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We study the trident process in inhomogeneous plane-wave background fields. We obtain compact
analytical expressions for all terms in the probability, including the exchange part, for an arbitrarily shaped
plane wave. We evaluate the probability numerically using complex deformation of light-front time
integrals and derive various analytical approximations. Our results provide insights into the importance of
the one-step and exchange parts of the probability relative to the two-step process, and into the convergence
to the locally constant field approximation.
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I. INTRODUCTION

Trident pair production in electromagnetic background
fields, e− → 2e− þ eþ, is a basic process in electron-laser
collisions. It was first studied in detail in the 1970s for
constant crossed fields in Refs. [1,2] before the advent of
high-intensity lasers (see Ref. [3] for a review of the
development of such lasers). Trident, or at least part of
it, was explored in a famous experiment at SLAC [4] in the
late 1990s, with a laser of still modest intensity. At that
time, complete theoretical predictions for the trident
process were still lacking. Since then, the available laser
intensities have increased by a couple of orders of magni-
tude, but on the theory side the situation has been improved
thanks to only a few publications [5–7]. The importance of
the trident process in high-intensity laser processes there-
fore motivates further investigations; see also Ref. [8].
One part of the trident process is a two-step process

where the initial electron emits a real photon that sub-
sequently decays into an electron-positron pair, i.e.,
nonlinear Compton scattering followed by nonlinear
Breit-Wheeler pair production, and its contribution is
given by incoherently gluing together the two correspond-
ing rates; see Refs. [5,9]. For a recent comprehensive
analysis of the two-step process, see Ref. [10]. One of the

main questions for the trident process is under what
conditions this two-step process is a good approximation
for the total trident process. In the experiment at SLAC
[4], corrections to the two-step part were estimated
using the Weizsäcker-Williams approximation, and in
that parameter regime they were found to be negligible
compared to the two-step process.1 Further, the two-step
process is expected to dominate for sufficiently large
a0 ¼ eE=ðmωÞ, where E is the field strength and ω is the
frequency of the field. This is important for particle-in-cell
codes (see Ref. [11] for a review) where higher-order
processes, e.g., cascades, are described as a sequence of
first-order processes. We study here in more detail when
corrections to the two-step process can be important.
The trident amplitude has two terms due to the exchange

between the identical particles in the final state, and the
absolute square of the amplitude gives a cross term which is
referred to as the exchange part of the probability.
In Refs. [1,2] the direct or nonexchange part of the
probability was obtained from the imaginary part of a loop
diagram, i.e., using the optical theorem. The direct part is
expected to dominate, e.g., for χ ¼ a0b0 ≫ 1, where
b0 ¼ kp=m2 is the product of a characteristic wave vector
of the laser, kμ, and the initial momentum of the incoming
electron, pμ. Much less is known about the exchange part.
Here we will calculate both the direct and exchange parts in
order to investigate in more detail when the latter can be
important.
As in Refs. [5,6], we obtain the probability by calculat-

ing the amplitude using Volkov solutions for plane-wave
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backgrounds. In contrast to previous analytical studies
[1,2,5], we derive compact expressions for nonconstant
plane waves. While we recover the results of Refs. [1,2,5]
in the locally constant field limit, i.e., for a0 ≫ 1, our
results also allow us to see how this limit is approached
and to study regimes with a0 ∼ 1. In addition, our analytical
results offer a useful alternative starting point for numerical
investigations, compared to ones based on, e.g.,
Monte Carlo integration [7,8], as well as insights into
the analytical structure of the trident probability for
inhomogeneous fields.
Another difference compared to previous studies is that

we use the light-front formalism [12,13], which is par-
ticularly convenient when dealing with plane-wave back-
ground fields [14–16]. The light-front Hamiltonian has
both a “conventional” term, given by jA, and an “instan-
taneous” term. These two terms suggest another split of
the amplitude and the probability based on the light-front
Hamiltonian. As we will show, this light-front separation
is not the same as the standard one-step/two-step sepa-
ration as in Refs. [1,2,5] (though the total probability and
rate are obviously the same for both separations). While
we do not propose this light-front split as something to
replace the standard separation, we will show that it is
convenient from an analytical and computational point
of view.
The rest of this paper is organized as follows. In Sec. II

we describe the basic ingredients needed to calculate the
trident probability with the light-front formalism, and
compare this approach with the standard one. In Sec. III
we present compact analytical expressions for the trident
probability in a general inhomogeneous plane wave.
In Sec. IV we compare these expressions with the prob-
abilities for nonlinear Compton scattering and Breit-
Wheeler pair production, and in Sec. V we consider the
locally constant field (LCF) approximation and show how
the standard one- and two-step terms can be obtained from
our light-front expressions. In particular, we expand in
1=a0 ≪ 1 and recover literature results for the direct part.
We also calculate the exchange terms in this limit, which
are new results. In Sec. VI we go on to consider χ ≪ 1 and
a0 ≫ 1 but for nonconstant background fields. Then, in
Secs. VII and VIII we consider χ ≪ 1 but a0 ∼ 1 and obtain
simple analytical approximations for a pulse and a mono-
chromatic field. In Sec. X we explain how to numerically
integrate our results from Sec. III. In Sec. IX we consider
a0 ≫ 1 for up to moderately large χ and study the
importance of exchange terms. In Sec. XI we consider a
pulsed field and study the convergence to the LCF
approximation. We conclude in Sec. XII. In Appendix A
we recover known results for the perturbative limit, and in
Appendix C we show the agreement between our analytical
approximations and numerical results.
We use units with c ¼ 1 and ℏ ¼ 1, and measure

energies in terms of the electron mass such that m ¼ 1.

II. FORMALISM

We use light-front coordinates defined for an arbitrary
vector vμ by v� ¼ 2v∓ ¼ v0 � v3 and v⊥ ¼ fv1; v2g, for
coordinates x̄ ¼ fx−; x⊥g and for momenta p̄ ¼ fp−; p⊥g.
We consider an arbitrary pulsed plane-wave background
field given by fμν ¼ kμa0ν − kνa0μ, where kμ ¼ kþδþμ is a
null wave vector and a⊥ðkxÞ is an arbitrary function. We
absorb for convenience a factor of the electron charge into
the definition of the background field, i.e., eaμ → aμ.
Several of our results are conveniently expressed in terms
of the Lorentz momentum of an electron in a plane-wave
background, which is given by

πμ ¼ pμ − aμ þ
2ap − a2

2kp
kμ: ð1Þ

The initial state contains an electron with momentum pμ

and spin σ, and the final state contains two electrons with
pμ
1;2 and σ1;2 and a positron with pμ

3 and σ3. The trident
amplitude M is obtained from

h0jbðp1; σ1Þbðp2; σ2Þdðp3; σ3ÞUb†ðp; σÞj0i

≕
1

kþ
δ̄ðp1 þ p2 þ p3 − pÞM; ð2Þ

where U is the evolution operator and δ̄ð…Þ ¼
ð2πÞ3δ−;⊥ð…Þ. The mode operators are normalized
according to fbðq; rÞ; b̄ðq0; r0Þg ¼ fdðq; rÞ; d̄ðq0; r0Þg ¼
2p−δ̄ðq − q0Þδrr0 , and we use d ~p ¼ θðp−Þdp−d2p⊥=
ð2p−ð2πÞ3Þ to denote the Lorentz-invariant momentum
measure. The initial electron is described by a sharply
peaked wave packet fðpÞ,

jini ¼
Z

d ~pfðpÞb†ðpσÞj0i
Z

d ~pjfj2 ¼ 1; ð3Þ

where the last equation ensures that hinjini ¼ 1. The total
probability averaged over the initial spin is given by

P¼1

4

X
all spin

Z
d ~p1d ~p2d ~p3

����
Z

d ~pf
1

kþ
δ̄ðp1þp2þp3−pÞM

����2

¼1

4

X
all spin

1

kp

Z
d ~p1d ~p2

θðkp3Þ
kp3

jMj2; ð4Þ

where one factor of 1=2 comes from averaging over the
spin of the initial electron and another 1=2 is due to having
identical particles in the final state, and p̄3 ¼ p̄ − p̄1 − p̄2.
The total amplitude can be written as M ¼ M12 −M21,

whereM21 is obtained fromM12 by swapping the identical
particles, i.e., by replacing p1 ↔ p2 and σ1 ↔ σ2. This
leads to a separation of P into a direct and an exchange part,
jMj2 ¼ jM12j2 þ jM21j2 − 2ReM̄21M12, where the first two
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terms give the direct contribution and the third term gives
the exchange contribution, i.e.,

Pdir ¼
1

4

X
all spin

1

kp

Z
d ~p1d ~p2

θðkp3Þ
kp3

jM12j2 þ ð1 ↔ 2Þ

Pex ¼ −
1

2

X
all spin

1

kp

Z
d ~p1d ~p2

θðkp3Þ
kp3

ReM̄21M12; ð5Þ

where the second term in Pdir is obtained from the first by
replacing p1 ↔ p2 and σ1 ↔ σ2.

A. Light-front quantization

We have derived our results using two different
approaches. In both approaches the plane-wave back-
ground field is taken into account exactly using Volkov
solutions in the Furry picture. In the first approach we use
the combination of the Hamiltonian-based light-front
formalism [12,13] and plane-wave backgrounds [14–16].
The evolution in light-front time, xþ, is determined by the
light-front Hamiltonian, and the interaction part of this
Hamiltonian has three terms,

Hint¼
1

2

Z
dx̄ejAþe2

2
j−

1

ði∂−Þ2
j−þe2Ψ̄=A

γþ

4i∂−
=AΨ; ð6Þ

where the photon field is given by

AμðxÞ ¼
Z

d~laμe−ilx þ a†μeilx

½aμðlÞ; aνðl0Þ� ¼ −2l−δ̄ðl − l0ÞLμν

Lμν ¼ gμν −
kμlν þ lμkν

kl
; ð7Þ

the current is jμ ¼ Ψ̄γμΨ and the spinor field is expressed
in terms of Volkov solutions as

ΨðxÞ ¼
Z

d ~pKubφþ K̄vd†φ−

φ ¼ exp

�
−i
�
pxþ

Z
kx 2ap − a2

2kp

��

K ¼ 1þ =k=a
2kp

; ð8Þ

where φ− ¼ φð−pÞ and K̄ ¼ 1 − =k=a=ð2kpÞ. Note that all
of the momenta in these mode expansions for Aμ and Ψ are
on-shell. In particular, in this formalism all photons are on-
shell and so one cannot split the trident process into two
parts with one having on-shell and the other off-shell
intermediate photons. Only the first two terms in Eq. (6),

Hð1Þ
int and Hð2Þ

int , contribute to the trident process to lowest
order. The first term is familiar from ordinary quantization
and its contribution to the amplitude is given by a double
xþ integral with xþ ordering,

1

kþ
δ̄ðp1 þ p2 þ p3 − pÞM2

≔ −h0jbðp1Þbðp2Þdðp3Þ
Z

dxþ2 dx
þ
1 θðxþ2 − xþ1 Þ

×Hð1Þ
int ðxþ2 ÞHð1Þ

int ðxþ1 Þb†ðpÞj0i: ð9Þ
The second interaction term, sometimes referred to as
instantaneous [12,17], only involves one xþ integral and
is given by

1

kþ
δ̄ðp1 þ p2 þ p3 − pÞM1

≔ h0jbðp1Þbðp2Þdðp3Þð−iÞ
Z

dxþHð2Þ
int ðxþÞb†ðpÞj0i:

ð10Þ
After some calculation we find

M12
1 ¼ ie2

2kl2
ū
p2

=kv
p3

ū
p1

=ku
p

Z
dϕφ̄

p1

φ̄
p2

φ−
p3

φ
p

M12
2 ¼ −

e2

4kl

Z
dϕ2Lμνū K̄ φ̄|fflffl{zfflffl}

p2

γμK̄vφ−|fflffl{zfflffl}
p3

e−
ilþϕ2
kþ

×
Z

ϕ2

dϕ1ū K̄ φ̄|fflffl{zfflffl}
p1

γνKuφ|ffl{zffl}
p

e
ilþϕ1
kþ ; ð11Þ

where ϕ ¼ kx, l̄ ¼ p̄ − p̄1, and lþ ¼ l2⊥=4l−. To avoid
clutter we put the arguments below the function,
e.g., ū K̄ φ̄|fflffl{zfflffl}

p1

¼ ūðp1ÞK̄ðp1Þφ̄ðp1Þ.

