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A perturbative RG approach with the ϵ-expansion
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We employ perturbative renormalization group and ϵ-expansion to study multicritical single-scalar field
theories with higher derivative kinetic terms of the form ϕð−□Þkϕ. We focus on those with aZ2-symmetric
critical point which are characterized by an upper critical dimension dc ¼ 2nk/ðn − 1Þ accumulating at even
integers. We distinguish two types of theories depending on whether or not the numbers k and n − 1 are
relatively prime. When they are, the critical theory involves a marginal powerlike interaction ϕ2n and the
deformations admit a derivative expansion that at leading order involves only the potential. In this case we
present the beta functional of the potential and use this to calculate some anomalous dimensions and operator
product expansion coefficients. These confirm some conformal field theory data obtained using conformal-
block techniques, while giving new results. In the second casewhere k and n − 1 have a common divisor, the
theories show a much richer structure induced by the presence of marginal derivative operators at criticality.
We study the case k ¼ 2with odd values ofn, which fall in the second class, and calculate the functional flows
and spectrum. These theories have a phase diagram characterized at leading order in ϵ by four fixed points
which apart from the Gaussian UV fixed point include an IR fixed point with a purely derivative interaction.
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I. INTRODUCTION

Universal large distance behavior of many physical
systems are well described within the theoretical framework
of quantum/statistical field theory at criticality. A key notion
is the renormalization group (RG) which has brought much
insight into the concept of universality as well as providing a
groundwork to calculate universal quantities. The fixed
points of the RG flow correspond to scale invariant theories
which are relevant for addressing critical phenomena.
While fundamental physical theories may require unitar-

ity as an essential ingredient, nonunitary critical theories
have also found interesting applications in physics. Among
them is the well studied Lee-Yang edge singularity which in
a Langau-Ginzburg (LG) description is associated to a ϕ3

potential [1]. Further, there are the so-called higher deriva-
tive theories, applicable for instance to the theory of
elasticity [2] and to particular quartic-derivative models
which describe the isotropic phase of critical Lifshitz
theories, and may be relevant for the physics of certain
polymers [3]. The latter has been also studied with
ϵ-expansion techniques [4,5] and recently also with non-
perturbative functional RG methods [6].

On the other hand scale invariant theories, whether unitary
or not, are often also conformal. Moreover there is growing
evidence that when accompanied by unitarity, scale invari-
ance is enhanced to conformal invariance. In particular, this is
long proven to be true in two dimensions and established
more recently at least in a perturbative setting, also in four
dimensions. The presence of conformal symmetry in most
scale invariant theories of interest further motivates the vast
amount of researchwhich has been devoted in recent years to
studying critical systems relying solely on conformal sym-
metry and without referring to RG [7–14].
Apart from physical applications, studying nonunitary

critical theories and in particular conformal field theories
(CFT) especially in higher dimensions is interesting from a
theoretical point of view as it improves our understanding of
the structure of quantum and statistical field theories.
Other examples of nonunitary critical theories studied in

the literature include the whole family of odd-potential
multicritical theories [15] generalizing the Lee-Yang edge
singularity. In particular, a class of nonunitary theories
which are ϕ2n deformations of generalized free CFTs with
higher derivative kinetic term of the form ϕð−□Þkϕ has
recently been investigated in [8,9] using the structure of
conformal blocks. The corresponding free theories had
been earlier analyzed in [16] mainly motivated by de Sitter
holography. Theories with higher derivative kinetic terms
in higher dimensions have been considered also in [17] and
from a pure RG perspective in [18].
Inspired by these recent analyses of nonunitary CFTs we

investigate further such models with a higher derivative
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kinetic term starting from a consistent LG description. The
pathologies of higher derivative scalar theories brought up
in [19] do not apply here as there is no explicit scale present
in the theory. We mainly employ RG techniques but as a
crosscheck we also make a few analyses using the
Schwinger-Dyson equation (SDE) and CFT constraints
on the correlation functions. Both methods have already
been applied to theories with a standard kinetic term
[13–15,20,21]. The picture that emerges in the general
case has a much richer structure than that previously
unveiled.
In particular we find that theories with k > 1 admit the

