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We study phase transitions in SUð∞Þ gauge theories at nonzero temperature using matrix models. Our
basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops.
As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop,
the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a
continuous phase transition whose order is larger than second. This is a generalization of the phase
transition of Gross, Witten, and Wadia. Depending upon the detailed form of the matrix model, the
eigenvalue density and the behavior of the specific heat near the transition differ drastically. We speculate
that in the pure gauge theory, although the deconfining transition is thermodynamically of first order, it can
be nevertheless conformally symmetric at infinite N.
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I. INTRODUCTION

The nature of the deconfining phase transition in SUðNÞ
gauge theories is a question of fundamental importance;
numerical simulations on the lattice indicate a transition of
first order for N ≥ 3 [1]. In finite-temperature pure gauge
theory, the Polyakov loop is the relevant order parameter. It
is therefore reasonable to study the phase transition as a
function of an effective theory of thermal Wilson lines, as a
type of matrix model.
There are many matrix models which are soluble at large

N. The most familiar is when the transition is driven by the
Vandermonde determinant from the integration measure of
a single site integral [2–18]. This type of model was
originally applied to a lattice gauge theory in two space-
time dimensions [3–5], where, for the Wilson action, there
is a third-order transition as a function of the coupling
constant. The third-order transition as a function of temper-
ature was subsequently shown in lattice gauge theory at
strong coupling with heavy quarks using the mean-field
approximation [6,7].
Sundborg showed that at infinite N, this model is

relevant to deconfinement on a femtosphere, S3 × R1

[10–17]. As a function of temperature, the deconfining
transition appears to be of first order, as both the energy
density and the order parameter are discontinuous at the

transition temperature Td. Even so, the specific heat
diverges as T → Tþ

d , as is typical of a second-order
transition [12,13,19,20]. For this reason the transition at
infinite N can be termed “critical first order” [12,13].
Similar transitions also arise by expanding in a large
number of dimensions [21].
On the femtosphere, Aharony et al. showed that the

critical first order is washed out when higher-order pertur-
bative corrections are included, leaving an ordinary first-
order transition [11]. The question is whether this remains
true in the limit of infinite volume. An effective model of
Wilson lines was developed as a model for deconfinement
with three colors [22–30] and extended to include dynami-
cal quarks [31]. This model is soluble at large N [19]. In
this paper we study a general class of matrix models and
solve them in some special but illustrative cases.
We now give an outline of this paper and summarize the

main results. Matrix models for the deconfining phase
transition are functions of the thermal Wilson line,
L ¼ P expðig R 1=T

0 A0dτÞ, which we take to lie in the
fundamental representation. The general form of the
effective potential, which we discuss in Sec. II, includes
an infinity of terms. The simplest possibility is to start with
those involving arbitrary powers of L, but just two traces,

N2Veff ¼
X∞
n¼1

anjtrLnj2 þ � � � : ð1Þ

We assume that these double-trace terms dominate near the
deconfining phase transition Td. All an are therefore
positive below Td to prevent the spontaneous symmetry
breaking of ZðNÞ.
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Section III considers deviations from the double trace
terms of Eq. (1). We assume that the phase transition is
driven by traces of loops which wind only once in imaginary
time, trL, and not by those which wind more than once, such
as trL2, etc. This is a significant assumption, but is borne out
by all known models. Then the obvious terms to add next are
those linear and quartic in trL:

N2Veff ¼
X∞
n¼1

anjtrLnj2 þ b1
N2

ðjtrLj2Þ2 − NhðtrLþ trL†Þ:

ð2Þ
We assume that the coupling for the quartic term, b1, is small
near Td, but let the magnitude of the background field, h, be
arbitrary. We ignore all other couplings, including cubic
couplings such as trðL−1Þ2ðtrLÞ2 þ c:c:, etc., and discuss
why this might be valid.
For the original model of Gross, Witten, and Wadia [3],

the coefficients an ¼ 1=n, and there is a phase transition
when the expectation value of the loop, 1

N trL, equals
1
2
. In

Sec. III, we consider arbitrary an, and show that for some
critical hc, there is always a phase transition when 1

N trL
goes through 1

2
. We thus term this point a generalized Gross-

Witten-Wadia (GWW) transition. In Sec. III Awe show that
there is a region in the space of a1, b1 and h where a
generalized GWW transition occurs.
About the GWW transition, the value of the potential at

the minimum can be expanded in powers of δh ¼ h − hc:

FðhÞ ¼ fregðhÞ þ
�
0 for δh ≤ 0

vδhr þOðδhrþ1Þ for δh > 0
ð3Þ

where v is an irrelevant constant, and freg is a smooth
function of h. For the model of Gross, Witten and Wadia,
r ¼ 3, and thus the transition is of third order in h. In
Sec. III B we argue that independent of the values of the
coefficients an, r > 2 for the generalized GWW transition,
and so the transition is of higher order than second. The
point where h ¼ b1 ¼ 0 is special, as lines of first, second,
and higher order meet, Fig. 1.
We stress that as in the model of Gross, Witten, and

Wadia, this unusual phase structure emerges only at infinite
N. This can be seen from Eq. (3): at infiniteN the piecewise
function emerges. For finite N, however, the corresponding
function is regular at δh ¼ 0, and so the corresponding
transition at 1

N trL ¼ 1
2
is only a smooth crossover.

In Sec. IV we solve a specific class of models. We take
the coefficients that contain a simple form,

an ∼
1

ns
; ð4Þ

with s ¼ 1, 2, 3 and 4. In these instances we solve for the
eigenvalue density of the Polyakov loop exactly and
confirm the general analysis in Sec. III. The exponent r
in Eq. (3) is computed and equals

r ¼ 5þ s
2

ð5Þ

when s ¼ 1, 2, 3 and 4. This shows that the GWW
transition is of third order when s ¼ 1, as is known, and
of higher order when s ¼ 2, 3 and 4. We investigate how
the quartic coupling changes the behavior of the Polyakov
loop near the phase transition.
In the conclusions, Sec. V, we discuss the possible

implications of our results. In particular, we speculate that
in infinite volume the deconfining transition can be critical
first order.

II. EFFECTIVE POTENTIAL

In this section, we consider the effective potential of the
Polyakov loop in SUðNÞ Yang-Mills theory at large N.
After some standard definitions, we consider the possible
forms for the effective potentials of Polyakov loops, and
suggest that double trace terms may dominate near the
deconfining phase transition.

A. Notation

In a Yang-Mills theory without dynamical quarks at
nonzero temperature, the global symmetry associated with
the deconfining phase transition is ZðNÞ. The basic variable
is the Wilson loop in the direction of imaginary time, τ,

FIG. 1. Phase diagrams for the matrix model in Eq. (23), this
figure and Fig. 2. This figure shows zero external field, h ¼ 0,
varying the mass term, a1, and the quartic coupling, b1, for the
first Polyakov loop, ρ1. The red dashed line is a first-order
transition; the blue dash-dotted line is a second-order transition;
the green solid line is for the generalized Gross-Witten-Wadia
(GWW) transition. The critical first order is located at the origin
where all three phase transition lines meet. For illustration we use
the model with a Vandermonde determinant for the red dashed
line, s ¼ 1 in Sec. IV. The confined phase is the region to the right
of the red dashed and blue dash-dotted lines, the deconfined to the
left of the lines. The green shaded and red hatched regions are the
projections of the surfaces of the GWW and first-order phase
transitions onto the h ¼ 0 plane, respectively.
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LðxÞ ¼ P exp