B. Relation to standard approach

There are two main differences between the approach
just described and the standard approach: the former is a
Hamiltonian formalism in the light-front gauge. These two
approaches should of course give the same results, and we
will show this explicitly in this section. In the non-
Hamiltonian approach, the amplitude is given by (up to
an irrelevant overall phase)

1

kþ
δ̄ðp1 þ p2 þ p3 − pÞM12

¼ e2
Z

d4xd4yψ̄ðyÞ
p2

γνψ−ðyÞ
p3

Dνμðy − xÞψ̄ðxÞ
p1

γμψðxÞ
p

;

ð12Þ
where ψ ¼ Kuφ, ψ− ¼ K̄vφ−, and Dνμ is the photon
propagator

Dνμðy − xÞ ¼ i
Z

d4l
ð2πÞ4DνμðlÞ

e−ilðy−xÞ

l2 þ iϵ
: ð13Þ
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In the Feynman gauge Dνμ ¼ gνμ, and in the light-front
gauge Dνμ ¼ Lνμ (see Ref. [18] for a recent discussion of
the photon propagator in light-front gauge). Performing the
trivial integrals in Eq. (12) gives delta functions imply-
ing l̄ ¼ p̄ − p̄1.
To see that the two gauges give the same result,

consider the contributions from the lμ terms in Lνμ,
which involve ψ̄ðp1Þ=lψðpÞ and ψ̄ðp2Þ=lψ−ðp3Þ. Consider
first the part with p and p1. By writing lμ ≕
πμðp;ϕÞ − πμðp1;ϕÞ þ cðϕÞkμ and using K=p ¼ =πK,
we find ūK̄ðp1Þ=lKuðpÞ¼ūðp1Þ=kuðpÞcðϕÞ. Since the ϕ
dependence of the exponential is given by the integral of
cðϕÞ, we hence find a total derivative that vanishes upon
integrating over ϕ. The same holds for the part with p2 and
p3. Thus, Dνμ ¼ gνμ and Dνμ ¼ Lνμ give the same result.

The next step is to reproduce the amplitude obtained in
the previous section. By separating Lμν into on-shell and
off-shell parts, one finds (cf. Ref. [18])

Lμν ¼ Lμν

�
lþ ¼ l2⊥

4l−

�
−

l2

kl2
kμkν: ð14Þ

When performing the lþ integral in the propagator, the first
term in Eq. (14) gives a light-front time-ordering step
function θðϕy − ϕxÞ, which one also finds in the Feynman
gauge (see Appendix B), while the second term in Eq. (14)
gives an “instantaneous” δðϕy − ϕxÞ, which does not
appear in the Feynman gauge. (See Ref. [19] for a similar
separation of the fermion propagator.) We hence find

M12 ¼ −iπα
Z

dϕxdϕy

�
1

kl
Lνμθðϕy − ϕxÞ −

2i
kl2

kνkμδðϕy − ϕxÞ
	
e−

ilþ
kþðϕy−ϕxÞψ̄

p2

γνψ−
p3

zfflfflffl}|fflfflffl{ϕy

ψ̄
p1

γμψ
p

zfflffl}|fflffl{ϕx

≕M12
2 þM12

1 ; ð15Þ

where the photon momentum is now on-shell, i.e.,
lþ ¼ l2⊥=ð4l−Þ. Because of Eq. (14), Eq. (15) contains
two terms that are equivalent to one term in the Feynman
gauge [compare Eq. (15) with Eq. (B1)], as illustrated in
Fig. 1. In Eq. (15)we have the sameM1 andM2 as in Eq. (11)
(up to an irrelevant overall phase), which we obtained using
the light-front Hamiltonian formalism. In particular, the step-
function term in Eq. (15) agrees with the term that comes

fromHð1Þ
intH

ð1Þ
int , and the delta function term (15) corresponds

to the instantaneous part of the light-front Hamiltonian,Hð2Þ
int .

While Eqs. (B1) and (15) give the same amplitude, the light-
front separation of M12 as in Eq. (15) can be convenient
because of the vector structure of the two individual
components, M12

1 and M12
2 ; we have, for example, Lμνkν ¼

Lμνlν ¼ 0 and =kK ¼ =k.
Thus, in addition to the direct/exchange separation of the

amplitude,M ¼ M12 −M21, we now separate each of these
into a “three-point vertex” and a “light-front instantaneous”
part, M12 ¼ M12

1 þM12
2 . This leads to six different con-

tributions to the probability,

fP11
dir;P

12
dir;P

22
dirg ≔

1

4

X
all spin

1

kp

Z
d ~p1d ~p2

θðkp3Þ
kp3

fjM12
1 j2; 2ReM̄12

1 M12
2 ; jM12

2 j2g þ ð1 ↔ 2Þ; ð16Þ

fP11
ex ;P12

ex ;P22
exg ≔ −

1

2

X
all spin

1

kp

Z
d ~p1d ~p2

θðkp3Þ
kp3

RefM̄21
1 M12

1 ; M̄21
1 M12

2 þ ð1 ↔ 2Þ; M̄21
2 M12

2 g: ð17Þ

FIG. 1. This figure is an illustration of the light-front separation of the trident amplitude. The diagram on the left represents the
Feynman gauge [as in Eq. (B1)] and the two diagrams on the right represent the two light-front terms in Eq. (15). Note that these
diagrams represent terms in the amplitude after performing the photon-momentum integrals in the photon propagator, so the photon
momentum lμ in these diagrams is on-shell. This is why the third diagram appears. The line through the photon line in the third diagram
stands for an “instantaneous photon” [12].
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The sum of these six terms gives the total probability. Given
that M1 comes from a term in the light-front Hamiltonian
that is usually referred to as instantaneous, it might be
tempting to associate the corresponding terms in the
probability with what one would usually call one-step
terms. However, as we will show, all of the terms listed in
Eqs. (16) and (17) contribute to the standard one-step term,
and in fact “most” of the standard one-step term comes
from P22 (which also contains the entire standard two-step
term).

III. EXACT ANALYTICAL RESULTS

Rather than keeping the dependence on all of the
particle parameters, we content ourselves with the depend-
ence on the longitudinal momenta, which we denote as
si ¼ kpi=kp. The integrals over the transverse momentum
components of the final electrons, p1;⊥ and p2;⊥, are
Gaussian. We perform these integrals as well as the traces
(coming from the spin summations) analytically for arbi-
trary pulsed plane-wave backgrounds. The resulting
expressions contain integrals over the longitudinal
momenta plus integrals over light-front time. We use the
following notation for the probability density:

P ¼
Z

1

0

ds1ds2θðs3ÞPðsÞ; ð18Þ

where s3 ¼ 1 − s1 − s2. To make the symmetries in the
following expressions manifest, we introduce s0 ¼ 1 in the
appropriate places.
For the terms coming from the square of the “instanta-

neous” part of the amplitude, jM1j2, we find

fP11
dirðsÞ;P11

exðsÞg ¼ α2

π2

Z
dϕ12

�
1

q41
þ 1

q42
;−

1

q21q
2
2

�

×
−s0s1s2s3
ðθ21 þ iϵÞ2 exp

�
i

2b0
ðr1 þ r2ÞΘ21

�
;

ð19Þ

where b0 ¼ kp, r1 ≔ 1
s1
− 1

s0
, r2 ≔ 1

s2
þ 1

s3
, qi ≔ 1 − si,

dϕ12 ≔ dϕ1dϕ2, θij ≔ ϕi − ϕj, Θij ≔ θijM2
ij, and M is

an “effective mass” defined via the light-front time average
of the field as [20]

M2
ij ≔ hπi2ij ¼ 1þ ha2iij − hai2ij;

hFiij ≔
1

θij

Z
ϕi

ϕj

dϕFðϕÞ; ð20Þ

where πμ is given by Eq. (1). These shorthand notations are
very convenient for the more complicated terms below.
To make the transverse momentum integrals converge, we
have introduced an infinitesimal convergence factor
ϵ > 0 viaϕ2 → ϕ2 þ iϵ=2 and ϕ1 → ϕ1 − iϵ=2, which after
performing the momentum integrals gives an iϵ prescription
for how to integrate around the singularity at θ21 ¼ 0.
Next we consider the cross terms between the “light-

front instantaneous” and the “three-point vertex” parts of
the amplitude. To make the momentum integrals for P12

converge, we similarly take ϕ2 → ϕ2 þ iϵ=2 and
ϕ1;3 → ϕ1;3 − iϵ=2. We find

P12
dirðsÞ¼Rei

α2

4π2b0

Z
dϕ123θðθ31Þ

ðs0þ s1Þðs2− s3ÞD12

q31ðθ21þ iϵÞðθ23þ iϵÞ

×exp

�
i

2b0
½r1Θ21þ r2Θ23�

�
þðs1↔ s2Þ; ð21Þ

P12
exðsÞ¼Re

−iα2

4π2b0

Z
dϕ123θðθ31Þ

q21þ½s0s2−s1s3�D12

q1q22ðθ21þ iϵÞðθ23þ iϵÞ

×exp

�
i

2b0
½r1Θ21þ r2Θ23�

�
þðs1 ↔ s2Þ; ð22Þ

where D12 ¼ Δ12 · Δ32 and

Δij ≔ aðϕiÞ − haiij: ð23Þ

It turns out that the background field only enters the
preexponential factors and the exponentials via Δij and
M2

ij, respectively; no other field combinations are needed.

For the direct part of the square of the “three-point vertex” amplitude we find

P22
dirðsÞ ¼ −

α2

8π2b20

Z
dϕ1234

θðθ31Þθðθ42Þ
q21θ21θ43

exp

�
i

2b0
ðr1Θ21 þ r2Θ43Þ

��
κ01κ23
4

W1234 þW1324 þW1423

þ
�
κ01
2

�
2ib0
r1θ21

þ 1þD1

�
− 1

	�
κ23
2

�
2ib0
r2θ43

þ 1þD2

�
þ 1

	
−D1D2

�
þ ðs1 ↔ s2Þ; ð24Þ

where κij ¼ ðsi=sjÞ þ ðsj=siÞ, D1 ¼ Δ12 · Δ21, D2 ¼ Δ34 · Δ43, and
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Wijkl ≔ ðwi × wjÞ · ðwk × wlÞ
¼ ðwi · wkÞðwj · wlÞ − ðwi · wlÞðwj · wkÞ; ð25Þ

where w1 ¼ Δ12, w2 ¼ Δ21, w3 ¼ Δ34, and w4 ¼ Δ43.
Note that Wijkl ¼ 0 for linear polarization.
These terms have some symmetries that can be under-

stood in terms of the probability diagrams in Fig. 2. Let
P22
dirðsÞ ¼ P22

dirðs1; s2Þ þ P22
dirðs2; s1Þ, where P22

dirðs1; s2Þ is
everything before the (s1 ↔ s2) term in Eq. (24).
P22
dirðs1; s2Þ is invariant under fs0 ↔ −s1g as well as

fs2 ↔ s3g, which correspond to reflection of one or the
other of the two fermion loops in the P22

dir diagram in Fig. 2.
The integrand of P22

dirðs1; s2Þ, apart from θðθ31Þθðθ42Þ, is
also invariant under a total reflection and a 180-degree
rotation, i.e., under fϕ1↔ϕ3;ϕ2↔ϕ4;s0↔−s3;s1 ↔ s2;
q1→−q1g and fϕ1 ↔ ϕ4;ϕ2 ↔ ϕ3; s0 ↔ s2; s1 ↔ −s3g.
For P12

dirðs1; s2Þ, which is everything before the (s1 ↔ s2)
term in Eq. (21), we find similar symmetries, except that
P12
dirðs1; s2Þ changes sign under fs0 ↔ −s1g as well as

fs2 ↔ s3g, which implies that after integrating over the
longitudinal momenta we find P12

dir ¼ 0. Under a reflection
of the P12 diagram in Fig. 2, i.e., under fϕ1 ↔ ϕ3;
s1 ↔ s2; s0 ↔ −s3; q1 → −q1; q2 → −q2g, P12

dirðs1; s2Þ is
invariant except for θðθ31Þ → −θð−θ31Þ. The correspond-
ing exchange term, P12

exchðs1; s2Þ, is invariant under the
same reflection with the same change of the step function.
P12
exchðs1; s2Þ is also invariant under fs0 ↔ −s1; s2 ↔ s3g,

but not under fs0 ↔ −s1g and fs2 ↔ s3g separately. The
direct and exchange terms of P11 have similar symmetries.
Only P12

dir ¼ 0, so for the total/integrated probability we
have five nonzero terms.
These types of symmetry considerations are particularly

useful for the exchange part of the square of the
“three-point vertex” amplitude, which is the most compli-
cated term. After some lengthy calculation we eventually
find