simple LG description of generalized Wilson-Fisher type
with ϕ2n critical interaction only when n − 1 and k are
coprime numbers. In this case we confirm the anomalous
dimensions, pushing the computation to order ϵ2 for the
relevant operators, and calculate an infinite family of
operator product expansion (OPE) coefficients, a finite
number of whom which have so far been accessible with
other methods coincide with these earlier results.
Instead when n − 1 and k have a common divisor the

critical theories are more involved. They are characterized
by the presence of marginal derivative interactions of order
less than 2k. In such cases one expects, for fixed k and n,
several nontrivial critical solutions. This is confirmed in a
detailed analysis we make for the case k ¼ 2 and
n ¼ 2mþ 1. We report several anomalous dimensions
for such cases and have a first look at the phase diagram
which is given for the representative case n ¼ 3. Here we
present the main results and postpone most of the computa-
tional details to a separate work [22].

II. RG APPROACH TO □k THEORIES:
GENERAL CONSIDERATIONS

In this work we are interested in using perturbation
theory to investigate critical theories which are smooth
deformations of the generalized free CFT,

LF ¼ 1

2
ϕð−□Þkϕ: ð1Þ

We concentrate on those theories with upper critical
dimension dc ¼ 2nk/ðn − 1Þ, which can be fixed by the
requirement that ϕ2n be a marginal operator. This also fixes
the critical dimension of the field to δc ¼ k/ðn − 1Þ. We
restrict here to integer values of n.
In order to identify possible scale invariant deformations it

is useful to determine all marginal operators. By dimensional
analysis, an operator with 2l number of derivatives and p
number of fields is marginal if the following condition holds:

2n − p
n − 1

k ¼ 2l: ð2Þ
From this simple relation it is clear that when n − 1 and k are
relatively prime, and when k is odd, then (apart from the
kinetic operator) ϕ2n is the only marginal operator present.
For even values of k instead there exist other marginal

operators with k number of derivatives and nþ 1 number of
fields which is an odd number, but these can be consistently
omitted because of their odd Z2 parity, and this is indeed
what we do in the present work.
On the other hand, when n − 1 and k have a common

divisor, there always exist marginal derivative operators with
even parity. The beta function of their corresponding
couplings includes terms with pure powers of the ϕ2n-
coupling, and therefore such flowswill only lead to nontrivial
fixed points which are either pure derivative interactions
or a mixture of derivative and potential interactions.
Consequently these operators cannot be avoided and the
local potential approximation breaks down.
We refer to theories with coprime k and n − 1 as “first

type” and otherwise as “second type.” Based on this
classification, in the following we consider these two types
of theories in turn and perform an ϵ-expansion by moving
away from the critical dimension to d ¼ dc − ϵ and employ
perturbative RG in the functional form.

III. THEORIES OF THE FIRST TYPE

We concentrate in this section on theories of the first type
where k and n − 1 are relatively prime. In this case one can
consistently consider pure potential deformations,

L ¼ 1

2
ϕð−□Þkϕþ VðϕÞ; ð3Þ

where the field ϕ implicitly contains the wave function so
that the kinetic term is always in the canonical form. In
order to extract critical information we express variables in
units of the RG scale μ, as vðφÞ ¼ μ−dVðμδφÞ, where δ ¼
d/2 − k is the dimension of the field. The beta functional of
the dimensionless potential at cubic order in the couplings
is found to be

βv ¼ −dvþ d − 2kþ η

2
φv0 þ 1

n!
vðnÞ2

− ΓðnδcÞ
1

3

X
r;s;t

Kn;k
rst

r!s!t!
vðrþsÞvðsþtÞvðtþrÞ

−
1

n!

