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The Dirac-Heisenberg-Wigner formalism is employed to investigate electron-positron pair production in
cylindrically symmetric but otherwise spatially inhomogeneous, oscillating electric fields. The oscillation
frequencies are hereby tuned to obtain multiphoton pair production in the nonperturbative threshold
regime. An effective mass, as well as a trajectory-based semiclassical analysis, is introduced in order to
interpret the numerical results for the distribution functions as well as for the particle yields and spectra.
The results, including the asymptotic particle spectra, display clear signatures of ponderomotive forces.
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I. INTRODUCTION

Electron-positron pair production in strong electric
fields, the Sauter-Schwinger effect, is a long-standing
theoretical prediction [1] which still awaits experimental
verification. Multiphoton pair production, on the other
hand, has already been observed in a laboratory [2]. The
dynamically assisted Sauter-Schwinger effect [3,4] exploits
the idea that a combination of a low with a high frequency
(“multiphoton”) laser pulse will lead to pair production
rates which are significantly larger than the sum of the rates
for the two separate pulses. Together with the arising
capabilities of high-intensity laser technology (see, e.g.,
Refs. [5,6]), such a combination of laser pulses will make
experimental tests in this regime of nonlinear QED possible
in the near future.
In addition to the technological progress, future exper-

imental tests and their interpretations will depend substan-
tially on more reliable calculations which include the
inhomogeneities of the electromagnetic fields as they
typically occur in the focus of crossing laser beams.
Computations for inhomogeneous and time-dependent
fields (i.e., beyond the previously well-studied case of
time-dependent but homogeneous electric fields) began a

few years ago and have seen steady progress [7–10]. These
studies are, however, still far from providing a satisfactory
understanding of the effects which originate from the finite
spatial extension of the considered laser pulses.
As the particle creation rate depends on the laser

intensity (see, e.g., Ref. [11] for a discussion in the context
of the planning of the European X-ray free-electron laser),
one would naively expect that better focusing and therefore
higher local field intensities always lead to an increase of
the particle yield. However, the dynamics in high-intensity
laser fields is much more complex and results not only in
strong but also nonmonotonic dependencies of the yield on
the characteristics of the laser field [4,8,10]. Other quan-
tities, e.g., distribution functions and particle spectra,
display a rich structure with sometimes surprisingly large
sensitivities to small changes of the field parameters.
Clearly such a situation calls for the search of concepts

which are able to allow an, at least qualitative, under-
standing. One possibility to quantify the effects associated
with a spatially inhomogeneous field is based on the notion
of an effective mass which an electron acquires in a
background electromagnetic field [12–18]. This parameter,
as every effective mass, reflects the “integrated” collective
interactions of a particle with its surroundings. It thus
provides the possibility of a drastic simplification but
nevertheless allows the coarse-grained description of
highly intricate effects. Although this might be an over-
simplification with respect to details of the resulting
spectra, the concept of an effective mass works astonish-
ingly well, a fact which can be attributed to the unique
conditions in high-intensity laser experiments [19].
Correspondingly, the idea of an effective mass has been
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applied recently to multiphoton pair production [20,21]. In
these studies, however, the employed electric fields were
homogeneous, thereby greatly simplifying the process
under investigation.
In the following we will discuss particle creation in

inhomogeneous fields and introduce, to this end, a more
general concept for the effective mass and relate it via a
semiclassical analysis to ponderomotive forces. (NB: A
ponderomotive force is a nonlinear force that a “classical”
charged particle experiences in an inhomogeneous oscil-
lating electromagnetic field, cf. Ref. [22] and references
therein.) In a first step, we will concentrate on multiphoton
pair production in the nonperturbative threshold regime. As
is evident from the discussion above, in the parameter
regions of interest the effects of a laser pulse’s finite spatial
extension cannot be neglected. (For a more detailed
discussion of this issue, see, e.g., Ref. [23].) Hereby one
should distinguish two aspects: First, how does the finite-
ness of the fields’ extension influence the pair production
process, and second, how does a spatially inhomogeneous
field alter the subsequent electron/positron dynamics?
To keep the calculational complexity in a manageable
range, we will assume cylinder symmetry of the electric
field. The spatial dependence can be inferred, e.g., from a
gauge potential which points in one direction and is
inhomogeneous only w.r.t. the same direction. This has
the advantage that the corresponding magnetic field van-
ishes. However, one then clearly has no propagating waves.
Nevertheless, such a configuration provides some, although
simplistic, model of the focus of two counterpropagating
lasers.
This paper is organized as follows. In Sec. II several

aspects of multiphoton pair production in the nonpertur-
bative threshold regime underlying our work will be briefly
summarized: In Sec. II A a short description of the Dirac-
Heisenberg-Wigner (DHW) formalism for the case of an
electric field with cylinder symmetry is provided; Sec. II B
deals with the numerical treatment via Fourier transform; in
Sec. II C the form of the electric field employed later is
given. In Sec. III two interpretational concepts are intro-
duced and discussed: the effective mass and a trajectory-
based semiclassical analysis. In Sec. IV numerical results,
ordered according to the longitudinal and transverse
momentum distributions, are presented and discussed.
Section V contains the conclusions of the presented study.
Furthermore, we use ℏ ¼ c ¼ 1 throughout this paper.