P22
exðsÞ ¼

α2

16π2b20

Z
dϕ1234

θðθ42Þθðθ31Þ
s0s1s2s3d0

×

�
F0 þ f0 −

2ib0
d0

ðf1 þ z1Þ þ
�
2b0
d0

	
2

z2

�

× exp

�
i

2b0

q1q2
s0s1s2s3d0

�
θ41θ23

�
Θ41

s1
þ Θ23

s2

	

þ θ43θ21

�
Θ43

s3
−
Θ21

s0

	
þ θ31θ42

�
Θ31

q2
−
Θ42

q1

	��
;

ð26Þ

where the various quantities are defined as follows.
All of the field-dependent parts of the prefactor are
expressed in terms of the four combinations di, i ¼ 1;…; 4,
where

d1 ¼
1

d0

�
θ23
s2

θ41
s1

Δ14 þ
θ21
s0

θ43
s3

Δ12 þ
θ42θ23
s2s3

½Δ24 − Δ23�
�
;

d0 ¼
θ23
s2

θ41
s1

þ θ21
s0

θ43
s3

: ð27Þ

Here we can really see the benefit of introducing s0: before
setting s0 ¼ 1 and s3 ¼ 1 − s1 − s2, we can obtain the
other three di by cyclic permutations of d1 as follows.
We first define a permutation according to

P½F � ≔ F ðϕ1 → ϕ2 → ϕ3 → ϕ4 → ϕ1;

s1 → −s0 → s2 → s3 → s1Þ; ð28Þ

which corresponds to a 90-degree counterclockwise rota-
tion of the P22

ex diagram in Fig. 2, followed by a change
of sign of all of the si. Under this permutation we
also have Pfq1; q2g ¼ fq2;−q1g.2 After performing the

FIG. 2. These are diagrams on the probability level and show the momentum flow between the vertices. Black, solid lines represent
fermions and red, wavy lines represent photons.

2This follows either directly from the P22
ex diagram in Fig. 2, or

from Eq. (28) by writing q1 ¼ ðs0 − s1 þ s2 þ s3Þ=2 and
q2 ¼ ðs0 − s2 þ s1 þ s3Þ=2).
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permutation we can again set s0 ¼ 1 and s3 ¼ 1 − s1 − s2.
For example, P½d0� ¼ −d0. With this permutation we find

d2 ¼ P½d1� d3 ¼ P½d2�
d4 ¼ P½d3� d1 ¼ P½d4�: ð29Þ

Now, the first term in the prefactor of Eq. (26) is quartic in
the field,

F0 ¼ ð1þPÞκ03½ðd1 · d3Þðd2 · d4Þ þ ðd1 × d3Þ · ðd2 × d4Þ�;
ð30Þ

where the second term in the square brackets vanishes
for linear polarization [cf. Eq. (25)] and can also be
written as

ðd1 · d2Þðd3 · d4Þ − ðd1 · d4Þðd3 · d2Þ: ð31Þ

The next two terms in Eq. (26) are quadratic in the
field,

f0¼ð1þPÞ 1

s0s1s2s3
ðs1q2d1−s2q1d2Þ ·ðs2q2d3−s1q1d4Þ;

f1¼−ð1þPþP2þP3Þκ03
θ21
s0

d2 ·d1

þð1þPÞðκ03−κ12Þ
θ42
q1

d4 ·d2; ð32Þ

and the last two terms in Eq. (26) do not contain the field,

z1 ¼ ð1þ Pþ P2 þ P3Þ −q21
s0s1q2

�
3þ s2s3

s0s1

�
ϕ1

z2 ¼ ð1þ PÞκ03
�
θ43
s3

θ21
s0

þ θ31
q2

θ42
q1

�
: ð33Þ

The permutation in Eq. (28) is a symmetry of the integrand
in the following sense. We have PfF0; f0; f1; z1; z2g ¼
fF0; f0; f1; z1; z2g and for the exponential in Eq. (26)
we have P½expði…Þ� ¼ expð−i…Þ. [Note that the
exponent in Eq. (26) reduces to that in Eqs. (21) and
(22) for ϕ4 ¼ ϕ2.] Let I be the integrand in Eq. (26)
without the step functions; then, P½I � ¼ −I�, but the
step functions are different for each of the four permuta-
tions. We also have a reflection symmetry: R½F � ¼
F ðs1 ↔ s2;ϕ1 ↔ ϕ2;ϕ3 ↔ ϕ4Þ. We have R½I � ¼ I�
and R leaves the step functions unchanged, so the integral
(26) is invariant under R.

IV. TWO-STEP AND ONE-STEP

In this section we will show how the above results are
related to the two individual processes of nonlinear
Compton scattering followed by nonlinear Breit-Wheeler
pair production. We first express the corresponding prob-
abilities in a similar way as the expressions for the trident
process above. We assume here a linearly polarized field
and an emitted photon with momentum lμ and polarization
vector ϵ⊥ ¼ ðcos ϑ; sin ϑÞ, ϵþ ¼ ϵ⊥l⊥=ð2l−Þ, ϵ− ¼ 0 (so
lϵ ¼ kϵ ¼ 0). Averaging and summing over the spins of the
incoming and outgoing electrons, respectively, gives us

PC ¼ iα
4πb0

Z
1

0

ds1

Z
dϕ1dϕ2

1

θ12

�
κ01
2

�
2ib0
r1θ21

þ 1þD1

�
− 1þ cosð2ϑÞD1

�
exp

�
ir1
2b0

Θ21

�
; ð34Þ

where the iϵ prescription, θ21 þ iϵ, is left implicit. For pair production by the emitted photon we find after summing over the
spins of the electron-positron pair

PBW ¼ iα
2πb0

Z
q1

0

ds2

Z
dϕ3dϕ4

1

q21θ43

�
κ23
2

�
2ib0
r2θ43

þ 1þD2

�
þ 1 − cosð2ϑÞD2

�
exp

�
ir2
2b0

Θ43

�
; ð35Þ

where, again, the singularity is avoided with θ43 þ iϵ. While Eqs. (34) and (35) are already suitable for comparing with our
expressions above for the trident process, by performing partial integration for the terms proportional to 1=θ2 we obtain
simpler expressions,

PC ¼ −
iα

4πb0

Z
1

0

ds1

Z
dϕ1dϕ2

1

θ12

�
1þ κ01

4
½aðϕ2Þ − aðϕ1Þ�2 − cosð2ϑÞD1

�
exp

�
ir1
2b0

Θ21

�
; ð36Þ

and

PBW ¼ iα
2πb0

Z
q1

0

ds2

Z
dϕ3dϕ4

1

q21θ43

�
1 −

κ23
4

½aðϕ4Þ − aðϕ3Þ�2 − cosð2ϑÞD2

�
exp

�
ir2
2b0

Θ43

�
: ð37Þ

By summing Eq. (36) over two orthogonal photon polarization vectors, we recover Eq. (3) of Ref. [21]. The reason it might
not be convenient to perform similar partial integration for, e.g., Eq. (24), is that there are step functions in Eq. (24) that
would then generate nonvanishing boundary terms.
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For a constant field, these two expressions reduce to
Eqs. (22) and (26) of Ref. [22] (up to some overall
constants due to the difference between probabilities and
rates, and ordinary and light-front volume factors). Without
worrying too much about the formation length for the
nonconstant fields we consider, we follow the procedure for
constant fields [5] and glue together the probabilities for
nonlinear Compton scattering and Breit-Wheeler pair
production and compare the result to the trident probability.
By adding the probabilities (34) and (35) for parallel
and perpendicular polarization, i.e., PCPBWðϑ ¼ 0Þ þ
PCPBWðϑ ¼ π=2Þ, and symmetrizing with respect to
s1 ↔ s2 we find an expression that is identical to our
P22
dir except for the step functions in Eq. (24).
In the product approach one would also include a step

function associated with causality. We are therefore lead to
inserting θðσ43 − σ21Þ, where σij ¼ ðϕi þ ϕjÞ=2. While
this step function only restricts the averages of the ϕ
variables associated with photon emission and pair pro-
duction, in the LCF regime we recover the results of
Ref. [5], which we will show in the next section. So, to
separate the one-step and two-step parts of Eq. (24) we
rewrite the step functions there as

θðθ42Þθðθ31Þ

¼ θðσ43 − σ21Þ
�
1 − θ

�jθ43 − θ21j
2

− ½σ43 − σ21�
��

;

ð38Þ

and separate Eq. (24) as P22
dir ¼ P22→2

dir þ P22→1
dir , where

P22→2
dir and P22→1

dir are obtained by replacing θðθ42Þθðθ31Þ
in Eq. (24) with the first and second term in Eq. (38),
respectively. Thus, we separate the total probability as
P ¼ P2 þ P1, where

P2ðsÞ ≔
Z

dσ21dσ43θðσ43 − σ21ÞR2ðσ21; σ43; sÞ

≔ P22→2
dir ðsÞ;

P1ðsÞ ≔
Z

dϕR1ðϕ; sÞ ≔ ðP11 þ P12 þ P22
ex þ P22→1

dir ÞðsÞ:

ð39Þ

Wewill refer to R1;2 as rates. All six of the light-front terms
contribute to R1ðsÞ, though P12

dir gives zero contribution
after integrating over the longitudinal momenta. The two-
step rate can be obtained from the probabilities of nonlinear
Compton scattering and Breit-Wheeler pair production as

R2 ¼
X
ϑ¼0;π

2

RCðσ21ÞRBWðσ43Þ;
Z

dσ21RCðσ21Þ ≔ ð34Þ;
Z

dσ43RBWðσ43Þ ≔ ð35Þ: ð40Þ

The argument of R1ðϕÞ is ϕ ¼ ðϕ1 þ ϕ2 þ ϕ3 þ ϕ4Þ=4
with ϕ4 ¼ ϕ2 for P12 and fϕ4 ¼ ϕ2;ϕ3 ¼ ϕ1g for P11.
Because of the scaling of these rates, it is natural to consider
instead

R1 ≔ b0R1; R2 ≔ b20R2; ð41Þ

which can be seen as the rates corresponding to the proper
time τ, as in a plane wave it is simply related to light-front
time via ϕ ¼ kx ¼ kpτ ¼ b0τ. While we have motivated
the definition of P2 with its relation to the product of PC
and PBW, the separation P ¼ P2 þ P1 might still seem
ambiguous (see also the discussion in Ref. [23]). However,
we will provide further motivation for the separation (39)
by making an expansion in 1=a0. In particular, the two
leading orders agree with literature results for constant
fields.