�
ig
Z

1=T

0

dτA0ðτ;xÞ
�
: ð6Þ

Under the center symmetry the thermal Wilson line trans-
forms as L → zL where z is an element of ZðNÞ, z ¼
expð2πij=NÞ for an integer j ¼ 1…N.
While the thermal Wilson line is gauge variant, its

eigenvalues are gauge invariant. As a unitary matrix, after
diagonalization

LðxÞ ¼ diagðeiθ1 ;…; eiθN Þ: ð7Þ

As an SUðNÞ matrix, these eigenvalues satisfyP
N
i¼1 θi ¼ 0, modulo 2π.
The phase transition is then characterized by the traces of

powers of the thermal Wilson line. Without loss of general-
ity we can take all traces to be in the fundamental
representation, so there are N − 1 independent Polyakov
loops,

ρn ¼
1

N
trLn: ð8Þ

The nth Polyakov loop ρn wraps around in imaginary time
n times. The ρn form a complete set of gauge invariant
order parameters for the spontaneous breaking of ZðNÞ
symmetry in the deconfined phase [23,32].
At large N we introduce the variable x,

x ¼ i
N
−
1

2
; ð9Þ

where θi → θðxÞ [2]. The nth Polyakov loop is then

ρn ¼
1

N

XN
i¼1

einθi →
Z

1
2

−1
2

dxeinθðxÞ: ð10Þ

At infinite N each loop is a functional of θðxÞ. Introducing
the eigenvalue density

ρðθÞ ¼ dx
dθ

; ð11Þ

the loop becomes

ρn ¼
Z

π

−π
dθρðθÞeinθ: ð12Þ

In this way, the Polyakov loops are functionals of ρ, rather
than of θ.
The eigenvalue density must be non-negative,

ρðθÞ ≥ 0: ð13Þ

This will play an essential role for the GWW phase
transition. It is normalized as

Z
π

−π
dθρðθÞ ¼ 1: ð14Þ

Provided that ρðθÞ is continuously differentiable for
−π ≤ θ ≤ π, we can write ρ as a Fourier series in terms
of its moments in θ,

ρðθÞ ¼
X∞
n¼−∞

ρneinθ ¼
1

2π

�
1þ 2

X∞
n¼1

ρn cos nθ

�
; ð15Þ

using Eq. (14). We have assumed that the expectation value
of every Polyakov loop ρn equals its complex conjugate,
ρ−n. They are related under charge conjugation, and so this
assumption is valid at nonzero temperature and zero quark
chemical potential. (At nonzero chemical potential [8] the
expectation value of the loop and its complex conjugate
differ [16,17,24,33]). In doing so we implicitly perform an
overall ZðNÞ rotation so that the expectation value of all
Polyakov loops are real.
At infinite N, all Polyakov loops vanish in the confined

phase, ρn ¼ 0 for all n ≥ 1. This implies that the eigenvalue
density is constant, ρðθÞ ¼ 1=ð2πÞ, demonstrating the
complete repulsion of eigenvalues. In the deconfined phase,
ρn become nonzero. At infinitely high temperature all
Polyakov loops equal unity; this implies that all eigenval-
ues become zero, and thus ρðθÞ ¼ δðθÞ.

B. Effective potentials for the Polyakov loops

The effective potential for the Polyakov loop is con-
structed formally as [34]

exp ½−VTd−1N2VeffðρnÞ�

¼
Z

DAμe−SYMðAμÞ
YN−1

m¼1

δ

�
ρm −

1

VN

Z
dxtrLm

�
; ð16Þ

where SYM is the d-dimensional Euclidean Yang-Mills
action and V is the spatial volume. The right-hand side is a
path integral over the gauge fields in the presence of
constant background Polyakov loop ρn. We have scaled out
VTd−1 so that Veff is dimensionless. By convention, there is
a factor N2, so that N2Veff is of order N0 in the confined
phase and N2 in the deconfined phase [35]. The partition
function is then given by integrating over the eigenvalues:

Z ¼
Z

½dθ� exp ½−N̄2VeffðρnÞ�; ð17Þ

where we define

N̄2 ¼ VTd−1N2: ð18Þ

At the outset, we stress that at infinite N the effective
potential is a function of all loops, for every ρn from n ¼ 1
to∞. One might hope to simplify things by considering an
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effective potential for just a few loops, such as ρ1, ρ2, etc.
However, all Polyakov loops vanish in the confined phase,
ρn ¼ 0 for every n ≥ 1; an effective potential involving a
finite number of loops cannot force all loops to vanish.
Alternately one could integrate over all ρn for n ≥ 2, and

construct an effective potential just for ρ1. This is possible,
but its utility is not apparent to us.
Using only the global ZðNÞ symmetry, there are many

terms which can appear in the most general effective
potential for the Polyakov loops,

VeffðρnÞ ¼ að1;1Þð1;−1Þρ1ρ−1 þ að1;1Þð2;−2Þρ2ρ−2

þ að2;1Þð1;−2Þðρ21ρ−2 þ ρ2−1ρ2Þ þ að2;2Þð1;−1Þρ
2
1ρ

2
−1 þ � � �

¼
X
i1;i2;…

aðj1;j2…Þ
ði1;i2…Þ ρ

j1
i1
ρj2i2 � � � ; i1j1 þ i2j2 þ � � � ¼ 0;

ð19Þ

where að2;1Þð1;−2Þ ¼ að2;1Þð−1;2Þ by charge conjugation symmetry.

With such a multitude of terms, this effective potential is
not of much use. Thus we discuss some results from
perturbative computations, and from effective models,
which suggest that the effective potential relevant at infinite
N may be much simpler.
Consider first the computation of the effective potential

in perturbation theory. This is a straightforward matter at
one loop order [36,37] and has been carried out to two loop
order [34,38,39]:

að1;1Þðn;−nÞ ∼ −dð4Þn ¼ −
2

π2

�
1 −

5g2N
16π2

�
1

n4
: ð20Þ

The notation dð4Þn denotes the deconfined term, computed
perturbatively in four spacetime dimensions.
The simplicity of this result is not obvious. Naive

computation to two loop order gives a result which is
much more complicated than that at one loop order [40].
After including a finite renormalization for Polyakov loops
[34,38,39,41], however, one finds that all terms collapse to
Eq. (20), just a constant times the result at one loop order.
What is remarkable about Eq. (20) is that the only terms

which enter involve two traces: just i1 ¼ −i2 and
j1 ¼ j2 ¼ 1. At one loop order this is automatic, but at
two loop order terms with three traces can appear, ∼g2N.
After including the finite renormalization of the Polyakov
loops [34,38,39,41] these vanish.
A similar computation to one loop order in 2þ 1

dimensions [42] shows

að1;1Þðn;−nÞ ∼ −dð3Þn ¼ −
1

2π

1

n3
: ð21Þ

For a field in d spacetime dimensions, the corresponding

term is að1;1Þðn;−nÞ ∼ −1=nd. We discuss results to higher loop

order in Appendix A.