II. THEORETICAL DESCRIPTION OF
MULTIPHOTON PAIR PRODUCTION

A. DHW formalism

The present study is based on the DHW formalism, a
relativistic phase-space approach, which has been devel-
oped for the case of pair production in Ref. [24]. Hereby the
electron is treated as a quantum field, but the laser pulse is

approximated by its mean field. Given the magnitudes of
the electric field needed in pair production, this is a justified
approximation.
A convenient starting point is provided by the gauge-

invariant density operator of the system,

Ĉαβðr; sÞ ¼ UðA; r; sÞ½ψ̄βðr − s/2Þ;ψαðrþ s/2Þ�; ð1Þ

in terms of the electron’s spinor-valued Dirac field ψαðxÞ.
Hereby r denotes the center of mass and s the relative
coordinate. The Wilson line factor

UðA; r; sÞ ¼ exp

�
ies

Z
1/2

−1/2
dξAðrþ ξsÞ

�
ð2Þ

is introduced to render the density operator gauge invariant.
It depends on the elementary charge e and the background
gauge field A. Treating the background field in the Hartree
approximation, i.e.,

FμνðxÞ ≈ hF̂μνðxÞi; ð3Þ

no path ordering is needed, and in a given Lorentz frame
and gauge, the background gauge field Aðx; tÞ is a fixed
c-number valued function. The covariant Wigner operator

Ŵαβðr; pÞ ¼
1

2

Z
d4s eipsĈαβðr; sÞ ð4Þ

thus reflects the quantum fluctuations of the electron but
not the one of the laser field.
The main implication of the Hartree approximation for

the electromagnetic field becomes evident when taking the
vacuum expectation value of the covariant Wigner operator
to obtain the covariant Wigner function

Wðr; pÞ ¼ hΦjŴðr; pÞjΦi: ð5Þ

In its equation of motion the electromagnetic field can be
factored out, e.g.,

hΦjFμνĈjΦi ¼ FμνhΦjĈjΦi ð6Þ

which allows us to resolve the otherwise infinite
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of cor-
relation functions.
Being aDirac-matrix valued quantity, theWigner function

is best decomposed into 16 covariant Wigner coefficients

W ¼ 1

4
ð1Sþ iγ5Pþ γμVμ þ γμγ5Aμ þ σμνTμνÞ ð7Þ

where the corresponding transformation properties are made
evident by the notation.Working in a definite frame it proves
advantageous to project on equal times, which yields the
equal-time Wigner function
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wðx;p; tÞ ¼
Z

dp0

2π
Wðr; pÞ ð8Þ

and, by an analogous decomposition to Eq. (7), the corre-
sponding equal-time Wigner coefficients s;p; v0;x;y;z;….
Exploiting cylindrical symmetry, which will be assumed

throughout the following, and keeping the electric field
homogeneous in the transversal direction results in a
reduced system of differential equations1:

Dts̄ − 2pzp̄þ 2pρv̄ ¼ 0; ð9Þ

Dtv̄ þ ∂zv̄0 − 2pρs̄ ¼ −2p̄; ð10Þ

Dtp̄þ 2pzs̄ ¼ 2v̄; ð11Þ

Dtv̄0 þ ∂zv̄ ¼ 0; ð12Þ
where the pseudodifferential operator Dt reads

Dt ¼ ∂t þ e
Z

dξEðzþ iξ∂pz
; tÞ∂pz

: ð13Þ

We refrained from putting a spatial index on the electric
field E as, by construction, it is oriented in the z-direction.
The advantage of a representation with Wigner coef-

ficients lies in the fact that it allows us to identify s̄ as mass,
v̄0 as charge, and v̄ as current density [24]. In order to
perform calculations within the DHW formalism, we
employ vacuum initial conditions:

s̄in ¼ −
2

ω
; v̄in ¼ −

2pz

ω
; p̄in ¼ −

2pρ

ω
; ð14Þ

whereω ¼ ωðpz; pρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z þ p2
ρ

q
is the one-particle

energy. It is convenient to subtract these initial conditions,
and therefore we define

w̄v ≔ w̄ − w̄in; ð15Þ
where w̄ is a placeholder for any Wigner component.
Additionally, we define the particle number density per

unit volume in momentum space,

Nðpz; pρÞ ¼
Z

dz
s̄v þ pzv̄v þ pρp̄v

ωðpz; pρÞ
: ð16Þ

Consequently, the total particle yield per unit volume is
defined via

N ¼
Z

dpz

Z
dpρNðpz; pρÞ: ð17Þ

B. Fourier transform and numerical treatment

Equations (9)–(12) can be solved numerically without
any further approximations or truncations [8,23]. The
challenging part is the nonlocality of the pseudodifferential
operator (13) which can nevertheless be treated if the
electric field Eðz; tÞ can be Taylor expanded and integrated
with sufficient accuracy. The differential operator (13)
naturally splits into two parts:

Dt ¼ ∂t þ e
Z

dξEðzþ iξ∂pz
; tÞ∂pz

≕ ∂t þ Δ: ð18Þ

To apply the operator Δ on the (subtracted) Wigner
components, we Fourier transform and inverse Fourier
transform Δw̄v w.r.t. to the variable pz; i.e., we employ

fðpzÞ ¼ F−1
pz
½Fpz

½fðpzÞ�� ¼ F−1
pz
½f̃ðkpz

Þ�; ð19Þ

Taylor expand the electric field, use

Fpz

�
dn

dpn
z
fðpzÞ

�
¼ ðikpz

Þnf̃ðkpz
Þ; ð20Þ

and then resum to obtain the generic form (for more details,
see Ref. [23])

Δw̄vðz; pz; tÞ

¼ F−1
pz

�
iekpz

Z
dξEðz − ξkpz

; tÞ ˜̄wðz; kpz
; tÞ

�
: ð21Þ

Due to the fact that a Fourier transform takes into account
all points in a domain, the introduction of global basis
functions turned out to be favorable compared to the finite-
difference method used in Ref. [8]. Hence, we have equi-
distantly discretized spatial and momentum directions,
respectively, turning the system of partial differential equa-
tions (9)–(12) into a high-dimensional (Nz × Npρ

× Npz
)

system of ordinary differential equations with t as the only
continuous parameter.
Furthermore, we choose periodic boundary conditions

in z and pz,

w̄vðz0; pz; tÞ ¼ w̄vðzNz
; pz; tÞ ð22Þ

and

w̄vðz; pz;0; tÞ ¼ w̄vðz; pz;Npz
; tÞ; ð23Þ

respectively. Additionally, we set

w̄vðzki ; pz;kj ; tÞ ¼ 0 if ki ¼ 0 or kj ¼ 0: ð24Þ

These choices do not influence the numerical results as
long as the chosen discretized domain is sufficiently large,

1The coefficients given in the following are obtained by linear
combinations of the equal-time Wigner coefficients. The quantity
v̄, for example, is defined as a linear superposition of vz and
tensor components txz and tyz. The details of the derivation can be
found in Ref. [23].
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and the number of grid points in every direction is
sufficiently high.
After discretizing Eqs. (9)–(12) in this way, they can be

solved using pseudospectral methods [25]. The time
integration is done using a Dormand-Prince Runge-Kutta
integrator of order 8(5,3) [26].

C. Model for the fields

As stated above, if the spatial dependence of the electric
field is inferred from a gauge potential which is directed
along a direction and is inhomogeneous only w.r.t. the same
direction, the corresponding magnetic field vanishes. In
addition, two time scales are needed to tune a pulse of finite
duration to the multiphoton regime. These requirements are
fulfilled by the ansatz

Eðz; tÞ ¼ εE0EðzÞFðtÞ

¼ εE0EðzÞcos4
�
t
τ

�
cos ðωtÞ; ð25Þ

for t ∈ ½−πτ/2; πτ/2�, and E ¼ 0 otherwise (see Fig. 1).
Hereby the critical field strength E0 ¼ m2/e has been
factorized out for convenience. Nonperturbative multipho-
ton pair production is probed if one chooses the product
ωτ > 1 and a Keldysh parameter of γ ¼ ω/mε > 1 [23].
As we want to investigate how focusing influences the

particle distribution rate, we choose a well-localized
electric field with a Gaussian shape of width λ:

EðzÞ ¼ exp

�
−

z2

2λ2

�
: ð26Þ

In Fig. 2 we sketch the electric field for fixed times. Note
that the electric field varies in strength but always points in
the �z-direction.
The model proposed in Eqs. (25) and (26) may be thought

of as field generated in an antinode of a standing-wave

mode. As a special feature, this model takes into account
spatial variations besides time dependence.

III. SEMICLASSICAL ANALYSIS

In Sec. IV it will become obvious that the dependencies
of observables on the field parameters are of an astonishing
complexity. In order to obtain an interpretation and such
an understanding of the results, we will analyze them by
referring to the concepts developed in this section.
Introducing a generalized effective mass concept and

relating it to arising ponderomotive forces are central
aspects of this paper. We discuss the improvements
compared to previous definitions of the effective mass in
the context of pair production in Sec. III A. Moreover,
based upon Refs. [22,27], we draw a connection between a
spatially dependent effective mass and ponderomotive
forces. However, an interpretation of the final particle
distribution on the basis of an effective mass becomes
more involved for spatially inhomogeneous fields due to
the position dependence of the gradient. Hence, we rely on
a semiclassical trajectory-based model, which allows us to
determine the overall scheme by simple means.