X
s;t

Jn;kst

s!t!
vðnÞvðnþsÞvðnþtÞ; ð4Þ

where, in order to simplify the expression, and as will
become clear later, accord with the CFT normalization, we
have found it convenient to rescale the potential as

v → v½ð4πÞkΓðkÞ�nΓðnδcÞ/ΓðδcÞn: ð5Þ
The sums in (4) run over positive integers such that
rþ sþ t¼ 2n and r; s; t ≠ n in the first sum and sþt¼n
in the second sum. Also, we have defined

Kn;k
rst ≡ Γððn − rÞδcÞΓððn − sÞδcÞΓððn − tÞδcÞ

ΓðrδcÞΓðsδcÞΓðtδcÞ
; ð6Þ

Jn;kst ≡ ψðnδcÞ − ψðsδcÞ − ψðtδcÞ þ ψð1Þ; ð7Þ
where ψðxÞ ¼ Γ0ðxÞ/ΓðxÞ is the digamma function. The
quadratic term in (4) comes from a diagram with n − 1
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loops, while the cubic term appears at 2ðn − 1Þ-loop order.
The potential induces a flow for the kinetic term coefficient
which can be used to fix the anomalous dimension η in (4).
In terms of the marginal coupling g≡ vð2nÞð0Þ/ð2nÞ! this is

η ¼ ð−1Þkþ1
nðδcÞk

kðδc þ kÞk
4ð2nÞ!g2; ð8Þ

where ðaÞb ¼ Γðaþ bÞ/ΓðaÞ is the Pochhammer symbol.
From the general structure of the beta function (4) it is clear
that the coefficient of the quadratic term g2 is positive. This
ensures the presence of a Wilson-Fisher type fixed point. It
is a straightforward task to find the value of this fixed point
at quadratic order in ϵ,

ð2nÞ!2
n!3

g ¼ ðn − 1Þϵ − nηþ n!4ðn − 1Þ2
ð2nÞ!

�
n!2

3
ΓðnδcÞ

X
r;s;t

Kn;k
rst

ðr!s!t!Þ2 þ
X
s;t

Jn;kst

ðs!t!Þ2
�
ϵ2; ð9Þ

where here η is expressed in terms of ϵ adopting the leading ϵ dependence of the fixed point coupling

η ¼ ð−1Þkþ1
nðδnÞk

kðδn þ kÞk
4ðn − 1Þ2n!6

ð2nÞ!3 ϵ2: ð10Þ

Using the value of the fixed point and the stability matrix of the flow (4) one calculates the critical exponents at second
order in ϵ,

γ̃i ¼
η

2
iþ 2nηδ2ni þ ðn − 1Þi!

ði − nÞ!
2n!
ð2nÞ!

�
ϵ −

n
n − 1

η

�
þ ðn − 1Þ2i!n!6

ð2nÞ!2 ΓðnδcÞ
X
r;s;t

Kn;k
rst

ðr!s!t!Þ2
�

2n!
3ði − nÞ! −

r!
ði − 2nþ rÞ!

�
ϵ2

þ ðn − 1Þ2i!n!4
ð2nÞ!2

X
s;t

Jn;kst

s!2t!2

�
n!

ði − nÞ! −
2s!

ði − 2nþ sÞ!
�
ϵ2: ð11Þ

This order-ϵ2 expression is valid for the relevant and
marginal operators, while at order ϵ its range of validity
extends to all the irrelevant operators as well. These leading
order results for γ̃i are also independent of k.
The order-ϵ expressions for the critical exponents

(11) as well as the anomalous dimension (10) are in
agreement with [8,9]. Moreover, independent of k
the operator ϕ2 is always relevant and therefore its
corresponding critical exponent γ2 at second order
in ϵ is read off from (11) for any value of k, n. In particular
for n > 2 it takes a simple form with no order-ϵ piece

γ̃2¼
�ð−1Þkþ1nðδcÞk

kðδcþkÞk
−
nð2n−1ÞΓðkÞðδcÞk

ðkÞkðδc−kÞk

�
4ðn−1Þ2n!6

ð2nÞ!3 ϵ2

ð12Þ
which for k ¼ 1 reproduces the result of [14]. Finally,
expanding the beta function (4) around the fixed point, a
family of OPE coefficients can be obtained by extracting
the coefficient of the quadratic terms in the couplings:

C̃l
ij¼

1

n!
i!

