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Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using
perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous
dimensions are obtained as a systematic power series in a small parameter. The underlying ordering
principle is explained and contrasted with conventional perturbation theory and Weyl consistency
conditions. We then determine the conformal window with asymptotic safety from the complete next-
to-next-to-leading order in perturbation theory. Limits for the conformal window arise due to fixed point
mergers, the onset of strong coupling, or vacuum instability. A consistent picture is uncovered by
comparing various levels of approximation. The theory remains perturbative in the entire conformal
window, with vacuum stability dictating the tightest constraints. We also speculate about a secondary
conformal window at strong coupling and estimate its lower limit. Implications for model building and
cosmology are indicated.
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I. INTRODUCTION

In recent years the asymptotic safety conjecture [1] has
grown into a powerful paradigm of its own, with many
applications ranging from quantum gravitation to particle
physics and critical phenomena [2]. It states that quantum
field theories (QFTs) remain well defined and predictive up
to highest energies provided they are governed by an
interacting UV fixed point (FP) under their renormalization
group (RG) evolution of couplings [3]. Asymptotic safety
generalizes the notion of asymptotic freedom [4,5]. The
most striking new effects are residual interactions in the UV
which modify canonical power counting and the dynamics
of theories at shortest distances [6].
Asymptotic safety was originally proposed to cure the

high energy behavior of four-dimensional quantum gravity
by means of an interacting UV fixed point [1]. A lot of
progress has been made over the past decades to sub-
stantiate the feasibility for an asymptotically safe version
of quantum gravity [2,6–13]. In three-dimensional set-
tings, asymptotic safety is known to arise in models with
scalars, fermions, or both. In suitable large-N limits, exact

results at weak coupling are available from the renorm-
alization group [14–17], including models with supersym-
metry or spontaneously broken scale invariance [18–20].
Lattice results are available for nonlinear sigma models
[21]. More recently, it has been discovered that asymptotic
safety is operative in four-dimensional gauge theories with
matter [22]. For this to happen at weak coupling, all three
types of elementary fields—gauge fields, fermions, and
scalars—are required, together with suitable Yukawa
couplings [23]. By now, necessary and sufficient con-
ditions alongside strict no-go theorems for asymptotic
safety of general gauge theories are known [23,24].
Explicit proofs for asymptotic safety have been given
for simple [22], semisimple [25] and supersymmetric
gauge theories coupled to matter [26]. Coleman-
Weinberg resummations [27], the impact of interactions
with negative canonical mass dimensions [28] and fixed
points for models away from four dimensions [29] have
also been investigated. Asymptotically safe extensions of
the standard model and their signatures at colliders were
first put forward in [30].
An important open question relates to the size of the

conformal window for asymptotically safe gauge theories,
meaning the range in parameter space where a viable
interacting UV fixed point persists. While interacting
UV fixed points are under good control at weak coupling,
much less is known about asymptotic safety at strong
coupling [6]. On the other hand, IR conformal windows of
QCD-like theories have been studied more extensively.
There, conformal windows are known to extend into the
domain of strong coupling [31–34]. Similar insights into
UV conformal windows would be most useful, both
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conceptually, and from the viewpoint of phenomenology
and model building.
In this paper, we access the conformal window with the

help of perturbation theory (PT). It is shown how fixed
points, scaling exponents, and anomalous dimensions are
obtained as a systematic power series in a small parameter
(Sec. II). We analyze the systematics of perturbative
approximations for general theories with weakly interacting
fixed points and compare the ordering principle with
conventional perturbation theory and Weyl consistency
condition. The work of [22] is extended to derive the
requisite beta functions, fixed points, anomalous dimen-
sions, and scaling exponents at the complete next-to-next-
to-leading order (2NLO; Sec. III). A consistent picture for
the conformal window is uncovered by comparing various
levels of approximation, with vacuum stability offering the
tightest constraints (Sec. IV). Implications for model
building and cosmology are indicated as well. We close
with a brief discussion (Sec. V). Some technicalities are
summarized in an appendix (Appendix).

II. ASYMPTOTIC SAFETY

In this section, we recall the model of [22] in the
Veneziano limit, and provide its beta function for all
canonically massless couplings up to three-loop (two-loop)
order in the gauge (Yukawa, scalar) beta functions, and all
anomalous dimensions up to two loops. We also discuss the
underlying systematics for expansions in perturbation
theory.

A. The model

We consider four-dimensional massless quantum field
theories with SUðNCÞ gauge fields Aa

μ with field strength
Fa
μν, coupled to NF flavors of fermions Qi in the funda-

mental representation. The theory also contains a scalar
singlet “meson” field H, a NF × NF complex matrix
uncharged under the gauge group, which interacts with
the fermions via a Yukawa term. The theory has a global
SUðNFÞ × SUðNFÞ flavor symmetry. The action is taken to
be the sum of the Yang-Mills action, the fermion and scalar
kinetic terms, the Yukawa term, and the scalar self-
interaction Lagrangian

L ¼ LYM þ Lkin þ LYuk þ Lpot; ð1Þ

where

LYM ¼ −
1

2
TrFμνFμν;

Lkin ¼ TrðQ̄i=DQÞ þ Trð∂μH†∂μHÞ;
LYuk ¼ −yTrðQ̄LHQRÞ þ H:c:;

Lpot ¼ −uTrðH†HH†HÞ − vðTrH†HÞ2: ð2Þ

Tr is the trace over both color and flavor indices, and the
decomposition Q ¼ QL þQR with QL/R ¼ 1

2
ð1� γ5ÞQ is

understood. The theory has four canonically marginal
couplings given by the gauge coupling g, the Yukawa y
and two quartic scalar couplings u and v. The theory is
renormalizable in perturbation theory.

B. Veneziano limit

To prepare for the Veneziano (large-N) limit with finite
couplings [35], we rescale the four canonically dimension-
less couplings with suitable powers of field multiplicities,

αg ¼
g2NC

ð4πÞ2 ; αy ¼
y2NC

ð4πÞ2 ;

αu ¼
uNF

ð4πÞ2 ; αv ¼
vN2

F

ð4πÞ2 : ð3Þ

The theory is then characterized by two free parameters NC
and NF, related to the field multiplicities. In the Veneziano
limit, these are sent to infinity while the ratio is kept fixed.
This procedure reduces the set of free parameters down to
one, which we chose to be

ϵ ¼ NF

NC
−
11

2
: ð4Þ

In the Veneziano limit, ϵ is a continuous parameter taking
values within ½−11/2;∞�. For ϵ < 0, the theory is asymp-
totically free in all couplings. Trajectories running out of
the Gaussian fixed point are trivially “UV complete.” For
ϵ > 0, asymptotic freedom of the gauge sector is lost. In
this regime, and for sufficiently small ϵ, the theory develops
an interacting UV fixed point. Strict perturbative control
for an asymptotically safe UV fixed point is guaranteed as
long as

0 ≤ ϵ ≪ 1; ð5Þ

which is the regime of interest for the rest of this work.

