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We study the effects of nonstandard self-interactions (NSSI) of neutrinos streaming out of a
core-collapse supernova. We show that with NSSI, the standard linear stability analysis gives rise to
linearly as well as exponentially growing solutions. For a two-box spectrum, we demonstrate analytically
that flavor-preserving NSSI lead to a suppression of bipolar collective oscillations. In the intersecting four-
beam model, we show that flavor-violating NSSI can lead to fast oscillations even when the angle between
the neutrino and antineutrino beams is obtuse, which is forbidden in the standard model. This leads to the
new possibility of fast oscillations in a two-beam system with opposing neutrino-antineutrino fluxes, even
in the absence of any spatial inhomogeneities. Finally, we solve the full nonlinear equations of motion
in the four-beam model numerically, and explore the interplay of fast and slow flavor conversions in the
long-time behavior, in the presence of NSSI.
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I. INTRODUCTION

Neutrinos exiting a core-collapse supernova (SN) can
undergo rapid flavor conversions. Such flavor oscillations
have been studied widely in the literature (for recent reviews,
see [1,2]). These conversionsmay play a crucial role during a
SN explosion and in the formation of heavy elements during
nucleosynthesis. Early works in this field focussed on the
impact of Mikheyev-Smirnov-Wolfenstein (MSW) effect
on neutrino propagation [3,4], such that flavor conversions
take place mainly in the resonance regions, where the matter
potential is almost equal to the vacuum oscillation frequency
[5,6]. For typical SN matter profiles, this condition is
satisfied at a radius of r ∼Oð103Þ km.
However, in a dense gas of neutrinos/antineutrinos, the

net neutrino-neutrino interactions are also significant,
leading to nonlinear collective effects [7,8]. Neutrinos
undergo elastic forward scattering not only with the back-
ground matter, but also with the other neutrinos. As a result,
they experience an effective potential due to the back-
ground neutrinos, and self-induced oscillations can take
place [1,2,9–13]. Such flavor conversions may occur earlier
than the MSW conversions, at a radius of r ∼Oð102Þ km
[8,9], and give rise to new phenomena like synchronized

oscillations, bipolar oscillations [9], and spectral splits/
swaps [14–18]. While the nonlinearity of the equations of
motion (EoMs) makes the analytic understanding of long
time behavior of collective oscillations intractable, it is
possible to analytically study the onset of these oscillations
using the linear stability analysis [19,20].
Recently, it has been realised that “fast flavor oscillations,”

which can have frequencies a few orders of magnitude larger
than the above bipolar collective oscillations (which we now
refer to as “slow oscillations”), may occur much closer to
the SN core [21–23]. These would take place if there exists a
nontrivial zenith angle distribution of the different neutrino-
antineutrino species [24,25]. Due to the differences in
interaction cross sections, the nonelectron neutrinos would
decouple earlier than the electron neutrinos and hencewould
indeed have a more forward peaked zenith angle distribution
[26]. Thus, these conversions can take place at a radius
of r ∼Oð10Þ km [25]. Such conversions would lead to
significant mixing of neutrino flavors as soon as they start
free-streaming. Since these conversions take place deep
inside a SN core, they can have an important impact on
SN explosions and nucleosynthesis.
Fast flavor oscillations seem to require a “crossing” in

the zenith angle distributions of the differences in the νe and
ν̄e spectra [25,27]. This was further elucidated in [28,29] by
using dispersion relations, which showed that a crossing in
the electron lepton number profile is required. It remains to
be seen whether large scale numerical simulations of zenith
angle distributions of neutrinos show such crossings.
In this paper, we explore how these fast flavor con-

versions get affected if neutrinos have interactions beyond
the standard model (SM), for example, with a new neutral
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gauge boson. Nonstandard interactions of neutrinos
with charged fermions are well constrained [30–32],
yet can give rise to interesting results inside a SN [33].
However, nonstandard self-interactions (NSSI) of neutri-
nos are loosely constrained since they have not been
directly observed yet [34–40]. Such NSSI can give
rise to an effective four-neutrino operator of the form
GFðGαβν̄Lαγ

μνLβÞðGζην̄LζγμνLηÞ, where α ¼ β indicates
flavor-preserving NSSI (FP-NSSI), whereas α ≠ β indi-
cates flavor-violating NSSI (FV-NSSI). Such NSSI of
neutrinos can affect collective oscillations.
The framework for studying the effects of FV-NSSI

on self-induced oscillations was developed in [41]. While
ordinary collective oscillations with SM interactions is
known to be equivalent to an inverted pendulum in flavor
space, the addition of FV-NSSI acts like an external force
on the pendulum. A subsequent detailed analysis, which
included FV-NSSI and FP-NSSI [42], demonstrated using
box spectra and single-angle analysis that FP-NSSI leads to
the pinching of spectral swaps, hence the suppression of
collective oscillations, whereas FV-NSSI may lead to the
development of swaps away from (or even in the absence
of) a spectral crossing. In particular, FV-NSSI can give
rise to collective oscillations during the neutronization
burst epoch for both hierarchies, leading to distinct features
in the neutronization spectra.
Note that the above NSSI analyses were applicable in the

absence of fast oscillations. This assumption was valid in
the neutronization burst epoch, when only electron neu-
trinos are emitted and hence there cannot be collective
effects or fast oscillations in SM. In this paper we carry out
a detailed study of the effects of NSSI on fast as well as
slow collective flavor conversions.
The complete analytic solution to neutrino flavor con-