A. Effective mass and ponderomotive forces

Various studies have used effective masses to simplify
intermediate calculations [14,15,28,29]. It was suggested
only recently to employ the concept of an effective mass to
determine directly observable quantities regarding particle
creation (see Refs. [20,30]).
In the case of a monochromatic plane wave, the effective

mass takes the form [12]

M� ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
; with ξ ¼ e

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hAμAμi

q
: ð27Þ

More general definitions have been proposed in Ref. [29].
However, we essentially adopt but modify slightly the
definition above and parametrize the effective mass as
follows:

-100 0 100
t [1/m]

-1

-0.5

0

0.5

1

F
(t

)

FIG. 1. Sketch of the time-dependent part of the electric field
model FðtÞ for τ ¼ 100 m−1 and ω ¼ 0.7 m. The large number
of cycles (ωτ ¼ 70 ≫ 1) is an indicator for the nonperturbative
multiphoton regime.

0 5 10
 [1/m]

-10

-5

0

5

10

z 
[1

/m
]

FIG. 2. Illustration of the electric field as a function of the
spatial coordinates z and ρ for fixed time t ¼ 0 (blue) and t ¼ π

ω
(red). Due to the special geometry of the model, the field is
homogeneous in the transversal direction.
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m�ðxÞ ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ̃ðxÞ2

q
;

ξ̃ðxÞ ¼ e
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hAμðx; tÞAμðx; tÞi

q
: ð28Þ

Similarly to Refs. [20,29], we cope with the temporal
finiteness of the pulse by averaging over one field oscillation
around t ¼ 0 only; this approximation is well justified for
long, flat-toppedmulticycle pulses due to theminor influence
of the envelope function.2

The relativistic ponderomotive force then yields (see
Ref. [22])

Fp ¼ −
�
v0 · ∇xm�;∇xm� þ

γ0 − 1

v20
ðv0 · ∇xm�Þv0

�
; ð29Þ

where γ0 is the Lorentz factor and v0 denotes the velocity of
the quasiparticle.
We do not use Eq. (29) directly to calculate reference

values. However, as Eq. (29) describes an effective force,
where all short-scale contributions are “integrated out,” it
primarily serves as a tool to help us interpret the results
obtained from solving the system (9)–(12). Analyzing
Eq. (29) analytically, we can deduce that the term ∇xm�
is the decisive factor in order to understand the effective
force on the particles. In turn, we expect that all particles
are forced from strong-field towards weak-field regions.
Furthermore, in the case under consideration we primarily
expect a boost in the parallel momentum. If particles are
created with vanishing transversal momentum, ponder-
omotive forces only act upon them in a direction parallel
to the applied field.

B. Trajectory-based semiclassical model

The virtue of the DHW method, namely, to take into
account various effects in one common approach, obstructs
the analysis of its results. Hence, we introduce a trajectory-
based model in order to overcome these difficulties.
Contrary to Schwinger pair production the formation

time in multiphoton pair production is quite long. For the
sake of simplicity, we still want to assume that particles are
created at points in space-time where the electric field takes
on its maximal values.3 Moreover, for the case of n-photon
pair production we expect that the initial particle momenta
p can be derived via energy conservation laws [20,31]:

p2
n ¼

�
nω
2

�
2

−m2�: ð30Þ

These assumptions are sufficient to determine the trajectory
of a particle in an external field as they provide all needed
initial conditions.
Due to the form of the electric field and especially due to

the absence of a magnetic field, spin effects will be ignored
at this point. Hence, we employ the relativistic Lorentz
equation

dPμ

dτ
¼ eFμνUν ð31Þ

to analyze the particle’s trajectory in the external field.
Here, Fμν is the electromagnetic field strength tensor, Uν
the four-velocity and Pμ the four-momentum.
This method is a convenient yet powerful tool to analyze

the dynamics of pair production. However, it should be
understood as a simple approximation, which clearly
cannot replace a full quantum field theoretical treatment
of the process. In Ref. [23] its usefulness is demonstrated
for a variety of field configurations.

IV. NUMERICAL RESULTS FOR
MULTIPHOTON PAIR PRODUCTION

IN THE THRESHOLD REGIME

In the following we discuss the solutions of the PDEs
(9)–(12) and compare the outcome with the results obtained
from the trajectory-based approach. We analyze the dis-
tribution function for parallel particle momenta and, sub-
sequently, the total production rate.
For the pulse length we have chosen a value of τ ¼

100 m−1 for all calculations. Such a pulse length is
sufficient to capture all essential features of multiphoton
pair production.

A. Parallel momentum distribution

In this subsection we only analyze particle spectra where
pρ ¼ 0. In Fig. 3 a typical spectrum for multiphoton-
dominated particle creation is displayed. Especially for
quasihomogeneous fields, λ ¼ 1000 m−1, the characteristic
multiphoton peaks are easily distinguishable.
To determine the contributing processes we can employ

the effective mass picture [20]. In the case of spatially slowly
varying fields, the vector potential may be treated as
homogeneous. Hence, ignoring the spatial dependence in
Eq. (25), we can determine the particle’s effective mass (28),

m� ≈m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2m2

2ω2

s
: ð32Þ

EmployingEq. (30) the particlemomenta can be estimated as

pz;n ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nω
2

�
2

−m2

�
1þ ε2m2

2ω2

�s
: ð33Þ

2In Ref. [30] the effective mass was introduced via a
“renormalized frequency” (Fourier zero mode) for purely time-
dependent fields. Although defined differently it was shown
that it agrees very well with m�ðx ¼ 0Þ.