V. a0 ≫ 1 AND THE LOCALLY CONSTANT
FIELD APPROXIMATION

As mentioned, P22 should not be confused with the
standard two-step part obtained by gluing together the rates
of nonlinear Compton scattering and Breit-Wheeler pair
production as described, e.g., in Ref. [5]. Indeed, P22

contributes to both P2 and P1 in Eq. (39) and we will show
in this section that it is P2 and P1 that to leading order
correspond to the standard two-step and one-step parts,
respectively. To do so we consider a linearly polarized field
aðϕÞ ¼ a0fðϕÞ, where the maxima of f and f0 are around
unity, with a0 ≫ 1 and make an expansion in 1=a0. As is
well known, this limit takes us to the LCF approximation,
for which there are analytical results in the literature to
compare with. However, since we do not treat the back-
ground as constant from the start, our approach also allows
us to obtain corrections to the leading order and we can
avoid (very large) volume factors. We expand the proba-
bility in 1=a0 as

P ¼ a20P2 þ a0P1 þ P0 þ � � � ð42Þ

where, as wewill demonstrate below, P2 and P1 correspond
to a two-step and a one-step term, respectively. Each term in
this expansion is a nontrivial function of χ, which is treated
as independent of a0 in this expansion. Since a0 ¼ E=ω the
expansion in a0 is a derivative expansion. The higher orders
are usually not considered in the literature, but can be
obtained with this approach. In order to provide further
motivation for the separation (39) it is important to note that
P2 ¼ a20P2 þOða00Þ, so only P2 contributes to a20P2 and
only P1 contributes to a0P1. In other words, the next-to-
leading-order correction to P2 does not mix with the
leading order of P1.
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A. Two-step

We begin with the two-step part, P2 ¼ a20P2 þOða00Þ.
We change variables to σ43, θ43, σ21, and θ21. In order to
expand in 1=a0 we rescale θ21 → θ21=a0 and θ43 → θ43=a0.
To leading order, the entire θ integral can be performed and
expressed in terms of Airy functions. We find (note that
a0=χ ¼ 1=b0)

a20P2ðsÞ ¼ −
a20α

2

χ2q21

Z
dσ43dσ21θðσ43 − σ21Þ

×

��
Ai1ðξ1Þ þ κ01

Ai0ðξ1Þ
ξ1

�

×

�
Ai1ðξ2Þ − κ23

Ai0ðξ2Þ
ξ2

�
þ Ai0ðξ1Þ

ξ1

Ai0ðξ2Þ
ξ2

�
;

ð43Þ

where the arguments are given by ξ1 ¼ ½r1=χðσ21Þ�23 and
ξ2 ¼ ½r2=χðσ43Þ�23, where χðσÞ ¼ χjf0ðσÞj is the local value
of χ, and the Airy integral is defined as in Ref. [5],

Ai1ðξÞ ≔
Z

∞

ξ
dvAiðvÞ: ð44Þ

a20P2 in Eq. (43) is the natural generalization of, e.g.,
Eqs. (16) and (17) of Ref. [5] to nonconstant fields. In
Ref. [5] the trident probability was calculated for a constant
field, and the term quadratic in the volume Δϕ was shown
to be equal to what one obtains by gluing together the rates
for nonlinear Compton scattering and Breit-Wheeler pair
production. In Ref. [5] it was also explained how this
product approach is generalized to the LCF approximation.
Our Eq. (43) is in fact equal to the LCF expression given in
Ref. [5]. To see this, we rewrite Eq. (43) as

a20P2ðsÞ ¼
Z

dσ43dσ21θðσ43 − σ21Þ
1

2

X
λ¼�1

−α
b0

×

�
Ai1ðξ1Þ þ ½λþ κ01�

Ai0ðξ1Þ
ξ1

�
α

b0q21

×

�
Ai1ðξ2Þ þ ½λ − κ23�

Ai0ðξ2Þ
ξ2

�
; ð45Þ

where the first and second factors correspond to nonlinear
Compton scattering and Breit-Wheeler pair production,
respectively, and the sum is over the photon polarization;
these two factors are equal to Eq. (20) of Ref. [5] but
evaluated at two different ϕ, as in Eq. (33) of Ref. [5]. This
agreement is of course not a surprise given that we have
already shown that P2 can be expressed as Eq. (40) for
nonconstant fields and without expanding in 1=a0. Note
that b20ð43Þ only depends on the field via χðσ21Þ and χðσ43Þ,
which is why it is natural in the LCF regime to consider the
proper-time rates as defined in Eq. (41).
Here we are mostly interested in regions of parameter

space where one has important contributions from one-step
terms, to which we now turn.

B. One-step

Next we consider P1 in Eq. (39). All six light-front terms
in Eqs. (16) and (17) contribute to P1 (P22

dir via P
22→1
dir ) and

all terms in Eq. (39) areOða0Þ. Together, theseOða0Þ terms
give what is usually referred to as the one-step part of the
probability.
For P22→1

dir we change variables according to

σ21 ¼ ϕ −
φ

2
σ43 ¼ ϕþ φ

2

θ21 ¼ θ −
η

2
θ43 ¼ θ þ η

2
; ð46Þ

which in terms of the original variables are given by

ϕ ¼ 1

4
ðϕ4 þ ϕ3 þ ϕ2 þ ϕ1Þ φ ¼ 1

2
ðϕ4 þ ϕ3 − ½ϕ2 þ ϕ1�Þ

θ ¼ 1

2
ðϕ4 − ϕ3 þ ϕ2 − ϕ1Þ η ¼ ϕ4 − ϕ3 − ½ϕ2 − ϕ1�:

ð47Þ

As for the two-step term we rescale θ → θ=a0 and
η → η=a0. As the second term in Eq. (38) shows, this also
forces φ to be small, so we also rescale φ → φ=a0. To
leading order, i.e., Oða0Þ, the φ integrand is constant and
we find

P22→1
dir ðsÞ ¼ α2a0

8π2χ2
Re

Z
dϕdθ21dθ43θðθ43 − θ21Þ

θ43 − θ21
q21θ21θ43

exp

�
i
2χ

ðr1Θ21 þ r2Θ43Þ
�

×

��
κ01
2

�
2iχ
r1θ21

þ 1þD1

�
− 1

	�
κ23
2

�
2iχ
r2θ43

þ 1þD2

�
þ 1

	
−D1D2

�
þ ðs1 ↔ s2Þ; ð48Þ

where here D1 ¼ −ðθ21f0ðϕÞ=2Þ2, D2 ¼ −ðθ43f0ðϕÞ=2Þ2, M21 ¼ 1þ θ221f
0ðϕÞ2=12, and M43 ¼ 1þ θ243f

0ðϕÞ2=12. The
leading order of P11, P12, and P22

ex can be obtained in a similar way.
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In the previous subsection we showed that P2 agrees to
leading order with literature results for the two-step term
for arbitrary values of χ. However, while there are also
exact analytical expression for the one-step terms (see
Refs. [1,2,9]), these are not easy to compare with, so we
will instead consider χ ≪ 1 and show that our Oða0Þ terms
agree with the results of Refs. [1,2,9] in this regime.

C. Numerical spectrum

Before turning to analytical approximations, though, let
us first plot the one-step and two-step rates, R1 and R2, as
defined in Eq. (39). To leading order in the LCF approxi-
mation we have, at constant χ, RLCF

2 ∝ a20 and RLCF
1 ∝ a0

[recall that R2 ¼ RLCF
2 þOða00Þ so the next-to-leading-

order correction to R2 does not mix with the leading order
in R1]. Even in the LCF limit, RLCF

2 still depends on two
different field values, a0ðσ21Þ ≠ a0ðσ43Þ. It is convenient to
plotRLCF

2 ¼ b20R
LCF
2 since this only depends on a0, b0, σ21,

and σ43 via χC ¼ b0ja0ðσ21Þj and χBW ¼ b0ja0ðσ43Þj. For
this reason we also plotRLCF

1 ðϕÞ ¼ b0RLCF
1 ðϕÞ, which only

depends on a0, b0, ϕ via χðϕÞ ¼ b0ja0ðϕÞj. In Figs. 3 and 4
we plot RLCF

1 and RLCF
2 as triangular contour plots where

each of the three si values is given by the distance to one of
the triangle’s sides, for different values of χ [or rather χðϕÞ

and χðσ21Þ ¼ χðσ43Þ]. As expected, e.g., from Ref. [22], the
spectrum is peaked at s1 ¼ s2 ¼ s3 ¼ 1=3 for low χ, and
close to the corners, s1 ≈ 1 or s2 ≈ 1, for large χ. Note that
these plots contain all the one-step terms, both the direct
and the exchange ones.

D. Constant fields and χ ≪ 1

As Figs. 3 and 4 show, for χ ≪ 1 the spectrum is peaked
at s1 ¼ s2 ¼ s3 ¼ 1=3. We can therefore perform these
integrals using the saddle-point method. The light-front
time integrals can also be performed by the saddle-point
method as described in the next section for nonconstant
fields.
For a constant field and χ ≪ 1 we find

P22
dir ¼ α2

�ða0ΔϕÞ2
64

−
a0Δϕ

ffiffiffi
χ

p
16

ffiffiffiffiffiffi
6π

p
�
exp

�
−
16

3χ

�
¼ P22→2

dir þ P22→1
dir : ð49Þ

We have already shown that theOða20Þ term inP22→2
dir agrees

with the literature for arbitrary χ. By comparing P22→1
dir in

Eq. (49) with Eq. (29) of Ref. [2] or Eq. (6.57) of Ref. [9]
[see also Eq. (28) of Ref. [5] for normalization similar to
ours], we see that P22→1

dir for χ ≪ 1 also agrees with

FIG. 3. These plots show the one-step part of the probability in the LCF approximationRLCF
1 withR1 defined in Eqs. (39) and (41), as

a function of the longitudinal momenta si. From top left to bottom right, we have χðϕÞ ¼ 1=2, 1, 2, 4, 8, 16. The values on top of each
plot give the maximum/minimum value, i.e., min < R1 < max, so for χ ¼ 1=2 we have −2.13 � 10−10 < R1 < 0, and −9.8 � 10−5 <
R1 < 1.0 � 10−3 for χ ¼ 16. The difference between two neighboring contours is 5% of the larger of jmax j and jmin j, and purple and
red correspond, respectively, to values close to min and max.
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previous results. So, P22
dir already gives the known χ ≪ 1

results for both the two-step and the one-step terms, even
thoughP22

dir is only one out of a total of six terms. The reasons
for this are thatP12

dirðsÞ vanishes upon integrating over s1 and
s2, P11

dir turns out to be smaller than P22→1 in Eq. (49) (see
below), and the remaining terms P11

ex , P12
ex , and P22

ex give the
exchange part of the probability, while the previous results
just cited only give the direct part. Indeed, to the best of our
knowledge, there are no analytical expressions for the
exchange terms in this regime to compare with. So, our
results for the exchange part below are new.
From Eqs. (19), (21), and (22) we find

P11 ¼ α2a0Δϕχ
3
2

384
ffiffiffiffiffiffi
6π

p exp

�
−
16

3χ

�
¼ χ

24
jP22→1

dir j;

P12 ¼ −
7α2a0Δϕχ

3
2

1728
ffiffiffiffiffiffi
6π

p exp

�
−
16

3χ

�
¼ −

7χ

108
jP22→1

dir j; ð50Þ

where P22→1
dir is given by the a0 term in Eq. (49).

Equation (50) includes both the direct and the exchange
part. In fact, their contribution is of the same order of
magnitude: we have P11

ex ¼ −ð1=2ÞP11
dir (to leading order in

χ), and P12
dir is identically zero so P12 ¼ P12

ex . However,
both P11 and P12 are smaller than P22→1 in Eq. (49) by a
factor of χ ≪ 1. In deriving Eq. (49) we have already
thrown away terms of the order of Eq. (50), so the terms in

Eq. (50) are only part of the higher-order corrections; see
Appendix C.
For the last term we find

P22
ex ¼ −

13α2a0Δϕ
ffiffiffi
χ

p
288

ffiffiffiffiffiffi
6π

p exp

�
−
16

3χ

�
¼ −

13

18
jP22→1

dir j:

ð51Þ

Importantly, P22
ex is of the same order of magnitude as P22→1

dir
in Eq. (49), so to leading order in 1=a0 ≪ 1 and χ ≪ 1 the
one-step part is given by P1 ¼ a0P1 ¼ P22→1

dir þ P22
ex, i.e.,

the exchange and direct parts of P1 are of the same order of
magnitude. Of course, in the regime we consider here, both
of these contributions to P1 are small corrections to the
two-step part P2, but at least among the one-step terms, the
direct and exchange parts are of the same order of
magnitude as long as χ is not too large. We have checked
that the analytical approximations in this section agree
with our numerical results for sufficiently small χ; see
Appendix C. In the next section we will consider a0 ≫ 1
and χ ≪ 1 for nonconstant fields.