versions in a realistic situation involving a SN still remains
intractable, and we have to resort to approximations to get
insights into the complicated dynamics. In this paper, we
work with the two-box spectrum (for the bipolar analysis),
and the four-beam model (for the fast oscillation analysis).
In the literature on SN neutrinos, these two simplified
scenarios are considered to be “the standard scenarios” (see
[9,13–15,19–25,27–29]), and provide “proof of principle”
arguments for possible new effects.
We start by performing a linear stability analysis in

the two-neutrino flavor space to analytically understand
the effects of NSSI on the onset of collective oscillation.
Such an analysis typically leads to an eigenvalue equation
[19], whose exponentially growing eigenvalues corre-
spond to an instability, and indicate the onset. We find
that with both FP-NSSI and FV-NSSI present, one also
gets linearly increasing solutions in addition to the
exponentially increasing ones. These linear solutions
may lead to an earlier onset, and obviate the need for
a seed to start collective oscillations. We demonstrate this
using a two-box spectrum and a single emission angle, at
distances far away from the neutrinosphere.

In order to analyze fast oscillations,we use the intersecting
four-beam model of neutrinos and antineutrinos. We dem-
onstrate that fast oscillations are suppressed by FP-NSSI
even for rapidly growing temporal solutions, which would
have been impossible otherwise [25,43]. On the other hand,
FV-NSSI enhance fast oscillations and also cause them to
start earlier. They also allow fast oscillations to take place
even when the angle between the neutrino and the antineu-
trino is obtuse, which is not allowed in SM.
An important consequence of the last result above is

that FV-NSSI can induce fast oscillations in two back-
to-back beams of neutrino-antineutrino even when no
spatial inhomogeneities are present. This would have
been impossible in SM, where spatial inhomogeneities
are necessary [24].
Finally, we study the effects of NSSI on the long-time

flavor evolution of the four-beam model by solving
the fully non-linear equations of motion numerically.
We demonstrate that the fast oscillations are modulated
by the slow oscillations. The frequency and amplitude of
the modulations are influenced by the values of the NSSI
parameters.
We discuss these ideas in the following sections. In

Sec. II, we remind ourselves of the formalism and con-
ventions for dealing with NSSI. In Sec. III, we perform the
linear stability analysis at distances much larger than the
neutrinosphere, in the presence of NSSI. We further study
the consequences for a simple box spectrum using a single-
angle analysis. In Sec. IV, we consider an intersecting
four-beam model and explore the effects of FP-NSSI and
FV-NSSI separately on fast oscillations. We also study the
interplay between fast and slow oscillations. Finally, in
Sec. V we discuss our results and future prospects.

II. THE FORMALISM

Wework in terms of the 2 × 2 flavor density matrices ϱp,
which are implicit functions of position r and time t. The
diagonal entry of ϱp gives the probability for the particular
flavor whereas the off-diagonal entries encode the phase
information. The EoM for each momentum mode p, in the
absence of collisions, is given by [44,45]

∂tϱp þ vp ·∇xϱp ¼ −i½Hp; ϱp�; ð1Þ

where vp is the velocity of the neutrino with momentum p.
The Hamiltonian matrixHp consists of the vacuum, matter,
and self-interaction terms, and is given by

Hp ¼ Hvac
p þHMSW þHνν

p : ð2Þ

Our convention is such that it allows us to consider neutrinos
and antineutrinos on the same footing with the vacuum
term getting a negative sign for antineutrinos. In otherwords,
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the antineutrino spectrum may be written as a continuation
of the neutrino spectrum to negative energies.
In the flavor basis, the vacuum term is given by

Hvac
p ¼ Udiagð−ω/2;þω/2ÞU†; ð3Þ

where ω≡ ðm2
2 −m2

1Þ/ð2EÞ and E ¼ jpj for ultrarelativis-
tic neutrinos. Here mi is the mass of the neutrino mass
eigenstate νi. The unitary 2 × 2 matrix U is given by

U ¼
�
cosϑ0 − sinϑ0
sin ϑ0 cos ϑ0

�
;

where ϑ0 is the mixing angle. The MSW potential term,
due to charged current interactions with the background
electron density ne, is represented by

HMSW ¼
ffiffiffi
2

p
GFnediagð1; 0Þ: ð4Þ

Finally, the most general effective Hamiltonian due to
neutrino self-interactions is given by [44]

Hνν
p ¼

ffiffiffi
2

p
GF

Z
d3q
ð2πÞ3 ð1 − vp · vqÞ

× fGðϱq − ϱ̄qÞGþ GTr½ðϱq − ϱ̄qÞG�g; ð5Þ

where the term ð1 − vp · vqÞ gives rise to multiangle effects
due to neutrinos traveling on different trajectories. Here G
is a dimensionless coupling matrix, which is equal to the
identity matrix within the SM.
A comment about some of the notations in this article is

desirable. A careful analysis without deviating much from
the notations in the earlier literature needs the introduction
of many similar-looking symbols. For clarity, Appendix A
gives a table with the list of such symbols and their
meanings.