The sign of the double trace terms in Eqs. (20) and (21) is
negative. Thus the potential is minimized by maximizing
each Polyakov loop, which is what is expected in the
perturbative regime. To model the transition to a confining
phase, it is necessary to add additional terms. In Refs. [27],
an effective model was constructed by adding terms which
mimic deconfined strings in 1þ 1 dimensions:

að1;1Þðn;−nÞ ∼ cð4Þn ¼ c1
1

n2
: ð22Þ

We denote this term cð4Þn as that which drives confinement
in 3þ 1 dimensions. This potential can be also derived by
adding a mass deformation to gluons [23]. We comment
that this particular term is driven by detailed results from
numerical simulations on the lattice, especially the presence
of terms ∼T2 in the free energy relative to the usual ∼T4

[23,27]. The cð4Þn have positive signs, and if sufficiently
large, drive a transition to a confined phase.
We conclude this section by discussing other evidence for

the dominance of double trace terms in the effective potential
for the thermal Wilson line. This is true in a strong coupling
expansion on a lattice, at least to leading order [43].
In super Yang-Mills theories with mass deformations, it

is possible to compute not only the perturbative contribu-
tions to the free energy, but also the dominant nonpertur-
bative terms [44,45]. While it is not obvious [45], it can be
shown that in these models all terms for the effective
potential of thermal Wilson lines only have double traces.
The only instance of which we are aware in which terms

with three and four traces arise is for gauge theories on a
femtosphere, S3 × R1 [11]. Explicit computation to three
loop order shows there are a variety of terms, including those
with four traces, although they are suppressed by ∼g4N2,
where the coupling constant g2N is small on a femtosphere.
As discussed in Appendix A, in perturbation theory we

expect að1;1Þð1;−1Þ ∼ að1;1Þð2;−2Þ ∼ g0, while að2;1Þð1;−2Þ ∼ g4N2 and

að2;2Þð1;−1Þ ∼ g4N2. As we shall see, ρ1 is of order 1 near the

GWW phase transition, while ρ2 ∼ g4N2. Therefore the

term að2;1Þð1;−2Þρ
2
1ρ−2 ∼ g8N4 can be neglected to the order

g4N2, while að2;2Þð1;−1Þρ
2
1ρ

2
−1 ∼ g4N2 is to be kept. A similar

quartic term involving ρn>1 will be of order g8N4 or higher
and thus will not be included in our analysis.
Consequently, in the following we assume that any terms

with three and more traces are small, and compute about
that limit. In the conclusions, Sec. V, we consider the
implications if there are only double trace terms in the limit
of infinite volume.

III. PHASE STRUCTURE

Motivated by the above considerations, we are led to
consider the following effective potential for a gauge theory
at infinite N:
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Veff ¼
X∞
n¼1

anjρnj2 þ b1ðjρ1j2Þ2 − hðρ1 þ ρ�1Þ: ð23Þ

We assume that the deconfining transition at a temperature
Td defined at h ¼ 0 is driven by the first Polyakov loop. In
the confined phase, that the first Polyakov loop vanishes
does not necessarily imply that all other Polyakov loops
vanish. For this reason, as discussed above it is essential
that we include all Polyakov loops in the effective potential
and require that all an are positive below Td. We further
assume that

an > 0 for n ≥ 2 ð24Þ
near Td, so the higher corrections for ρn with n ≥ 2 are not
necessary.
We include a quartic term for the first Polyakov loop,

with a coupling b1 which we assume is small and constant
near Td. We also include a background field for the first
Polyakov loop, ∼h. This is natural to include in any spin
model, and we can analyze the model for arbitrary values of
h. A background field for Polyakov loops is generated by
the coupling to quarks [15]. If the quarks are heavy, with a
mass m, then the background field is ∼ expð−m=TÞ for the
first Polyakov loop, ∼ expð−2m=TÞ for the second, and so
on. Thus very heavy quarks only generate a background
field for the first Polyakov loop. For Nf flavors of quarks
h ∼ Nf=N expð−m=TÞ, so we need to take Nf ∼ N for h to
persist at infinite N.

A. Phase diagrams

In this subsection we derive general conclusions about
the phase diagram of Eq. (23) with the condition Eq. (24)
near Td. In Sec. IV we then solve the series of models
where the an have specific values, an ∼ 1=ns for s ¼ 1, 2, 3
and 4.
At infinite N we look for a saddle point of VeffðρnÞ under

the constraints of Eqs. (13) and (14). By a ZðNÞ rotation we
can assume that the expectation value of all Polyakov loops
are real, so ρ�n ¼ ρ−n ¼ ρn. Naively, the saddle point
corresponds to the minimum of each free energy for ρn,

d
dρn

VnðρnÞ ¼ 0; ð25Þ

where Vn is defined as Veff ¼
P∞

n¼1 VnðρnÞ. It is easy to
solve this equation, taking all loops beyond the first to
vanish, ρn ¼ 0 for n ≥ 2. The eigenvalue density in
Eq. (15) is then a sum of a constant and ρ1,

ρðθÞ ¼ 1

2π
ð1þ 2ρ1 cos θÞ; −π ≤ θ ≤ π: ð26Þ

This satisfies the normalization condition of Eq. (14), but it
is non-negative only if the first Polyakov loop is less than or
equal to one half, ρ1 ≤ 1

2
. Therefore, this solution is valid

only for 0 ≤ ρ1 ≤ 1
2
.

This is the simplest way to see that the point where the
first Polyakov loop equals one half and all others vanish,
ρ1 ¼ 1

2
and ρn ¼ 0 for n ≥ 2, is special. We call this the

Gross-Witten-Wadia (GWW) point, and the locus of such
points is a GWW surface.
When the expectation value of the first Polyakov loop is

greater than 1
2
, expectation values for all higher loops

develop. This is not due to the usual manner of Landau
mean field, through the coupling of ρ1 to the other ρn
through terms such as ðρ�1Þ2ρ2, etc. Instead, the eigenvalue
density becomes no longer continuously differentiable due
to the non-negativity constraint, and as a result higher
Polyakov loops become nonzero. In the model of Gross,
Witten, and Wadia [3], and for the models of Sec. IV, this
happens by developing a gap in the eigenvalue density.
If the first Polyakov loop has an expectation value less

than 1
2
, we can use an effective theory for just that loop, ρ1:

V1 ¼ a1ρ21 þ b1ρ41 − 2hρ1: ð27Þ

Consider first zero external field, h ¼ 0, as illustrated in
Fig. 1. If a1 and b1 are positive, the minimum is clearly for
ρ1 ¼ 0. If a1 is negative and b1 positive, the minimum is
ρ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a1=ð2b1Þ

p
. Thus there is a second order phase

transition when a1 vanishes. This is indicated by the blue
dash-dotted line in Fig. 1.
As a1 decreases for a fixed positive value of b1, the

Polyakov loop equals 1
2
when b1 ¼ −2a1. At this point, it is

no longer possible to include only the first Polyakov loop in
the effective theory. This is denoted by the green solid
GWW line in Fig. 1.
For negative b1 we expect a first-order phase transition at

some a1 > 0 [11,13,14,20]. The location of the first-order
phase transition depends on the explicit form of an. The red
dashed line in Fig. 1 corresponds to the model based on the
Vandermonde determinant (s ¼ 1) in Sec. IV.
At the origin a1 ¼ b1 ¼ h ¼ 0, the first, second and

higher-order phase transition lines meet. At this point, the
Polyakov loop ρ1 jumps from 0 to 1=2, as is typical of a
first-order phase transition, while the mass associated with
ρ1 becomes zero, as is typical of a second order phase
transition. This point was termed as critical first order in
Refs. [12,13].
The center symmetry is broken by a nonzero background

field h ≠ 0, which thus washes out a second order phase
transition. About ρ1 ¼ 1

2
, we introduce

δρ1 ¼ ρ1 −
1

2
;

V1 ¼
1

16
ð4a1 þ b1 − 16hÞ þ

�
a1 þ

b1
2
− 2h

�
δρ1

þ
�
a1 þ

3b1
2

�
δρ21 þ 2b1δρ31 þ b1δρ41; ð28Þ
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where −1=2 ≤ δρ1 ≤ 0. This is equivalent to the Legendre
transform Γðρ1Þ of the effective potential below the GWW
point. As we argue in general in Sec. III B, and show
explicitly in Eq. (101), the GWW point is a continuous
phase transition, whose order is always higher than second.
Consequently, the coefficients up to and including δρ2 are
continuous about the GWW point.
We analyze Eq. (28) as follows. At the GWW point