VI. PULSED FIELDS WITH a0 ≫ 1 AND χ ≪ 1

In this section we will generalize the results in the
previous section and obtain simple analytical approxima-
tions for a0 ≫ 1 and χ ≪ 1 for nonconstant fields. We

FIG. 4. These plots show the two-step part of the probability in the LCF approximationRLCF
2 ðsÞwithR2 defined in Eqs. (40) and (41),

as a function of the longitudinal momenta si with χC ¼ χBW. From top left to bottom right, we have χC ¼ 1=2, 1, 2, 4, 8, 16. The value
on top of each plot gives the maximum value. Contours and colors are chosen in the same way as in Fig. 3.
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consider a linearly polarized field aðϕÞ ¼ a0fðϕÞ that has a
single maximum at ϕ ¼ 0, i.e., f00ð0Þ ¼ 0, and expand
around this point. All of the integrals are finite and there
are no volume factors. We fix the field strength and the
frequency by normalizing f0ð0Þ ¼ 1 and fð3Þð0Þ ¼ −ζ < 0.
We could set ζ ¼ 1, but this might not always be conven-
ient. For example, for a Sauter pulse it is natural to choose
fðϕÞ ¼ tanhϕ and then ζ ¼ 2.
We begin with P22

dir in Eq. (24) and change variables as in
Eq. (46). We rescale θ → θ=a0 and η → η=a0; for P22→1

dir we
also rescale φ → φ=a0, and then expand the integrand in
powers of 1=a0. For χ ≪ 1 we can perform all of the

integrals with the saddle-point method. We have a saddle
point at

ϕ ¼ φ ¼ η ¼ 0; θ ¼ 2i; s1 ¼ s2 ¼
1

3
: ð52Þ

The second-order variation in the exponent is for the
momentum integrals given by exp f− 36

χ ðδs21 þ δs1δs2 þ
δs22Þg, where δsi ¼ si − 1=3, so δsi ∼

ffiffiffi
χ

p ≪ 1. The other
variations are also ∼ ffiffiffi

χ
p ≪ 1, so we rescale all of the

integration variables with
ffiffiffi
χ

p
and expand the integrand in a

series in χ. The resulting integrals are all elementary, and
we thus find

P22→2
dir ¼ α2

�
π

ffiffiffi
3

p

128

a20χ
ζ

�
1 −

ffiffiffi
χ

p
fð4Þ0

3
ffiffiffiffiffiffi
2π

p
ζ
3
2

þ χ

�
−
25

27
þ 5fð4Þ20

24ζ3
þ fð5Þ0

8ζ2

		
þ π

80
ffiffiffi
3

p þ � � �
�
exp

�
−
16

3χ

�
; ð53Þ

P22→1
dir ¼ α2

�
−

a0χ
64

ffiffiffi
ζ

p
�
1þ χ

�
−

2683

10368
þ 5fð4Þ20

128ζ3
þ 3fð5Þ0

128ζ2

		
−

1

120

ffiffiffi
ζ

p
a0

þ � � �
�
exp

�
−
16

3χ

�
; ð54Þ

where fðnÞ0 ¼ ∂n
ϕfð0Þ. We have assumed here that

1=ðχa20Þ ≪ 1 in order to expand a term in the exponent
down to the prefactor. The terms proportional to a20 and a0
correspond, respectively, to what are usually referred to as
two-step and one-step terms. The a20 term can hence be
obtained by expanding the Airy functions in Eq. (43),
which in turn can be obtained directly from the literature.
The reason that we have included higher orders in χ for the
a20 term is that these can be of the same order as the leading-
order-in-χ contribution to the a00 term, and similarly for the
first term in Eq. (54). How many orders in χ one should
keep at a given order in a0 depends of course on the relative
size of χ and a0; we have included the higher-order terms in
Eqs. (53) and (54) mainly as examples of this double
expansion. In any case, using MATHEMATICA it is straight-
forward to calculate higher orders in both 1=a0 and χ. Note
that there are no volume factors here (cf. the Δϕ terms in

the previous section) because of the damping given by
ζ > 0.
For Eqs. (19) and (22) we find

P11 ¼ α2

1536

a0χ2ffiffiffi
ζ

p exp

�
−
16

3χ

�
þOða−10 Þ

P12
ex ¼ −

7α2

6912

a0χ2ffiffiffi
ζ

p exp

�
−
16

3χ

�
þOða−10 Þ: ð55Þ

These are both smaller by a factor of χ ≪ 1 than the
leading-order term in P22→1

dir , i.e., the first term in Eq. (54).
This agrees with what we found above for constant fields;
see Eq. (50).
Next we consider P22

ex given by Eq. (26). In order to
expand in 1=a0 we rescale θ → θ=a0, η → η=a0, and
φ → φ=a0. We expand the integrand around the saddle
point (52) and perform the resulting integrals. We find

P22
ex ¼ 13α2

18

�
−

a0χ

64
ffiffiffi
ζ

p
�
1þ χ

�
−
371989

524160
þ 5fð4Þ20

128ζ3
þ 3fð5Þ0

128ζ2

		
−

ffiffiffi
ζ

p
120a0

þ � � �
�
exp

�
−
16

3χ

�
: ð56Þ

As in the constant-field case in the previous section, P22
ex

gives the dominant contribution to the exchange part and it
is of the same order of magnitude as the direct one-step
term (54). Thus, the one-step terms, a0P1¼ a0Pdir

1 þa0Pex
1 ,

are to leading order in χ ≪ 1 given by a0Pdir
1 ¼ lina0P

22
dir

and a0Pex
1 ¼ lina0P

22
ex , where lina0 refers to the terms that

are linear in a0. We find, to leading order in χ, the same
relation as in Eq. (51) between Pdir

1 and Pex
1 , i.e.,

Pex
1 =P

dir
1 ¼ 13=18, and both Pdir

1 and Pex
1 are negative.

The exchange term is also negative for a0 ≪ 1, which
we can confirm by comparing with the literature; see
Appendix A.

VII. SAUTER PULSE WITH a0 ∼ 1 AND χ ≪ 1

In this section we will consider a Sauter pulse,
aðϕÞ ¼ a0 tanhϕ. We again assume χ ≪ 1, but now we
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do not assume that a0 is large. The results in this section for
a0 ∼ 1 therefore go beyond the LCF approximation. Our
starting point is the exact expressions in Sec. III. Recall that
the field enters these expressions only via M2 and Δ. For
the Sauter pulse the integrals inM2 andΔ can be performed
analytically and this gives

M2ðϕ2;ϕ1Þ ¼ 1þ a20

�
1 −

tanhϕ2 − tanhϕ1

ϕ2 − ϕ1

−
�
ln½coshϕ2= coshϕ1�

ϕ2 − ϕ1

	
2
�
; ð57Þ

Δðϕ2;ϕ1Þ ¼ a0

�
tanhϕ2 −

ln½coshϕ2= coshϕ1�
ϕ2 − ϕ1

�
: ð58Þ

For χ ≪ 1 we can perform all of the integrals with the
saddle-point method. We first change variables as in
Eq. (46). We have a saddle point at

ϕ ¼ φ ¼ η ¼ 0; θ ¼ 2iarccota0; s1 ¼ s2 ¼
1

3
: ð59Þ

By expanding the integrands around this saddle point we
find

P22→2
dir ¼ πα2χ

192
ffiffiffi
3

p a0 exp f− 8a0
χ ½ð1þ a20Þarccota0 − a0�g

ð1þ a20Þarccota0½ð1þ a20Þarccota0 − a0�2
ð60Þ

and

P22→1
dir ¼ −

2

π
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a0
ð1þ a20Þarccota0

r
P22→2;

P22
ex ¼ 13

18
P22→1: ð61Þ

As in the previous section, P11 and P12 are smaller by a
factor of χ ≪ 1, so to leading order in χ we have [these
expressions can also be obtained without much extra work
by starting instead with Eqs. (B2) and (B3)]

Pdir ¼ P22→2
dir þ P22→1

dir ¼ α2χa0
96

ffiffiffi
3

p
arccot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a0

ð1þa2
0
Þarccota0

q
ð1þ a20Þarccota0½ð1þ a20Þarccota0 − a0�2

exp

�
−
8a0
χ

½ð1þ a20Þarccota0 − a0�
�

ð62Þ

and

Pex ¼ P22
ex ¼ −

13α2χa0
1728

ffiffiffi
3

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a0

ð1þa2
0
Þarccota0

q
ð1þ a20Þarccota0½ð1þ a20Þarccota0 − a0�2

exp

�
−
8a0
χ

½ð1þ a20Þarccota0 − a0�
�
: ð63Þ

In the limit a0 ≫ 1, Eqs. (60) and (61) reduce to the
expansions in Eqs. (53), (54), and (56) (with ζ ¼ 2 for this
field). Equation (61) shows that the exchange term is of the
same order of magnitude as P22→1

dir , and their ratio,

P22
ex=P22→1

dir ¼ 13=18, is the same as the Oða0Þ terms we
found in the previous section. In the limit a0 ≫ 1 these two
terms gives the one-step term, i.e., P22→1

dir þ P22
ex → a0P1,

while P22→2
dir → a20P2. However, for a0 ∼ 1 the “one-step”

terms, P22→1
dir and P22

ex , are of the same order of magnitude
as the “two-step” term, P22→2

dir . For a0 ¼ 1 we have
Pex=Pdir ≈ −0.4, while for a0 ≳ 4 the ratio decreases to
−0.1≲ Pex=Pdir < 0; see Fig. 5.
The saddle-point calculation of the preexponential

factors above breaks down when a0 becomes too
small. However, the exponential part of Eq. (60) scales
for a0 ≪ 1 as

P ∼ a20 exp

�
−
4π

b0

�
; ð64Þ

which is what one would expect for the perturbative trident
process: In terms of the Fourier frequency ω̂ of aðϕÞ, the
threshold for pair production is given by ω̂th ¼ 4=b0. For
ω̂th ≫ 1 the Fourier transform of the Sauter pulse is
approximately exponential,

FIG. 5. This is a plot of Pex=Pdir ¼ Eq:ð63Þ=Eq:ð62Þ as a
function of a0. This ratio is independent of χ to leading order
in χ ≪ 1.
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tanhϕ ¼
Z

dω̂
2π

aðω̂Þe−iω̂ϕ → jað4=b0Þj2 ∼ exp

�
−
4π

b0

�
;

ð65Þ

which gives the exponential in Eq. (64) (cf. the treatment
of Sauter-like pulses in Ref. [24] for Schwinger pair
production).
Interestingly, the exponent in Eq. (60) has the same

functional form as the one in photon-stimulated Schwinger
pair production in a constant electric field [Eq. (5) of
Ref. [25]] but with different parameters.

VIII. MONOCHROMATIC FIELD
WITH a0 ∼ 1 AND χ ≪ 1

We now consider a monochromatic field, aðϕÞ ¼
a0 sinϕ. Consider first P22→2. We find saddle points at

θ21 ¼ θ43 ¼ 2iarcsinh
1

a0
; σ21 ¼ n1π;

σ43 ¼ n2π; s1 ¼ s2 ¼
1

3
; ð66Þ

where σij ¼ ðϕi þ ϕjÞ=2 and n1 and n2 are integers. The
saddle points for σ correspond to maxima and minima of
the field. The step function θðσ43 − σ21Þ implies n2 ≥ n1,
so either photon emission and pair production happen at the
same max/min or the photon is emitted at one max/min and
travels to a different max/min where it decays into a pair.
All n1 and n2 give the same contribution, except the term
with n1 ¼ n2 which is, due to θðσ43 − σ21Þ, a factor of 1=2
smaller than the other terms. With 2N maxima and minima,
adding the contribution from all saddle points gives
P22→2
dir ¼ N2PN¼1

22→2, where PN¼1
22→2 is the contribution from

a single maximum or minimum, which we find to be

PN¼1
22→2 ¼

πα2χ

96
ffiffiffi
3

p
a0

exp f− 4a0
χ ð½2þ a20�Λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

p
Þgffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a20
p

Λð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

p
Λ − 1Þð½2þ a20�Λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

p
Þ ; Λ ¼ arcsinh

1

a0
: ð67Þ

The argument of the exponential in Eq. (67) has the same
functional dependence on a0 as the exponent in Ref. [26]
[see the equation before Eq. (15) in Ref. [26]] for the
Breit-Wheeler probability. The only difference is an overall
factor of 2kl=kp, where lμ is the photon momentum in the
Breit-Wheeler case. This factor is expected in the locally
constant field limit, i.e., for a0 ≫ 1, and now we can see the
same relation also for general a0. For a large number of
periods, N ≫ 1, P22→2

dir gives the dominant contribution, as
the other terms only scale as N. For a0 ≫ 1 we recover
from Eq. (67) the a20 and a00 terms in the general expansion
(53) (with ζ ¼ 1 for this field). For a0 ≪ 1 the exponent in
Eq. (67) scales as

exp

�
4

b0

�
ln
ha0
2

i
2
− 1

��
∼ a8=b00 ; ð68Þ

where 4=b0 can be interpreted as the number of photons
that need to be absorbed to produce a pair.
Let us compare with the SLAC experiment [4]. The most

straightforward result to compare with is their logarithmic
plots of the number of detected positrons as a function of
1=χ, which they fit to expð−c=ϒÞ,3 where ϒ ¼ χ=

ffiffiffi
2

p
.