A. Introducing NSSI parameters

After including NSSI, the coupling matrix G in Eq. (5)
becomes [42]

G ¼
�
1þ γee γex

γ�ex 1þ γxx

�
: ð6Þ

Processes involving neutrino self-interactions are very rare
and hence difficult to constrain directly. However, direct
constraints are available from flavor physics [34,40],
supernova cooling bounds [35] and invisible Z-width data
from LEP [36,38]. Taking these into account, the constraints
on NSSI mediated by a gauge boson translate to jγeej; jγxxj
and jγexj ∼Oð1Þ [42]. Indirect constraints arising from
the bounds on neutrino interactions with charged fermions
[30–32] are somewhat stronger. Note that stringent bounds
can be imposed on neutrino NSSI from SUð2ÞL gauge
invariance [46]. However, these can be evaded in certain

models, where active neutrinosmixwith newDirac fermions
charged under a Uð1Þ0 gauge group [47]. In this paper, the
couplings are restricted to Oð0.01 − 0.1Þ.
Following [41], one can also write the coupling matrix in

the Pauli basis as

G ¼ 1

2
ðg0Iþ g · σÞ; ð7Þ

such that g ¼ fg0; gg represents the net neutrino-neutrino
coupling. From the above equations, one arrives at g0¼
2þγeeþγxx;g1¼2ReðγexÞ;g2¼2Imðγ�exÞ and g3 ¼ γee − γxx.
Hence, g0 and g3 are FP-NSSI couplings whereas g1 and g2
represent FV-NSSI couplings.
As shown in [42], the parameter g0 can be scaled away

using the redefinitions

g → g/ðg0/2Þ; μR → μRðg0/2Þ2; ð8Þ

where μR will be defined presently. Further simplification
can be achieved by redefining the phase of νx such that
g2 ¼ 0. This allows us to write the redefined coupling
matrix as

G ¼
�
1þ g3 g1
g1 1 − g3

�
: ð9Þ

Henceforth, we will work with this coupling matrix.

B. Setting up the problem

We confine ourselves to a spherically symmetric setup,
where neutrinos are emitted from a fiducial neutrinosphere
of radius R. Following [19], we label them by the variable
u ¼ sin2 ϑR, where ϑR is the emission angle of the
neutrinos. For simplicity, we assume that the solution is
stationary and has an axial symmetry. The radial velocity
for a mode u at the radius r is vr;u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uR2/r2

p
.

In terms of the flux matrices F [19,20]

Fω;udωdu ¼ 2πr2vr;uϱp
d3p
ð2πÞ3 ; ð10Þ

the EoMs become

i∂rFω;u ¼ ½Hω;u; Fω;u�; ð11Þ

where

Hω;u ¼ ðωþ λrÞv−1r;u þ μR

R2

r2

Z
dΓ0 1 − vr;uv0r;u0

vr;uv0r;u0

× fGFω;uGþGTr½Fω;uG�g: ð12Þ

Here
R
dΓ0 ¼ R

∞
−∞ dω0 R 1

0 du0, and negative values of ω
represent antineutrinos. The quantities λr (matter potential
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at a radius r) and μR (neutrino-neutrino potential at the
neutrinosphere) are defined as

λr ¼
ffiffiffi
2

p
GFneðrÞ;

μR ¼
ffiffiffi
2

p
GF½Fē

ω;uðRÞ − Fx̄
ω;uðRÞ�

4πR2
; ð13Þ

where Fē
ω;uðrÞ represents the ν̄eν̄e flavor-diagonal element

of the 2 × 2 matrix Fω;uðrÞ, at a radius r, for ω < 0, i.e.,
for antineutrinos. In our analysis, μR is further rescaled as
given in Eq. (8).
The flux matrices Fω;u in Eq. (12) have been rescaled

such that at t ¼ 0,Z
dΓ½Fē

ω;uðRÞ − Fx̄
ω;uðRÞ� ¼ 1:

These Fω;u may now be written in the form

Fω;u ¼
TrðFω;uÞ

2
þ gω;u

2

�
sω;u Sω;u
S�ω;u −sω;u

�
; ð14Þ

where

gω;u ¼
�
Fe
ω;u − Fx

ω;u for ω > 0;

Fx̄
ω;u − Fē

ω;u for ω < 0:
ð15Þ

is the difference in spectra of the two flavors and Sω;u is the
off-diagonal parameter that we will use to characterize
flavor conversions. In this entire analysis, we neglect all
collisional processes which change the total number of
neutrinos. Hence TrðFω;uÞ is conserved and can be dropped
from the EoMs.

III. STABILITY ANALYSIS WITH NSSI

At t ¼ 0, we have sω;u ¼ 1 and Sω;u ¼ 0 in Eq. (14). As
flavor evolution begins, Sω;u starts developing a nonzero
value. Since s2ω;u þ S2ω;u ¼ 1, a small amplitude expansion
may be performed with the approximation sω;u≈1, Sω;u≪1,
and where terms of OðS2Þ are dropped. This is equivalent
to linearizing the equations in Sω;u.
The linearized EoMs are

i∂rSω;u ¼
�
ðωþ λrÞv−1u;r þ μR

R2

r2
ð1 − g21 þ 3g23 þ 4g3Þ

×
Z

dΓ0 1 − vu;rvu0;r0

vu;rvu0;r0
gω0;u0

�
Sω;u

− μR

R2

r2

Z
dΓ0 ð1 − vu;rvu0;r0 Þ

vu;rvu0;r0
gω0;u0

× ½ð1þ g21 − g23ÞSω0;u0 þ 2g21S
�
ω0;u0 þ 4g1g3�:

ð16Þ
Equation (16) clearly is not an eigenvalue equation,

as it would have been in the SM limit [19,20]. This would

lead to the following interesting consequences. (While
describing these observations, we will drop the subscripts
for simplicity of notation.)

(i) Only FP-NSSI: In this limit, Eq. (16) is an eigenvalue
equation and the standard analysis of [19] holds.
One can look for exponentially growing solutions of
the form S ¼ Qe−iΩt, where Ω ¼ γ þ iκ is complex.
A positive nonzero value of κ indicates an instability
growing with a rate eκt.

(ii) Only FV-NSSI: The EoMs governing S are not
simple eigenvalue equations in S anymore. However
one may combine the pair of coupled differential
equations for S and S� to get an eigenvalue equation.
This may be done by looking for solutions of the
form S ¼ AeΓt, where A can be complex and Γ is
real. Positive solutions of Γ indicate a runaway
solution and hence signal an instability.