δρ1 ¼ 0, and two conditions need to be satisfied. First, the
coefficient of δρ1 must vanish, so that a1 þ b1=2 − 2h ¼ 0;
second, that the coefficient of δρ21 must be positive,
a1 þ 3b1=2 > 0. This forms a surface of GWW points
in the space of a1, b1, and h. The green shaded region in
Fig. 1 indicates the projection of the GWW surface onto the
h ¼ 0 plane. The GWW surface is independent of the
coefficients an. The green solid lines in Fig. 2 are the cross
sections of the GWW surface for b1 ¼ 0 and −0.08.
As b1 is decreased for a fixed, positive value of a1 along

the GWW surface, we eventually hit the boundary where
the coefficient of δρ21 vanishes, b1 ¼ −2a1=3. Beyond this
point, ρ1 ¼ 1

2
is an unstable solution, and there is a first-

order transition. This is indicated by a red dashed line in
Figs. 1 and 2. The red hatched region in Fig. 1 is the
projection of the surface of first-order phase transitions
onto the h ¼ 0 plane. The location of the first-order lines
depends on explicit values of the an. In Fig. 2(b) we show
the lines for s ¼ 1 and s ¼ 4: as can be seen, they are not
very different. The lines for s ¼ 2 and 3 lie somewhere
between the lines for s ¼ 1 and 4.
The Polyakov loop ρ1 becomes larger than 1=2 above the

first-order phase transition or GWW point. In this region,
the effective potential is not just a function of the first
Polyakov loop, ρ1, but of all ρn. To describe the theory
beyond the GWW point, we need to know the explicit
values of the coefficients an. We can show, however, that
the GWW point is a phase transition point for arbitrary an.

B. The order of phase transition at the GWW point

In this subsection we argue that about the GWW point,
there is a continuous phase transition whose order is always

higher than second. The partition function in Eq. (17) can
be written as

Z ¼
Z

½dθ�e−N̄2VeffðρnÞ ¼ e−N̄
2FðhÞ; ð29Þ

where F is the dimensionless free energy in the presence of
the external field h per volume V and per the color degrees
of freedom N2. F is a generating function for the Polyakov
loop, where the expectation value of ρ1 is given by

dF
dh

¼ −2ρ1ðhÞ; ð30Þ

the factor of 2 accounts for the complex conjugate of the
first Polyakov loop. Consequently, the free energy is the
integral of the loop with respect to h,

FðhÞ ¼ −2
Z

h

0

dh0ρ1ðh0Þ: ð31Þ

Since F is the value of the potential at a saddle point of Veff
at large N, we have

FðhÞ ¼ VeffðρnðhÞÞ; ð32Þ

where the nth Polyakov loop, ρnðhÞ, satisfies the equation
of motion,

δ

δθðxÞVeff ¼ 0: ð33Þ

We now have two expressions for the free energy, Eqs. (31)
and (32). For completeness we give another form of the free
energy in Appendix B when Veff is given as in Eq. (35).
In order to explore the order of phase transition about the

GWW point, we only need to look at one point in the green
shaded region in Fig. 1. We choose the point where the
quartic coupling vanishes and the quadratic couplings are
positive,

>1/2

<1/2

1

1

>1/2

<1/2

1

1

FIG. 2. As in Fig. 1, versus the background field h and the quadratic coupling a1. We also illustrate the (small) difference between
s ¼ 1 and s ¼ 4 in the figure on the right-hand side.
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b1 ¼ 0 and an > 0 ð34Þ

for all n ≥ 1. Without loss of generality we choose a1 ¼ 1.
The effective potential becomes

VGWWðθÞ≡
X∞
n¼1

anρ2n − 2hρ1: ð35Þ

We call it the GWW potential. This potential naturally
appears after the Legendre transform of the full potential as
shown in Sec. IVA. The equation of motion is

h sin θ ¼
X∞
n¼1

nanρn sinðnθÞ; ð36Þ

by using δρn=δθ ¼ −n sinðnθÞ from Eq. (10). As we
discussed in the previous subsection, the equation of
motion (36) below the GWW point is satisfied if

ρ1 ¼ h; ρn ¼ 0; n ≥ 2: ð37Þ
By Eq. (15),

ρ ¼ 1

2π
ð1þ 2h cos θÞ with −π ≤ θ ≤ π ð38Þ

when 0 ≤ h ≤ 1
2
. The GWW point is when h ¼ 1

2
. We write

the Polyakov loop just below the GWW point as ρ1 ¼
1
2
þ δhwhere δh ¼ h − 1

2
. Note that δh is negative below the

GWWpoint. Using Eqs. (31) or (32), the free energy for the
GWW potential VGWW is

FGWW ¼ −h2 ¼ −
1

4
− δh − δh2; −

1

2
≤ δh ≤ 0: ð39Þ

Next consider just above the GWW point, h ¼ 1
2
þ δh

with 1 ≫ δh > 0. Writing the Polyakov loop as
ρ1 ¼ 1

2
þ δρ1, the equation of motion is

0 ¼ ðδρ1 − δhÞ sin θ þ
X∞
n¼2

nanρn sinðnθÞ: ð40Þ

At small δh > 0 the leading term for the first Polyakov
loop is

δρ1 ∼ uδhq; ð41Þ
where u and q are some constants, with q ≥ 0. From
Eqs. (31) and (32),

FGWW ∼ −
1

4
− δh −

2u
1þ q

δh1þq; ð42Þ

FGWW ∼ −
1

4
− δhþ u2δh2q − 2uδh1þq þ

X∞
n¼2

anρ2n; ð43Þ

provided that δρ1 ∼ uδhq. If ρ1 ¼ 1
2
and thus δρ1 ¼ 0 above

the GWW point, then the two expressions for the free

energy are equal only if
P∞

n¼2 anρ
2
n vanishes. This implies

that all higher Polyakov loops vanish, ρn ¼ 0 for n ≥ 2,
which violates the equation of motion in Eq. (40) when
δh > 0. Therefore ρ1 ≠ 1

2
above the GWW point. On the

other hand, if u is nonzero and 0 ≤ q < 1, then we can
compare Eqs. (42) and (43) to obtain

X∞
n¼2

anρ2n ∼ −u2δh2q: ð44Þ

This is not consistent, because the an are positive and the ρn
are real. Therefore

q ≥ 1: ð45Þ

Comparing Eqs. (39) and (42) just below and above the
GWW, we see that only the second or higher derivatives of
the free energy are discontinuous. Hence the phase tran-
sition is of second or higher order.
We now exclude the possibility of a second-order

transition. If q ¼ 1 and u ≠ 1, or q > 1, then the second
derivative of the free energy is discontinuous at the GWW
point. This implies that the mass for the first Polyakov loop
is discontinuous at the GWW point. The mass for the nth
Polyakov loop below and at the GWW point is

d2

dρndρm
VGWW ¼ 2anδm;n: ð46Þ

This is a diagonal matrix whose elements are nonzero.
Therefore, if the phase transition is of second order, any
mass eigenvalue is nonzero at the GWW point. This is not
expected for a second-order transition, where the critical
fields are massless.
The remaining possibility is that q ¼ u ¼ 1. Then

δρ1 ∼ δh, and to leading order, the first term in Eq. (40)
vanishes. By comparing Eqs. (39) and (42), the free energy
is continuous up to δh2 near the GWWpoint. If we consider
the term at next to leading order for δρ1 above the GWW
point and use the same argument as before,

FGWWðhÞ ¼ −
1

4
− δh − δh2

þ
�
0 for δh ≤ 0

vδhr þOðδhrþ1Þ for δh > 0;
ð47Þ

where v is a nonzero constant. Hence

r > 2: ð48Þ

This implies that the order of the transition is higher than
second. This is valid for the explicit solutions in Sec. IV.
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IV. MODELS

We now solve certain models with special values for the
coefficients an in Eq. (23). We confirm the general phase
structure discussed in the previous section, and compute
how the behavior of the Polyakov loops and thermody-
namic quantities change.