According to Eq. (8.3) of Ref. [27], for an average of
hηi ¼ 0.2, where η ¼ a0=

ffiffiffi
2

p
, the SLAC experiment gave

c ¼ 2.4� 0.1ðstatÞþ0.2
−0.6ðsystÞ: ð69Þ

For this a0 our Eq. (67) predicts c ≈ 2.46, which is in
agreement with Eq. (69). However, the errors in Eq. (69)
are too large for us to really be able to confirm Eq. (67).
Indeed, in Refs. [4,27] c was also shown to roughly agree
with an estimate obtained using a result for Schwinger pair
production by a purely time-dependent electric field. Also,
this value of a0 is quite small, so the exponent is close to the
perturbative one in Eq. (68). It would therefore be interest-
ing to compare our Eq. (67) with future trident experiments
with larger a0.
If the number of oscillations are not large then we should

also consider the other terms. We find P22→1
dir ¼ NPN¼1

22→1

and P22
ex ¼ NP22;N¼1

ex , where

PN¼1
22→1 ¼ −

2

π
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

p
Λ

s
PN¼1
22→2

P22;N¼1
ex ¼ 13

18
PN¼1
22→1: ð70Þ

These relations are similar to the ones we found in the
previous section for a Sauter pulse. For a0 ≫ 1 we recover
the a0 and 1=a0 terms in Eq. (54) for PN¼1

22→1, and Eq. (56)
for P22;N¼1

ex (ζ ¼ 1 for this field). Once again P11 and P12

are smaller by a factor of χ and can therefore be neglected
to leading order.
We can also obtain these expressions by starting instead

with Eqs. (B2) and (B3). We again have saddle points given
by Eq. (66): for the exchange term (B3) we have saddle
points for n1 ¼ n2, which give Pex ¼ P22

ex with P22
ex as in

Eq. (70). For the direct term (B2) we have saddle points for
3We thank S. Meuren for bringing this part of Ref. [4] to our

attention.
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all n1 and n2, but again because of the step functions only
the saddles with n1 ≤ n2 contribute. We find

Pn1¼n2
dir ¼ 2

π
arccot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

p
Λ

s
PN¼1
22→2

Pn1<n2
dir ¼ 2PN¼1

22→2; ð71Þ
where PN¼1

22→2 is given by Eq. (67), which agrees with what
we found with the first approach.

IX. a0 ≫ 1 AND GENERAL χ

In the previous couple of sections we have analytically
studied the low-χ regime. In this section we will consider
the dependence on χ up to large values of χ. To do so, we
assume a0 ≫ 1 and integrate the integrals in the LCF
approximation using the numerical methods described in
Sec. X. In Fig. 6 we plot the five terms that contribute to the
total one-step rateRLCF

1 as a function of χ, where the rate is
obtained from the probability as in Eq. (41). (Recall that
there are only five and not six terms because P12

dir vanishes
upon integrating over the longitudinal momenta.) In Fig. 6
we see that the direct part of the one-step,R1;dir, is negative
for small χ (in agreement with the χ ≪ 1 approximations),
grows in magnitude until it reaches a minimum, then starts
to increase and eventually becomes positive. This depend-
ence is nothing new, it can already be found in Ref. [5]4 and

the fact that R1;dir becomes positive at large χ can also be
seen from the χ ≫ 1 approximations in, e.g., Ref. [2].5 Our
results for the exchange part R1;ex, on the other hand, are
new. We have shown in the previous sections that the
exchange terms can be important at low χ. Figure 6 shows
us that the exchange terms continue to be non-negligible
even up to quite large χ. In fact, there is a whole range
f17≲ χ ≲ 26g of moderately large χ, around the region
whereR1;dir changes sign, where jR1;exj is even larger than
jR1; dirj. For χ above this interval, R1;dir eventually
becomes much larger than jR1;exj, as expected. If we
would increase χ even further, then at some point the α
expansion is expected to break down [28,29].
Of course, for a0 ≫ 1 these one-step terms are correc-

tions to the two-step term R2. In Fig. 7 we have plotted
RLCF

2 as a function of the two local values of χ, i.e., χC ¼
b0ja0ðσ21Þj and χBW ¼ b0ja0ðσ43Þj where R2 is defined
in Eq. (41).

X. NUMERICAL METHOD

In this section we describe the numerical methods we
have used to integrate the different terms in PðsÞ. The terms
to be computed involve up to four phase-point ϕi integrals
whose integrand has the general structure of a relatively
slowly varying preexponential factor multiplying a fast
oscillating phase factor. The phase generally grows with
ϕ2;ϕ4 and decreases with ϕ1;ϕ3. All terms but P22

exðsÞ are
built up multiplicatively from independent factors describ-
ing each individual process. While light-front time ordering
prevents the full factorization of integrals, factorization of
the integrand can still be exploited to greatly reduce the
computational effort by the equivalent of up to two

FIG. 7. This figure shows the two-step rate in the LCF
approximation, RLCF

2 ðχC; χBWÞ, where R2 is defined in
Eq. (41), as a function of the two different χC ≠ χBW.

FIG. 6. This figure shows the five different terms contributing
to the total one-step rate R1. We have solid lines for direct terms
and dashed lines for exchange terms, red for R22→1

dir and R22
ex ,

green for R11
dir and R11

ex , blue for R12
ex, black for R1;dir ¼ R11

dir þ
R22→1

dir (solid) andR1;ex ¼ R11
ex þR12

ex þR22
ex (dashed), and black

dot-dashed for the total one-step rate R1 ¼ R1;dir þR1;ex. All of
these rates are obtained in the LCF approximation, andR22

ex is the
contribution to R1 in Eq. (39) coming from P22

ex , etc.

4When comparing our results with Ref. [5], note that we plot
R1 which is related to R1=a0 by a factor of χ.

5We have checked analytically that the χ ≫ 1 limit of P22→1
dir þ

P11
dir agrees with the χ ≫ 1 approximation in Ref. [2].
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quadrature dimensions. An important issue to tackle is the
presence of the iϵ prescriptions originating from the infini-
tesimal damping of the transverse momentum integrals
required for their asymptotic convergence. These iϵ pre-
scriptions allow for the avoidance of singularities that are
present in the remaining integrals. In all terms except P22

ex
these singularities are found at the origin of the separations
between conjugate phase points, i.e., at θ21 ¼ 0 and θ43 ¼ 0.
Interestingly, in studying P22

ex one has to deal with a
singularity moving with s, corresponding to vanishing d0,
which appears in the preexponential factor and also makes
the phase diverge. While taking the ϵ↘0 limit may be
defined in a mathematically sound way, the elimination of
the singularity is required for numerical computation.
Regularization can be done in several ways. Two classes
of methods, both with advantages and disadvantages, that
we have successfully tested are the following.
A) Subtraction of vanishing or easy-to-compute quan-

tities sharing the same singular part of the Laurent series (or
a partial integration to the same purpose), resulting in a
preexponential factor without a singularity: This requires
more analytical effort in order to produce series expansions
near the singularity points, where precision loss obviously
prevents a direct computation of the difference. For
integrals with only one effective mass in the phase, such
as P11, PNLC, or PBW, regularization may be achieved by a
simple subtraction of the vanishing a0 ¼ 0 integral. For
factored terms like P22

dir this procedure can also be used, but
by now expressing the product of two factors forming
the integrand as AB ¼ ðA − A0ÞðB − B0Þ þ A0ðB − B0Þ þ
ðA − A0ÞB0 þ A0B0, where the subscript 0 indicates a field-
free (a0 ¼ 0) counterpart. Apart from the last, vanishing,
fully free term, and the first term, describing the interaction
with the field at both steps, there are two additional terms
which we can think of as “semivirtual,” in the sense that one
of the processes takes place outside the field with no
absorption of photons from the field. Note that they only
survive theta integration due to the cutoff in the (θ21, θ43)
integrals arising from light-front time ordering, and hence
they only contribute to P1.
A similar procedure, which is numerically preferable as

it does not introduce different phase factors (corresponding
to a0 ≠ 0 and a0 ¼ 0), is achieved by replacing θ21, θ43
with Θ21, Θ43 as variables, apart from ϕ1, ϕ3, and noticing
that we can fortunately rewrite the initial θij-dependent step
functions as a combination of Θij-dependent ones, such
that the integration domain remains triangular in shape in
the new variables. Then the same division of AB is
performed where now A0 and B0 have the same phase
factor as A and B, and since the ϕ1, ϕ3 integrals in the
first, largest dimension integral do not involve the phase
factor, they cost us the resources of only one integral with
about as many oscillations as the pulse has. Once these
integrals are computed, in a second step one can generate
the whole s spectrum (using adequate integration routines

that interpolate only the preexponential factor in Fourier
integrals) and (breaking the integrand into a linear combi-
nation of terms factored into products of contributions
depending on just one pair of ϕ values, with s-dependent
coefficients) even compute s-integrated quantities such as
the total probability or energy averages in a very fast way,
through mere two-dimensional quadratures (the s integrals
are fast to compute by part-analytical/part-numerical inte-
gration). The additional analytical effort and the numerical
effort to change variables to Θij are thus greatly rewarded
by a huge speed-up.
Unfortunately the change of variables works for all terms

but P22
exðsÞ, where the more complex structure of the phase

prevents this important additional simplification. Also,
regularization by subtraction is very laborious to apply
in this case. However, the fact that the dependence of the
phase of P22

exðsÞ on the field only arises through effective
masses and is monotonic can be quite useful, as it may
allow here, too, for the fast-oscillating exponential to be
separated into only one Fourier integral of a function that
involves slowly varying integrals.
B) Complex contour deformation generated by ϕ2;4 →

ϕ2;4 þ iϵ=2 and ϕ1;3 → ϕ1;3 − iϵ=2 with a finite ϵ: This is
essentially the iϵ prescription we used to regularize the
transverse momentum integrals, except that now we let ϵ be
finite instead of infinitesimal, which means ϵ potentially
appears in all functions of ϕi and not just in the denom-
inators of preexponential factors [like the 1=ðθ21 þ iϵÞ2
factor in Eq. (19)]. Note, though, that this complex
deformation does not affect the arguments of the step
functions, which hence do not spoil the analyticity. If the
analytic properties of the field allow for this contour
deformation, then this method provides an elegant alter-
native to A).
As our formulas are valid not only for pulses and

periodic (e.g., monochromatic) fields but also for constant
fields, method B) can also be useful in the LCF regime.
A suitable choice of ϵ for the complex deformation makes
the LCF terms converge quickly, as wildly oscillating
integrands are converted into fast-converging ones with
only a few oscillations, making the drawing of high-
resolution plots like Figs. 3 and 4 a short matter, even
on the older-generation personal computer that we have
used. When considering pulses, this deformation may not
seem like a general enough method as it assumes a certain
analyticity of the field, but remember that one can always
approximate a given field by a suitable analytic one. For
instance, we could truncate the pulse’s expansion in a basis
of Hermite polynomials.
For a pulse, one finds an important advantage brought by

contour deformation, apart from the great help it brings in
offering a comfortable means of regularization for all terms,
P22
exðsÞ included. We refer to the fact that it amplifies the

integrand in the interaction region and greatly diminishes
the “tails” seen in the dependence on the separations θij
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from the asymptotics of the effective mass that follow us
even outside the pulse. Still, the low-amplitude oscillating
tails stay there and their decay is not as fast as for the LCF
approximation, so for a quick and precise integration they
are best separated and integrated as such, by a mix of
analytic integration and a 90-degree complex contour
deformation, turning oscillating exponentials into decaying
ones. The intermingling of all four phase points makes
applying this optimization procedure less straightforward
for P22

ex.
If one is interested in total quantities—such as the total

probability, average energy of the pair, and so on—method
A) works efficiently for all terms except P22

ex . For P22
ex one

may find it simpler to use a complex contour deformation
of the s variables. We found such a deformation—defined
piecewise with several cases depending on the relative
values of ϕi—that makes s integration fast, with few
oscillations. One still has then to regularize the remaining
singularities appearing when some of the phase points ϕi
merge, through either subtraction or complex deformation
of ϕ.

