñðk⃗1 þ k⃗2 − k⃗3 − k⃗4; tÞ; ð3:43Þ

where

ñðq⃗; tÞ ¼ 1

V0

Z
V0

d3χnðx⃗ðχ⃗; tÞ; tÞe−iq⃗·χ⃗ ; ð3:44Þ

and

Mk⃗0

k⃗
ðtÞ ¼ −

λ

8m2
ñðk⃗ − k⃗0; tÞ

þ 1

2mN

Z
V
d3xnðx⃗; tÞ∇⃗ðk⃗ · χ⃗ðx⃗; tÞÞ

· ∇⃗ðk⃗0 · χ⃗ðx⃗; tÞÞeiðk⃗0−k⃗Þ·χ⃗ðx⃗;tÞ: ð3:45Þ

The somewhat lengthy derivation of Eq. (3.45) is given in
the Appendix.
The annihilation operators satisfy the equation of motion

i∂tak⃗ ¼
X
k⃗0
Mk⃗0

k⃗
ak⃗0 þ

1

2

X
k⃗2;k⃗3;k⃗4

Λk⃗3k⃗4
k⃗k⃗2

a†
k⃗2
ak⃗3ak⃗4 : ð3:46Þ

The corresponding classical equations of motion are

i∂tAk⃗ ¼
X
k⃗0
Mk⃗0

k⃗
Ak⃗0 þ

1

2

X
k⃗2;k⃗3;k⃗4

Λk⃗3k⃗4
k⃗k⃗2

A�
k⃗2
Ak⃗3

Ak⃗4
: ð3:47Þ

The classical solution with which we started is

Ψðx⃗; tÞ ¼ ffiffiffiffi
N

p
u0⃗ðx⃗; tÞ. Therefore,

Ak⃗ðtÞ ¼
ffiffiffiffi
N

p
δ0⃗
k⃗

ð3:48Þ

must solve Eq. (3.47). Since

M0⃗

k⃗
ðtÞ ¼ −

N
2
Λ0⃗ 0⃗

k⃗ 0⃗
ðtÞ; ð3:49Þ

one can verify that this is indeed the case. Equation (3.49)
provides a consistency check on our formalism.

C. Bogoliubov’s quasiparticles

Let us apply our formalism to the homogeneous state in
the repulsive case. We will be following in the footsteps of
N. N. Bogoliubov’s famous 1947 paper [30]. The homo-
geneous state is described by Eqs. (3.19) and (3.20). Since
v⃗ ¼ 0 in this state, we choose χ⃗ ¼ x⃗, and hence,

uk⃗ðx⃗; tÞ ¼ 1ffiffiffiffi
V

p e−iδωtþik⃗·x⃗

Mk⃗0

k⃗
¼
�
k2

2m
− δω

�
δk⃗

0

k⃗

Λk⃗3k⃗4
k⃗1k⃗2

¼ 2δω

N
δk⃗3þk⃗4
k⃗1þk⃗2

: ð3:50Þ

The equations of motion for the annihilation operators are
therefore

i∂tak⃗ ¼
�
k2

2m
− δω

�
ak⃗ þ

δω

N

X
k⃗1k⃗2

a†
k⃗1þk⃗2−k⃗

ak⃗1ak⃗2 : ð3:51Þ

To analyze the behavior of the system when the homo-
geneous particle state is occupied by a huge number N of
quanta, we substitute

ak⃗ðtÞ ¼
ffiffiffiffi
N

p
δ0⃗
k⃗
þ bk⃗ðtÞ: ð3:52Þ

The bk⃗ðtÞ operators satisfy canonical commutation rela-

tions, and the equations of motion for k⃗ ≠ 0

i∂tbk⃗ ¼
�
k2

2m
þ δω

�
bk⃗ þ δωb†

−k⃗

þ δωffiffiffiffi
N

p
X
k⃗0
ðbk⃗−k⃗0bk⃗0 þ 2b†

k⃗0−k⃗
bk⃗0 Þ

þ δω

N

X
k⃗1k⃗2

b†
k⃗1þk⃗2−k⃗

bk⃗1bk⃗2 : ð3:53Þ

The last two terms describe interactions since they are,
respectively, quadratic and cubic in the bk⃗’s. The inter-
actions are suppressed relative to the linear terms by one or
two factors of 1/

ffiffiffiffi
N

p
.

Ignoring interactions for the time being, we have

i∂t

 
bk⃗

b†
−k⃗

!
¼
 

k2
2m þ δω δω

−δω − k2
2m − δω

! 
bk⃗

b†
−k⃗

!
: ð3:54Þ

We diagonalize the matrix appearing in Eq. (3.54) by a
Bogoliubov transformation,

 
bk⃗

b†
−k⃗

!
¼
�
u v

v u

� βk⃗

β†
−k⃗

!
; ð3:55Þ

where u and v are real and u2 − v2 ¼ 1. The transformation
from the bk⃗ to the βk⃗ is canonical. We may write u ¼
coshðηÞ and v ¼ sinhðηÞ. The new operators satisfy the
equations of motion
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i∂t

 
βk⃗

β†
−k⃗

!
¼
�

u −v
−v u

��
a b

−b −a

��
u v

v u

� βk⃗

β†
−k⃗

!

¼
� ðu2þv2Þaþ2uvb 2uvaþðu2þv2Þb
−2uva−ðu2þv2Þb −ðu2þv2Þa−2uvb

�

×

 
βk⃗

β†
−k⃗

!
; ð3:56Þ

where

a ¼ k2

2m
þ δω and b ¼ δω: ð3:57Þ

The matrix that appears on the rhs of Eq. (3.56) is diagonal
when

2uv
u2 þ v2

¼ tanhð2ηÞ ¼ −
b
a
; ð3:58Þ

with the magnitude of the diagonal elements equal to

ðu2 þ v2Þaþ 2uvb

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2m

�
k2

2m
þ λn0
4m2

�s
¼ ωðkÞ; ð3:59Þ

whereωðkÞ is the angular oscillation frequency that appears
in the classical description. With this choice of η

i∂tβk⃗ ¼ ωðkÞβk⃗ þ � � � ; ð3:60Þ

where the dots represent interaction terms. The
Hamiltonian for the βk⃗ is thus

H ¼
X
k⃗

ωðkÞβ†
k⃗
βk⃗ þHint: ð3:61Þ

The β†
k⃗
and βk⃗ create and annihilate “quasiparticles”. The

quasiparticles are the quanta of excitation of the system
when the homogeneous particle state (k⃗ ¼ 0) is hugely
occupied.