ði−nÞ!
j!

ðj−nÞ!þ2ð2nÞ!ðiδ2nj þjδ2ni þ2nδ2ni δ2nj Þϵ

−ΓðnδnÞ
ðn−1Þn!3
ð2nÞ!

X
r;s;t

Kn;k
rst

r!s!t!2
j!

ðj−s− tÞ!
i!

ðiþs−2nÞ!ϵ

−
ðn−1Þn!2
ð2nÞ!

X
s;t

Jn;kst

s!t!

�
1

n!
j!

ðj−n−sÞ!
i!

ði−n− tÞ!

þ 1

s!
i!

ði−nÞ!
j!

ðj−n−sÞ!þ
1

s!
j!

ðj−nÞ!
i!

ði−n−sÞ!
�
ϵ:

ð13Þ

These are the dimensionless OPE coefficients with
l ¼ iþ j − 2n. The subset of these OPE coefficients with
l ¼ 1, which can be parametrized by a single parameter
m ¼ 1;…; n − 1, takes a significantly simplified form

C̃1
n−m;nþmþ1

¼ −
ðδcÞkðn− 1ÞΓðkÞ

ð−mδcÞkððmþ 1ÞδcÞk
ðnþmþ 1Þ!ðn−mÞ!
ðn−m− 1Þ!ðnþmÞ!

n!3

ð2nÞ! ϵ;

ð14Þ
whichmatches the dimensionless subset ofOPE coefficients
in [9]when the difference in the normalization of the fields is
taken into account.
CFT approach.—We have already seen that with our

RG-based analysis one can obtain some results previously
derived at leading order in ϵ using a conformal block analysis
in [8,9]. Alternatively, again assuming that the critical theory
is a CFT, we can use the constraints from conformal
invariance on the two and three point correlation functions
along with the SDE to extract some critical properties. Here
we illustrate only the procedure. More details will be given
elsewhere [22]. We define the scaling dimensions of the
composite operators ϕi as Δi ¼ ðk/ðn − 1Þ − ϵ/2Þiþ γi,
where γi are the anomalous dimensions. Closely following
[14] which applies this idea to the case k ¼ 1, one can
reproduce η (8) by applying□k

x□
k
y to the two point function

hϕxϕyi, both directly and by using the equation of motion
□kϕ ¼ 2ngð−1Þk−1ϕ2n−1. The latter leads to a new corre-
lator which, for a leading order analysis, can be computed in
the free theory. Similarly applying □

k
x to hϕxϕ

i
yϕ

iþ1
z i and

using theSDEgives a recursion relation for the γiwhich gives

MULTICRITICAL SCALAR THEORIES WITH HIGHER- … PHYS. REV. D 97, 041701 (2018)

041701-3



the order-ϵ values of the critical exponents (11) upon using
the boundary condition γn−1 ¼ Oðϵ2Þ. Finally applying □

k
x

to the three point function hϕxϕ
2k
y ϕ2lþ1

z i one can obtain
the structure constants C1;2k;2lþ1 at order OðϵÞ, which are
compatible with our RG analysis and coincide with the
results of [8,9], if the ϵ-dependence of the critical coupling
gðϵÞ is used. This can be derived from the rela-
tion Δ2n−1 ¼ 2kþ Δ1.