XI. CONVERGENCE TO THE LCF LIMIT

In this paper we do not present numerical results for total
quantities for a pulsed plane wave, for which the methods
of type A) and the one just mentioned have great potential;
we reserve such investigations for a future, more numeri-
cally oriented paper. Here we will instead apply these
numerical methods to local quantities, namely the rates, and

study how the LCF approximation is reached for pulsed
plane waves.
In particular, we consider a short pulse and compare the

rates with their LCF approximations, for a set of increasing
a0/decreasing b0 values at constant a0b0. Both variations
contribute to the reduction of what is commonly known as
the formation length and hence are expected to ensure
convergence towards the a0 ¼ ∞ limit provided by the
LCF approximation. We choose as a pulse model a linearly
polarized plane wave with Gaussian envelope:

aðϕÞ ¼ a0e−ðϕ=T Þ2 sinðϕÞ: ð72Þ

We choose an ultrashort pulse length, given by T ¼ π or
2π. The reason for this is not only that an extremely short
pulse maximizes the ratio between the one-step and two-
step contributions, but also that it allows us to better see
tiny features in the plots detailing the convergence to the
LCF limit. In Figs. 8 and 9 we plot two contributions to the
one-step rate R1, namely, R22→1

dir and R22
ex .

In Figs. 10, 11, 12, and 13 we illustrate the effect on the
rates R2 and R2ðsÞ produced by raising a0 at constant
χ ¼ 1, for short Gaussian pulses. We find the remarkable
result that coherence may work constructively on this term,
increasing the rate on average (and therefore the proba-
bilities), unlike what was seen in Ref. [21]. Apart from this
increase, at the spectrum level we notice superimposed
patterns of oscillations with s and a0, which get more
frequent but smaller in amplitude as a0 increases. For
T ¼ 2π, the oscillations show beats, unlike for T ¼ π,

FIG. 8. This figure illustrates the convergence to the LCF approximation for P22→1
dir for T ¼ π and χ ¼ 1.
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where they are regular. In the s-integrated rate (shown at the
peak of the pulse in Fig. 10, as a function of a0, and over the
entire pulse in Fig. 13 for a0 ¼ 1) we notice how
oscillations have been smoothed out and how convergence
to LCF is, therefore, much faster. Coherence is not
constructive everywhere for the rate. In the ripples seen
between the peaks of Fig. 13 (left) there are points where
the nonlocal rate is even slightly negative, unlike the LCF
one. However, the global effect we see is a stark increase of
the probability relative to the LCF approximation as a0

decreases towards unity and coherence increases. Another
thing we notice is the asymmetry between the two
processes, already noted in the LCF plot of Fig. 7. The
rate decreases faster with χBW than with χC.
Conventional wisdom tells us that we should expect the

LCF rates to offer good approximations for the exact ones
when the scale at which the field varies significantly is
considerably larger than a so-called coherence length. This
is expected to appear in our integrals as the size of a finite
range of values of the phase differences θij that give a

FIG. 10. This figure describes convergence to LCF for R2 and R2ðs1 ¼ s2Þ at the peak of a Gaussian pulse with T ¼ π as a0 is
increased at χ ¼ 1. The red line in the inset plot is the LCF limit.

FIG. 9. This figure illustrates the convergence to the LCF approximation for P22
ex for T ¼ π and χ ¼ 1.
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significant contribution, i.e., those θij that appear in the
phase factor of the integrand and involve phases, ϕi and ϕj,
connected by a fermion line in Fig. 2. Of the four diagrams
in Fig. 2, P22

dir stands out as the one in which not all points
are interconnected by fermion lines, so the contribution of
the two pairs ϕ1;ϕ2 and ϕ4;ϕ3 is not suppressed as they
move away from each other, except for the suppression due
to the pulse length. However, in breaking the P22→1

dir term
away from P22

dir we have added a step function that imposes
an upper limit on the range of separations jσ43 − σ21j,
adding P22→1

dir to the list of one-step terms, for which all of
the phase points ϕi must be close to one another within the
limits of the coherence length. This length depends on a0
and b0 but is unrelated to the pulse length, which
constitutes a third scale, larger than the period that gives
the scale for the pulse’s variation. As this third scale

becomes larger, P2 will increasingly dominate P1, which
is why we find short pulses most interesting.
Before we explain how this suppression outside the

coherence length comes into play, let us mention that
previous results tell us not to hold the blind belief that
convergence to the LCF limit must be uniform or even true
for all quantities; see, e.g., Refs. [30,31]. For instance, the
author of Ref. [21] showed that for nonlinear Compton
scattering this logic is confirmed for the average energy-
momentum (as well as its higher moments) but not for the
total probability. The more important contribution of high-
wavelength photons to the latter justifies our approximation
of the integrand to the leading-order term by its asymptotic,
high-θ21 expansion [see Eq. (23) of Ref. [21]], rather
than the low-θ21 one that emphasizes the dominant role
of small wavelengths. For the trident process, however, the

FIG. 12. This figure describes the dependence on a0 of the R2ðsÞ distribution at the peak of a Gaussian pulse with T ¼ π for χ ¼ 1
and a0 ¼ 1, 2, 4.

FIG. 11. This figure describes convergence to LCF for R2ðs1 ¼ s2Þ at the peak of a Gaussian pulse with T ¼ 2π as a0 is increased
at χ ¼ 1.
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existence of a low-energy threshold makes soft photons
irrelevant, allowing for the LCF approximation to also
apply at the probability level.
Another issue is that, in general, when looking at totally

integrated quantities we turn the oscillating phase factor
present in, e.g., Eqs. (34) and (35) into a decaying function
of θij (not oscillating for Compton scattering/oscillating for
BW pair production). This is likely to make convergence to
LCF much faster than before s integration.
As explained before, after proper regularizations of

prefactors and manipulations of step functions, all terms
but R22

exðsÞ can be written as Fourier transforms of some
function of one or two Θij values. This is achieved by a

change of variable, θij → Θij, which for large a0 is highly
nonuniform, with sudden leaps at particular points. At these
points the function to be Fourier transformed has sharp
variation with Θij. When the frequencies rk

2b0
are high,

which happens at constant χ as we increase a0, only these
points give a significant contribution. Of the aforemen-
tioned sharp variations the most significant is the peak one
at the origin of Θij, but there are other such points for linear
polarization; see the appendix of Ref. [16]. In Fig. 14 we
see the derivative associated with this change of variable
as a function of the new variables for two very short
Gaussian pulses, with T ¼ π, 2π and a0 ¼ 4. We notice a
central ridge located at at the origin of Θij, and some sharp

FIG. 14. This figure shows the derivative associated with the change of variable θij → Θij for two very short Gaussian pulses with
T ¼ π (left) and T ¼ 2π (right), and a0 ¼ 4.

FIG. 13. This figure describes the dependence of the s-integratedR2 on ðσ21; σ43Þ for a Gaussian pulse with T ¼ π, χ ¼ 1, and a0 ¼ 1
(left) compared to the LCF limit (right).

VICTOR DINU and GREGER TORGRIMSSON PHYS. REV. D 97, 036021 (2018)

036021-20



knife-blade-like peaks located around the points where
ai ¼ aj ¼ haiij. Had we studied a monochromatic field,
these peaks would have formed an infinite set, extending
indefinitely in both directions [16]. For a pulse only a finite
number of peaks are visible, which line up into a finite
number of ridges, which increases with the pulse length.
The height of the ridges between the peaks increases and
eventually converges to unity as σij goes outside the pulse;
hence, for the short pulses in Fig. 14, only a few peaks are
distinguishable from the corresponding ridges. As the pulse
length increases, more and more peaks appear in both the
Θij and σij directions. The noncentral ridges line up into
two diverging bundles, oblique to the σij axis, forming the
X-shaped image seen in Fig. 14. They correspond to the
case where one of the pair ϕi, ϕj stays outside the pulse and
the other, say ϕj, is inside the pulse but the condition aj ¼
haiij ¼ 0 is approximately fulfilled. Thus, the number of
ridges equals the number of zeros of aj in the pulse and,
therefore, increases linearly with pulse length.
When both phase points fall outside the pulse, ∂Θij=∂θij

forms a plateau at unity, into which the central ridge merges
as σij leaves the pulse. The other ridges extend to infinity
(Θij → �∞when jσijj → ∞). Of course,wemust not forget
that we still have to multiply by the initial integrand, which
will bring asymptotic decay in both directions through its
preexponential factor. If we increase a0 we notice that, for a
given σij, the comb-like dependence on Θij spreads out (it
has to be scaled by 1=a20 to keep the plot about the same size)
and becomes extremely sharp at the tip in the center of the
bundle, even for moderately large a0. Taking into account
just the central ridge gives us the semiclassical LCF
approximation. Including the effect of the other features
will add oscillatory terms, as seen in, e.g., Figs. 8 and 9. One
notices two types of oscillations in the rates: a) those at fixed
ϕ or ðσ21; σ43Þwhen s or a0 is varied, and b) those at fixed s
and a0 as ϕ or ðσ21; σ43Þ is varied.
Say the pulse has finite length, lasting for ϕ ∈

ð−L=2; L=2Þ and let c∞2 ¼ R∞
−∞ a2. The bundles are located

between the intervals �Θij ∈ ð2jσijj−L;2jσijjþLþc∞2 Þ,
as σij moves away from the pulse. They are at the origin of
the regularly oscillating “tail” seen in the rates as their
arguments [ϕ or ðσ21; σ43Þ] distance themselves from the
pulse center. This tail’s amplitude exhibits polynomial
decay, introduced by the preexponential factor combined
with the ridges’ obliqueness. In addition, we notice
localized type a) oscillations, coming from the peaks, such
as the one at the origin of ϕ, seen in Fig. 8 or Fig. 10.
As a0 increases, the amplitude of all of the above-

described oscillations decreases, while their frequency
increases, since the Θij positions of the peaks/ridges move
away from the central ridge. This is mathematically
interesting, as the LCF limit is reached in a nonuniform
way, and thus convergence may not translate to the rate’s
derivatives.

For a pulse, superimposed (same σij) peaks and ridges
will contribute to the rate with terms of different frequen-
cies, adding up to complicated oscillations in the spectrum
after σij integration, cf. Ref. [30]. Compare the regular
oscillations in Fig. 10 (T ¼ π, one peak at σij ¼ 0) with the
beats exhibited in Fig. 11 (T ¼ 2π, two peaks). When
considering a totally integrated quantity or less sharply
defined momenta, the nonlocal oscillations of the rates
wash out. In Fig. 13, after s integration we only have
smooth ripples left to remind us of the nonlocal and not
always positive character of the rate R2.
In conclusion, as soon as we increase a0 above unity to

even a moderately high value, we expect LCF to work
better on average, but not at the spectrum level. The
transition from the fully coherent regime of a0 ¼ b0 ¼ 1
to LCF passes through an intermediate regime where
quantum correlations generate important oscillatory terms
in the rates and spectra, stemming from resonant structures
originating in the effective mass. This is true for all terms
except P22

exðsÞ, where the oscillations with s or a0 are much
reduced even at the spectrum level due to the way the
exponent mixes up s-dependent quantities and effective
masses, so the integrand cannot be just written as a linear
combination of Fourier transforms of s-independent terms
with s-dependent frequencies.
If instead of keeping χ constant, we increase the frequen-

cies rk
2b0

at constant a0, the result decays exponentially
as the corresponding period decreases below the minimum
“coarseness” scale at which the prefactor expressed in the
variablesΘij varies significantly. This makes the distribution
concentrate near the central point s1 ¼ s2 ¼ s3 and decay
exponentially as a whole with the decrease of b0, as seen in
the LCF plots and the low-χ approximations.
A useful step for the σij=ϕ integration of terms in the

coherent regime would be to separate oscillatory parts that
extend outside a finite pulse. This can be done by noticing
that they arise from the integration regions where at least
one of the points is outside the pulse. As the simplest
example, for a two-dimensional term like PCðsÞ, it is
natural to perform a piecewise change of variable from
θij to the one of ϕi or ϕj that is inside the pulse. Say ϕi is
inside the pulse. Then the phase factor looks like

exp

�
i
rk
2b0

�
2ðϕi − σijÞ þ

Z
ϕi

−∞
a2ðϕÞdϕ −

1

2ðϕi − σijÞ

×

�Z
ϕi

−∞
aðϕÞdϕ

�
2
	�

: ð73Þ

A similar procedure can be applied to the regularized
preexponential factor and, at large σ distances, the con-
dition jσj ≫ T > jϕij allows us to write the integral as an
expansion in powers of 1=σij times oscillations of the
frequency rk