D. Instability by parametric resonance

We now turn to the attractive case, which is of greater
interest to us because of its analogy with gravity. In the
classical description of small perturbations to the homo-
geneous condensate with λϕ4 interactions, one goes from
the stable repulsive case to the unstable attractive case
by merely changing the sign of λ. For λ < 0 and

k < kJ ¼
ffiffiffiffiffiffiffi
jλjn0
2m

q
, ωðkÞ is imaginary and the instability is

that of inverted harmonic oscillators. Let us see how the
instability manifests itself in the quantum description.

Equations (3.50)–(3.57) are still valid when λ < 0. For
k > kJ, we perform the same steps as in Eqs. (3.58)–(3.60).
Thus for k > kJ, there is a set of quasiparticles as before.
For k < kJ, it is not possible to satisfy Eq. (3.58) because
jbj > jaj. For k < kJ, we set the diagonal elements in the
matrix on the rhs of Eq. (3.56) equal to zero by choosing η,

2uv
u2 þ v2

¼ tanhð2ηÞ ¼ −
a
b
: ð3:62Þ

The magnitude of the off diagonal elements is then

2vuaþ ðu2 þ v2Þb ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − a2

p
¼ −

k
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2J − k2

q
¼ −γðkÞ; ð3:63Þ

where γðkÞ is the rate of instability that appears in the
classical description. With this choice of η

i∂tβk⃗ ¼ −γðkÞβ†
−k⃗

þ � � � ; ð3:64Þ

where the dots represent interaction terms. The
Hamiltonian for the attractive case is thus

H ¼
X

k⃗
k>kJ

ωðkÞβ†
k⃗
βk⃗ þ

X
k⃗

k<kJ ;kz>0

ð−γðkÞÞðβk⃗β−k⃗ þ β†
k⃗
β†
−k⃗
Þ þHint:

ð3:65Þ

We may rewrite the kinetic terms for the k < kJ modes

−γðkÞðβk⃗β−k⃗ þ β†
k⃗
β†
−k⃗
Þ ¼ −

1

2
γðkÞðαk⃗αk⃗ þ α†

k⃗
α†
k⃗
Þ

þ 1

2
γðkÞðα0

k⃗
α0
k⃗
þ α0†

k⃗
α0†
k⃗
Þ; ð3:66Þ

where

αk⃗ ¼
1ffiffiffi
2

p ðβk⃗ þ β−k⃗Þ and α0
k⃗
¼ 1ffiffiffi

2
p ðβk⃗ − β−k⃗Þ: ð3:67Þ

We now show that this system exhibits parametric
resonance.
Consider the Hamiltonian for any of the k < kJ modes

H ¼ 1

2
γðααþ α†α†Þ; ð3:68Þ

where γ is real and ½α; α†� ¼ 1. Equation (3.68) implies the
equation of motion

i∂tα ¼ γα†: ð3:69Þ

Its most general solution is
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αðtÞ ¼ eiHtαð0Þe−iHt ¼ coshðγtÞαð0Þ − i sinhðγtÞαð0Þ†:
ð3:70Þ

The exponential growth of αðtÞ implies an instability. To
see its implications, we go to the Schrödinger picture and
obtain the evolution jψðtÞi ¼ e−iHtjψð0Þi of the initial state
jψð0Þi ¼ j0i, defined by

αð0Þj0i ¼ 0: ð3:71Þ
We expand

jψðtÞi ¼
X∞
n¼0

cnðtÞjni; ð3:72Þ

where

jni ¼ 1ffiffiffiffiffi
n!

p ðαð0Þ†Þnj0i: ð3:73Þ

Equation (3.71) implies

αð−tÞjψðtÞi ¼ 0: ð3:74Þ

Combining Eqs. (3.72) and (3.74), one finds the recursion
relation

cnþ1ðtÞ ¼ −i tanhðγtÞ
ffiffiffiffiffiffiffiffiffiffiffi
n

nþ 1

r
cn−1ðtÞ: ð3:75Þ

Since H changes the occupation number n by �2 only,
cnðtÞ ¼ 0 for all odd n. For n ¼ 2p, Eq. (3.75) implies

c2pðtÞ ¼ ð−i tanhðγtÞÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2p − 1Þ!!

2pp!

s
c0ðtÞ: ð3:76Þ

The normalization condition

X∞
p¼0

jc2pðtÞj2 ¼ 1 ð3:77Þ

yields

c0ðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshðγtÞp : ð3:78Þ

The probability that the system is found in the ð2pÞth
excited state is thus

jc2pðtÞj2 ¼
ð2p − 1Þ!!

2pp!
ðtanhðγtÞÞ2p
coshðγtÞ : ð3:79Þ

The average occupation number can be obtained directly
from Eq. (3.70),

hNðtÞi ¼ h0jα†ðtÞαðtÞj0i ¼ sinh2ðγtÞ: ð3:80Þ

Likewise, the average occupation number squared

hNðtÞ2i ¼ h0jα†ðtÞαðtÞα†ðtÞαðtÞj0i
¼ sinh4ðγtÞ þ 2cosh2ðγtÞsinh2ðγtÞ: ð3:81Þ

The root mean average deviation from the average occu-
pation number is therefore

δNðtÞ ¼ 1ffiffiffi
2

p j sinhð2γtÞj: ð3:82Þ

Both the average occupation number and its root mean
square deviation grow as e2γt.

E. Duration of classicality

We found that the occupation numbers of all αk⃗ and α0
k⃗

modes in the wave vector range 0 < k < kJ grow expo-
nentially with a rate 2γðkÞ ¼ k

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2J − k2

p
at the expense of

the k⃗ ¼ 0 condensate. The interactions cause quanta to
jump, two at the time, out of the condensate into the k < kJ
modes. In contrast, the classical solution Ak⃗ðtÞ ¼

ffiffiffiffi
N

p
δ0⃗
k⃗
is

valid for all time. The bk⃗ðtÞ annihilation operators (for

k⃗ ≠ 0) are given in terms of the αk⃗ð0Þ and the α0
k⃗
ð0Þ by

bk⃗ðtÞ ¼
uffiffiffi
2

p ðαk⃗ðtÞþ α0
k⃗
ðtÞÞþ vffiffiffi

2
p ðα†

k⃗
ðtÞ− α0†

k⃗
ðtÞÞ

¼ 1ffiffiffi
2

p ðαk⃗ð0Þþ α0
k⃗
ð0ÞÞ½ucoshðγðkÞtÞ− iv sinhðγðkÞtÞ�

þ 1ffiffiffi
2

p ðα†
k⃗
ð0Þ− α0†

k⃗
ð0ÞÞ½vcoshðγðkÞtÞ

þ iu sinhðγðkÞtÞ�; ð3:83Þ

where we used Eqs. (3.67), and Eq. (3.70) with γ ¼ �γðkÞ.
The discussion in the previous section suggests that the
quantum state with the longest duration of classicality for
describing the homogeneous condensate is jΨi:

αk⃗ð0ÞjΨi ¼ α0
k⃗
ð0ÞjΨi ¼ 0 ð3:84Þ

for all k⃗ ≠ 0. Using Eq. (3.83), we find that the average
number of quanta that have jumped from the condensate
into mode bk⃗, with 0 < k < kJ, is

hΨjb†
k⃗
ðtÞbk⃗ðtÞjΨi ¼ sinh2ðηÞ þ coshð2ηÞsinh2ðγðkÞtÞ

ð3:85Þ

in state jΨi at time t. As an alternative to jΨi, we also
considered the quantum state jΨ0i defined by
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bk⃗ð0ÞjΨ0i ¼ 0 ð3:86Þ

for all k⃗ ≠ 0. Using Eq. (3.83), we find

hΨ0jb†
k⃗
ðtÞbk⃗ðtÞjΨ0i ¼ cosh2ð2ηÞsinh2ðγðkÞtÞ: ð3:87Þ

Although in state jΨ0i all k⃗ ≠ 0 oscillators are empty
initially, they end up more highly occupied at later
times than in state jΨi. The latter state has the longer
duration of classicality and is the state that we consider
henceforth.
The average number of quanta that have evaporated

from the k⃗ ¼ 0 condensate is

NevðtÞ ¼
X
k⃗

hΨjb†
k⃗
ðtÞbk⃗ðtÞjΨi

¼ V
Z
k<kJ

d3k
ð2πÞ3

k2J
8k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2J − k2

p e2γðkÞt

¼ Vk3J
16π2

Z
1

0

du
uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p e

k2
J
t

m u
ffiffiffiffiffiffiffiffi
1−u2

p

≃
Vk3J
16π2

ffiffiffiffiffiffiffiffiffi
πm
2k2Jt

r
e
k2
J
t

2m ¼ Njλj
32π

ffiffiffiffiffiffiffiffiffiffiffi
2πmt

p e
k2
J
t

2m ð3:88Þ

in state jΨi for t ≫ m/k2J. We used the saddle point
approximation in the penultimate step. We thus find that
after a time of order

tc ∼
2m
k2J

ln

�
32π

3
2n0

k3J

�
; ð3:89Þ

the k⃗ ¼ 0 condensate is almost entirely depleted. Up to a
numerical constant, the argument of the logarithm in
Eq. (3.89) is the number of quanta in a sphere of
radius 1/kJ.

IV. GRAVITATIONAL SELF-INTERACTIONS

We now come to our main topic: the dynamics of a
degenerate quantum scalar field interacting with itself
through Newtonian gravity. We must be in the nonrelativ-
istic regime of this system for Newtonian gravity to be
valid, i.e., only slow moving (v ≪ c) quanta are excited.
The dynamics is in terms of the non-Hermitian scalar field
ψðr⃗; tÞ introduced in Eqs. (3.3). ψðr⃗; tÞ satisfies the equal
time commutation relations (3.4). The Hamiltonian is

H ¼
Z
V
d3r

1

2m
∇⃗ψðr⃗; tÞ† · ∇⃗ψðr⃗; tÞ

−
Gm2

2

Z
V
d3r
Z
V
d3r0

1

jr⃗ − r⃗0jψðr⃗; tÞ
†

× ψðr⃗; tÞψðr⃗0; tÞ†ψðr⃗0; tÞ: ð4:1Þ

The equation of motion is

i∂tψðr⃗; tÞ ¼ ½ψðr⃗; tÞ; H�

¼ −
1

2m
∇2ψðr⃗; tÞ þmφðr⃗; tÞψðr⃗; tÞ; ð4:2Þ

where φðr⃗; tÞ is the operator

φðr⃗; tÞ ¼ −Gm
Z
V
d3r0

ψðr⃗0; tÞ†ψðr⃗0; tÞ
jr⃗ − r⃗0j ; ð4:3Þ

whose classical analog is the gravitational potential.
We may expand ψðr⃗; tÞ in any orthonormal and complete
set of wave functions uα⃗ðr⃗; tÞ, as we did in Sec. III.
Equations (3.6)–(3.10) remain unchanged except that

Λγ⃗ δ⃗

α⃗ β⃗
¼ −Gm2

Z
V
d3r
Z
V
d3r0

1

jr⃗ − r⃗0j
· uα⃗ðr⃗; tÞ�uβ⃗ðr⃗0; tÞ�ðuγ⃗ðr⃗; tÞuδ⃗ðr⃗0; tÞ
þ uγ⃗ðr⃗0; tÞuδ⃗ðr⃗; tÞÞ ð4:4Þ

is substituted for the second equation (3.10).

A. Classical description

In the classical description, the operator ψðr⃗; tÞ is
replaced by a c-number wave function Ψðr⃗; tÞ. The wave
function satisfies the classical analog of Eq. (4.2),

i∂tΨðr⃗; tÞ ¼ −
1

2m
∇2Ψðr⃗; tÞ þmΦðr⃗; tÞΨðr⃗; tÞ ð4:5Þ

with

Φðr⃗; tÞ ¼ −Gm
Z
V
d3r0

jΨðr⃗0; tÞj2
jr⃗ − r⃗0j : ð4:6Þ

The gravitational potential Φðr⃗; tÞ satisfies the Poisson
equation

∇2Φðr⃗; tÞ ¼ 4πGmjΨðr⃗; tÞj2: ð4:7Þ

Let us remark however that Eq. (4.7) implies Eq. (4.6) only
up to a solution of the Laplace equation. The Schrödinger-
Poisson equations, Eqs. (4.5) and (4.7), are commonly used
to describe self-gravitating degenerate axions or axionlike
particles [7]. They were used in Ref. [9] to describe the
homogeneous expanding universe and the evolution of
density perturbations therein. We summarize the results of
Ref. [9] as they are the starting point for our analysis of the
system’s quantum evolution in the next section.
The wave function that describes the homogeneous

expanding universe is
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Ψ0ðr⃗; tÞ ¼
ffiffiffiffiffiffiffiffiffiffi
n0ðtÞ

p
ei

1
2
mHðtÞr2 ; ð4:8Þ

where HðtÞ is the Lemaître-Hubble expansion rate. Indeed
the velocity field implied by Eq. (4.8) is

v⃗ðr⃗; tÞ ¼ HðtÞr⃗: ð4:9Þ

Furthermore, Eqs. (4.5) and (4.7) imply the continuity
equation

∂tn0 þ 3Hn0 ¼ 0 ð4:10Þ

and the Friedmann equation

HðtÞ2 þ K
aðtÞ2 ¼

8πG
3

mn0ðtÞ: ð4:11Þ

K ¼ þ1; 0;−1 depending on whether the universe is
closed, critical, or open, and aðtÞ is the scale factor defined
by HðtÞ ¼ _a

a. Equations (4.9), (4.10), and (4.11) are the
standard equations that describe the homogeneous matter-
dominated expanding universe.
Density perturbations are introduced by writing