IV. THEORIES OF THE SECOND TYPE:
THE CASE k= 2

We now move to □
k multicritical theories where k and

n − 1 have a nontrivial common divisor. As anticipated
earlier, this case is considerably more involved than the first
class. In order not to complicate the calculations and at the
same time convey the qualitative features of such theories
we stick to the case k ¼ 2. The case of even n falls in the
first class already discussed, so in this section we take
n ¼ 2mþ 1. The upper critical dimension and the field
dimension at criticality are

dc ¼ 4þ 2/m; δc ¼ 1/m: ð15Þ
Notice that for m ¼ 1, 2 the upper critical dimension is an
integer. The marginal operators for general m are ϕ2ð2mþ1Þ

and ϕ2mð∂ϕÞ2, apart from the kinetic operator. As argued
before one is forced in this case to take into account
two-derivative operators as well. We therefore consider the
following Lagrangian:

L ¼ 1

2
ϕ□2ϕþ 1

2
ZðϕÞð∂ϕÞ2 þ VðϕÞ: ð16Þ

In terms of the dimensionless field φ the dimensionless
functions (d ¼ dc − ϵ and δ ¼ d/2 − 2) are defined as
vðφÞ ¼ μ−dVðμδφÞ and zðφÞ ¼ μ−2ZðμδφÞ, and their flow
equations at quadratic order are

βv ¼ −dvþ d − 4

2
φv0 þ vðmþ1Þzðm−1Þ

ðmþ 1Þ! þ ðvð2mþ1ÞÞ2
ð2mþ 1Þ! ; ð17Þ

βz¼−2zþd−4

2
φz0 þ2

vð2mþ1Þzð2mþ1Þ

ð2mþ1Þ! þ zðmþ1Þzðm−1Þ

ðmþ1Þ!

þ 3mþ2

2ð2mþ1Þ
ðzðmÞÞ2
ðmþ1Þ!−

2ðmþ1Þ
ð2mþ1Þ

ðvð3mþ2ÞÞ2
ð3mþ1Þ! ; ð18Þ

where the following rescalings have been done:

v → ðmþ 1Þ ð4πÞ
2ð2mþ1Þ

m2Γ2mðδcÞ
v; z →

ð4πÞ2mþ1

mΓmðδcÞ
z: ð19Þ

The anomalous dimension η has been dropped from the
linear term as it does not contribute at this level of
approximation. The quadratic terms in the beta functions
come from melon type diagrams which are ofm-loop order
for the vðiÞzðjÞ term in (17) and of 2m-loop order for the
ðvðiÞÞ2 term. Also the vðiÞzðjÞ term in (18) appears at 2m-

loops, the zðiÞzðjÞ term at m-loops and the ðvðiÞÞ2 term at
3m-loops. The functions ZðϕÞ and VðϕÞ induce a flow on
the coefficient of the kinetic term which is implicit in the
definition of the field ϕ. This can be used to fix the
anomalous dimension. In terms of the two couplings g, h
which are respectively the coefficients of the operator
φ2ð2mþ1Þ in vðφÞ and φ2mð∂φÞ2 in zðφÞ, the anomalous
dimension is

η¼ ΓðδcÞ
m2Γð2þδcÞ

ð2mÞ!
2ð3mþ1Þh

2

−
ΓðδcÞ

m4Γð4þδcÞ
4ðmþ1Þ2ð2mþ1Þ2ð4mþ1Þ!g2: ð20Þ

Also from an analysis of the stability matrix, one can
calculate the critical exponents of the relevant and marginal
operators. Although straightforward to calculate, here
we report only those that are not affected by mixing, that
is, the ones for which the stability matrix is either diagonal
or lower triangular. For the potential operators these are
given by

γ̃i ¼
i!

ði −m − 1Þ!
ð2mÞ!

ðmþ 1Þ!2 h

þ i!
ði − 2m − 1Þ!

2ð2ð2mþ 1ÞÞ!
ð2mþ 1Þ!2 g; ð21Þ

where g, h are assumed to be at the critical point. This
equation is valid for i ¼ 0;…; 3mþ 1, bearing in mind that
terms with negative factorials in the denominator are
interpreted as zero. In particular for i ≤ m the critical
exponents γ̃i vanish at linear order in the couplings.
Similarly, one can calculate the critical exponents ω̃i

corresponding to derivative operators. The first and only
nonzero exponent that is not affected by mixing with
potential operators is

ω̃m−1 ¼
ð2mÞ!