3We are well aware of the fact that this assumption leads to an
oversimplification of the description of multiphoton processes as
particles can be created at all times. However, evaluating particle
trajectories that start at turning points of the applied fields yields
reference values for the final particle momenta, which suffices, in
the context of the current investigation, to validate the method.
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From this relation it is easy to infer that the peak in themiddle
is related to a 3-photon process (threshold frequency
ω̃ ¼ 0.74 m) and the side maxima are related to 4- and
5-photon pair production.
However, comparing the relative peak sizes with results

obtained from calculations within homogeneous fields, one
finds that the strong peak around pz ¼ 0 is now more
pronounced. Nevertheless, we recover the quantum kinetic
limit [32] when evaluating the results for λ → ∞ at z ¼ 0.
Going beyond this limit reveals that a decrease of the

pulse’s spot size leads to dramatic changes in the distri-
bution function. In the case of, e.g., λ ¼ 10 m−1, the
dominant peak in the particle momentum spectrum takes
on a much wider form which can be related to quantum
interferences. It is known from atomic ionization [33] that
n-photon peaks can be interpreted as a result of particle
trajectories adding up to the interference pattern observ-
able [34]. Around λ ¼ 10 m−1 the finite size of the laser
pulse seems to prevent a coherent superposition. In turn,
the corresponding interference pattern becomes disturbed,
resulting in the broadened distribution. A quantitative
comparison between the trajectory-based approach and
the DHW formalism is summarized in Table I.
At an even smaller focus size, λ ¼ 2.5 m−1, we observe

so-called peak splitting. This effect can be understood in
the context of ponderomotive forces. Concentrating on the
3-photon peak, particles are created with close to vanishing
momentum pz and subsequently follow the oscillations of
the background field. However, the force the field exerts
on the particle depends on the particle’s location in the
field. The momentum the particle acquires in one half-cycle
within the strong field region of the field cannot be fully
compensated within the second half-cycle because the
particle has already entered the weak-field region. As a
result the particle obtains a net momentum and drifts to
low-intensity regions in space. As the applied electric field
is symmetric in z, there are, however, two equally likely

options: Either the particles are accelerated in the z or in
the −z direction. As a result, the two peaks at nonzero final
momentum and the valley at pz ¼ 0 are formed.
Particles with nonzero initial momenta acquire only an

additional push due to ponderomotive forces. The strength
of this boost depends on the initial conditions but seems
to be nonmonotonic following the results in Table I. We
interpret the increase in momentum as a consequence of
particle acceleration out of the strong field region within
one half-cycle. If the spatial extent of the background field
is sufficiently small, these particles are basically unaffected
by the following field oscillations and keep their respective
momentum.
A finite spatial extent also affects the particle production

rate. Figure 4 shows the reduced particle yield for different
photon frequencies and various spot sizes. In the case of
3-photonpair production (blue line in Fig. 4), the introduction
of a spatial extent only lowers the particle production rate.

p
z
 [m]

-1.5 -1 -0.5 0 0.5 1 1.5

N
(p

z,p
=

0)
/

 [1
/

C
]

0

0.1

0.2

0.3

0.4
= 1000/m

=    10 /m
=   2.5 /m

FIG. 3. Reduced particle distribution function obtained from a
DHW calculation for a field of strength ε ¼ 0.5, length τ ¼
100 m−1 and frequency ω ¼ 0.7 m. The peaks can be related to
n-photon pair production. The stronger the focus, the stronger the
ponderomotive forces, and thus the higher the final particle
momentum.

TABLE I. Trajectory analysis of particles within an external
field. The results are obtained by evaluating the relativistic
Lorentz force equation for particles seeded at t0 ¼ 0, z0 ¼ 0

in a field of strength ε ¼ 0.5, length τ ¼ 100 m−1, frequency
ω ¼ 0.7 m and spatial extent λ. The different initial momenta pz;0

correspond to different n-photon processes. The final momenta
pz;f are obtained at asymptotic times. For comparison we provide
the results from a DHW calculation pDHW.

λ½m−1� pz;0 [m] pz;f [m] pDHW [m]

1000 0 10−7 0
10 0 0.162 0–0.38
2.5 0 0.444 0.33

1000 0.92 0.92 0.92
10 0.92 0.99 0.98
2.5 0.92 1.12 1.03

1000 1.4 1.4 1.40
10 1.4 1.43 1.43
2.5 1.4 1.65 1.45

 [1/m]
1 2 5 10 25

N
/

 [1
/

C
]