Ψðr⃗; tÞ ¼ Ψ0ðr⃗; tÞ þ Ψ1ðr⃗; tÞ: ð4:12Þ

The perturbation in the wave function is Fourier trans-
formed in terms of comoving wave vectors k⃗ as follows:

Ψ1ðr⃗; tÞ ¼ Ψ0ðr⃗; tÞ
Z

d3kΨ1ðk⃗; tÞei
k⃗·r⃗
aðtÞ: ð4:13Þ

The Schrödinger-Poisson equations are satisfied to linear
order provided

Ψ1ðk⃗; tÞ ¼
1

2
δðk⃗; tÞ þ i

maðtÞ2
k2

∂tδðk⃗; tÞ ð4:14Þ

and

∂2
t δðk⃗; tÞ þ 2HðtÞ∂tδðk⃗; tÞ − 4πGρδðk⃗; tÞ

þ k4

4m2a4ðtÞ δðk⃗; tÞ ¼ 0: ð4:15Þ

The δðk⃗; tÞ are the Fourier components of the density
contrast

δðr⃗; tÞ ¼ n1ðr⃗; tÞ
n0ðr⃗; tÞ

¼
Z

d3kδðk⃗; tÞei k⃗·r⃗aðtÞ; ð4:16Þ

where n1ðr⃗; tÞ is the density perturbation. The Fourier
components of the velocity perturbation are given by

v⃗1ðk⃗; tÞ ¼
iaðtÞk⃗
k⃗ · k⃗

∂tδðk⃗; tÞ: ð4:17Þ

Equations (4.15)–(4.17) are the standard equations describ-
ing the evolution of density perturbations in an expanding
matter dominated universe except for the last term of
Eq. (4.15). That term is absent if the matter is non-
degenerate cold collisionless particles, such as WIMPs
or sterile neutrinos. It is due to the effect of the “quantum
pressure” q in Eq. (3.16) when the matter is a wave. It
implies a Jeans length [8,13,14,31]

lJ ¼ ð16πGρm2Þ−1
4

¼ 1.01 × 1014 cm

�
10−5 eV

m

�1
2

�
10−29 g/cm3

ρ

�1
4

:

ð4:18Þ

For k > aðtÞ
lJ

¼ kJ, the density perturbations oscillate in

time. For k ≪ aðtÞ
lJ
, the most general solution of Eq. (4.15) is

δðk⃗; tÞ ¼ Aðk⃗Þ
�
t
t0

�2
3 þ Bðk⃗Þ

�
t0
t

�
; ð4:19Þ

in the critical universe case (K ¼ 0) where aðtÞ ∝ t
2
3.

Before we discuss the quantum evolution of the initially
homogeneous expanding universe, let us point out that the
wave function Ψ0 in Eq. (4.8) satisfies Eq. (4.5) with the
gravitational potential

Φ0ðr; tÞ ¼
2π

3
Gmn0ðtÞr2; ð4:20Þ

which is indeed an appropriate solution of the Poisson
equation, Eq. (4.7), but which differs from Eq. (4.6) by a
constant that diverges in the infinite volume limit. The
classical description above uses the Schrödinger-Poisson
equations, Eqs. (4.5) and (4.7). However, to obtain the
quantum evolution, we will find it more convenient to start
with a solution of Eqs. (4.5) and (4.6). The wave function
and gravitational potential that describe the homogeneous
expanding universe and solve Eqs. (4.5) and (4.6) are

Ψ0ðr⃗; tÞ ¼
ffiffiffiffiffiffiffiffiffiffi
n0ðtÞ

p
ei

1
2
mHðtÞr2−im

R
t dt0Φ0ð0;t0Þ

Φ0ðr; tÞ ¼
2π

3
Gmn0ðtÞr2 þΦ0ð0; tÞ: ð4:21Þ

The wave function given in Eq. (4.21) is the starting point
for our discussion in the next section.

B. Quantum evolution

In this section, we derive the quantum evolution of a
universe that starts off being described by the homogeneous
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expanding universe solution Ψ0 of the classical equations
of motion, Eqs. (4.21). Again we are interested to see how
long the classical solution gives a description consistent
with quantum evolution. We use the general method
presented in Sec. III. B.
For a general solution Ψðr⃗; tÞ of the classical field

equation (4.5), we expand the quantum field ψðr⃗; tÞ as
we did for λϕ4 theory, Eqs. (3.37)–(3.42). The interaction
coefficients are

Λk⃗3k⃗4
k⃗1k⃗2

ðtÞ ¼ −
Gm2

N2

Z
V
d3r
Z
V
d3r0

nðr⃗; tÞnðr⃗0; tÞ
jr⃗ − r⃗0j

× ½eiðk⃗3−k⃗1Þ·χ⃗ðr⃗;tÞþiðk⃗4−k⃗2Þ·χ⃗ðr⃗0;tÞ

þ eiðk⃗4−k⃗1Þ·χ⃗ðr⃗;tÞþiðk⃗3−k⃗2Þ·χ⃗ðr⃗0;tÞ�; ð4:22Þ

and the kinetic coefficients are

Mk⃗0

k⃗
ðtÞ ¼ −

m
N

Z
V
d3rΦðr⃗; tÞnðr⃗; tÞeiðk⃗0−k⃗Þ·χ⃗ðr⃗;tÞ

þ 1

2mN

Z
V
d3rnðr⃗; tÞ∇⃗ðk⃗ · χ⃗ðr⃗; tÞÞ

· ∇⃗ðk⃗0 · χ⃗ðr⃗; tÞÞeiðk⃗0−k⃗Þ·χ⃗ðr⃗;tÞ: ð4:23Þ

Equation (4.23) is obtained by following the same steps as
in the Appendix but for the gravitational case. Note that the
self-consistency condition Eq. (3.49) is always satisfied.
For the special solution Ψ0ðr⃗; tÞ describing a homo-

geneous expanding universe, ψðr⃗; tÞ is expanded into the
orthonormal complete set of wave functions

uk⃗ðr⃗; tÞ ¼ 1ffiffiffiffi
N

p Ψ0ðr⃗; tÞei
k⃗·r⃗
aðtÞ

¼
ffiffiffiffiffiffiffiffiffiffi
n0ðtÞ
N

r
ei

1
2
mHðtÞr2−im

R
t dt0Φ0ð0;t0Þþi k⃗·r⃗aðtÞ: ð4:24Þ

The uk⃗ðr⃗; tÞ are similar to Ψ0 but differ from it by long
wavelength modulations. They have the properties
described by Eqs. (3.37)–(3.41), with χ⃗ðr⃗; tÞ ¼ r⃗

aðtÞ. We

specialize henceforth to the critical universe (K ¼ 0) for
which

aðtÞ ¼
�
t
t�

�2
3

and nðtÞ ¼ n�

�
t�
t

�
2

; ð4:25Þ

where t� is an arbitrarily chosen initial time. The interaction
coefficients in the basis of Eq. (4.24) are in that case