(iii) Both FP-NSSI and FV-NSSI: Eq. (16) cannot be
converted to a simple eigenvalue equation. The term
proportional to g1g3 would generate S even if it were
vanishing at t ¼ 0. As long as S is sufficiently small,
the growth rate will be dominated by a linear rise
owing to this term. However, as S grows, the
exponential growth may take over. Hence one
expects to find a linear rise, followed by an ex-
ponential one in the instability growth rates.

In the next section, we shall demonstrate these obser-
vations explicitly using a simple two-box spectrum in the
single-angle approximation and far away from the neutrino-
sphere. This will also provide an analytical understanding
of the numerical results presented in [42].

A. Analytical understanding of the evolution
of a two-box spectrum

In [42], it was shown that in the single-angle approxi-
mation and far away from the neutrinosphere, FP-NSSI
can cause suppression of collective oscillations, leading
to pinching of spectral swaps in a two-box spectrum.
Conversely, presence of FV-NSSI leads to a gradual
widening of spectral swaps. We will now try to explain
these observations analytically using the formalism devel-
oped in the earlier section.
Far away from the neutrinosphere (r ≫ R), we can drop

terms of OðR2/r2Þ in Eq. (16). In this limit, the EoMs are
given by

i∂rSω;u ¼ ½ωþ λr þ uλ̃r þ uμ̃rϵð1 − g21 þ 3g23 þ 4g3Þ�Sω;u
− μ̃rð1 − g23 þ g21Þ

Z
du0dω0ðuþ u0Þgω0;u0Sω0;u0

− 2μ̃rg21

Z
du0dω0ðuþ u0Þgω0;u0S�ω0;u0

− 4μ̃rg1g3

Z
du0dω0ðuþ u0Þgω0;u0 ; ð17Þ

where
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λ̃r ¼
ffiffiffi
2

p
GFneðrÞ

R2

2r2
;

μ̃r ¼
ffiffiffi
2

p
GF

4πR2

R4

2r4
½Fē

ω;uðRÞ − Fx̄
ω;uðRÞ�: ð18Þ

Here ϵ ¼ R
dω0du0gω0;u0 encodes the net neutrino-

antineutrino asymmetry. This is the generalization of the
multiangle evolution equation derived for the SM, and
reduces to it in the limit g1, g3 → 0 (Eq. (31) in [19]).
For demonstrating the effects of NSSI, we consider the

scenario where all the neutrinos have the same emission
angle and hence may be labeled by a single angular mode
u0. We take the initial spectrum to be the two-box spectrum,
as shown in the top panel of Fig. 1:

gω ≡ gω;u0 ¼
�−1 −A < ω < 0;

þ1 0 < ω < B:
ð19Þ

Such a simple box spectrum has the advantage of making
the eigenvalues analytically tractable and hence the effects
of NSSI become clear. Following [19], one can define

λ̄r ≡ λr þ u½λ̃r þ μ̃rϵð1 − g21 þ 3g23 þ 4g3Þ�; ð20Þ

which acts as the effective matter term in the equations.
In the following discussions in this section, we drop the
subscript r of μ̃ for simplicity of notation.
The suppression and the enhancement of collective

oscillations can be characterized in terms of the change
of the growth rate κ. The growth rates in this case are
proportional to

ffiffiffiffiffiffi
ωμ̃

p
, and hence come under slow collective

oscillations. The bottom panel of Fig. 1 shows the growth
rates in units of

ffiffiffiffiffiffi
ωμ̃

p
for u ¼ u0 ¼ 1/2. For any other value

of u0, the results will be identical with μ̃ replaced by 2u0μ̃.
The effects of NSSI may be observed and interpreted as
follows:

(i) Only FP-NSSI: As noted before, in this case Eq. (17)
is a simple eigenvalue equation. The effective matter
term can be rotated away by going to the appropriate
co-rotating frame. The analytical results for SM [see
Eq. (47) of [19]] then carry through with μ̃ replaced
by μ̃ð1 − g23Þ, and hence the collective oscillations
are suppressed due to g3.

(ii) Only FV-NSSI: In this scenario, Eq. (17) is
not a simple eigenvalue equation. However, if the
term g21S

�
ω;u can be neglected when compared to

ð1þ g21ÞSω;u, then Eq. (17) may be approximated by
an eigenvalue equation, and the effective matter term
can be corotated away. The numerical observation of
enhancement of collective oscillations due to g1 may
be then qualitatively interpreted as a result of the
μ̃ð1þ g21Þ factor. The effect of the neglected g21S

�
ω;u

term is difficult to determine analytically, however.
(iii) When both FP-NSSI and FV-NSSI are present,

Eq. (17) cannot be converted to an eigenvalue
equation and hence an analytical understanding in
terms of linear stability analysis seems elusive.

IV. FAST FLAVOR OSCILLATIONS:
THE FOUR-BEAM MODEL

In this section, we demonstrate the effects of neutrino
NSSI on a simple system that shows fast flavor oscillations,
an intersecting four-beam model consisting of two right-
going and left-going neutrinos and antineutrinos each [24],
as shown in Fig. 2. Since our understanding of the fast
oscillations phenomenon is still in an exploratory phase, we
have considered the simplest system showing such an effect
[24,28,29], to analytically understand the phenomenon
without delving deeper into a more realistic spectra.

FIG. 1. Top panel: a two-box spectrum [Eq. (19)] with A ¼ 1
and B ¼ 1.6. Bottom panel: Plot showing growth rates κ in units
of

ffiffiffiffiffiffi
ωμ̃

p
for u ¼ 1/2. Red (solid) indicates the SM, whereas blue

(dashed) represents g1 ¼ 0, g3 ¼ 0.5 and black (dotted) shows
g1 ¼ 0.5, g3 ¼ 0. FIG. 2. Intersecting Four Beam Model.