C. Renormalization group

Quantum effects and the energy dependence of cou-
plings are encoded in the RG beta functions, which are
obtained in the MS renormalization scheme [36–40]. For
small coupling, the perturbative loop expansion is reliable,
and we write

β ¼ βð1Þ þ βð2Þ þ βð3Þ þ � � � ð6Þ

for any of the beta functions β≡ dα/d ln μ. Here, we denote
with βðnÞ the nth loop contribution. Some technicalities in
the derivation of beta functions from general expressions
are summarized in the Appendix.
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In concrete terms, the gauge beta function βg up to three
loops is given by

βð1Þg ¼ 4

3
ϵα2g;

βð2Þg ¼
�
25þ 26

3
ϵ

�
α3g − 2

�
11

2
þ ϵ

�
2

αyα
2
g;

βð3Þg ¼
�
701

6
þ 53

3
ϵ −

112

27
ϵ2
�
α4g −

27

8
ð11þ 2ϵÞ2α3gαy

þ 1

4
ð11þ 2ϵÞ2ð20þ 3ϵÞα2yα2g: ð7Þ

Up to three loop, the running of the gauge coupling is only
sensitive to the gauge and Yukawa coupling. Subleading
terms of the order ∼1/NF and ∼1/NC do not contribute in
the Veneziano limit and have been suppressed.
The Yukawa beta function βy up to two loops is given by

βð1Þy ¼ ð13þ 2ϵÞα2y − 6αyαg;

βð2Þy ¼ 20ϵ − 93

6
α2gαy þ ð49þ 8ϵÞαgα2y

− 4½ð11þ 2ϵÞαy − αu�αuαy
−
�
385

8
þ 23

2
ϵþ ϵ2

2

�
α3y: ð8Þ

The Yukawa beta function depends on the gauge and
Yukawa couplings, at any loop order. From two loop level
onwards, it also depends on the scalar coupling αu. In the
Veneziano limit, neither (7) nor (8) depends on the double-
trace scalar coupling αv, at any loop order.
The beta function for the single-trace scalar quartic

coupling βu up to two loops is given by

βð1Þu ¼ −ð11þ 2ϵÞα2y þ 4αuðαy þ 2αuÞ;
βð2Þu ¼ αuαy½10αg − 16αu − 3ð11þ 2ϵÞαy�

þ ð11þ 2ϵÞ½ð11þ 2ϵÞαy − 2αg�α2y − 24α3u: ð9Þ

The beta function βv for the double trace quartic scalar
coupling is given by

βð1Þv ¼ 12α2u þ 4αvðαv þ 4αu þ αyÞ;

βð2Þv ¼ 8αvαy

�
5

4
αg − 4αu − αv −

�
33

8
þ 3

4
ϵ

�
αy

�

þ ð11þ 2ϵÞ½ð11þ 2ϵÞαy þ 4αu�α2y
− 8α2u½12αu þ 5αv þ 3αy�: ð10Þ

Starting from the two loop level, both scalar beta functions
additionally depend on the gauge coupling. Our result is
also in accord with the findings of [41], which state that βv
is quadratic in αv to all loop orders in the Veneziano limit.

Some of the expressions have previously been given in
[22]. The main new additions here are the two-loop scalar
terms in (9) and (10). In the Veneziano limit, the subsystem
ðβg; βyÞ is independent of ðαu; αvÞ at the leading nontrivial
order which is two (one) loop in the gauge (Yukawa, scalar)
couplings. Beyond this order, the subsystem ðβg; βy; βuÞ
remains independent of αv.

D. Anomalous dimensions

We also provide results for the anomalous dimensions
associated to the fermions and scalars [36,39]. If mass
terms are present, their renormalization group flow is
induced through the RG flow of the gauge, Yukawa,
and scalar couplings. Following [25], we define the
scalar anomalous dimensions as ΔH ¼ 1þ γH, where
γH ≡ 1

2
d lnZH/d ln μ, and the fermion anomalous dimen-

sion as γQ ≡ d lnZQ/d ln μ. Within perturbation theory, the
one and two loop contributions read

γH ¼ αy −
3

2

�
11

2
− ϵ

�
α2y þ

5

2
αyαg þ 2α2u;

γQ ¼
�
11

2
þ ϵ

�
αy þ ξαg − ðϵ − 2ξ −

1

4
ξ2Þα2g

− ð11þ 2ϵÞαgαy −
�
253

16
þ 17

4
ϵþ 1

4
ϵ2
�
α2y; ð11Þ

up to corrections of order Oðα3Þ. Here, ξ denotes the Rξ

gauge fixing parameter. The anomalous dimension for the
scalar mass term follows from the composite operator
∼M2TrH†H with γM ¼ d lnM2/d ln μ. The anomalous
dimension for the fermion mass operator is defined as
ΔQ ¼ 3þ γMQ

with γMQ
≡ d lnMQ/d ln μ. Within pertur-

bation theory, we find

γM ¼ 8αu þ 4αv þ 2αy −
�
33

2
þ 3ϵ

�
α2y

− ð16αu þ 8αv − 5αgÞαy − 20α2u;

γMQ
¼

�
11

2
þ ϵ

�
αy − 3αg þ ð22þ 4ϵÞαgαy

−
�
31

4
−
5

3
ϵ

�
α2g −

�
253

16
þ 17

4
ϵþ ϵ2

4

�
α2y ð12Þ

up to terms of order Oðα3Þ. We note that γM is manifestly
positive at leading order. For γMQ

we observe that the gauge
and Yukawa contributions arise with manifestly opposite
signs at leading order. Hence these may take either sign
respectively, depending on whether the gauge or Yukawa
contributions dominate. Utilizing (12), mass terms then
evolve according to
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βM2 ¼ γMM2 − 8αyM2
Q þOðα3Þ;

βMQ
¼ γMQ

MQ þOðα3Þ: ð13Þ

The flow of mass terms already mixes to leading order in
the couplings, even in the Veneziano limit. Additional
mixing contributions are present as soon asNC andNF take
finite values.

E. Systematics

Next, we discuss the systematics of fixed point searches
in perturbation theory (Table I). Our considerations in this
section apply to any four-dimensional theory with weakly
coupled fixed points, and are more general as such than the
concrete asymptotically safe model introduced above.
Theories in four dimensions without gauge interactions

cannot develop weakly coupled fixed points [23,24].
Hence, gauge interactions must invariably be present to
generate fixed points at weak coupling. Scalar or Yukawa
couplings may also be present, depending on the particulars
of the matter content. If so, scalar quartic and Yukawa
couplings and their beta functions arise alongside those
for the gauge couplings. We then denote the approxima-
tions which retain terms up to order k, n, and m in the
loop expansion of the gauge, Yukawa, and scalar beta
functions by

ðk;m; nÞ: ð14Þ

Whenever unambiguous, we drop the commas in between.
Evidently, without scalars, we have n ¼ m ¼ 0 throughout.
One might wonder which approximation orders lead to
self-consistent fixed points.
Within perturbation theory, and without any other

a priori information about the theory, it seems natural to
retain beta functions up to the same loop order for all
couplings, corresponding to the sequence

PT∶ ðn; n; nÞ: ð15Þ

The first few approximations are the leading order (111),
the next-to-leading order (222), and the next-to-next-to-
leading order (333), as indicated in Table I.