b0
.
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XII. CONCLUSIONS

We have studied the trident process in pulsed, constant,
and oscillating plane-wave backgrounds. We have derived
compact expressions for the exact probability for general
pulse shapes. We have used these expressions to obtain
various analytical approximations that go beyond the LCF
approximation. The formulas presented in this paper also
offer a great numerical advantage due to the reduction of the
number of successive quadratures needed, achieved through
partial analytical integration. Their simple analytic structure
thus not only allows for a more insightful view of the process
and for an easy comparison between its components and
with their various approximations, but also provides a good
starting point for applying efficient methods to reduce the
numerical complexity, as we have explained.
The trident probability in a plane wave is separated into

direct and exchange terms as well as into terms charac-
terized by the number of light-front time (xþ) integrals. For
a constant field, such xþ integrals give volume factors,
Δxþ, and then the terms proportional to ðΔxþÞ2 are referred
to as two-step terms, while the ones proportional toΔxþ are
referred to as one-step terms [1,2,5]. For general field
shapes, our light-front separation of the probability leads to
three direct and three exchange terms, which have either
two, three, or four xþ integrals. These terms come from
squaring an amplitude with two xþ integrals and with a
photon propagator in the light-front gauge that leads to one
term with θðxþ2 − xþ1 Þ and another one with δðxþ2 − xþ1 Þ. In
the light-front quantization formalism, the term with
δðxþ2 − xþ1 Þ comes from an “instantaneous” term in the
light-front Hamiltonian. The word “instantaneous” might
suggest that the corresponding terms in the probability
should be related to the standard one-step terms, at least for
constant fields. However, this is not the case; we found
instead that all six light-front terms contribute to the
standard one-step term. We therefore grouped the six
light-front terms together into P2 and P1, where P2 is
simply related to the product of the probabilities of non-
linear Compton scattering and Breit-Wheeler pair produc-
tion. In the limit of a constant field, the direct parts of P2

and P1 agree with the literature results for the two-step and
one-step terms, respectively, while our results for the
exchange part are new as it has previously been neglected
(however, see Ref. [7]).
In addition to checking our results in various limits by

comparing with the literature, we have derived our results
using both the Hamiltonian-based light-front formalism as
well as the standard covariant formalism. While these two
formulations are expected to give the same results, this
equivalence might not always be trivial or obvious; see,
e.g., Ref. [18]. So, our results provide one more explicit
example of this equivalence.
In addition to recovering previous analytical results for

the direct terms for constant fields, our approach has also
allowed us to go beyond these known results: we have

obtained various simple analytical approximations for both
the direct and the exchange terms for nonconstant fields. By
considering nonconstant fields all of the integrals are finite
and well behaved, and so we have avoided large volume
factors Δxþ. The terms that for constant fields would be
proportional to ðΔxþÞ2 and Δxþ are instead distinguished
as the terms that scale as a20 and a0, respectively, for a0 ≫ 1

and constant χ. These can be seen as the first two terms in a
derivative expansion, and our approach allowed us to
calculate higher-order corrections.
For large a0, the dominant contribution comes from

the two-step term, which is simply obtained by gluing
together the individual probabilities of nonlinear Compton
scattering and Breit-Wheeler pair production, and then the
exchange and one-step parts of the probability only give
small corrections. This is of course what makes particle-in-
cell codes based on three-level processes useful in describ-
ing, e.g., cascades in high-intensity lasers. However, the
trident process itself might be most interesting in regimes
where one has to take into account corrections to the two-
step part, e.g., from the exchange terms. For sufficiently
large χ one might expect the exchange terms to be small.
However, for small χ and large a0 we have shown
analytically that the exchange part is in general of the
same order as the direct part of the one-step P1. By
considering some simple field shapes we have also shown
that for χ ≪ 1 and a0 ∼ 1 the exchange part can even be of
the same order of magnitude as the total probability.
Further, by numerical integration using complex deforma-
tion of xþ integrals we have also shown that the exchange
terms continue to be important for P1 even for quite large χ.
We have also studied how the exact probability con-

verges to the LCF approximation in the limit of large a0. In
the rate we found oscillations around the LCF approxima-
tion with decreasing amplitude but increasing frequency.
In a follow-up paper we plan on exploring the trident

process for more general fields and parameter regimes, in
particular by applying the numerical methods described
here to the total probability. We believe that the methods
that we have used here could also be useful for other
higher-order processes in strong laser fields, such as non-
linear double Compton scattering [19,32].
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APPENDIX A: PERTURBATIVE LIMIT

While we are mostly interested in strong fields, we
consider here the perturbative limit in order to check, e.g.,
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our exchange terms against the literature. We first change
variables according to Eq. (46) and expand to second order
in the field strength. We express the field in terms of its
Fourier transform

aðxþÞ ¼
Z

dω
2π

aðωÞe−iωxþ : ðA1Þ

At second order this gives us integrals over two Fourier
frequencies, ω1 and ω2, but the ϕ integral gives a delta
function, δðω1 þ ω2Þ, which we use to perform one of the
Fourier integrals. We then perform the θ integral with

Cauchy’s residue theorem [if we instead start with Eqs. (B2)
and (B3), then the θ integral gives a delta function]. We keep
either ω1 or ω2 such that the step function that arises from
the θ integral can be expressed as θð2pkω − r1 − r2Þ, where
kμω ¼ ωkμ=kþ. We now go to the rest frame of the initial
electron, since the literature results we are about to compare
with are written in that frame. We also assume frequencies
close to the threshold, i.e., 0 < ω − 4 ≪ 1, since this leads
to simple analytical results. We expand the integrand to
leading order and perform the φ and η integrals. The step
function θð2ω − r1 − r2Þ restricts the momentum variables
to be close to s1 ¼ s2 ¼ 1=3. We thus find

fPdir;Pex;Pdir þ Pexg ¼ α2
�

7

2 · 34
ffiffiffi
3

p ;−
1

27
ffiffiffi
3

p ;
1

2 · 34
ffiffiffi
3

p
�
×
Z
4

dω
2π

jaðωÞj2ðω − 4Þ2; ðA2Þ

where the Fourier transform is assumed to restrict the
integral to ω − 4 ≪ 1. Note that the exchange term again
gives a negative contribution. The direct part is a factor
of 7 times larger than the sum, i.e., Pdir ¼ 7ðPdir þ PexÞ,
which agrees exactly with what was stated in Ref. [33]
for the cross section for the single-photon trident process.
To also recover the overall coefficient for the cross
section, σ, we replace the field according to (recall that
a factor of e has been absorbed in our definition of the
field) aðωÞ → eϵμ2πδðω − ω0Þ= ffiffiffiffiffiffiffiffiffiffiffi

2ωV3

p
and divide the

probability by the temporal volume and the initial

flux density, which is given by 1=V3 in this case. We
obtain

σ ¼ πα3

4 · 34
ffiffiffi
3

p ðω − 4Þ2; ðA3Þ

which is exactly the result in Refs. [34–36].

APPENDIX B: FEYNMAN GAUGE

In the Feynman gauge we have Dνμ ¼ gνμ and from
Eq. (12) we find

M12 ¼ −iπα
Z

dϕxdϕy
1

kl
gμνθðϕy − ϕxÞe−

ilþ
kþðϕy−ϕxÞψ̄

p2

γμψ−
p3

zfflfflffl}|fflfflffl{ϕy

ψ̄
p1

γνψ
p

zfflffl}|fflffl{ϕx

; ðB1Þ

where now lþ ¼ l2⊥=4l−. From Eq. (B1) we find the direct contribution as

Pdir ¼
α2π2

4kp

Z
d ~p1d ~p2

θðkp3Þ
kp3

1

kl2

Z
dϕ1234θðθ42Þθðθ31Þ exp

i
kþ

�Z
ϕ4

ϕ3

ðπþ
p2

− πþ
−p3

− lþÞ þ
Z

ϕ2

ϕ1

ðπþ
p1

− πþ
p

þ lþÞ
	

× Trð=p3 −mÞ K̄
−p3

γνK
p2

zfflfflffl}|fflfflffl{ϕ3

ð=p2 þmÞK̄
p2

γμ K
−p3

zfflfflffl}|fflfflffl{ϕ4

Trð=pþmÞK̄
p
γνK

p1

zfflffl}|fflffl{ϕ1

ð=p1 þmÞK̄
p1

γμK
p

zfflffl}|fflffl{ϕ2

þ ð1 ↔ 2Þ; ðB2Þ

and the exchange term as

Pex ¼ −
α2π2

2kp
Re

Z
d ~p1d ~p2

θðkp3Þ
kp3

1

klkl0

Z
dϕ1234θðθ42Þθðθ31Þ

× exp
i
kþ

�
lþθ31 − l0þθ42 þ

Z
ϕ1

ϕ2

πþ
p

þ
Z

ϕ4

ϕ1

πþ
p1

þ
Z

ϕ2

ϕ3

πþ
p2

þ
Z

ϕ3

ϕ4

πþ
−p3

�

× Trð=p3 − 1Þ K̄
−p3

γμK
p2

zfflfflffl}|fflfflffl{ϕ3

ð=p2 þ 1ÞK̄
p2

γνK
p

zfflffl}|fflffl{ϕ2

ð=pþ 1ÞK̄
p
γμK

p1

zfflffl}|fflffl{ϕ1

ð=p1 þ 1ÞK̄
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γν K−p3
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; ðB3Þ
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where lμ ¼ ðp − p1 þ c1kÞμ and l0μ ¼ ðp − p2 þ c2kÞμ, with c1;2 such that l2 ¼ l02 ¼ 0. Note that Eqs. (B2) and (B3) give
the total direct and exchange parts of the probability, i.e., they have not been separated into one-step and two-step parts, and
compared with the light-front terms we have Eq:ðB2Þ ¼ P11

dir þ P12
dir þ P22

dir and Eq:ðB3Þ ¼ P11
ex þ P12

ex þ P22
ex . Although our

focus is on expressions derived using the light-front separation, we have found Eqs. (B2) and (B3) useful for checking
various analytical approximations, as explained in the main text.

APPENDIX C: COMPARING NUMERICS WITH ANALYTICAL EXPANSION

In this section we compare our numerical and analytical results in LCF for χ ≪ 1. To illustrate the accuracy of our
numerical method as well as the convergence of our analytical approximations, we include here higher-order corrections to
the leading orders in Sec. V D,

P22→1
dir ¼ −

α2a0Δϕ
ffiffiffi
χ

p
16

ffiffiffiffiffiffi
6π

p
�
1þ 233χ

10368
−
7838317χ2

71663616
þ 8759558921χ3

82556485632
−
42089593753511χ4

380420285792256

�
exp

�
−
16

3χ

�

≈ −
α2a0Δϕ

ffiffiffi
χ

p
16

ffiffiffiffiffiffi
6π

p ð1þ 0.02χ − 0.1χ2 þ 0.1χ3 − 0.1χ4Þ exp
�
−
16

3χ

�
; ðC1Þ

P11
dir ¼ 2

α2a0Δϕχ
3
2

384
ffiffiffiffiffiffi
6π

p
�
1 −

217χ

384
þ 15473χ2

32768
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177928745χ3

339738624
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�
−
16

3χ
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α2a0Δϕχ

3
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FIG. 15. These figures show the relative difference between our numerical results and analytical approximations with one (blue), two
(orange), three (green), four (red), and five (purple) terms in the χ ≪ 1 expansion.
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In Eq. (C4) we have included two more orders than for the other terms; these extra terms have not been used when
comparing with the numerics, but have been included in order to illustrate the growth of the series coefficients for this term.
In Fig. 15 we compare these approximations with our numerical results. These plots show that adding higher orders
improves the approximation, and also demonstrate the accuracy of our numerical method. For the (total) direct term, the
approximations are good all the way up to χ ∼ 1 and even by only including the first two orders: at χ ¼ 1 the relative error is
still only jR1;dir;smallχ=R1;dir − 1j ¼ 0.1, 0.03 for the leading-order and the leading-order plus the next-to-leading-order
correction, respectively. The corresponding values for the exchange term are jR1;ex;smallχ=R1;ex − 1j ¼ 0.3, 0.06. The
higher-order corrections for the exchange terms intersect at χ ∼ 0.5where the relative error is jR1;ex;smallχ=R1;ex − 1j ≈ 0.01.
We conclude that even the leading-order approximations give good order-of-magnitude estimates even for χ ∼ 1.
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