A. Special cases

We consider a simple class of models which are exactly
soluble at large N:

Veff ¼ c1
X∞
n¼1

1

ns
jρnj2 − d1jρ1j2 þ b1ðjρ1j2Þ2 − hðρ1 þ c:c:Þ;

ð49Þ

with s ¼ 1, 2, 3 and 4. ρn is the nth Polyakov loop, Eq. (8).
This is to take the positive and negative parts of the
coefficients, an ¼ cn − dn, in Eq. (23) as

cn ¼ c1
1

ns
and dn ¼ d1δ1n; ð50Þ

where c1 and d1 are dimensionless positive functions of T.
The coefficients c and d denote the “confined” and
“deconfined,” respectively, because they are repulsive
and attractive potentials for the eigenvalues as mentioned
in Sec. II.
Using the identity

X∞
n¼1

cosðnϕÞ
ns

¼ 1

2
ðLisðeiϕÞ þ Lisðe−iϕÞÞ; ð51Þ

we see that the effective potential involves the polylogar-
ithms of order s. When s is an even integer, the poly-
logarithm simplifies further to a Bernoulli polynomial Bs,

X∞
n¼1

cosðnϕÞ
ns

¼ ð−1Þs2þ1ð2πÞs
2s!

Bs

�jϕj
2π

�
; ð52Þ

where −2π ≤ ϕ ≤ 2π. For s ¼ 1, it is related to the Fourier
transform of the Vandermonde determinant:

X∞
n¼1

cos nϕ
n

¼ −
1

2
ln

�
4 sin2

�
ϕ

2

��
: ð53Þ

For odd s larger than one, the polylogarithm functions do
not simplify further.
To compute thermodynamic quantities at nonzero b1 we

perform a Legendre transform [13,14]. Using the effective
potential of Eq. (49), in the partition function in Eq. (17) we
introduce the constraint δðλ − ρ1Þ,

Z¼
Z

½dθ�
Z

∞

−∞

dλdω̄
2π

exp ½iω̄fλ− ρ1g�exp ½−VTd−1N2Veff �

ð54Þ

¼
Z

∞

−∞

dλdω
2π

exp½−N̄2ð−d1λ2þb1λ4−2hλþ2c1ωλÞ�ZGWW;

ð55Þ

where N̄2 ¼ VTd−1N2 as before, and ω ¼ −iω̄=ð2c1N̄2Þ
after a Wick rotation. The delta function constraints the
configurations in the path integral to be such that the first
Polyakov loop is real. This is valid because we are only
interested in the saddle point where ρn ¼ ρ�n. We define

ZGWW¼
Z

½dθ�exp½−c1N̄2VGWW�¼ exp ½−c1N̄2FGWWðωÞ�;

ð56Þ

where

VGWW ¼
X∞
n¼1

ρ2n
ns

− 2ωρ1: ð57Þ

In Sec. III B we showed that the second derivative of the
free energy, −d2FGWW=dω2, is positive, and verify this
later in Eq. (99). Therefore we can perform a Legendre
transform of the free energy FGWW and write the partition
function as

ZGWW ¼
Z

1

0

dρ1 exp ½−c1N̄2fΓGWWðρ1Þ − 2ωρ1g�

¼ exp ½−c1N̄2FGWWðωÞ�; ð58Þ
where

ΓGWWðρ1Þ ¼ ðFGWWðωÞ þ 2ωρ1Þjω¼ωðρ1Þ: ð59Þ
Using Eq. (58) into Eq. (55), the total partition function
becomes

Z ¼
Z

1

0

dρ1 exp ð−N̄2Γðρ1ÞÞ; ð60Þ

where

Γðρ1Þ ¼ −d1ρ21 þ b1ρ41 − 2hρ1 þ c1ΓGWWðρ1Þ: ð61Þ
Once we obtain ΓGWWðρ1Þ and thus Γðρ1Þ, all thermody-
namic quantities can be computed for given values of b1,
c1, d1, and h.

B. The GWW potential

In this subsection we solve for the eigenvalue density
ρðθÞ for the GWW potential VGWW in Eq. (57). The detail
derivation is given in the next subsection. The potential is
equivalent to Eq. (35) by identifying an ¼ 1=ns and taking
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the background field h ¼ ω. We solve the model for s ¼ 1,
2, 3, and 4.
Using Eq. (10), the potential can be written in the form

VGWW ¼
Z 1

2

−1
2

dx
Z 1

2

−1
2

dx0
X∞
n¼1

1

ns
cos ðnðθðxÞ − θðx0ÞÞÞ

− 2ω

Z
1
2

−1
2

dx cosðθðxÞÞ: ð62Þ

The corresponding equation of motion is

ω sin θðxÞ ¼
Z

1
2

−1
2

dx0
X∞
n¼1

1

ns−1
sinðnðθðxÞ − θðx0ÞÞÞ ð63Þ

¼
Z

π

−π
dθ0ρðθ0Þ

X∞
n¼1

1

ns−1
sinðnðθðxÞ − θ0ÞÞ; ð64Þ

where it is convenient to introduce the eigenvalue density
ρðθÞ. This is equivalent to Eq. (36). It is necessary to solve
the equation of motion under the two constraints of
Eqs. (13) and (14).
For the potential of Eq. (62), the GWW point corre-

sponds to ω ¼ 1
2
. Consider first the case below and at the

GWW point, where ω ≤ 1
2
. It is trivial to solve for the

eigenvalue density,

ρðθÞ ¼ 1

2π
ð1þ 2ω cos θÞ; ð65Þ

thus ρ1 ¼ ω, and ρn ¼ 0 for n ≥ 2 in Eq. (26). We plot ρðθÞ
for ω ¼ 0; 1

4
, and 1

2
in Fig. 3(a). Notice that when ω ≤ 1

2
the

eigenvalue always extends from−π toþπ. One can also see
from Eq. (65) that this solution is not consistent for ω > 1

2
,

as then the eigenvalue density is negative for some range of
θ about �π.

Below the GWW point, ρ1 ¼ ω, so the Legendre trans-
form of FGWWðωÞ ¼ −ω2 is

ΓGWW ¼ ρ21 ¼
1

4
þ δρ1 þ δρ21; ð66Þ

from Eq. (59), where δρ1 ¼ ρ1 − 1
2
< 0. We write it in this

manner because it will be useful in comparing to the
behavior above the GWW point later.
The properties below and at the GWW point are

independent of the model. This is not true above the
GWW point, and we need to solve the equation of motion
for each value of s. In the remaining part of this subsection,
we summarize and explain the solutions.
The solutions above the GWW point are given in

Eqs. (71), (89), (74), and (93) for s ¼ 1, 2, 3, and 4,
respectively. For all cases, the eigenvalue density develops
a gap at the end points, so ρðθÞ ¼ 0 for θ0 < jθj where θ0 is
a function of ω with 0 ≤ θ0. The boundaries �θ0 of the
eigenvalue density are given in Eqs. (72), (90), (75), and
(96) for s ¼ 1, 2, 3, and 4, respectively. At the GWW point,
θ0 ¼ π, and the eigenvalue density in all cases becomes the
one in Eq. (65) with ω ¼ 1=2. The eigenvalue density is
therefore continuous at the GWW transition.
The eigenvalue densities above the GWW point are

illustrated in Fig. 3(b) for ω ¼ 1. When ω > 1
2
, a gap opens

up in the eigenvalue density for all s, so that it no longer
runs from −π to π, but instead from −θ0 to θ0. The value of
θ0 differs for each value of s. When s ¼ 1 and ω ¼ 1, the
eigenvalue density runs from − π