Λk⃗3k⃗4
k⃗1k⃗2

ðtÞ ¼ −
4πGm2

V�

�
t�
t

�2
3

δk⃗3þk⃗4
k⃗1þk⃗2

 
1

ðk⃗4 − k⃗1Þ2 þ μ2

þ 1

ðk⃗3 − k⃗1Þ2 þ μ2

!
; ð4:26Þ

where V� ¼ N/n� is the volume occupied by the system at
the initial time t�, and μ is an infrared cutoff. The kinetic
coefficients are

Mk⃗0

k⃗
ðtÞ ¼

�
k⃗ · k⃗0

2m

�
t�
t

�4
3 þ 2m

3t2�

�
t�
t

�2
3 1

ðk⃗ − k⃗0Þ2 þ μ2

�
δk⃗

0

k⃗
:

ð4:27Þ

The equations of motions for the ak⃗ðtÞ operators and their
classical analogs Ak⃗ are the same as in the previous section,

Eqs. (3.46) and (3.47), but with the Λk⃗3k⃗4
k⃗1k⃗2

and Mk⃗0

k⃗
given

by the above expressions. The consistency condition
Eq. (3.49) is satisfied since the Friedmann equation implies

4πGmn� ¼
2

3t2�
: ð4:28Þ

The consistency condition ensures that

Ak⃗ðtÞ ¼
ffiffiffiffi
N

p
δ0⃗
k⃗
; ð4:29Þ

which describes the homogeneous expanding universe, is a
solution of the classical equations of motion.
To analyze the behavior of the quantum system when the

homogeneous particle state (k⃗ ¼ 0) is occupied by a huge
number N of quanta, we substitute

ak⃗ðtÞ ¼
ffiffiffiffi
N

p
δ0⃗
k⃗
þ bk⃗ðtÞ: ð4:30Þ

The bk⃗ðtÞ satisfy canonical commutation relations, and the
equations of motion

i∂tbk⃗ ¼ ðMk⃗0

k⃗
þ NΛk⃗00⃗

k⃗ 0⃗
Þbk⃗0 þ

1

2
NΛ0⃗ 0⃗

k⃗k⃗0
b†
k⃗0
þ � � �

¼
�
k⃗ · k⃗
2m

�
t�
t

�4
3

−
2m
3t2�

�
t�
t

�2
3 1

k⃗ · k⃗

�
bk⃗

−
2m
3t2�

�
t�
t

�2
3 1

k⃗ · k⃗
b†
−k⃗

þ � � � ; ð4:31Þ

where the dots represent interaction terms. The interaction
terms are suppressed by one or two factors of 1/

ffiffiffiffi
N

p
and

will be ignored henceforth.

C. Instability by parametric resonance

Equation (4.31) may be rewritten

i∂t

 
bk⃗

b†
−k⃗

!
¼
�

AðtÞ BðtÞ
−BðtÞ −AðtÞ

� bk⃗

b†
−k⃗

!
; ð4:32Þ

where AðtÞ≡ ϵðtÞ − γðtÞ, BðtÞ ¼ −γðtÞ, and
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ϵðtÞ ¼ k2

2m

�
t�
t

�4
3

; γðtÞ ¼ 1

3t2�

�
t�
t

�2
3 2m
k2

: ð4:33Þ

We perform a time-dependent Bogoliubov transformation

 
bk⃗

b†
−k⃗

!
¼
�

cðtÞ sðtÞ
sðtÞ� cðtÞ�

� βk⃗

β†
−k⃗

!
: ð4:34Þ

The transformation is canonical provided jcðtÞj2− jsðtÞj2¼1

and provided cðtÞ and sðtÞ do not depend on the sign of k⃗.
(The k⃗ dependence of A, B, ϵ, γ, c, s is suppressed to
avoid cluttering the equations unnecessarily.) The new
operators satisfy

i∂t

 
βk⃗

β†
−k⃗

!
¼
�

AðtÞ BðtÞ
−BðtÞ� −AðtÞ�

� βk⃗

β†
−k⃗

!
; ð4:35Þ

where

AðtÞ ¼ ðjcj2 þ jsj2ÞAþ ðcsþ c�s�ÞB − iðc� _c − s_s�Þ
BðtÞ ¼ 2c�sAþ ðc�2 þ s2ÞB − iðc� _s − s_c�Þ: ð4:36Þ

The Jeans length, Eq. (4.18), increases as t
1
2, whereas the

wavelength associated with each wave vector k⃗ increases
as aðtÞ ∝ t

2
3. Hence, there is for each wave vector k⃗ a time

of order

tk ¼
k6t4�
ð2mÞ3 ð4:37Þ

before which the perturbations with that wave vector are
stable and after which they are unstable.
Consider modes that are deeply in the unstable regime at

the time t under consideration, i.e., tk ≪ t. These are the
modes that obey Eq. (4.19) in the classical description. We
may setA ¼ 0 by choosing c ¼ coshðuÞ, s ¼ sinhðuÞ with

tanhð2uÞ ¼ −
A
B
¼ −1þ ϵ

γ
: ð4:38Þ

Since ϵ ≪ γ, u is large and negative. We have to leading
order

u ¼ 1

4
ln

�
ϵ

2γ

�
¼ 1

4
ln

�
3

2

�
tk
t

�2
3

�
; ð4:39Þ

and therefore

B ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − A2

p
− i _u ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGmn0ðtÞ

p
þ i
6t
: ð4:40Þ

The equation of motion for the βk⃗ operators is thus

i∂tβk⃗ ¼
�
−

ffiffiffi
2

3

r
þ i
6

�
1

t
β†
−k⃗
: ð4:41Þ

The Hamiltonian for the modes of wave vectors k⃗ and −k⃗,
with tk ≪ t, is thus

Hk⃗ ¼
�
−

ffiffiffi
2

3

r
þ i
6

�
1

t
β†
−k⃗
β†
k⃗
þ
�
−

ffiffiffi
2

3

r
−
i
6

�
1

t
β−k⃗βk⃗:

ð4:42Þ

It may be rewritten

Hk⃗ ¼ −
1

2t
ðηαk⃗αk⃗ þ η�α†

k⃗
α†
k⃗
Þ þ 1

2t
ðηα0

k⃗
α0
k⃗
þ η�α0†

k⃗
α0†
k⃗
Þ
ð4:43Þ

in terms of the canonical variables

αk⃗ ¼
1ffiffiffi
2

p ðβk⃗ þ β−k⃗Þ

α0
k⃗
¼ 1ffiffiffi

2
p ðβk⃗ − β−k⃗Þ; ð4:44Þ

and the constant η≡
ffiffi
2
3

q
þ i

6
¼ jηjeiθ with jηj ¼ 5

6
and

sin θ ¼ 1
5
. The phase of �η can be absorbed into a

redefinition of the αk⃗ and α0
k⃗
operators.