In theories with weakly interacting fixed points, how-
ever, further information is available. In fact, close to fixed
points the naive perturbative ordering is upset owing to
interactions. It has been established in [23,24] that any
weakly interacting fixed point requires the one loop
gauge coefficient to be parametrically small.1 If we denote
the small parameter which controls the smallness of the
gauge one loop coefficient by ϵ [in the model (7), the one
loop coefficient reads − 4

3
ϵ], this structure implies that

βð1Þg ∼ ϵα2g ≪ α2g. In such settings, the leading order
approximation is (100) rather than (111) owing to the
parametric slowing down of the gauge coupling as opposed
to the other sectors. Barring exceptional cancellations,
this structure also implies that the one and two loop
gauge contributions are of the same order of magnitude

βð1Þg ∼ βð2Þg ∼ ϵ3, close to interacting fixed points α� ∼ ϵ;
see (6). On the other hand, Yukawa and scalar beta
functions at one loop cannot be made parametrically small.
Consequently, the approximation which provides the first
order at which a consistent fixed point α� ¼ OðϵÞ for all
couplings arises is (211): in the gauge sector the fixed point
materializes due to cancellations between the one and two
loop terms, and in the Yukawa and scalar sectors through
cancellations at one loop [23,24]. All higher loop contri-
butions are parametrically smaller and obey βðnÞ ∼ ϵnþ1 for
the gauge beta function once n ≥ 2 as well as βðnÞ ∼ ϵnþ1

for the Yukawa and the scalar beta functions for all n ≥ 1.
This pattern proceeds systematically to higher order [25]. It
follows that the sequence of approximations with consistent
interacting FP solutions is given by

FP∶ ðnþ 1; n; nÞ: ð16Þ
We denote this approximation as nNLO0. It determines the
fixed point α�ðϵÞ ¼ α�jnNLO0 þOðϵnþ1Þ for all couplings,
with α�jnNLO0 being an exact polynomial in ϵ up to
including terms of order ϵn. The first few approximations

TABLE I. Approximation schemes sorted according to the loop orders retained in the various beta functions, comparing PT, FP
consistency conditions [22,27], and Weyl consistency conditions (Weyl), each to leading (LO), next-to-leading (NLO) and 2NLO order.

Couplings Orders in perturbation theory Scheme

βgauge 1 1 2 2 2 3 3 3
βYukawas 0 1 1 1 2 2 2 3
βquartics 0 1 0 1 2 1 2 3

LO NLO 2NLO PT
LO0 NLO0 2NLO0 FP
LO00 NLO00 2NLO00 Weyl

1Strictly speaking, it is required that the ratio of the one loop
and the two loop gauge coefficient is a perturbatively small
number. If so, it can then always be achieved that the gauge one
loop coefficient is small by a suitable reparametrization of the
gauge coupling.
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are the leading (100), the next-to-leading (211), and the
next-to-next-to-leading (322) order; see Table I.
Finally, a third sequence of approximations exploits

information related to Weyl consistency conditions
[42,43]. Weyl consistency conditions have formally been
derived for weakly coupled theories on classical gravita-
tional backgrounds. On the level of the path integral they
state that two independent Weyl rescalings commute with
each other. In terms of the couplings fgig≡ fg; y; u; vg
with β functions βi ¼ dgi/d ln μ, the Weyl consistency
conditions take the form of integrability conditions
∂βj/∂gi ¼ ∂βi/∂gj in that they relate partial derivatives
of the various β functions to each other, and βi ≡ χijβj. The
functions χij play the role of a metric in the space of
couplings. Weyl consistency conditions are expected to
hold in the full theory, and hence it might seem desirable to
satisfy them even within finite perturbative approximations.
Note that the metric χij itself is a function of the couplings
which is why Weyl-consistent solutions relate different
orders of perturbation theory. For the gauge-Yukawa theory
studied here, a perturbative expression for the metric χ has
been given in [44]. Accordingly, Weyl-consistent approx-
imations are given by the sequence

Weyl∶ ðnþ 1; n; n − 1Þ: ð17Þ

We denote this approximation as nNLO00. The first few
approximations are the leading (100), the next-to-leading
(210), and the next-to-next-to-leading (321) order; see
Table I. Notice that the FP (16) and Weyl (17) approx-
imations only differ in the scalar sector, where the former
retains an additional loop order. However, in any QFT,
scalar couplings only enter the Yukawa beta functions
starting at two loop order, and the gauge sector at even
higher loop level. For this reason, the higher loop term in
the scalar sector only generates subleading corrections for
the gauge and Yukawa fixed point. This pattern implies that
power series expansions of fixed points at nNLO0 or
nNLO00 accuracy coincide for the gauge, Yukawa (scalar)
couplings, modulo subleading terms of order ∼ϵnþ1 (∼ϵn),
for all n.
The PT and Weyl schemes up to 2NLO and 2NLO00 have

recently been used to investigate the vacuum stability of the
standard model [45,46]. For the model at hand (1), (2), the
approximations NLO00, NLO0, and 2NLO00 have been
investigated in [22,27]. Below, we extend approximations
to the complete 2NLO0 order (322) in the spirit of (16), and
compare the PT, FP, and Weyl approximation schemes
quantitatively.

F. Away from four dimensions

As an aside, we note that the power counting detailed in
Table I applies uniquely to weakly interacting QFTs in four
dimensions. Away from four dimensions, the gauge,
Yukawa and quartic self-interactions have a nonvanishing

canonical mass dimension, and their β functions receive a
tree level contribution which alters the power counting in
Table I. Specifically, in d ¼ 4 − δ dimensions, the tree level
parameter jδj ≪ 1 now controls the perturbative expansion
and the existence of fixed points. Barring exceptional
cancellations, the leading nontrivial order with a consistent
interacting fixed point α�i ¼ OðδÞ is one loop (111), where
quantum fluctuations cancel the tree level terms for some or
all couplings (see [29] for a recent example). This pattern
proceeds to higher order, as is well known from, e.g., the
Wilson-Fisher fixed point [47].

III. RESULTS AT 2NLO0

In this section, we summarize our results for fixed points,
anomalous dimensions, vacuum stability, and scaling
exponents at the complete 2NLO0 order.