0.02

0.05

0.1

 = 0.70m
 = 0.84m

FIG. 4. Log-log plot of the reduced particle yieldN/λ calculated
from the DHW equations for various field frequencies ω as a
function of the spatial extent λ. The sharp decrease for λ ∼Oð1Þ is
directly related to the lack of sufficient field energy to produce
particles. Parameters: ε ¼ 0.5, τ ¼ 100 m−1.
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However, in the case of photon frequencies of ω ¼ 0.7 m
and a field strength of ε ¼ 0.5, a 3-photon pair production
process is not possible due to energy conservation laws;
see Eq. (33) and Ref. [20]. The fact that we still observe a
peak at pz ∼ 0 in the particle spectrum (see Fig. 3) is a hint
towards a dynamically assisted tunneling process, where
absorbing 3 photons lowers the energy barrier and, in turn,
increases the likelihood of a tunneling process to happen.
Additionally, the 4-photon creation process contributes
towards the yield in Fig. 4 (dashed red line). All in all, it
seems as if especially particles created via the assistance
mechanism [4] benefit from a small spot size and the
resulting strong ponderomotive forces leading to an overall
increase in the reduced yield. Concerning the drop-off for
small values of the spatial extent λ: If the spatial extension of
the field is of the order of the Compton wavelength, the total
electric field energy becomes too small to produce a sizable
amount of particles [8].

B. Transversal momentum distribution

Following the discussion on particle acceleration parallel
to the applied field, we now turn our attention towards
electrons/positrons, which are created with nonvanishing
transversalmomentum. For demonstration purposeswe have
chosen a slightly higher field frequency. In this way, the
implications of ponderomotive forces in the particle momen-
tum spectrum becomemore evident. The Keldysh parameter
for the field used is γ ¼ 1.68, indicating a process in the
crossover regime with multiphoton dominance [23].
The comparison between a flat (λ ¼ 100 m−1) and a

sharp peak (λ ¼ 2 m−1) is illustrated in Fig. 5 with focus
on a 3-photon process. The figure at the top shows a
situation close to a result obtained via a purely time-
dependent electric field [21,35]. Particles created via
photon absorption obtain a well-defined total momentum
(30). Additionally, the resulting ringlike structure is super-
imposed by quantum interferences [23,31].
A smaller spatial extension of the laser focus leads to an

increase in strength of ponderomotive forces, clearly visible
in Fig. 5 in the form of an acceleration in the pz-direction.
Similar to the previous case, the bunch of particles at
pz ¼ 0, pρ ¼ 0.7 m is boosted in either pz-direction,
leading to peak splitting. Moreover, the interference pattern
diminishes, and the sharp peaks signalizing n-photon
processes are washed out. Once again, we analyze the
particle trajectories to understand this line broadening.
Constraining ourselves to the center of the laser pulse,
we seed the particles at local maxima of the applied electric
field and calculate the particles’ final momenta in depend-
ence of the spatial extent; see Table II. In the case of a broad
spatial extent, all particles acquire the same final momenta.
In the case of a small extent, however, the finiteness of the
pulse plays a crucial role because then different particle
creation times lead to different behavior.

Due to the fact that we seed the particles at maxima of
the field only, we obtain an upper and a lower limit for
the particles’ final momenta. Assuming that electrons and
positrons are created also at intermediate times, we expect
that their respective final momenta are distributed in
between these two limits. It is therefore not surprising that
the peaks in the momentum spectrum appear much wider
compared to the quasihomogeneous case.
The smaller boost for higher transversal momenta is a

consequence of relativistic mechanics as can be seen by
comparison with the effective ponderomotive forces (29).

FIG. 5. Momentum maps N/λ obtained from evaluating the
DHW equations. The electric field features a field strength of
ε ¼ 0.5, a pulse length of τ ¼ 100 m−1, a field frequency of ω ¼
0.84 m and spatial extents λ ¼ 100 m−1 (top) or λ ¼ 2 m−1

(bottom). The additional acceleration in the parallel direction
(in the second plot) can be attributed to strong ponderomotive
forces. The result is line broadening and peak splitting.

TABLE II. The relativistic Lorentz force equation is evaluated
for particles seeded at local maxima of the field, t0 and z0 ¼ 0, in
a field of strength ε ¼ 0.5, length τ ¼ 100 m−1, frequency ω ¼
0.84 m and spatial extent λ. The initial momenta were chosen to
be pz;0 ¼ 0.665 m and pρ;0 ¼ 0, resembling the photon peak
positions in Fig. 5.

t0 ½m−1� pz;fðλ ¼ 100Þ [m] pz;fðλ ¼ 2Þ [m]

−2π/ω 0.70 0.79
−π/ω 0.70 0.85
0 0.70 0.80
π/ω 0.70 0.84
2π/ω 0.70 0.80
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For the sake of completeness, we provide the data obtained
through a trajectory analysis in Table III.

V. CONCLUSIONS

We have presented numerical solutions describing multi-
photon pair production for oscillating, spatially inhomo-
geneous electric fields in the DHW formalism. Spatial
inhomogeneities introduce effective ponderomotive forces,
which directly affect the particle momentum distribution
and subsequently the total yield. Moreover, we have shown
that these forces can be understood via a generalized
effective mass concept.