We thus consider the dynamics implied by a Hamiltonian
of the form

HðtÞ ¼ ξ

2t
ðαðtÞαðtÞ þ αðtÞ†αðtÞ†Þ; ð4:45Þ

where ξ is a real positive constant. The equation of motion

i∂tαðtÞ ¼
ξ

t
αðtÞ† ð4:46Þ

is solved by

αðtÞ¼1

2
ðαðt�Þ− iαðt�Þ†Þ

�
t
t�

�
ξ

þ1

2
ðαðt�Þþ iαðt�Þ†Þ

�
t�
t

�
ξ

:

ð4:47Þ

Equation (4.47) implies an instability, albeit only a power
law instability.
To see its implications, consider the evolution of states

in the Schrödinger picture. The Schrödinger picture
Hamiltonian is

HsðtÞ ¼
ξ

2t
ðαðt�Þαðt�Þ þ αðt�Þ†αðt�Þ†Þ; ð4:48Þ

and the time evolution operator
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Uðt; t�Þ ¼ exp

�
−i

ξ

2
ðαðt�Þαðt�Þ þ αðt�Þ†αðt�Þ†Þ ln

�
t
t�

��
:

ð4:49Þ

We have

αðtÞ ¼ Uðt; t�Þ†αðt�ÞUðt; t�Þ: ð4:50Þ

As an example, consider the evolution

jΨsðtÞi ¼ Uðt; t�ÞjΨðt�Þi ð4:51Þ

of the state defined by

αðt�ÞjΨðt�Þi ¼ 0: ð4:52Þ

Combining Eqs. (4.50)–(4.52) and (4.47), we have

Uðt; t�Þαðt�ÞUðt; t�Þ†jΨsðtÞi

¼
�
1

2
ðαðt�Þ − iαðt�Þ†Þ

�
t�
t

�
ξ

þ 1

2
ðαðt�Þ þ iαðt�Þ†Þ

�
t
t�

�
ξ
�
jΨsðtÞi ¼ 0: ð4:53Þ

Equation (4.53) yields a recursion relation between the
coefficients in the expansion

jΨsðtÞi ¼
X∞
n¼0

cnðtÞjni; ð4:54Þ

where

jni ¼ 1ffiffiffiffiffi
n!

p ðαðt�Þ†ÞnjΨðt�Þi: ð4:55Þ

The recursion relation implies

cnðtÞ ¼ 0 for n odd

¼ ð−i tanhðsÞÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2p − 1Þ!!

2pp!

s
c0ðtÞ for n ¼ 2p;

ð4:56Þ

where s is defined by

e−s ¼
�
t�
t

�
ξ

: ð4:57Þ

The normalization condition hΨsðtÞjΨsðtÞi ¼ 1 yields then

jc0ðtÞj2 ¼
1

coshðsÞ : ð4:58Þ

The average occupation number and average occupation
number squared are

hNðtÞi ¼ hΨðt�ÞjαðtÞ†αðtÞjΨðt�Þi ¼ sinh2ðsÞ
hNðtÞ2i ¼ hΨðt�ÞjαðtÞ†αðtÞαðtÞ†αðtÞjΨðt�Þi

¼ sinh4ðsÞ þ 2sinh2ðsÞcosh2ðsÞ: ð4:59Þ

The root mean square deviation of the occupation number
from its average is thus

δNðtÞ ¼ 1ffiffiffi
2

p sinhð2sÞ: ð4:60Þ

Both the average occupation number and its root mean
square deviation increase as ð tt�Þ2ξ ¼ ð tt�Þ

5
3 for ξ ¼ jηj ¼ 5

3
.

D. Duration of classicality

To the lowest order in the perturbations, the density
operator is

nðr⃗; tÞ ¼ ψðr⃗; tÞ†ψðr⃗; tÞ
¼
X
k⃗;k⃗0

uk⃗ðr⃗; tÞ�ak⃗ðtÞ†uk⃗
0 ðr⃗; tÞak⃗0 ðtÞ

¼ Nu0⃗ðr⃗; tÞ�u0⃗ðr⃗; tÞ þ
ffiffiffiffi
N

p X
k⃗≠0

½u0⃗ðr⃗; tÞ�uk⃗ðr⃗; tÞbk⃗ðtÞ

þ u0⃗ðr⃗; tÞuk⃗ðr⃗; tÞ�bk⃗ðtÞ†� þOð1/NÞ

¼ n0ðtÞ þ
n0ðtÞffiffiffiffi

N
p

X
k⃗≠0

½bk⃗ðtÞ þ b†
−k⃗
ðtÞ�ei k⃗·r⃗aðtÞ þOð1/NÞ:

ð4:61Þ

Since

bk⃗ðtÞ þ b−k⃗ðtÞ† ¼ ðcðtÞ þ sðtÞÞðβk⃗ðtÞ þ β−k⃗ðtÞ†Þ

¼ eu
1ffiffiffi
2

p ðαk⃗ðtÞ þ α0
k⃗
ðtÞ þ αk⃗ðtÞ† − α0

k⃗
ðtÞ†Þ

∝ t−
1
6ðt56 and t−

5
6Þ ¼ t

2
3 and t−1;