A. Fixed points

It is straightforward if tedious to identify the weakly
interacting fixed points at order ϵ2 of the system (7)–(10).
Given the polynomial nature of the beta function, however,
a large variety of (potentially spurious) fixed points arises.
Those fixed points which are proportional to ϵ in the
leading order are under strict perturbative control and can
be viewed as exact. Using the beta functions at (322)
accuracy, and performing a systematic expansion (16) up to
subleading corrections of order ϵ3, we find

α�g ¼
26

57
ϵþ 23

75245 − 13068
ffiffiffiffiffi
23

p

370386
ϵ2;

α�y ¼
4

19
ϵþ 43549 − 6900

ffiffiffiffiffi
23

p

20577
ϵ2;

α�u ¼
ffiffiffiffiffi
23

p
− 1

19
ϵþ 365825

ffiffiffiffiffi
23

p
− 1476577

631028
ϵ2;

α�v ¼ −
1

19
ð2

ffiffiffiffiffi
23

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pq
Þϵ

−
�

321665

13718
ffiffiffiffiffi
23

p −
27248

6859
þ

33533
6859

− 452563

13718
ffiffiffiffi
23

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp
�
ϵ2: ð18Þ

Results are accurate at the cited order, meaning that higher
loop corrections will only generate subleading terms of
order ϵ3. Results agree with the (321) approximation
adopted previously [22] in all but the ϵ2 terms of the
scalar quartic couplings. The reason for this is that the
scalar couplings interfere with the Yukawa and gauge beta
functions starting at the second and fourth loop level,
respectively; see (8). In consequence, at (322), only the
OðϵÞ coefficient of the scalar couplings contributes to the
Oðϵ2Þ value of the Yukawa coupling, hence agreement with
(321). Quantitatively, we have
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α�g ¼ 0.4561ϵþ 0.7808ϵ2 þ 3.8922ϵ3;

α�y ¼ 0.2105ϵþ 0.5082ϵ2 þ 2.4222ϵ3;

α�u ¼ 0.1998ϵþ 0.4403ϵ2 þ 1.8780ϵ3;

α�v ¼ −0.1373ϵ − 0.6318ϵ2 − 3.6685ϵ3: ð19Þ

All terms have coefficients of order unity. We have also
indicated the ϵ3 terms which originate from subleading
contributions in ϵ at 2NLO0 accuracy; they are only
indicative as further higher loop corrections beyond
(322) will modify them. Also note that all terms at order
ϵ2 arise with the same sign as those at order ϵ. This implies
that the αg and αy remain positive for all ϵ, as they must,
offering no limitations on the domain of validity. It would
be very useful to know whether the radius of convergence
(in ϵ) comes out finite, or not. Same sign correction terms
hint at a slow rate of convergence in ϵ and the presence
of complex conjugate poles in the complexified field
plane [48,49].

B. Vacuum stability

We now turn our attention to the stability of the vacuum.
It is well known that the scalar couplings control the
stability of the ground state. The stability for scalar
potentials as in (1) has first been investigated in [50]. In
the Veneziano limit, and in terms of the couplings used
here, it is required that [22,27]

α�u > 0 and α�u þ α�v > 0: ð20Þ

The first approximation with nontrivial scalar couplings is
NLO0 (211). At one loop, the fixed point in the scalar sector
is fuelled by the Yukawa fixed point. Most importantly,
vacuum stability has been established quantitatively [22],
with

α�u þ α�vjð211Þ ¼ 0.0625ϵþOðϵ2Þ: ð21Þ

Notice the smallness of the leading coefficient. It arises
through the cancellation of the leading order fixed point
values of the single- and double-trace couplings, which by
themselves are twice or thrice as large as their sum, (18). It
has also been shown that the Coleman-Weinberg-type
resummation of leading logarithmic corrections does not
alter the conclusion [27]. A first step beyond the leading
order (211) has been performed in [22] by using the Weyl-
consistent (321) approximation. The result

α�u þ α�vjð321Þ ¼ 0.0625ϵþ 0.1535ϵ2 ð22Þ

shows that the induced subleading, higher loop effects
from the gauge-Yukawa sector are supportive of vacuum
stability, for all ϵ. This can also be understood from
observing that the scalar quartic couplings are at one loop

proportional to the Yukawa coupling; and since the latter
grows with subleading corrections, so does (22) over (21).
At (322) accuracy, however, we find the complete ϵ2

correction from (18). Quantitatively, we have

α�u þ α�vjð322Þ ¼ 0.0625ϵ − 0.1915ϵ2 þOðϵ3Þ: ð23Þ

Notice that the leading and the subleading terms now arise
with opposite signs. At order ϵ2, this comes about because
the double-trace scalar coupling receives larger (and
negative) corrections than the single-trace coupling. We
also observe that the two loop terms in the scalar beta
function outweigh the gauge-Yukawa corrections in (22).

C. Anomalous dimensions

For the field and mass anomalous dimensions, using (11)
and (12) in conjunction with (18), we find

γHjð322Þ ¼ 0.211ϵþ 0.462ϵ2;

γQjð322Þ ¼ ð1.158þ 0.456ξÞϵ
þ ð1.249þ 1.197ξþ 0.052ξ2Þϵ2;

γMjð322Þ ¼ 1.470ϵþ 0.521ϵ2;

γMQ
jð322Þ ¼ −0.421ϵþ 0.926ϵ2; ð24Þ

up to terms of order Oðϵ3Þ, and where ξ denotes the gauge
fixing parameter in Rξ gauge. We observe that the sub-
leading corrections have the same sign as the leading order
ones, except for the mass anomalous dimension γMQ

.
Results are compatible with unitarity bounds. With increas-
ing ϵ, the anomalous dimension γM exceeds the classical
dimension starting at about ϵ ¼ 1.36 at (211) or ϵ ¼ 1.00 at
(322). For the fermion mass anomalous dimension, this
happens at ϵ ¼ 1.29 at (322). This implies that mass terms
become irrelevant operators in the UV for sufficiently large
ϵ. We interpret this phenomenon as the onset of strong
coupling where the validity of perturbation theory becomes
questionable.

D. Scaling exponents

Next we discuss universal exponents which are
obtained as eigenvalues of the stability matrix ∂βi/∂αjj�.
We order the eigenvalues according to magnitude,
ϑ1 < 0 < ϑ2 < ϑ3 < ϑ4.

2 Scaling exponents have been
known at (211) and (321) accuracy previously [22]. Our
results for the scaling exponents at 2NLO0 are

2This relates to the convention used in [22] under the exchange
ϑ3 ↔ ϑ4.
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ϑ1¼−
104

171
ϵ2þ2296

3249
ϵ3;

ϑ2¼
52

19
ϵþ136601719−22783308

ffiffiffiffiffi
23

p

4094823
ϵ2;

ϑ3¼
8

19

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ6

ffiffiffiffiffi
23

pq
ϵ

þ2
ffiffiffi
2

p ð50059110978þ10720198219
ffiffiffiffiffi
23

p Þ
157757ð10þ3

ffiffiffiffiffi
23

p Þ9/2 ϵ2;

ϑ4¼
16

19

ffiffiffiffiffi
23

p
ϵþ4ð68248487 ffiffiffiffiffi

23
p

−255832864Þ
31393643

ϵ2: ð25Þ

The new coefficients are ϵ2 corrections to the irrelevant
eigenvalues ϑ3 and ϑ4, which are the only terms sensitive to
the two loop scalar beta functions; the ∼ϵ2 contribution to
ϑ2 is only dependent on the scalar couplings to one loop.
Note that the rational coefficients in ϑ1 and ϑ2 arise from
the gauge-Yukawa subsector, whereas all irrational coef-
ficients arise with contributions from the scalar subsector. It
is interesting to note that the relevant scaling exponent ϑ1 is
completely determined to Oðϵ3Þ already at (210) order, as
noted in [22]. However, in contrast to the other exponents,
and expectation, increasing our approximation to (322)
does not fix any further coefficients, as the ∼ϵ4 coefficient
is sensitive to four loop (three loop) contributions to the
gauge (Yukawa) beta functions. Numerically, we have

ϑ1 ¼ −0.6082ϵ2 þ 0.7067ϵ3 þ 3.322ϵ4;

ϑ2 ¼ 2.737ϵþ 6.676ϵ2 þ 18.44ϵ3;

ϑ3 ¼ 2.941ϵþ 1.041ϵ2 − 2.986ϵ3;

ϑ4 ¼ 4.039ϵþ 9.107ϵ2 þ 44.43ϵ3; ð26Þ

where we additionally show the next subleading coefficient
in each case (e.g. the ϵ4 term in ϑ1 and the ϵ3 terms for the
other exponents). The latter terms are subject to corrections
from the next loop level, and quantify subleading effects
already present within the (322) approximation.