With the aid of a semiclassical trajectory-based model,
we produced reference values to analyze our findings
regarding new phenomena connected with a finite spatial
pulse size: peak splitting and line broadening. As for the
first effect, we note that the peaks split due to strong
ponderomotive forces altering the particle momentum
spectrum. Line broadening happens because the particle
spectra properties which are characteristic for multiphoton
pair production erode, and instead of sharp lines one
obtains broad bunches.
In summary, we presented here further evidence for

how important it is to take spatial inhomogeneities of the
fields underlying pair production processes into account.
Therefore, further investigations aiming at an understand-
ing of matter creation from fields will at least have to
include spatial variations of the fields. Given sufficient
computational resources the DHW formalism can be
readily extended such that inhomogeneous magnetic fields
can be included. This would imply a major step towards
understanding multiphoton pair production in realistic
scenarios, further closing the gap between theory and
experiment.
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Skokov, and P. Lévai, Phys. Lett. B 749, 210 (2015).

[10] C. Kohlfürst and R. Alkofer, Phys. Lett. B 756, 371 (2016).
[11] A. Ringwald, Phys. Lett. B 510, 107 (2001).
[12] D. M. Wolkow, Z. Phys. 94, 250 (1935).
[13] I. I. Goldman, Phys. Lett. 8, 103 (1964); A. I. Nikishov and

V. I. Ritus, Sov. Phys. JETP 19, 529 (1964); T. W. B. Kibble,
Phys. Rev. 138, B740 (1965).

[14] T. W. B. Kibble, Phys. Rev. 150, 1060 (1966).
[15] R. A. Neville and F. Rohrlich, Phys. Rev. D 3, 1692 (1971).
[16] I. Y. Dodin and N. J. Fisch, Phys. Rev. E 77, 036402 (2008).
[17] T. Heinzl, A. Ilderton, and M. Marklund, Phys. Lett. B 692,

250 (2010).
[18] M. Lavelle and D. McMullan, Phys. Rev. D 91, 105022

(2015).
[19] Z. Huang and K.-J. Kim, Phys. Rev. ST Accel. Beams 10,

034801 (2007); B. W. J. McNeil and N. R. Thompson, Nat.
Photonics 4, 814 (2010).

[20] C. Kohlfürst, H. Gies, and R. Alkofer, Phys. Rev. Lett. 112,
050402 (2014).

[21] Z. L. Li, D. Lu, and B. S. Xie, Phys. Rev. D 92, 085001
(2015).

[22] D. Bauer, P. Mulser, and W. H. Steeb, Phys. Rev. Lett. 75,
4622 (1995).

[23] C. Kohlfürst, Ph.D. Thesis, University of Graz, 2015.
[24] D. Vasak, M. Gyulassy, and H. T. Elze, Ann. Phys. (N.Y.)

173, 462 (1987); I. Bialynicki-Birula, P. Górnicki, and J.
Rafelski, Phys. Rev. D 44, 1825 (1991); F. Hebenstreit, R.
Alkofer, and H. Gies, Phys. Rev. D 82, 105026 (2010); F.
Hebenstreit, R. Alkofer, and H. Gies, Phys. Rev. Lett. 107,
180403 (2011); F. Hebenstreit, Ph.D. Thesis, University of
Graz, 2011.

[25] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover
Books on Mathematics (Dover, New York, 2001).

[26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C++ (Cambridge Univer-
sity Press, Cambridge, England, 2007).

[27] V. B. Krapchev, Phys. Rev. Lett. 42, 497 (1979); W. M.
Manheimer, Phys. Fluids 28, 1569 (1985).

[28] F. Mackenroth and A. Di Piazza, Phys. Rev. A 83, 032106
(2011); F. Mackenroth and A. Di Piazza, Phys. Rev. A 85,
046102 (2012).

[29] T. W. B. Kibble, A. Salam, and J. A. Strathdee, Nucl. Phys.
B96, 255 (1975); C. Harvey, T. Heinzl, A. Ilderton, and M.
Marklund, Phys. Rev. Lett. 109, 100402 (2012).

[30] A. Otto, D. Seipt, D. Blaschke, B. Kämpfer, and S. A.
Smolyansky, Phys. Lett. B 740, 335 (2015).

[31] E. Brezin and C. Itzykson, Phys. Rev. D 2, 1191 (1970);
V. S. Popov, Zh. Eksp. Teor. Fiz. 63, 1586 (1972) [Sov.
Phys. JETP 36, 840 (1973)]; N. B. Delone and V. P. Krainov,
Multiphoton Processes in Atoms (Springer, Berlin, 1994);
R. Kopold, W. Becker, M. Kleber, and G. G. Paulus, J. Phys.
B 35, 217 (2002).

[32] S. A. Smolyansky, G. Ropke, S. M. Schmidt, D. Blaschke,
V. D. Toneev, and A. V. Prozorkevich, arXiv:hep-ph/
9712377; Y. Kluger, E. Mottola, and J. M. Eisenberg, Phys.
Rev. D 58, 125015 (1998); S. M. Schmidt, D. Blaschke,
G. Ropke, S. A. Smolyansky, A. V. Prozorkevich, and V. D.
Toneev, Int. J. Mod. Phys. E 07, 709 (1998); J. C. R. Bloch,
V. A. Mizerny, A. V. Prozorkevich, C. D. Roberts, S. M.
Schmidt, S. A. Smolyansky, and D. V. Vinnik, Phys. Rev. D
60, 116011 (1999).