2
to þ π

2
, and vanishes at the

ends. When s ¼ 2, the eigenvalue density jumps discon-
tinuously from a zero to a nonzero value at the ends. When
s ¼ 3 and 4, the eigenvalue density actually diverges at the
end points.
When s ¼ 1 and 3 the density has the square root

singularities at the end points: the density ρðθÞ for
s ¼ 3 and the derivative dρ=dθ for s ¼ 1 diverge as

FIG. 3. The eigenvalue density as a function of ω. Below and at the GWW point the density is independent of the model and driven by
the first Polyakov loop, ρ1 ¼ ω. Above the GWW point, the density depends on the coefficients of the double trace terms.
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∼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ0 − jθ0j

p
when θ → �θ0. This is not surprising for

the equation of motion of Eq. (68), which is only well
defined by a principal value prescription. When s ¼ 2 and 4
the density is a simple function of cosine except at the end
points for s ¼ 4.
Physically, as s increases, the change in behavior for the

eigenvalue density occurs, because eigenvalue repulsion
weakens as s increases. In particular, the value of θ0 for a
fixed value of ω becomes smaller as s increases. When
s ¼ 4 the repulsion is so weak that the eigenvalues pile up
at the end points �θ0, and the density becomes delta
function at the end points, as the arrows indicate in
Fig. 3(b). In other words, the eigenvalue θðxÞ for s ¼ 4
is no longer an injective function of x. This implies that
there is a critical value of s ¼ s� with 3 < s� ≤ 4, above
which the eigenvalue repulsion is not strong enough to keep
all eigenvalues separate above the GWW point. This makes
the analysis of the case s ≥ 4 difficult, and we do not know
if the solution exists above the GWW point in the case
s ≥ 5. For s ¼ 1, 2 and 3, all eigenvalues collapse to zero
and the density becomes ρðθÞ ¼ δðθÞ as ω → ∞. When
s ¼ 4, all eigenvalues collapse to zero at a finite value of ω
as discussed below Eq. (96), again as a consequence of the
weak eigenvalue repulsion.

C. Derivation of the solution for the GWW potential

In order to solve the equation of motion (64) with s ¼ 1,
2, 3, 4 for the eigenvalue density, we use a trick from
Refs. [5,19]. Let us explain how to solve it when s is a
positive integer in a naive way. What makes the equation of
motion difficult to solve is the combination of the integral
over θ0 and the sum over 1=ns−1. However, if we differ-
entiate with respect to x, d

dx ¼ dθ
dx

d
dθ, the sum then becomes

1=ns−2. Doing this s − 1 times, we end up with an integral
equation for ρðθ0Þ, which is soluble. Each time we differ-
entiate with respect to θ we change sinðnðθ − θ0ÞÞ to
cosðnðθ − θ0ÞÞ. If we take s − 1 derivatives, we then end
up with a different function depending upon whether s is
even or odd.
This approach breaks down if dθ

dx ¼ 0 for some domains
of x, i.e. if eigenvalues pile up. As mentioned in the
previous subsection, the pileup occurs at the end points in
the case of s ¼ 4, so we need to treat this case with care. We
first solve for odd s, and then even.

1. Odd s = 1 and 3

In order to solve the equation of motion (64) for s ¼ 3,
we differentiate it with respect to θ twice. Using Eq. (53),
we can write the first derivative as

ω cos θ ¼ −
1

2

Z
π

−π
dθ0ρðθ0Þ ln

�
4 sin2

�
θ − θ0

2

��
: ð67Þ

The second derivative is

2ω sin θ ¼
Z

π

−π
dθ0ρðθ0Þ cot

�
θ − θ0

2

�
: ð68Þ

This is the equation of motion for s ¼ 1, and is the circular
Hilbert transform of ρðθ0Þ with the kernel cotðθ−θ0

2
Þ [46,47].

The integral is singular when θ ¼ θ0, and so implicitly it is
defined by using a principal value prescription. The
eigenvalue density is the inverse of the transform,

ρðθÞ ¼ C1 cos
θ

2

�
sin2

θ0
2
− sin2

θ

2

�1
2

þ C2 cos3
θ

2

�
sin2

θ0
2
− sin2

θ

2

�
−1
2

; ð69Þ

where the constants satisfy

C1 þ C2 ¼
2ω

π
: ð70Þ

At the GWW point θ0 ¼ π, and the eigenvalue density is
that of Eq. (65) with ω ¼ 1

2
. Above the GWW point, a gap

opens up, with the density nonzero only between −θ0
and θ0.
For s ¼ 1, the solution only involves C1 in Eq. (69), with

C2 ¼ 0 [3,5]. The eigenvalue density above the GWW
point, ω > 1

2
, is [3,5]

ρðθÞ ¼ 2ω

π
cos

θ

2

�
sin2

θ0
2
− sin2

θ

2

�1
2

: ð71Þ

The end point θ0 is fixed by the normalization condition of
Eq. (14):

ω ¼ 1

2 sin2 θ0
2

or θ0 ¼ 2 sin−1
1ffiffiffiffiffiffi
2ω

p : ð72Þ

Using Eqs. (12) and (71), the first Polyakov loop equals

ρ1ðωÞ ¼ 1 −
1

4ω
¼ 1

2
þ δω − 2δω2 þOðδω3Þ; ð73Þ

where δω ¼ ω − 1
2
> 0.

For s ¼ 3 we need both terms in Eq. (69) to solve the
equation of motion. Equation (70) and the normalization
condition (14) give

ρðθÞ ¼ 1

2π
cos ðθ=2Þ 1þ 2ωðsin2ðθ0=2Þ − 2 sin2ðθ=2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2ðθ0=2Þ − sin2ðθ=2Þ
p :

ð74Þ
We need to determine the position of the end point, θ0, as a
function of ω. This follows from the first derivative of the
equation of motion with respect to θ (67). Because the
equation of motion has to satisfy with all values of θ, we
can expand to leading order about θ ¼ 0 to find
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ω ¼ −
lnðsinðθ0=2ÞÞ
1 − sin2ðθ0=2Þ

: ð75Þ

All the higher-order terms turn out to be independent of θ0.
By introducing the Lambert function or the product
logarithm, WðzÞ, defined by the principal solution for

z ¼ WðzÞeWðzÞ; ð76Þ
we can invert Eq. (75) to obtain θ0 as a function of ω,

θ0ðωÞ ¼ 2sin−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wð−2ωe−2ωÞ

−2ω

r
: ð77Þ

Using Eqs. (12) and (74), the first Polyakov loop equals

ρ1ðωÞ ¼ 1 − sin2
θ0
2
þ ω sin4

θ0
2
: ð78Þ

Expanding about the GWW point,

ρ1ðωÞ ¼
1

2
þ δω −

16

3
δω3 þOðδω4Þ; ð79Þ

where δω ¼ ω − 1
2
> 0.