IV. UV CONFORMAL WINDOW

We are now in a position to investigate the size of the UV
conformal window for asymptotic safety for theories with
action (1) using perturbation theory.

A. Limits for interacting fixed points

The results of the previous sections have established a
UV fixed point to second order in ϵ ≪ 1. With increasing ϵ,
the conformal window for the UV fixed point is limited
through one of several mechanisms.
(a) Strong coupling. With increasing ϵ, regimes with

parametrically strong coupling in ϵ can arise either
through algebraic poles of fixed point couplings αðϵÞ

at finite ϵ, or in the limit ϵ → ∞. In the latter case, we
impose α� < 1 to delimit the range of validity.

(b) Fixed point mergers. Fixed point conditions for
approximations beyond (211) are at least quadratic
(or higher) order in one of the couplings. Conse-
quently, additional strongly coupled IR fixed point
solutions may arise. With increasing ϵ, these may
collide with the asymptotically safe UV fixed point,
and then disappear in the complex plane, setting an
upper limit on ϵ. Equivalently, this is signaled by the
vanishing of the relevant scaling exponent.

(c) Vacuum instability. The signs and size of the scalar
couplings are solely constrained by the requirement of
vacuum stability (20). Consequently, the change of
sign for the linear combination (20) with increasing ϵ
indicates the onset of instabilities.

(d) Negative coupling. Regions with parametrically weak
gauge or Yukawa coupling αðϵÞ → 0 for increasing
ϵ > 0 offer upper limits due to a change of sign of
these couplings and the subsequent disappearance of
fixed points into the unphysical regime.

From the point of view of practical applications, it is crucial
to understand up to which finite maximal value ϵ < ϵmax the
conformal window is going to persist, and which mecha-
nism is responsible for generating an upper bound, if any.

B. Bounds from fixed points and exponents

A first estimate for an upper bound follows from the
complete results at (211) and (322) order for the couplings
(up to second order in ϵ), and the scaling exponents (up to
fourth order in ϵ). Since all couplings receive same-sign
corrections at (322), (18), the scenario (d) cannot arise.
Requiring α� < 1 leads to ϵ < 2 approximately. However,
vacuum stability offers tighter constraints. We conclude
from (23) that the two loop scalar corrections impose an
upper bound for the conformal window through the onset of
vacuum instability, approximately given by ϵmax ≈ 0.326.
Let us see whether some of the incomplete higher order

corrections offer a similar, or even tighter bound. From the
relevant eigenvalue (25), an upper limit ϵmax ≈ 0.861 arises
from sign change of ϑ1 through the incomplete ϵ3 term,
indicating a fixed point merger [22]. Considering incom-
plete ϵ4 contributions from (322), the upper bound is
reduced to ϵmax ≈ 0.335. A sign change in ϑ3 would arise
at even larger ϵ and can be ignored. No constraints arise
from anomalous dimensions. Based on the explicit power
series expressions for couplings and exponents at 2NLO0,
we conclude that the conformal window is limited through
the onset of vacuum instability (23) and the vanishing of the
relevant eigenvalue (25),

ϵmax ≈ 0.326…0.335; ð27Þ

see Fig. 1. It is interesting to observe that the tightest bound
from incomplete higher order terms comes out very close to
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(yet, larger than) thevacuum stability bound. In this light, we
view (27) as indicative for the range of validity at this order.
Constraints through parametrically strong or weak coupling
do not play any role. As we see next, the UV conformal
window becomes more strongly constrained once bounds
from beta functions are taken into consideration.

C. Stabilizing vs destabilizing fluctuations

Next, we investigate constraints arising directly from the
beta functions rather than their power series solutions. We
see that this leads to tighter constraints yet. As a first step, it
is interesting to ask into which direction the higher loop
corrections are going to shift the beta functions. Inserting
the order ϵ fixed point results from [22] into the higher loop
terms, we find the leading shifts

βð3Þg jð211Þ ¼ 2.48ϵ4; βð2Þy jð211Þ ¼ −0.49ϵ3;

βð2Þu jð211Þ ¼ 0.26ϵ3; βð2Þv jð211Þ ¼ 0.99ϵ3: ð28Þ

Higher loop contributions to the gauge (Yukawa, scalar)
sectors do not appear until order ϵ4 (ϵ3), as is necessarily
the case. At the leading nontrivial order in ϵ, the fixed point
at the leading order (211) shifts the subleading gauge
and scalar beta functions upwards, but the Yukawa beta
function downwards; see (28). In general, upward shifts
Δβ > 0 at some finite couplings potentially destabilize UV
fixed points, simply because beta functions might no longer
be able to generate a nontrivial zero once upward shifts
become too large. For the same reason, downward shifts
Δβ < 0 always stabilize interacting UV fixed points,
simply because β > 0 for sufficiently small couplings,

which guarantees that a solution to β ¼ 0 can still be
found for finite positive couplings. Altogether this means
that higher loop corrections (28) to the running of the
Yukawa (gauge, scalar) coupling stabilize (destabilize) the
fixed point. It remains to be seen how this “competition of
fluctuations” balances out quantitatively across the various
beta functions and loop orders.

D. Bounds from beta functions

Next, we determine bounds from beta functions quanti-
tatively [51]. We adopt two strategies to determine ϵmax
from beta functions, for each set of loop orders. The first
strict strategy, whose bounds we call ϵ < ϵstrict, uses the
loop orders as indicated in Table II. In addition, all terms in
the beta functions (6) which are parametrically larger than
ϵnþ1 at the nth loop order are suppressed (couplings count
as α ∼ ϵ). The rationale for this strict approach is that the
approximate beta functions are now stripped of those
higher order contributions (in ϵ), which are not (yet)
accurately determined due to the absence of higher loop
terms. As such, the scheme primarily acknowledges the
power counting α ∼ ϵ, as dictated by the fixed point. The
bounds ϵstrict are sensitive to the competition between
the stabilizing Yukawa and the destabilizing gauge and
scalar loop contributions at higher order (28).
The second strategy is agnostic to these finer consid-

erations and employs the plain loop level approximation as
discussed in Table II, without touching the explicit ϵ
dependence within loop coefficients. This strategy retains
subleading terms in ϵ and we refer to its bounds as ϵsubl.
With the result (18) at hand, we can estimate what the effect
of these subleading terms is going to be by inserting the
fixed point solutions to order ϵ2 back into the beta functions
at (322), finding