ð4:62Þ

we see that the perturbations grow at the same rate as in the
classical description, Eq. (4.19). The main difference is that
the perturbations are seeded in the quantum description,
whereas in the classical description they are not.
The bk⃗ðtÞ annihilation operators (for k⃗ ≠ 0) are given in

terms of the αk⃗ðt�Þ and α0
k⃗
ðt�Þ by
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bk⃗ðtÞ ¼
cðtÞffiffiffi
2

p ðαk⃗ðtÞ þ α0
k⃗
ðtÞÞ þ sðtÞffiffiffi

2
p ðα†

k⃗
ðtÞ − α0†

k⃗
ðtÞÞ

¼ 1

2
ffiffiffi
2

p
�
t
t�

�5
6½ðcðtÞ − ieiθsðtÞÞðαk⃗ðt�Þ þ α0

k⃗
ðt�ÞÞ

þ ðsðtÞ þ ie−iθcðtÞÞðα†
k⃗
ðt�Þ − α0†

k⃗
ðt�ÞÞ�; ð4:63Þ

where we used Eqs. (4.34) and (4.44), and Eq. (4.47) with
ξ ¼ jηj ¼ 5

6
for αðtÞ ¼ eiθ/2α0

k⃗
ðtÞ and αðtÞ ¼ ieiθ/2αk⃗ðtÞ. We

kept growing terms only. For t ≫ tk, we have

cðtÞ ¼ −sðtÞ ¼ 1

2
e−u ¼ 1

2

�
2

3

�1
4

�
t
tk

�1
6 ð4:64Þ

in view of Eq. (4.39). Therefore,

bk⃗ðtÞ ¼
1

4
ffiffiffi
2

p
�
2

3

�1
4

�
t
t�

�5
6

�
t
tk

�1
6½ð1þ ieiθÞðαk⃗ðt�Þ

þ α0
k⃗
ðt�ÞÞ − ð1 − ie−iθÞðα†

k⃗
ðt�Þ − α0†

k⃗
ðt�ÞÞ� ð4:65Þ

for tk < t� ≪ t. For t� < tk ≪ t, we replace t� by tk in the
above expression since a mode starts to grow only at
time tk.
The discussion in the previous section suggests that the

state with the longest duration of classicality for describing
a homogeneous condensate is jΨi,

αk⃗ðt�ÞjΨi ¼ α0
k⃗
ðt�ÞjΨi ¼ 0: ð4:66Þ

In view of Eq. (4.65) and the sentence following, the
average number of quanta that have jumped from the
condensate into a mode bk⃗ with physical wave vector
magnitude k

aðtÞ < lJðtÞ−1 is

hNk⃗ðtÞi ¼ hΨjb†
k⃗
ðtÞbk⃗ðtÞjΨi

≃
1

10

ffiffiffi
2

3

r �
t
t�

�
2
�
t�
tk

�1
3

for tk < t� ≪ t

≃
1

10

ffiffiffi
2

3

r �
t
tk

�
2

for t� < tk ≪ t ð4:67Þ

in state jΨi at time t. We used sin θ ¼ 1
5
. As an alternative to

jΨi, we considered the state jΨ0i defined by

bk⃗ðt�ÞjΨ0i ¼ 0 ð4:68Þ

for all k⃗ ≠ 0, and verified that the average occupation
number for any k⃗ ≠ 0 mode is larger in state jΨ0i than in
state jΨi for large t. The state jΨi thus has the larger
duration of classicality and is the state that we consider
henceforth.
In state jΨi, the total number of quanta that have left the

k⃗ ¼ 0 condensate at time t is

NevðtÞ ¼
X
k<kJ

hNk⃗ðtÞi

∼ V�
1

10

ffiffiffi
2

3

r �
t
t�

�
2
�Z

k<kJðt�Þ

d3k
ð2πÞ3

2m
k2t�

þ
Z
k>kJðt�Þ

d3k
ð2πÞ3

�
2m
k2t�

�
6
�

∼ 1.3
V�kJðt�Þ3
20π2

�
t
t�

�
2

∼ 0.26NGm2
ffiffiffiffiffiffiffiffi
mt�

p �
t
t�

�
2

;

ð4:69Þ

where we used Eqs. (4.18), (4.28), and (4.37). The integral
over k⃗ in Eq. (4.69) should be restricted to k > aðtÞHðtÞ
since the modes are unstable only for wavelengths that are
within the horizon. However, this restriction is irrelevant
since the integral is dominated by values of k near kJðt�Þ.
After a time of order

tc ∼ t�
1

ðGm2 ffiffiffiffiffiffiffiffi
mt�

p Þ12 ; ð4:70Þ

the k⃗ ¼ 0 condensate is largely depleted.

V. SUMMARY

This paper sought to clarify aspects of the evolution of the
cosmic axion dark matter fluid. It was found in Refs. [8,10]
that dark matter axions thermalize by gravitational self-
interactions. When they thermalize, all conditions for their
Bose-Einstein condensation are satisfied, and we expect
therefore that this is indeed what happens. Furthermore, it
was shown that axion Bose-Einstein condensation explains
in detail and in all respects the evidence for caustic rings of
dark matter [19]. Nonetheless, axion Bose-Einstein con-
densation is a difficult subject from the theoretical point of
view. The central difficulty is that gravity, the interaction by
which axions thermalize, causes instability. Bose-Einstein
condensation means that most of the particles go to their
lowest energy state. But, if the system is unstable, it is not
obvious what is the lowest energy state. Reference [24]
concluded that “while a Bose-Einstein condensate is
formed, the claim of long-range correlation is unjustified”.
Section II was written in response to the critique of

Ref. [22–24]. We emphasize that Bose-Einstein condensa-
tion is a quantum phenomenon, even if some aspects of
Bose-Einstein condensation can be reproduced in a trun-
cated classical field theory. We reiterate the conclusion of
Ref. [25] that the classical description necessarily differs
from the quantum description on the thermalization time
scale. We show that a Bose-Einstein condensate always has
long range correlations, whether or not it is homogeneous.
Finally, we clarify that Bose-Einstein condensation is
always into the lowest energy state available through the
thermalizing interactions. Remaining questions are: what is
in general the state that the axions condense into, or move
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towards (since thermal equilibrium is always incomplete in
an unstable system)? How does one determine it? Or, more
broadly: what is the evolution of a degenerate quantum
scalar field as a result of its gravitational self-interactions?
The evidence for cosmic axion Bose-Einstein conden-

sation from caustic rings does not demand the clarifications
that we seek in this paper. Indeed that evidence is based on
the unambiguous statement that the lowest energy state for
a given total angular momentum is a state of rigid rotation
in the angular variables. There is no instability in the
angular variables. Gravitational instability resides in the
scalar modes, not in the rotational vector modes.
Cosmological perturbation theory is an arena where we

do seek clarification. Its results are consistent with a wave
function description of cold dark matter. The wave function
Ψðx⃗; tÞ is a solution of the classical field equations. On the
other hand, it is only one mode of the quantum field ψðx⃗; tÞ.
Given such a classical description, where do the quantum
corrections appear and how large are they? Although we
were not able to answer this question in general, we made
progress.
In Sec. III, we expanded the quantum scalar field in a set