2. Even s = 2 and 4

As with odd s, for even s the GWW phase transition is
characterized by a gap in the eigenvalue density.
There is a qualitative difference between s ¼ 4 and all

the other cases. This difference was first discovered on the
basis of numerical analysis for s ¼ 4 and N ¼ 55 in
Eq. (56). As can be seen in Fig. 4, the eigenvalues are
separate for s ¼ 2, while they pile up at the end points
for s ¼ 4.
This suggests that at infiniteN, the eigenvalues θðxÞwith

x0
2
≤ x ≤ 1

2
become a single value θ0 ¼ θðx0

2
Þ for some x0,

and likewise for the other end point −θ0. Therefore, the
expectation value of a function fðθÞ can be written as

hfðθÞi ¼
Z

−x0
2

−1
2

dxfðθðxÞÞ þ
Z x0

2

−x0
2

dxfðθðxÞÞ

þ
Z

1
2

x0
2

dxfðθðxÞÞ ð80Þ

¼ 1 − x0
2

ðfð−θ0Þ þ fðθ0ÞÞ þ
Z

θ0

−θ0
dθ ~ρðθÞfðθÞ; ð81Þ

where ~ρðθÞ is a smooth function defined for the interval
−x0=2 ≤ x ≤ x0=2. This ansatz corresponds to the follow-
ing eigenvalue density:

ρðθÞ ¼ 1 − x0
2

fδðθ − θ0Þ þ δðθ þ θ0Þg þ ~ρðθÞ: ð82Þ

The two parameters x0 and θ0 are related by the normali-
zation condition, which can be derived by setting f ¼ 1 in
Eq. (81):

x0 ¼
Z

θ0

−θ0
dθ ~ρðθÞ: ð83Þ

In order to solve for ~ρ, we take s − 1 derivatives of
the equation of motion (63) with respect to x for
−x0=2 ≤ x ≤ x0=2:

ω cos θ ¼
Z

π

−π
dθ0ρðθ0Þ

X∞
n¼1

cos ðnθ − nθ0Þ: ð84Þ

Using the Poisson summation formula

X∞
n¼1

cosðnϕÞ ¼ −
1

2
þ πδðϕÞ; ð85Þ

and the normalization condition (14), we obtain

N = 55 

s = 2

0 0.5 1 1.5
0

2

4

 

0 0.5 1 1.5
0

2

4

(a)

0 0.5 1 1.5

2

4

 

0
0 0.5 1 1.5

2

4

N = 55 

s = 4

(b)

FIG. 4. Numerical computations of the eigenvalues as a function of δω ¼ ω − 1=2 in the model given in Eq. (56) with s ¼ 2, 4 and
N ¼ 55. This demonstrates a pileup of eigenvalues when s ¼ 4, which motivated the ansatz of Eq. (82).
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~ρðθÞ ¼ 1

2π
ð1þ 2ω cos θÞ: ð86Þ

We now solve for the two unknowns, θ0 and x0, using the
equation of motion (64) with Eqs. (82) and (86), and the
normalization condition (83), which can be now written as

x0 ¼
θ0 þ 2ω sin θ0

π
ð87Þ

by using Eq. (86).
To solve the equation of motion for s ¼ 2 we use the

identity

X∞
n¼1

sinðnϕÞ
n

¼ −
1

2
ϕþ π

2
signðϕÞ; ð88Þ

where −2π ≤ ϕ ≤ 2π. This is proportional to the derivative
of the Bernoulli polynomial B2ðjϕj=ð2πÞÞ given in
Eq. (52). The equation of motion is satisfied for any value
of x0 in Eq. (82). It turns out that the potential is minimized
for x0 ¼ 1, i.e., when there is no pileup of eigenvalues. This
is consistent with the case of finite but large N as shown in
Fig. 4(a). Therefore, the eigenvalue density is

ρðθÞ ¼ ~ρðθÞ ¼ 1

2π
ð1þ 2ω cos θÞ; ð89Þ

where −θ0 ≤ θ ≤ θ0. The is equivalent to the density below
the GWW point (65), except here it has a gap at the end
points. This solution is consistent with the one found in
[19]. The normalization condition of Eq. (87) with x0 ¼ 1
gives

ω ¼ π − θ0
2 sinðπ − θ0Þ

; ð90Þ

which implicitly defines the end point of the gap, θ0ðωÞ.
From Eqs. (12) and (89), the first Polyakov loop equals

ρ1ðωÞ ¼
1

π
fsin θ0 þ ωðθ0 þ cos θ0 sin θ0Þg: ð91Þ

For small δω ¼ ω − 1
2
> 0,

ρ1ðωÞ ¼
1

2
þ δω −

32
ffiffiffi
3

p

5π
δω5=2 þOðδω7=2Þ: ð92Þ

The eigenvalue density for s ¼ 4 is

ρðθÞ ¼ π − θ0 − 2ω sin θ0
2π

fδðθ − θ0Þ þ δðθ þ θ0Þg

þ 1

2π
ð1þ 2ω cos θÞ ð93Þ

from Eqs. (82), (86) and (87). For s ¼ 4, the effective
potential involves the fourth Bernoulli polynomial. The
equation of motion involves the third Bernoulli polynomial:

X∞
n¼1

sinðnϕÞ
n3

¼ 1

12
ð2π2ϕ − 3πsignðϕÞϕ2 þ ϕ3Þ; ð94Þ

where −2π ≤ ϕ ≤ 2π. The equation of motion (64) with the
above two equations gives

0 ¼ θ

6π
fðπ − θ0Þ3 − 6ðπ − θ0Þω cos θ0 − 6ω sin θ0g: ð95Þ

It is satisfied for −θ0 ≤ θ ≤ θ0 if

ω ¼ ðπ − θ0Þ3
6 sin θ0 þ 6ðπ − θ0Þ cos θ0

: ð96Þ

This analytic form agrees with the largest eigenvalue for
N ¼ 55 shown in Fig. 4(b). When s ¼ 4, at ω ¼ π2=6 the
eigenvalue density collapses to a δ-function at a single
point, θ ¼ 0; this also agrees with Fig. 4(b). Using
Eqs. (12) and (93), we can write the first Polyakov loop
for s ¼ 4 as

ρ1ðωÞ ¼
ωθ0 þ sin θ0 þ cos θ0ðπ − θ0 − ω sin θ0Þ

π
; ð97Þ

where θ0ðωÞ is given by Eq. (96). About the GWW point,

ρ1ðωÞ ¼
1

2
þ δω −

640
ffiffiffi
5

p

63π
δω7=2 þOðδω9=2Þ; ð98Þ

with δω ¼ ω − 1
2
> 0.

D. Near the GWW point

Given the solution for the effective potential in Eq. (62)
at infinite N for s ¼ 1, 2, 3 and 4, we can then use the
eigenvalue density to compute the free energy of Eq. (56).
This can be done analytically only for s ¼ 1, but in all cases
we can compute the free energy near the GWW point order
by order in δω ¼ ω − 1

2
by using Eqs. (73), (91), (78), (97)

for s ¼ 1, 2, 3, 4, respectively, replacing h by ω in Eq. (31).
We find

FGWWðωÞ ¼ −
1

4
− δω − δω2

þ
�
0 for δω ≤ 0

vsδωð5þsÞ=2 þOðδωð7þsÞ=2Þ for δω > 0;

ð99Þ

where
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v1 ¼
4

3
; v2 ¼

128
ffiffiffi
3

p

35π
; v3 ¼

8

3
; v4 ¼

2560
ffiffiffi
5

p

567π
:

ð100Þ

The order of the discontinuity with respect to ω depends
upon s: as illustrated in Fig. 5, for s ¼ 1 the third derivative
is discontinuous; for s ¼ 2 and 3, the fourth derivative; and
for s ¼ 4, the fifth derivative. As discussed in the previous
section, the behavior of the free energy seen in Fig. 5 is
unchanged by the quartic coupling as long as it is
sufficiently small.
After inverting ρ1ðωÞ to obtain ωðρ1Þ, we can compute

the Legendre transform of the potential by using Eq. (59).
The behavior up to the leading nonanalytic term for δρ1 ¼
ρ1 − 1=2 is

ΓGWWðρ1Þ ¼
1

4
þ δρ1 þ δρ21

þ
�
0 for δρ1 ≤ 0

vsδρ
ð5þsÞ=2
1 þOðδρð7þsÞ=2

1 Þ for δρ1 > 0;

ð101Þ

given the vs in Eq. (100). Equation (61) allows one to
calculate the Legendre transform Γ of the free energy as a
function of ρ1, b1, c1, d1, and h.
In our model we set d1 as a dimensionless constant and

let c1 change as a function of T=Td. Without loss of
generality we can fix d1 ¼ 1,

−a1 ¼ 1 − c1ðT=TdÞ; ð102Þ

where c1 is an unknown function of T. Model studies of the
deconfining transition in 3þ 1 [23,27] and 2þ 1 dimen-
sions [29] show that the pressure, or equivalently the
interaction measure, depends sensitively on c1.
To illustrate the physics we leave c1 to be arbitrary and

assume that the mass term for the first Polyakov loop, −a1,
is a monotonically increasing function of temperature. As
we discussed in Sec. III B, when the quartic coupling b1 is
zero or positive, the phase transition occurs at a1 ¼ 0 and
c1 ¼ 1, while negative coupling gives a phase transition
when a1 > 0 and c1 > 1.
We compute the first Polyakov loop, ρ1, as a function of

the three parameters, a1, b1, and h. Figure 6 shows the
behavior of the first Polyakov loop as a function of −a1, i.e.