βgjð322Þ ¼ 10.24ϵ5; βyjð322Þ ¼ −1.71ϵ4;

βujð322Þ ¼ 1.70ϵ4; βvjð322Þ ¼ 7.24ϵ4: ð29Þ

Subleading terms contribute starting at order ϵ5 (ϵ4) in the
gauge (Yukawa, scalar) sectors, as expected from (18).
Most notably, we find that the subleading terms shift the
gauge and scalar beta functions upwards and the Yukawa
beta function downwards. This is the exact same pattern as
observed in (28), albeit smaller by a power in ϵ. Moreover,
once ϵ ≈ 0.14 (0.25), the scalar (gauge, Yukawa) shifts (29)
are of the same size as (28). Since the bounds ϵsubl are
sensitive to the combined effect of (28) and (29), our line of
reasoning suggests that the bounds ϵsubl must follow the
same pattern as ϵstrict albeit being slightly tighter due to the
additional shift (29).
In Table II we summarize results for ϵstrict and ϵsubl, also

indicating which mechanism is limiting the domain of
validity for each case. At the lowest orders (210), (211) and
(221), we observe that ϵstrict is constrained via α� < 1. At

3 5 7

NC

Asymptotic Freedom

Asymptotic Safety

Effective Theories

0.4

0.2

0.0

0.2

0.4

FIG. 1. The UV conformal window with asymptotic safety
(yellow band) from fixed points and scaling exponents, (27), also
showing regimes with asymptotic freedom (green) and effective
theories (grey). Dots indicate the first few integer solutions (33).
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(221), mergers in the Yukawa sector could have arisen.
However, the growth of the coupling with ϵ is much
slower due to a large negative quadratic correction, αg ¼
0.456ϵ − 3.061ϵ2 þOðϵ3Þ, leading to a wider UV con-
formal window and the avoidance of mergers. In (210) and
(211) bounds for ϵsubl arise from the onset of strong
coupling through a pole at finite ϵ. In these cases, the
effective gauge two loop coefficient changes sign and
findings can no longer be trusted in perturbation theory.
At (221), instead, the bound for ϵsubl arises through a proper
fixed point merger. As soon as two loop effects in the scalar
sector are retained, such as in (212) and (222), we find that
the onset of vacuum instability dominates the upper limit.
Quantitatively, the bounds are weaker in (222) than in
(212). Hence, two loop Yukawa (scalar) terms increase
(decrease) the domain of validity and the conformal
window.
Turning to three loop effects, we observe that (311) is

limited by fixed point mergers through fluctuations in
the gauge sector. The new effect is triggered by a large
positive quadratic correction αg¼0.456ϵþ3.841ϵ2þOðϵ3Þ
which accelerates the growth of the gauge coupling, the
exact opposite of what happens in (221). The effect clearly
dominates over the bounds found at the preceeding orders
(210), (211) and (221). This continues to be true at (312),
where gauge fluctuations offer a tighter constraint than
vacuum stability. Including two loop Yukawa contribu-
tions, however, we find that the domain of validity is
substantially enhanced—by a factor of 4 in (321) and a
factor of about 3 in (322). While in (321) the upper limit
arises due to mergers, in (322) it comes about through
vacuum instability.
We now return to the induced shifts (28) and (29). From

Table II, and for all settings considered, it is evident that the
bound ϵsubl is systematically tighter than the bound ϵstrict,

ϵsubl ≲ ϵstrict ð30Þ

The result thus validates our semiquantitative considera-
tions based on induced shifts of beta functions; see (28) and
(29). We now discuss our results from the viewpoint of
perturbation theory (15) vs fixed point (16) vs Weyl (17)
consistency conditions (see Table I). The highest systematic
perturbative approximation is NLO, or (222), where

bounds in the range of ϵmax ≈ 0.21 arise through vacuum
instability. In the Weyl consistency scheme 2NLO00, or
(321), the bound is pushed towards ϵmax ≈ 0.13 due to
mergers. In this work, we have argued that the consistent
fixed point approximation 2NLO0, or (322), should be
favored. Its bound ϵmax ≈ 0.09 is even lower than the one in
the Weyl scheme, and, as in the PT scheme, dominated by
vacuum instability rather than mergers. Taking the most
advanced approximations as benchmarks, we conclude that
the UV conformal window extends up to

ϵmax ≈ 0.09…0.13; ð31Þ

see Fig. 2. The bounds (31) from beta functions are stronger
than the bounds from their perturbative solutions (27).
Also, all couplings and anomalous mass dimensions are
still small (below 0.06 and 0.15, respectively) and in the
range (31) where perturbation theory is viable.

TABLE II. Maximal values ϵstrict and ϵsubl for the parameter ϵ up until which asymptotic safety is realized. Limits arise due to (a) strong
coupling, (b) fixed point mergers, or (c) vacuum instability.

Couplings Orders in perturbation theory

βgauge 2 2 2 2 2 3 3 3 3
βYukawas 1 1 1 2 2 1 1 2 2
βquartics 0 1 2 1 2 1 2 1 2

ϵstrict 2.192a 2.192a 0.135c 16.16a 0.222c 0.029b 0.029b 0.145b 0.095c

ϵsubl 1.048a 1.048a 0.116c 3.112b 0.208c 0.027b 0.027b 0.117b 0.087c

5 7 9 11
0.4

0.2

0.0

0.2

0.4

NC

Asymptotic Freedom

Asymptotic Safety

Effective Theories

FIG. 2. The UV conformal window with asymptotic safety
(yellow bands) from beta functions, also showing regimes with
asymptotic freedom (green) and effective theories (grey). The
lower yellow band corresponds to the full 2NLO0 result, the upper
yellow band covers the range (31), and symbols indicate the first
few integer solutions (34) and (35).
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In summary, competing effects due to higher loop
contributions in the gauge, scalar and Yukawa sector
constrain the size of the UV conformal window. While
higher loop terms in the Yukawa sector continue to stabilize
the fixed point, those in the gauge and scalar sector
destabilize it. The combined effect is such that vacuum
stability comes out as the most constraining factor.
Subleading terms in ϵ in all beta function coefficients
always lead to tighter constraints (30). The fact that the
constraints for ϵsubl and ϵstrict are quantitatively close to
each other is a strong sign for the intrinsic consistency of
results.