NONSTANDARD NEUTRINO SELF-INTERACTIONS IN A … PHYS. REV. D 97, 043011 (2018)

043011-5



Following [24], the amplitudes for the corresponding
modes are denoted by QL ðQL̄Þ for neutrinos (antineu-
trinos) coming from left, and QR ðQR̄Þ for neutrinos
(antineutrinos) coming from right. Their corresponding
spectra are gL; gL̄, gR and gR̄. The spectra here are taken to be
left-right symmetric, i.e,

gR ¼ gL ¼
1

2
ð1þ aÞ;

gR̄ ¼ gL̄ ¼ −
1

2
ð1 − aÞ; ð21Þ

where a gives the net neutrino-antineutrino asymmetry in
the system. The range of a is chosen to be −1 ≤ a ≤ 1.
The angle at the intersection of the two beams is denoted by
θ as shown in the figure.
Since we are interested in conversions taking place very

close to the neutrinosphere, the effective neutrino-neutrino
potential μ ≈ μR, and the effective matter potential λ≈
λR ¼

ffiffiffi
2

p
GFneðRÞ. Also, it is more useful to label the

modes using the velocity vector v rather than the variable
u ¼ sin2 ϑR. The EoM for the off-diagonal parameter Sp for
each mode p is given by

ið∂t þ vp ·∇ÞSp
¼ ½ωþ λþ μð1 − g21 þ 3g23 þ 4g3Þ
×
X
q

ð1 − vp · vqÞgq�Sp

− μ
X
q

ð1 − vp · vqÞgq

× ½Sq þ ðg21 − g23ÞSq þ 2g21S
�
q þ 4g1g3�; ð22Þ

where q stands for the other three modes.
In the four-beam model, λ ¼ 0. For the linear stability

analysis, we look for exponentially growing solutions of
the form Sq ¼ Qqe−iΩt, where Ω ¼ γ þ iκ is complex. A
positive nonzero κ indicates an instability in the system and
κ ∼ μ indicates fast oscillations.

A. Linearized analysis of the model

The symmetry of the intersecting four-beam model can
be used to combine the neutrino-antineutrino amplitudes
into Q� ≡ ðQL �QRÞ/2 and Q̄� ≡ ðQL̄ �QR̄Þ/2. This
allows us to decouple the equations for four modes into
two sets of two. Within the SM, the first set consists of
ðQþ; Q̄þÞ, which is the left-right symmetric solution that
undergoes slow collective oscillations, and the second set
consists of ðQ−; Q̄−Þ, which is the left-right symmetry-
breaking solution that undergoes fast oscillations [24].
We find that the narrative of fast oscillations changes

significantly in the presence of NSSI.
(i) For the symmetry breaking solution, FV-NSSI (FP-

NSSI) increases (decreases) the available parameter
space for fast oscillations. In fact, for FV-NSSI,
oscillations can happen even for cos θ < 0 which
was not possible in the SM.

(ii) Within the SM, fast oscillations are possible for
ðQþ; Q̄þÞ only if spatial homogeneity of the beam is
broken. However, the presence of FV-NSSI allows
for fast oscillations even for homogeneous beams.

We now demonstrate the above features in the context
of linear stability analysis. We work in the approximation
where only either g1 or g3 is nonzero, and the g21S

�
q from

Eq. (22) can be neglected. We have numerically checked
that the latter is a good approximation for g1 ≲Oð0.5Þ. It is
now possible to understand the above features analytically,
by writing down eigenvalue equations in the form

Ω
�
Q�
Q̄�

�
¼

�
H11 H12

H21 H22

��
Q�
Q̄�

�
; ð23Þ

whereHij’s and the corresponding eigenvalues are given in
Appendix B. Note that in order to isolate fast oscillations,
the eigenvalues are calculated in the limit ω/μ → 0. This
also automatically makes the analysis energy independent.
In the case of left-right symmetry breaking solution

ðQ−; Q̄−Þ, nonzero complex eigenvalues are obtained for
ω/μ → 0, indicating the presence of fast oscillations.
In Fig. 3, we show the growth rates in units of μ in the

FIG. 3. Dependence of growth rates on c≡ cos θ and the ν − ν̄ asymmetry a, for the left-right symmetry-breaking solution ðQ−; Q̄−Þ.
Left: g1, g3 ¼ 0, Center: g1 ¼ 0, g3 ¼ 0.3, Right: g1 ¼ 0.3, g3 ¼ 0.
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a − cos θ plane, in the absence of NSSI (left panel), as well
as in the presence of either FP-NSSI (center panel) or
FV-NSSI (right panel). The following observations can be
made.

(i) In the absence of NSSI, one finds nonzero growth
rates only for cos θ > 0. This can be easily under-
stood from Eqs. (B1) and (B2) for g3 ¼ 0 and
g1 ¼ 0 respectively. In both cases, the argument
of the square-root is never negative for cos θ ≤ 0 and
hence no instability occurs. In the scenario with
instability, the growth rates do not depend on the
sign of the neutrino-antineutrino asymmetry since
the argument of the square-root depends on a2 [24].

(ii) The presence of FP-NSSI suppresses fast oscilla-
tions, shifting the non-zero growth rates to higher
values of cos θ. Larger values of FP-NSSI shift the
domain of fast oscillations to more acute-angle
modes. This results in the effective pinching of
the allowed region in the a − cos θ parameter space.