[33] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993); G. G.
Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold,
and W. Becker, Phys. Rev. Lett. 84, 3791 (2000); J. Liu,
Classical Trajectory Perspective of Atomic Ionization in
Strong Laser Fields: Semiclassical Modeling, Springer
Briefs in Physics (Springer, Berlin, 2014).

[34] T. Nousch, D. Seipt, B. Kämpfer, and A. I. Titov, Phys. Lett.
B 755, 162 (2016).

[35] Ph. A. Korneev, S. V. Popruzhenko, S. P. Goreslavski, T.-M.
Yan, D. Bauer, W. Becker, M. Kübel, M. F. Kling, C. Rödel,
M. Wünsche, and G. G. Paulus, Phys. Rev. Lett. 108,
223601 (2012).

PONDEROMOTIVE EFFECTS IN MULTIPHOTON PAIR … PHYS. REV. D 97, 036026 (2018)

036026-9

https://doi.org/10.1103/PhysRevD.96.076006
https://doi.org/10.1103/PhysRevD.96.076006
http://arXiv.org/abs/1708.08920
https://doi.org/10.1103/PhysRevLett.107.180403
https://doi.org/10.1103/PhysRevLett.107.180403
https://doi.org/10.1103/PhysRevD.75.045013
https://doi.org/10.1103/PhysRevD.78.025011
https://doi.org/10.1103/PhysRevD.78.025011
https://doi.org/10.1103/PhysRevLett.102.080402
https://doi.org/10.1103/PhysRevLett.102.080402
https://doi.org/10.1016/j.physletb.2010.06.021
https://doi.org/10.1016/j.physletb.2010.06.021
https://doi.org/10.1103/PhysRevD.87.105006
https://doi.org/10.1016/j.physletb.2015.07.074
https://doi.org/10.1016/j.physletb.2016.03.027
https://doi.org/10.1016/S0370-2693(01)00496-8
https://doi.org/10.1007/BF01331022
https://doi.org/10.1016/0031-9163(64)90728-0
https://doi.org/10.1103/PhysRev.138.B740
https://doi.org/10.1103/PhysRev.150.1060
https://doi.org/10.1103/PhysRevD.3.1692
https://doi.org/10.1103/PhysRevE.77.036402
https://doi.org/10.1016/j.physletb.2010.07.044
https://doi.org/10.1016/j.physletb.2010.07.044
https://doi.org/10.1103/PhysRevD.91.105022
https://doi.org/10.1103/PhysRevD.91.105022
https://doi.org/10.1103/PhysRevSTAB.10.034801
https://doi.org/10.1103/PhysRevSTAB.10.034801
https://doi.org/10.1038/nphoton.2010.239
https://doi.org/10.1038/nphoton.2010.239
https://doi.org/10.1103/PhysRevLett.112.050402
https://doi.org/10.1103/PhysRevLett.112.050402
https://doi.org/10.1103/PhysRevD.92.085001
https://doi.org/10.1103/PhysRevD.92.085001
https://doi.org/10.1103/PhysRevLett.75.4622
https://doi.org/10.1103/PhysRevLett.75.4622
https://doi.org/10.1016/0003-4916(87)90169-2
https://doi.org/10.1016/0003-4916(87)90169-2
https://doi.org/10.1103/PhysRevD.44.1825
https://doi.org/10.1103/PhysRevD.82.105026
https://doi.org/10.1103/PhysRevLett.107.180403
https://doi.org/10.1103/PhysRevLett.107.180403
https://doi.org/10.1103/PhysRevLett.42.497
https://doi.org/10.1063/1.864943
https://doi.org/10.1103/PhysRevA.83.032106
https://doi.org/10.1103/PhysRevA.83.032106
https://doi.org/10.1103/PhysRevA.85.046102
https://doi.org/10.1103/PhysRevA.85.046102
https://doi.org/10.1016/0550-3213(75)90581-7
https://doi.org/10.1016/0550-3213(75)90581-7
https://doi.org/10.1103/PhysRevLett.109.100402
https://doi.org/10.1016/j.physletb.2014.12.010
https://doi.org/10.1103/PhysRevD.2.1191
https://doi.org/10.1088/0953-4075/35/2/302
https://doi.org/10.1088/0953-4075/35/2/302
http://arXiv.org/abs/hep-ph/9712377
http://arXiv.org/abs/hep-ph/9712377
https://doi.org/10.1103/PhysRevD.58.125015
https://doi.org/10.1103/PhysRevD.58.125015
https://doi.org/10.1142/S0218301398000403
https://doi.org/10.1103/PhysRevD.60.116011
https://doi.org/10.1103/PhysRevD.60.116011
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.84.3791
https://doi.org/10.1016/j.physletb.2016.01.062
https://doi.org/10.1016/j.physletb.2016.01.062
https://doi.org/10.1103/PhysRevLett.108.223601
https://doi.org/10.1103/PhysRevLett.108.223601