E. Bounds from strong coupling

We briefly comment on the prospect for asymptotic
safety when ϵ becomes large [22]. Increasing ϵ implies that
the one loop term (7) is no longer small and perturbative
control is lost. For an interacting fixed point to exist,
cancellations between different loop orders must take place.
For NF → ∞ and at finite NC, corresponding to the limit
1/ϵ → 0, the running of couplings is fully dominated by
fermion loops, and gluon loops can be neglected. An
infinite order resummation for the Uð1Þ [52] and SUðNÞ
[53] beta functions can be achieved, showing a nonpertur-
bative UV fixed point in the gauge sector with ϵα�g of order
unity (3). However, subleading corrections in 1/NF may
spoil the result and must be investigated before definite
conclusions can be made [54]. Also, the Yukawa and scalar
couplings do not play a role and can be omitted
(αy ¼ αu ¼ αv ¼ 0). Based on continuity in ðNF;NCÞ it
has been argued that a fingerprint of the fixed point should
be visible at loop level [22]. Then, assuming that the UV
fixed point exists nonperturbatively for sufficiently large
and finite NF, NC, we may use the loop expansion to
estimate a lower bound for its conformal window.
Specifically, for large ϵ, the leading n loop contribution
scales as cnϵn−1αnþ1

g ðn > 1Þ where cn is of order unity and
independent of ϵ. Cancellation with the one loop term gives
the estimate α�g ∼ ϵð2−nÞ/ðn−1Þ from the nth loop order
(cn < 0) [55,56]. Quantitatively, the three loop beta func-
tion (7) indicates that a strongly coupled fixed point obeys
ϵ > ϵmin, with

ϵmin ¼
3

224
ð159þ 19

ffiffiffiffiffiffiffiffi
505

p
Þ ≈ 7.49: ð32Þ

The bound arises from strong coupling with αg → ∞ for
ϵ → ϵmin. Technically, it is due to a competition between
subleading three loop terms and the two loop term. In the
domain ϵ > ϵmin the effective gauge coupling

ffiffiffi
ϵ

p
α�g is of

order unity. The fixed point has one relevant eigendirection
and the scaling exponent is large and bounded from above,
ϑðϵÞ ≤ −20.69, with ϵ ≈ 44.6 at the maximum. Moreover,
the scaling exponent diverges ðϑ → −∞Þ at the bound (32),
and in the limit ϵ → ∞ [22]. Hence, the expected

characteristics of the fixed point at strong coupling are
quite different from those at small ϵ where couplings and
exponents are both parametrically small.

F. Implications for model building and cosmology

Finally, we discuss a few implications of our results for
model building and cosmology [2]. It has already been
shown that asymptotic safety offers novel opportunities for
model building, including explicit beyond the standard
model scenarios and phenomenological signatures with the
standard model gauge group SUð3ÞC × SUð2ÞW ×Uð1ÞY
[30]. Moreover, estimates for the UV conformal window in
terms of matter field multiplicities and representations have
equally been derived [30].
For the model at hand, and using the bound (27) from

fixed points and scaling exponents at 2NLO0, we obtain the
smallest pair of integer values for ðNC;NFÞ compatible
with asymptotic safety. The first few integer solutions
within (27) are

ðNC;NFÞ ¼ ð3; 17Þ; ð4; 23Þ; ð5; 28Þ; ð5; 29Þ;
ð6; 34Þ; ð7; 39Þ; ð7; 40Þ;… ð33Þ

as indicated in the yellow band of Fig. 1. Solutions cover all
special unitary gauge groups with NC > 2. Starting from
NC ¼ 5 onwards, multiple solutions for the corresponding
fermion flavor multiplicities NF become available. Bounds
for the conformal window from beta functions (31) are
tighter. Considering the bound from (321), Table II, the first
few integer solutions are

ðNC;NFÞ ¼ ð5; 28Þ; ð7; 39Þ; ð8; 45Þ; ð9; 50Þ;
ð10; 56Þ; ð11; 61Þ; ð12; 67Þ;… ð34Þ

corresponding to the entire yellow band in Fig. 2. For the
few leading values for ðNC;NFÞ, the bound (34) is the same
irrespective of whether one uses the limit ϵsubl (as has been
done in [22]), or the limit ϵstrict. Moreover, solutions for
SUð3Þ, SUð4Þ and SUð6Þ are no longer available. The
asymptotically safe solution with the smallest number of
fields corresponds to SUð5Þ with 28 flavors of fermions in
the fundamental representation. This is quite close to the
SUð5Þ grand unified theory (GUT) candidate [57], which,
with NF ¼ 24 flavors of fermions, remains marginally
asymptotically free. Hence, (34) suggests that asymptotic
safety can already be achieved in a GUT-like scenario, with
just a few more flavors of fermions (to destabilize asymp-
totic freedom), plus additional elementary mesons and
Yukawa couplings (to generate asymptotic safety).
Extending approximations to the complete (322) level,
the bounds are shifted and the UV conformal window
narrows down, starting with

ðNC;NFÞ ¼ ð7; 39Þ; ð9; 50Þ; ð11; 61Þ; ð12; 67Þ;… ð35Þ
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corresponding to the lower yellow band in Fig. 2. Once
again, the few leading integer solutions in (35) do not
depend on having used either ϵstrict or ϵsubl to fix the
conformal window. In particular, the cases ðNC;NFÞ ¼
ð5; 28Þ; ð8; 45Þ and (10,56) have dropped out due to the
onset of vacuum instability in the fundamental meson
sector, turning the first viable candidate into SUð7Þ.
Asymptotic safety has also been considered as a mecha-

nism for inflation by including UV effects from quantum
gravity and matter [58,59]. General scenarios have been
classified and conditions for cosmological fixed points with
inflationary expansions in the early Universe are known
[59] (see [60,61] for settings where inflation arises purely
quantum gravitationally). It has also been speculated that
inflation may arise from asymptotically safe toy models
[22,27], neglecting quantum gravity altogether [62,63].
Compatibility with the 2015 Planck data [64] at the 2σ
level requires a large conformal window up to ϵ ≈ 0.7…0.8
if minimal coupling is assumed [62]. This scenario seems
firmly excluded in the light of (27) and (31). Without
minimal coupling, the conformal window (31) imposes
large values for the nonminimal coupling ξ ≫ 1 of scalar
matter to gravity (substantially larger than the conformal
value ξ ¼ 1

6
) to achieve compatibility with data [64].

It is interesting to check how finite N corrections beyond
the Veneziano limit [51], higher loop corrections beyond
2NLO0, higher-dimensional operators [28], or strong cou-
pling effects are going to modify the UV conformal
window and the bounds (31), (34) and (35). This is left
for future work.