ðmþ 1Þ! h: ð22Þ

For m ¼ 1, the phase diagram of the flow equations (17)
and (18) is depicted in Fig. 1 in the two-dimensional space
of the dimensionless couplings g, h (right panel). Four
fixed points can be identified in the case of n ¼ 3, which
interestingly includes no fixed point with a pure ϕ6

interaction. Instead, there are two fixed points with a
mixture of ϕ2ð∂ϕÞ2 and ϕ6 interactions and a fixed point
with a pure ϕ2ð∂ϕÞ2 interaction, which are given at order ϵ
by the critical couplings

g¼ 0 g¼ð3 ffiffiffiffiffiffiffiffi
138

p
−13Þϵ

22200
g¼−

ð13þ3
ffiffiffiffiffiffiffiffi
138

p Þϵ
22200

h¼ 3ϵ

8
h¼ð42−4

ffiffiffiffiffiffiffiffi
138

p Þϵ
185

h¼ 2ð21þ2
ffiffiffiffiffiffiffiffi
138

p Þϵ
185

:

ð23Þ
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This pattern extends to any m. The first of these nontrivial
fixed points is perhaps also interesting in the sense that it is
infrared attractive. The critical coupling can be easily
extended to all m:

h ¼ 2mðmþ 1Þð2mþ 1Þ
2þ 7mðmþ 1Þ

ðmþ 1Þ!m!2

ð2mÞ!2 ϵ: ð24Þ

It is then straightforward to calculate at this fixed point the
critical exponents (20) and (21) in terms of ϵ:

η¼ ΓðδcÞ
Γð2þδcÞ

2ðmþ1Þ2ð2mþ1Þ2
ð3mþ1Þð2þ7mðmþ1ÞÞ2

ðmþ1Þ!2m!4

ð2mÞ!3 ϵ2:

ð25Þ

Also from an analysis of the stability matrix, one can
calculate the critical exponents:

γ̃i ¼
i!

ði −m − 1Þ!
2mð2mþ 1Þ

2þ 7mðmþ 1Þ
m!

ð2mÞ! ϵ: ð26Þ

At this fixed point and at order ϵ the stability matrix is block
lower triangular where each block consists of operators of
the same number of derivatives, therefore the validity range
of the above critical exponents extends to infinity.
Furthermore, in this case it is similarly easy to calculate
the critical exponents for the derivative operators ϕið∂ϕÞ2
which is again valid for all i:

ω̃i ¼ i!

�
3mþ 2

2mþ 1

mþ 1

ði −mÞ!þ
1

ði −m − 1Þ!

þ mðmþ 1Þ
ði −mþ 1Þ!

�
2mð2mþ 1Þ

2þ 7mðmþ 1Þ
m!

ð2mÞ! ϵ: ð27Þ

The phase diagram of the n ¼ 3 case is compared with that
of n ¼ 2 in Fig. 1 (left panel), where g, h are respectively
the coefficients of the operators φ4 in vðφÞ and φð∂φÞ2 in

zðφÞ. If one includes higher order corrections for the beta
functions the ϕ4 fixed point persists, while in principle
other fixed points may arise which have derivative inter-
actions. However, as discussed in Sec. II, these have an odd
Z2 parity and can be consistently ignored.
CFT approach.—The same line of reasoning as that

discussed towards the end of Sec. III can be followed also
in this case to extract critical properties. With a knowledge of
the nontrivial structure of the critical theory encoded in the
Landau-Ginzburg Lagrangian (16) with ZðϕÞ¼hϕ2m and
VðϕÞ¼ gϕ2ð2mþ1Þ one canwrite down theequationofmotion,

0¼□
2ϕþ2ð2mþ1Þgϕ4mþ1−mhϕ2m−1ð∂ϕÞ2−hϕ2m

□ϕ:

ð28Þ
This can be used, for instance, to rederive the leading
corrections to the anomalous dimensions of ϕi. For γ1 one
acts directly with Laplacians on the two point function as