(iii) The presence of FV-NSSI, on the other hand,
expands the domain of fast oscillations. As can be
seen from the right panel of Fig. 3, FV-NSSI can
lead to fast oscillations even with negative cos θ, i.e.,
the ν and ν̄ modes with obtuse intersection angles
start showing fast oscillations. This effect becomes
significant for g1 ∼Oð0.1Þ.

In Fig. 4, we show the variation of the growth rates as a
function of cos θ for different values of g3 (top panel) and
g1 (bottom panel). This gives a quantitative idea of the
suppression and enhancement of the growth rate, with
increasing g3 and g1, respectively. Although both the
plots are for zero neutrino-antineutrino asymmetry, we
have checked that the features of the plot would remain
unchanged with a non-zero asymmetry.
In the case of the left-right symmetric solution

ðQþ; Q̄þÞ, the SM predicts no fast oscillations, since the
eigenvalues in the limit ω/μ → 0 are (see Appendix B)

Ω�
SM ¼ μ

2

h
að3 − cÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð3 − cÞ2

q i
; ð24Þ

which are always real. Also, in the presence of only FP-
NSSI, the eigenvalues in Eq. (B3) can become complex
only for g3 ≳Oð1Þ.
However, even with values of g1 as small as 0.01, it is

possible to get complex eigenvalues for Eq. (B4). In Fig. 5,
we show the variation of the growth rates in the a − cos θ
plane for g1 ¼ 0.1. Clearly, large growth rates of OðμÞ are
observed in the low-asymmetry region.
This opens up a new possibility for the back-to-back

two-beam model, considered in [24], where spatial inho-
mogeneities were needed in order to start fast oscillations.
In our intersecting four-beam model, the scenario corre-
sponds to the left-right symmetric solution ðQþ; Q̄þÞ with
c ¼ −1. In the presence of FV-NSSI, the eigenvalues are
[see Eq. (B4)]

Ωþ
g1 ¼ 2μ

h
að1 − g21Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð1þ g21Þ2 − 4g21

q i
: ð25Þ

Though g1 ¼ 0 would exhibit no instabilities, even for
small values of g1, an instability would be developed for

jaj < 2g1
ð1þ g21Þ

: ð26Þ

FIG. 4. Growth rates at a ¼ 0, as functions of c≡ cos θ, for
the left-right symmetry-breaking solution ðQ−; Q̄−Þ. Top: Only
FP-NSSI, Bottom: Only FV-NSSI.

FIG. 5. Dependence of growth rates on c≡ cos θ and the ν − ν̄
asymmetry a, for the left-right symmetric solution ðQþ; Q̄þÞ, for
g1 ¼ 0.1 and g3 ¼ 0.
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Thus, no spatial inhomogeneities would be needed for fast
oscillations as long as the neutrino-antineutrino asymmetry
a is sufficiently small. In Fig. 6, we show the growth rates
as functions of a for different values of g1. Clearly larger g1
values allow larger growth rates and lead to instabilities
even for larger asymmetries.

B. Interplay of fast and slow oscillations and NSSI

In this section, we demonstrate the effect of NSSI by
numerically solving the fully nonlinear equations of motion
for the intersecting four-neutrino system. The results rel-
evant for the onset of fast oscillations are shown in Fig. 7.
Note that the magnitude of the off-diagonal parameter jSj is
same for all the modes, and characterizes flavor conver-
sions. The top panel shows the quantity Aeμ ≡ log10 jSj,
which gives the amplitude of the flavor conversions, while
the bottom panel shows Pe→e, the νe survival probability.
The following observations may be made.

(i) The time evolution of Aeμ in the SM shows an initial
flat phase, followed by a sharp rise. This sharp rise
corresponds to the onset of fast oscillations. The
initial flat phase is an effect of nonzero ω. It does not
succeed in causing large flavor conversions as can
be seen from Pe→e in the bottom panel of Fig. 7.

(ii) As expected from the linear analysis, a nonzero g3
delays the onset, whereas a nonzero g1 reduces this
initial waiting period. These effects start becoming
appreciable when g1, g3 ≳Oð0.1Þ.

(iii) The growth rate obtained from the numerical sim-
ulation is in good agreement with the calculations
from the linear stability analysis.

FIG. 6. Growth rates in the effective two-beam scenario [the
left-right symmetric solution ðQþ; Q̄þÞ with c ¼ −1], as func-
tions of neutrino-antineutrino asymmetry a.

FIG. 7. Onset of fast oscillations from the numerical solution
of the fully nonlinear EoM, for a ¼ 0 and c ¼ 0.5. The other
parameters are chosen to be ω/μR ¼ 10−5, and ϑ0 ¼ 10−2. The
top panel shows quantity Aeμ ¼ log10 jSj which gives the extent
of flavor conversion. The bottom panel shows the νe survival
probabilities Pe→e.

FIG. 8. Onset of oscillation in terms of the off-diagonal
parameter jSj from the numerical solution of the fully nonlinear
EoM for a ¼ 0. The top panel shows the plot for c ¼ 0.5 where
we expect fast oscillations. The bottom panel shows the case
c ¼ −0.5, when fast oscillations are absent. The other parameters
are chosen to be ω/μR ¼ 10−5, and ϑ0 ¼ 10−2.
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(iv) An eigenvalue equation was not possible when both
FP-NSSI and FV-NSSI are present. However, the
numerical solution verifies that the initial part of the
dynamics is governed by a linear growth, as ex-
pected. As can be seen from Pe→e, significant flavor
conversion starts happening only when the expo-
nential growth of oscillations takes over.