of modes built around an arbitrary solution Ψðx⃗; tÞ of the
classical field equations; Eqs. (3.37)–(3.46). The modes are
labeled by a wave vector k⃗ which is conjugate to the
comoving coordinates defined by the flow that the classical
solution describes. The classical solution itself is mode
k⃗ ¼ 0. We derived the Hamiltonian in terms of the creation
and annihilation operators for the k⃗ modes. The kinetic

coefficientsMk⃗0

k⃗
ðtÞ and interaction coefficients Λk⃗3k⃗4

k⃗1k⃗2
ðtÞ that

appear in the Hamiltonian are functionals of the classical
solution Ψðx⃗; tÞ.
We applied the formalism to the homogeneous conden-

sate in λϕ4 theory. In the repulsive case (λ > 0), our
treatment merely reproduces well-known results. In the
attractive case (λ < 0), we show that the condensate
becomes depleted by parametric resonance: pairs of quanta
jump out of the condensate into each mode with a wave

vector less than a critical value kJ ¼
ffiffiffiffiffiffiffi
jλjn0
2m

q
, where n0 is

particle density and m is particle mass. The occupation
number of each state with k < kJ grows exponentially at
the rate k

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2J − k2

p
. We calculate the time tc after which

the condensate is almost entirely depleted, Eq. (3.89). In
contrast, according to the classical equations of motion, the
homogeneous condensate persists forever. Our treatment of
the quantum system is exact in the limit where the number
of quanta in the condensate N is large and time t ≪ tc.
In Sec. IV, we applied the formalism to a self-gravitating

Bosonic fluid forming a homogeneous, critically expanding
universe. The classical solution describing the homo-
geneous expanding universe is given in Eq. (4.8). In the
quantum description, parametric resonance causes pairs of
quanta to jump out of the condensate into each mode with a

wave vector k < kJ ¼ 1/lJ, where lJ is the Jeans length,
Eq. (4.18). The occupation number of each mode with
k < kJ grows as a power law, as in the classical description.
As for the λϕ4 theory with λ < 0, the main difference
between the classical and quantum descriptions is that in
the quantum description, the 0 < k < kJ perturbations are
seeded, whereas in the classical description they are not.
Whereas the homogeneous condensate persists forever in
the classical description, it is depleted after a time tc in the
quantum description; tc is given in Eq. (4.70) for the self-
gravitating case. Our treatment of the self-gravitating
quantum system is exact for all modes with k ≪ kJ, in
the limit where N is large and t ≪ tc.
Although we analyzed only homogeneous condensates,

the fact that quantum evolution differs from classical
evolution after a time must be true for inhomogeneous
condensates as well since a homogeneous condensate is a
limiting case of inhomogeneous condensates. In fact,
taking as a guide our analysis of the five oscillator model
in Sec. II. B, we expect that inhomogeneous condensates
have a shorter duration of classicality than the homo-
geneous condensate. The behavior of inhomogeneous
condensates will be addressed in future work.
We used Newtonian gravity throughout our discussion of

the homogeneous self-gravitating condensate. As already
mentioned, this is valid only when the velocities are small
compared to the speed of light. Our treatment applies
therefore only to modes that are well within the horizon
[k/aðtÞ ≫ HðtÞ]. Before they enter the horizon, the
modes are frozen by causality. They do not grow then
and hence do not contribute to the depletion of a con-
densate. A general relativistic treatment is necessary to
obtain a description of a mode as it enters the horizon and
begins to contribute to condensate depletion.
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APPENDIX: DERIVATION OF Mk⃗0

k⃗
ðtÞ

This appendix provides a derivation of Eq. (3.45). The

expression for Mk⃗0

k⃗
ðtÞ in Eq. (3.10) may be rewritten

Mk⃗0

k⃗
¼
Z
V
d3x

1

2

�
uk⃗�
�
−i∂t −

∇2

2m

�
uk⃗

0

þ
��

−i∂t −
∇2

2m

�
uk⃗
��

uk⃗
0
�

ðA1Þ
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by integrating by parts and noting that

Z
V
d3x½uk⃗�∂tuk⃗

0 þ ∂tuk⃗�uk⃗
0 � ¼ 0 ðA2Þ

in view of Eq. (3.41). Substituting Eq. (3.37) and using the
fact that Ψðx⃗; tÞ satisfies Eq. (3.11), one obtains

Mk⃗0

k⃗
¼ 1

2N

Z
V
d3xeiðk⃗

0−k⃗Þ·χ⃗ðx⃗;tÞ
�
−

λ

4m2
jΨðx⃗; tÞj4

þ jΨðx⃗; tÞj2
�
ðk⃗0 þ k⃗Þ · ∂tχ⃗ −

i
m
∇⃗ lnΨ · ∇⃗ðk⃗0 · χ⃗Þ

þ i
m
∇⃗ lnΨ� · ∇⃗ðk⃗ · χ⃗Þ þ i

2m
∇2ððk⃗ − k⃗0Þ · χ⃗Þ

þ 1

2m
ð∇⃗ðk⃗ · χ⃗ÞÞ2 þ 1

2m
ð∇⃗ðk⃗0 · χ⃗ÞÞ2

��
: ðA3Þ

Since

∇⃗ lnΨ ¼ 1

2
∇⃗ lnðnÞ þ imv⃗; ðA4Þ

we have

i
m
½∇⃗ lnΨ� · ∇⃗ðk⃗ · χ⃗Þ − ∇⃗ lnΨ · ∇⃗ðk⃗0 · χ⃗Þ�

¼ i
2m

∇⃗ lnðnÞ · ∇⃗ððk⃗ − k⃗0Þ · χ⃗Þ þ v⃗ · ∇⃗ððk⃗þ k⃗0Þ · χ⃗Þ:
ðA5Þ

Because

ð∂t þ v⃗ · ∇⃗Þχ⃗ ¼ 0; ðA6Þ
Eq. (A3) simplifies to

Mk⃗0

k⃗
¼ −

λ

8m2
ñðk⃗ − k⃗0; tÞ þ 1

2N

Z
V
d3xnðx⃗; tÞeiðk⃗0−k⃗Þ·χ⃗ðx⃗;tÞ

×

�
1

2m
ð∇⃗ðk⃗ · χ⃗ÞÞ2 þ 1

2m
ð∇⃗ðk⃗0 · χ⃗ÞÞ2

þ i
2m

∇⃗ lnðnÞ · ∇⃗ððk⃗ − k⃗0Þ · χ⃗Þ

þ i
2m

∇2ððk⃗ − k⃗0Þ · χ⃗Þ
�
: ðA7Þ

Upon integrating the third term in brackets by parts, one
finds Eq. (3.45).
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