□
2
x□

2
yhϕxϕyi¼LO − 29γ1cjx − yj−2

m−8
Y3
i¼0

ðiþ 1/mÞ; ð29Þ

where cm ¼ 4ΓðδcÞm/ð4πÞ2mþ1. This can be compared with
the same quantity evaluated using the SDE,

h□2
xϕx□

2
yϕyi¼LO4ð2mþ1Þ2ð4mþ1Þ!g2c4mþ1jx−yj−2

m−8

−8ð2mþ1Þ!m−2h2c2mþ1jx−yj−2
m−8: ð30Þ

After rescaling the couplings g, h in accord with our RG
conventions (19), one correctly reproduces γ1 which is one-
half η in (20). In a similar way, for the anomalous dimensions
γi one can compare the actionof□2 on the threepoint function
hϕxϕ

i
yϕ

iþ1
z i, evaluated both directly and by using the SDE.

Comparing the two at leading order, one gets in terms of the
rescaled couplings the recursion relation

γiþ1 − γi ¼
�
i
m

� ð2mÞ!
ðmþ 1Þ! hþ 4

�
i
2m

� ð4mþ 1Þ!
ð2mÞ! g; ð31Þ

which can be solved upon imposing the boundary condition
γ1 ¼ 0. This leads to complete agreement with the quantities
obtained within the RG method in Eq. (21).

V. CONCLUSION AND OUTLOOK

We have explored a class of multicritical scalar theories
with a higher-derivative kinetic term. As a tool to analyze
such models we employed RG which relies neither on
unitarity nor conformal invariance. One of the advantages
of such an approach has been to allow to correctly identify
scale invariant deformations of higher-derivative free CFTs.
In particular, for the class of theories where k and n − 1
have a common divisor the fixed points of the RG flow
correspond to critical theories with derivative interactions.
This causes the potential approximation to break down and
makes the inclusion of derivative operators unavoidable,
unveiling a novel pattern which was missed in previous

FIG. 1. Phase diagrams of Z2 symmetric □
2 theories for

ϵ ¼ 0.1. Left panel: for n ¼ 2 one has the Gaussian and the
generalized Wilson-Fisher fixed point with ϕ4 interaction. Right
panel: for n ¼ 3 one has a Gaussian fixed point, a fixed point with
a derivative interaction ϕ2ð∂ϕÞ2, and two fixed points with a
mixture of ϕ2ð∂ϕÞ2 and ϕ6 interactions. Figures qualitatively
represent phase diagram for all n.
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CFT-based analyses [8,9]. As an illustrative example we
have analyzed in detail theories with □

2 kinetic terms and
odd values of n, which correspond to the second type, and
shown explicitly that pure potential deformations of higher-
derivative free CFTs are not scale invariant. In these
models, we have identified instead, among others, a pure
derivative scale invariant deformation which is also infrared
attractive.
We have also confirmed most of our RG results, by

making use of the SDE and assuming conformal symmetry.
Our findings for these nonunitary critical theories therefore
provide evidence for conformal invariance, at least at the
leading nontrivial perturbative order in ϵ. It would still be
interesting to investigate in particular theories of the second
type with other approaches which rely on conformal
symmetry, such as that based on the analytic structure of
conformal blocks, to reproduce and perhaps extend the
results presented here.

In this work we concentrated on integer values of the
parameter n, which correspond to even potentials ϕ2n or
more generally Z2 symmetric fixed points, but our method
can be easily extended to critical models with odd poten-
tials as well. Among other critical higher derivative theories
one can think of those characterized by shift symmetry, and
even consider multiple scalar fields with global sym-
metries, e.g. OðNÞ models. It would be interesting to carry
on an analysis with both RG and, whenever applicable,
CFT methods at perturbative level, and finally to study all
such kinds of theories nonperturbatively, using functional
RG methods and, despite their nonunitary nature, with the
nonperturbative conformal bootstrap as well.
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