(v) Note that fast flavor oscillations are only sensitive
to the asymmetries in the angular distributions of the
neutrino-antineutrino beams, and energy only affects
the onset, and not the rate. The subleading terms of
order ω/μ act as a seed necessary for the onset of the
oscillations. This does not affect the rate of oscilla-
tions, but only changes the initial waiting period [48].

This point is further elucidated in the top panel of Fig. 8,
where we plot the quantity jSj. Small values of g1, in the
absence of g3, do not affect the fast oscillations at all. On the
other hand,when both g1 and g3 are nonzero, evenwhen their
values are Oð0.01Þ, an early linear rise as well as an early
onset of exponential growth of oscillations may be observed.
The fast oscillations seen at slightly later times seem to be
riding on a slowly rising curve. This turns out to be a
combined effect of slow oscillations and the early linear rise.
The bottom panel of Fig. 8 demonstrates the effect of

NSSI on slow oscillations when fast oscillations are absent.
Clearly, g1 ∼Oð0.01Þ, even in the absence of g3, can shift

the onset of slow oscillations to much earlier times. With
the addition of a similar magnitude of g3, the onset may be
further hastened, bringing it in the domain of the onset of
fast oscillations. Thus, it is possible for the oscillations to
start deep inside the core, still keeping their frequencies
small.
The long-time behavior of the nonlinear oscillations

would be an interplay of the fast and slow oscillations,
influenced by NSSI. In Fig. 9, we show this long-time
evolution of jSj for different cases.

(i) In the SM ðg1 ¼ 0; g3 ¼ 0Þ, one can see fast oscil-
lations with frequency ∼μ ¼ 104 km−1 ¼ 0.03 s−1,
modulated by an envelope of slow oscillations with
frequency ∼ ffiffiffiffiffiffi

ωμ
p ≈ 100 km−1 ¼ 0.0003 s−1.

(ii) Small values of g1 ∼ 0.005 affect the slow oscillation
frequency appreciably, while keeping the fast oscil-
lations relatively unchanged. The modulating
envelope increases in magnitude as well as frequency
if g1 is increased.

(iii) Nonzero values of g3 does not affect the frequencies
of fast and slow oscillation. However the modulating
envelope decreases in amplitude. This is true both in
the presence and absence of g1.

Larger values of NSSI also start affecting the frequency
of fast oscillations. However, we will not explore such
scenarios in this paper.

FIG. 9. Long-time behavior of collective oscillations in terms of the off-diagonal parameter jSj from the numerical solution of the fully
nonlinear EoM for a ¼ 0 and c ¼ 0.5. The other parameters are chosen to be ω/μR ¼ 10−4, and ϑ0 ¼ 10−2. The rapid variations
correspond to the fast oscillation frequency while the slowly changing envelope correspond to the slow oscillation frequency. The
comparison of two columns indicates the effect of g1 while the comparison of the rows indicates the effects of g3.
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V. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the effects of NSSI
of neutrinos on collective flavor oscillations of neutrinos
exiting a SN. We employ a linearized stability analysis,
using a small-amplitude expansion in the off-diagonal
element Sω;u of the density matrix in the flavor basis.
In particular, we explore how the exponentially growing
flavor conversion modes are affected by the NSSI. We
characterize the NSSI with the help of two parameters, the
flavor-preserving (FP-NSSI) parameter g3 and the flavor-
violating (FV-NSSI) parameter g1.
While the linear stability analysis in SM leads to an

eigenvalue equation, the most general EoM incorporating
NSSI does not do so. Therefore, the problem of onset
of oscillations, in complete generality, cannot be solved
analytically. However, we find that, if the system has
only FP-NSSI, we get a straightforward eigenvalue
equation, whose complex eigenvalue directly signals an
instability. In order to illustrate the NSSI effects on
bipolar collective oscillations, we present the analysis
for a two-box spectrum. We analytically demonstrate the
suppression of collective oscillations by FP-NSSI,
explaining the results from previous literature. If only
FV-NSSI are present, an approximate eigenvalue equa-
tion can still be obtained, which qualitatively motivates
the enhanced growth rates observed in numerical simu-
lations. In the presence of both kinds of NSSI, one gets
an additional linear contribution to Sω;u, which further
affects its evolution.
In order to illustrate the NSSI effects on fast flavor

oscillations, we focus on the intersecting four-beam model,
which is the simplest model where such effects can be
analytically studied. Here two beams each of neutrinos
and antineutrinos, with a neutrino-antineutrino asymmetry
a, intersect at an angle θ. Using the linear stability
analysis, we study the left-right symmetric and the left-
right symmetry-breaking modes of this system. For the left-
right symmetry-breaking modes, it is observed that the
instability is restricted to a smaller region in the a − cos θ
plane with FP-NSSI, while FV-NSSI widens the corre-
sponding region. Moreover, while SM allows an instability
only for cos θ > 0, the presence of FV-NSSI allows an
instability even for an obtuse angle θ.
A striking corollary of the last result is that fast

oscillations can take place for the two-beam system
consisting of opposing neutrino and antineutrino beams,
even in the absence of inhomogeneities. Indeed this
scenario is equivalent to the left-right symmetric solution
of the intersecting four-beam model with cos θ ¼ −1,
where instability can be developed in the presence of
FV-NSSI. This is in stark contrast to previous results in SM,
where the two-beam system could exhibit fast oscillations
only if spatial inhomogeneities were present. Clearly, the
lepton flavor universality-breaking NSSI couplings now

play the role of the symmetry-breaking seed required to
give rise to an instability.
We also solve the complete nonlinear EoMs numerically

for the four-beam system, for the onset of oscillations as
well as long-time behavior. It is observed that when both
FP-NSSI and FV-NSSI are present, the extra linear con-
tribution to S results in an initial linear growth, which may
later be dominated by fast oscillations. However, in the
situations where fast oscillations are absent, the same linear
term helps in bringing the onset of slow collective oscil-
lations to significantly earlier times.
The long-time behavior of the system may be described