V. DISCUSSION

The existence of exact and interacting UV fixed points in
particle physics offers many opportunities for model
building [30]. For any practical applications, however, it
is equally important to understand the size of the corre-
sponding conformal window. Here, we have investigated
the conformal window for the gauge-Yukawa theory (1).
Extending the findings of [22] we have obtained exact
results for fixed points, anomalous dimensions, and scaling
exponents up to second order in the small parameter (4), the
highest order in perturbation theory presently available.
The underlying ordering principle, which due to the fixed
point is different from what one would expect normally, is
also explained in detail (Table I).
The conformal window follows from fixed points and

beta functions. We have also compared different approxi-
mation orders and clarified the role of subleading correc-
tions (Table II). Limits invariably arise through a
competition of fluctuations. Higher loops in the Yukawa
sector enhance the conformal window, countered by higher
loops in the gauge sector. Higher loops in the scalar sector
tend to destabilize the quantum vacuum. With increasing
coupling strength, the conformal window terminates either
through fixed point mergers or via the onset of vacuum

instability. Despite their qualitatively different origins,
constraints are quantitatively similar, with vacuum stability
offering the tightest one, (31). Moreover, the conformal
window based on the convergence of fixed points and
scaling exponents (Fig. 1) is less constrained than the one
based on beta functions (Fig. 2). Some phenomenological
implications have been worked out for particle physics and
cosmology.
It has also been noted that another conformal window

may exist in the regime where the parameter ϵ becomes
large [22,52–54]. If so, the underlying mechanism is
nonperturbative. Presently, results are available at the
leading order in 1/ϵ. Assuming the fixed point exists at
finite 1/ϵ, a rough estimate for its conformal window has
been given based on perturbation theory, (32).
As a final point, we note that the theory remains

perturbative in the entire conformal window, much unlike
the IR conformal windows in QCD-like theories [34]. The
culprit for this is the scalar sector which controls the
stability of the ground state. It would be good to confirm
these results nonperturbatively, also in view of higher
dimensional operators and finite N corrections.
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APPENDIX: TECHNICALITIES

In Sec. II, and starting from known general expressions
in the MS renormalization scheme [36–40], we have
derived all beta functions and anomalous dimensions for
our model both manually, and with the help of a purpose-
made algebraic code. In this appendix we provide some
details on the extraction of the two loop contributions to the
running of the scalar quartic couplings. We follow closely
the notation of [39] and [36–38]. Our conventions for the
most general Yukawa and quartic scalar self-interactions
are

LYuk ¼ −
1

2
ðYa

jkΦaΨjΨk þ H:c:Þ;

Lpot ¼ −
1

4!
λabcdΦaΦbΦcΦd; ðA1Þ

where Ψj denote Weyl fermions, and Φa real scalars.
Below, we find it convenient to view the Yukawa couplings
as symmetric matrices in the fermionic indices Ya,
with ðYaÞjk ¼ Ya

jk.
Due to the scalars being gauge singlets in our model (1),

(2), the number of nonzero contributions reduces drasti-
cally, and a general expression for the two loop beta
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function of the quartics can be given. Writing the scalar
beta functions as βabcd ≡ μ∂μλabcd, and also using con-
ventions as in (6), we have

βð2Þabcd ¼
X

e¼a;b;c;d

1

2
ðΛ2

ee − 3H2
ee − 2H̄2

ee þ 10Y2F
ee Þλabcd

− Λ̄3
abcd − 2Λ̄2Y

abcd þ H̄λ
abcd þ 2HY

abcd þ 4H̄Y
abcd

þ 4H3
abcd − 2HF

abcd: ðA2Þ

For convenience, we have scaled the loop factor ð4πÞ4 into
the couplings. The terms in the first line of (A2) are the two
loop corrections to the scalar legs, with

Λ2
ab ¼

1

6
λacdeλbcde;

H2
ab ¼

1

2
Tr½YaY†bYcY†c þ Y†aYbY†cYc�;

H̄2
ab ¼

1

2
Tr½YaY†cYbY†c þ Y†aYcY†bYc�;

Y2F
ab ¼ 1

2
g2Tr½C2ðFÞðYaY†b þ YbY†aÞ�: ðA3Þ

The terms in the second line of (A2) are the various vertex
corrections, defined as

Λ̄3
abcd ¼

1

4

X
perms

λabefλceghλdfgh;

Λ̄2Y
abcd ¼

1

16

X
perms

λabefλcdegTr½Y†fYg þ Y†gYf�;

H̄λ
abcd ¼

1

8

X
perms

λabefTr½YcY†eYdY†f þ ðY ↔ Y†Þ�;

HY
abcd ¼

X
perms

Tr½Y†aYbY†cYdY†eYe�;

H̄Y
abcd ¼

1

2

X
perms

Tr½Y†aYeY†bYcY†dYe þ ðY ↔ Y†Þ�

H3
abcd ¼

1

2

X
perms

Tr½YaY†bYeY†cYdY†e�;

HF
abcd ¼ g2

X
perms

Tr½fC2ðFÞ; YagY†bYcY†d�; ðA4Þ

where
P

perms denotes the sum over all permutations of the
indices a, b, c, d. Traces are taken over all fermion indices,
and the matrix C2ðFÞ is the quadratic Casimir for the
fermions.
Next, we need to map and evaluate expressions in the

conventions of our model (1)–(3). The algebra is somewhat

tedious since the scalar couplings λabcd in (A1) are fully
symmetrized, differently normalized than those in themodel
considered here, and defined in terms of fields decomposed
into real degrees of freedom. One simplification is that the
contribution from the field strength renormalization is, of
course, equal for each of the quartic couplings λabcd. By a
suitable choice of outer indices, renormalization group
equations for αu, αv in (3) are obtained. For example,
for the double-trace coupling, taking the outer legs as
Φa;Φb ¼ ðReHÞii and Φc;Φd ¼ ðReHÞjj with i ≠ j, leads
to 1

4!
λaacc ¼ αv/ð12N2

FÞ. For the single-trace coupling,
taking Φa ¼ ðReHÞii, Φb ¼ ðReHÞij, Φc ¼ ðReHÞjj and
Φd ¼ ðReHÞji with i ≠ j leads to 1

4!
λabcd ¼ αu/ð24NFÞ, and

similarly for the map from Ya
jk onto αy.

With these considerations in mind we find the two loop
contributions to μ∂μαu;v from (A2)–(A4). In terms of (4),
and neglecting subleading terms of Oð1/NÞ in the
Veneziano limit, we obtain from (A3)

X
e

Λ2
ee ¼ 16α2u;

X
e

H2
ee ¼ 2ð11þ 2ϵÞα2y;

X
e

H̄2
ee ¼ 0;

X
e

Y2F
ee ¼ 2αgαy; ðA5Þ

where the sum runs over any four scalar indices. The two
loop vertex corrections (A4) to the flow of the single-trace
quartic coupling μ∂μαu, normalized to account for the map
from λabcd to αu in (A2), are

Λ̄3
u ¼ 32α3u; Λ̄2Y

u ¼ 8αyα
2
u;

H̄λ
u ¼ 0; HY

u ¼ 1

2
ð11þ 2ϵÞ2α3y; H̄Y

u ¼ 0;

H3
u ¼ 0; HF

u ¼ ð11þ 2ϵÞαgα2y: ðA6Þ

Similarly, the vertex corrections (A4) to the flow of the
double-trace coupling μ∂μαv, now normalized to account
for the map from λabcd to αv, are given by

Λ̄3
v ¼ 48α2uð2αu þ αvÞ;

Λ̄2Y
v ¼ 4αyð3α2u þ 4αuαv þ α2vÞ;
H̄λ

v ¼ 4ð11þ 2ϵÞα2yαu; HY
v ¼ 0; H̄Y

v ¼ 0;

H3
v ¼

1

4
ð11þ 2ϵÞ2α3y; HF

v ¼ 0: ðA7Þ

Combining (A5), (A6) and (A7) leads to the final result (9)
and (10). The expressions for the two loop anomalous
dimensions (11), (12) have been deduced from general
expressions using similar techniques.
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