by fast collective oscillations modulated by the slow ones.
It is observed that FP-NSSI suppress the amplitude of these
modulations while FV-NSSI enhance their amplitude and
frequency.
Since NSSI can bring the fast as well as slow oscillations

nearer to the core, they can have important consequences
for the explosion mechanism and nucleosynthesis as flavor
conversions can start occurring earlier. This indicates the
importance of going beyond the approximation of a
neutrinosphere and taking care of collisions in a neutrino
oscillation analysis. Note that the effect of NSSI on the
neutronization burst as calculated in [42] still stays valid.
This work uses a two-flavor framework and demon-

strates fast oscillations using the intersecting four-beam
model. A more complete analysis would require a gener-
alization to a three-flavor framework and continuous
spectra. It would also allow us to address some important
questions of principle. In a previous work [42], we had
shown that the requirement for a crossing in the spectrum
for the development of collective oscillations is not
necessary in the presence of FV-NSSI. It might be
interesting to check whether the requirement of a crossing
in the angular spectra for the onset of fast oscillations
would survive even in the presence of FV-NSSI.
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APPENDIX A: GLOSSARY OF SYMBOLS

Table I gives a list of the some of the selected symbols
used in this paper, with the descriptions of their meanings,
for clarity.
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APPENDIX B: THE EIGENVALUES OF THE HAMILTONIAN IN THE FOUR-BEAM MODEL

The expressions of the H matrix elements in Eq. (23), for the L-R symmetric and symmetry breaking solutions, are
given below.

1. L-R symmetric solution ðQ + ;Q̄+ Þ
For g1 ¼ 0, g3 ≠ 0, one has

H11 ¼ ωþ μ

2
½ð1þ g3Þðc − 3þ g3ð−5þ 7cÞ þ að3 − cþ 13g3 þ cg3ÞÞ�;

H12 ¼
μ

2
ð1 − aÞð3 − cÞð1 − g23Þ;

H21 ¼ −
μ

2
ð1þ aÞð3 − cÞð1 − g23Þ;

H22 ¼ −ωþ μ

2
½ð1þ g3Þðð1þ aÞð3 − cÞ þ g3ð5 − 7cþ 13aþ acÞÞ�:

Similarly, for g1 ≠ 0, g3 ¼ 0, one has

H11 ¼ ωþ μ

2
½g21 − 3cg21 þ c − 3 − aððcþ 5Þg21 þ c − 3Þ�;

H12 ¼
μ

2
ð1 − aÞð3 − cÞð1þ g21Þ;

H21 ¼ −
μ

2
ð1þ aÞð3 − cÞð1þ g21Þ;

H22 ¼ −ω −
μ

2
½ð1þ aÞðc − 3Þ þ g21ð1 − 3cþ aðcþ 5ÞÞ�:

2. L-R symmetry breaking solution ðQ− ;Q̄ − Þ
For g1 ¼ 0, g3 ≠ 0, one has

H11 ¼ ωþ μ

�
1

2
ð1þ aÞð1þ cÞð1 − g23Þ þ ð1þ 4g3 þ 3g23Þð2aþ c − 1Þ

�
;

H12 ¼ −
μ

2
ð1 − aÞð1þ cÞð1 − g23Þ;

H21 ¼
μ

2
ð1þ aÞð1þ cÞð1 − g23Þ;

H22 ¼ −ωþ μ

�
−
1

2
ð1 − aÞð1þ cÞð1 − g23Þ þ ð1þ 4g3 þ 3g23Þð2a − cþ 1Þ

�
:

TABLE I. List of some of the selected symbols used in this article, and their meanings.

Symbol Description

GF The Fermi constant
G The Coupling matrix in the flavor basis, in the presence of NSSI
γμ The Dirac Matrix
γee; γex; γxx The NSSI components of the coupling matrix in the flavor basis
γ The real part of Ω, where S ¼ Qe−iΩt.
g0, g1, g2, g3 The NSSI couplings such that G ¼ 1

2
ðg0Iþ g1σ1 þ g2σ2 þ g3σ3Þ

g The 3-vector of NSSI couplings: g≡ ðg1; g2; g3Þ
gω;u The difference of neutrino flavor spectra as a function of ω and u [Eq. (15)]
μR The value of μ at the neutrinosphere
μ̃r μ̃r ≡ μRR4/ð2r4Þ
λr The matter potential at a radius r: λr ≡

ffiffiffi
2

p
GFneðrÞ

λ̃r λ̃r ≡ λrR2/ð2r2Þ
λ̄r The effective matter term λ̄r ≡ λr þ u½λ̃r þ μ̃rϵð1 − g21 þ 3g23 þ 4g3Þ�
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Similarly, for g1 ≠ 0, g3 ¼ 0, one has

H11 ¼ ωþ μ

�
1

2
ð1þ aÞð1þ cÞð1þ g21Þ þ ð1 − g21Þð2aþ c − 1Þ

�
;

H12 ¼ −
μ

2
ð1 − aÞð1þ cÞð1þ g21Þ;

H21 ¼
μ

2
ð1þ aÞð1þ cÞð1þ g21Þ;

H22 ¼ −ωþ μ

�
−
1

2
ð1 − aÞð1þ cÞð1þ g21Þ þ ð1 − g21Þð2a − cþ 1Þ

�
:

The corresponding eigenvalues, in the limit ω/μ → 0, are listed in Table II. We put ω ¼ 0 since we are only interested in
the coefficient of μ for fast oscillations.
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