(a) (b)

(c)

FIG. 5. The derivatives of the free energy near the GWW point. The plot on the top left-hand side shows that the transition for s ¼ 1 is
of third order. The plot on the top right-hand side shows that s ¼ 2 and 3 are transitions of fourth order. The plot on the bottom shows
that s ¼ 4 are transition of fifth order.
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temperature, with zero quartic coupling. The figure on the
left-hand side is for zero external field, h ¼ 0: in all cases,
the first Polyakov loop jumps from ρ1 ¼ 0 to 1

2
when

a1 ¼ 0. This jump is typical of a first-order phase tran-
sition. As the temperature, or equivalently−a1 increases, so
does the first Polyakov loop, with the increase greater for
larger s. This can be understood that the confining potential
is weaker for larger values of s.
In the presence of a nonzero external field all Polyakov

loops are nonzero, Fig. 6(b). There is a GWW phase
transition at some value of a1 > 0 when the value of the
first Polyakov loop ρ1 ¼ 1

2
. At this point there is always a

transition of higher order, where the order depends upon s,
as discussed above.
Lastly we consider introducing a quartic coupling. We

assume it is negative, as a positive coupling drives the
transition to be of second order about ρ1 ¼ 0. This is certainly
not supported by numerical simulations on the lattice [1].
In Fig. 7 we show the behavior for a small, negative

value of the quartic coupling b1. We assume that jb1j is
small, so that implicitly we are near the GWW point.
Taking a fixed value of b1 ¼ −0.005, h ¼ 0 and varying

the quadratic term in ρ1, Figure 7(a) shows that at the
deconfining transition the first Polyakov loop jumps to a
value above 1

2
; the value that ρ1 jumps to depends

upon s. The variation of ρ1 − 1
2
with b1 is illustrated in

Fig. 7(b).
In Fig. 8 we show how the position of the first-order line

changes with b1 in zero external field, h ¼ 0. The blue solid

(a) (b)

FIG. 6. The first Polyakov loop ρ1 as a function of the coefficient of its quadratic term, −a1. From bottom to top, s ¼ 1, 2, 3, 4.

(a) (b)

FIG. 7. The dependence of the first Polyakov loop ρ1 on the quartic coupling b1 in zero external field: from bottom to top,
s ¼ 1, 2, 3, 4.

FIG. 8. The dependence of the first-order line in zero field,
h ¼ 0: from left to right, s ¼ 1, 2, 3, and 4. The blue solid line for
s ¼ 1 corresponds to the red dashed line in Fig. 1.
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line for s ¼ 1 corresponds to the red dashed line in Fig. 1.
The model dependence of the first-order transition line
is small.

V. CONCLUSIONS

After discussing the most general effective potential for
Polyakov loops in Sec. II, in Sec. III we showed that if
double trace terms dominate the potential, then one is
naturally led to a phase diagram in which the generalized
Gross-Witten-Wadia (GWW) transition, whose order is
larger than second, is ubiquitous. From Sec. II, there is
no generic reason why double trace terms should dominate.
However, as we discussed there, there are several cases in
which, rather unexpectedly, they do.
We then solved the models of Eq. (49) for s ¼ 1, 2, 3 and

4 in Sec. IV. We considered only simple forms of the
coefficients for the double trace terms, an ¼ cn − dn, where
the positive (negative) contribution is responsible for the
(de)confined phase. These models are illustrative, and not
representative. For example, in 3þ 1 dimensions, a term
with dn ∼ 1=n4 arises perturbatively [36]. It is also neces-
sary to add a second, “confining” term, such as cn ∼ 1=n2

[19,23,27,28]. In order to generate a deconfining transition,
by necessity the sign of the confining term must be opposite
to that of the perturbative term. In 2þ 1 dimensions, a term
with dn ∼ 1=n3 is similarly generated perturbatively [42].
From numerical simulations on the lattice [48], matrix
models with cn ∼ 1=n2 are also natural [29].
Our model in Sec. IV contains both the confining terms

cn and the perturbative terms −dn, but the latter consists
only of the first term −d1 for the first Polyakov loop. The
matrix model with the full perturbative terms dn ∼ 1=nd

with d ¼ 4 and the confining potential cn ∼ 1=ns with
s ¼ 2, relevant to 3þ 1 dimensions, was solved at large N
[19]. By comparing to the free energy for s ¼ 2 in Eq. (99)
with that of Ref. [19], one finds it is identical up to the
leading nonanalytic term, v2δω7=2. This is expected
because the full coefficients an ¼ cn − dn can be approxi-
mated as an ∼ cn for n ≥ 2 below Td. Therefore we expect
that for the matrix model with both the confining and full
perturbative terms, there is a region in the confined phase in
Fig. 1 where the approximation cn − dn ∼ cn for s ≤ d and
1 < n is valid, and thus our exact solution is a good
approximation for the full potential. It would be interesting
to check if this is indeed the case for the models relevant to
2þ 1 dimensions.
Our results show that the nature of phase transition

depends sensitively upon how close the theory is to a model
with only double trace terms. We studied this by adding a
quartic term for the first Polyakov loop, Eq. (49). Lattice
simulations for pure Yang-Mills theory at large N indicates
that the deconfining phase transition is of first order [1].
This implies that the quartic coupling is either zero or
negative. As shown in Sec. IV, at the GWW point the

expectation value of the first Polyakov loop equals 1
2
at Tþ

d .
Numerical simulations on the lattice find a result close to
this value [49], which suggests that the theory at large N is
close to the GWW point. This could be tested by adding
an external field for the first Polyakov loop and measuring
the free energy and its derivative as the external field is
varied. As seen in Figs. 3 and 5, these quantities change
dramatically about the GWW point. Alternately, one could
look for phase transitions as the lattice coupling is
varied [50].
Since heavy quarks act like a background magnetic field

for the first Polyakov loop [15], adding Nf flavors of heavy
quarks, with Nf ∼ N → ∞, also changes the phase diagram
in characteristic ways. For three colors and three flavors the
Columbia phase diagram [1] implies that as the quark mass
increases, a crossover becomes a first-order transition. As
illustrated in Fig. 9, for intermediate quark masses, where
there is a crossover for Nf ¼ N ¼ 3, there must be a line of
GWW transitions.
If the quartic coupling for the first Polyakov loop, b1, is

positive, one ends with a second-order transition for
infinitely heavy quarks. If b1 is negative, there is a line
of first-order transitions for sufficiently heavy quarks.
What is especially interesting is the third possibility: b1,

and all associated couplings from three or more traces,
vanish. In that case, the line of GWW transitions continues
to infinite quark masses and ends with the critical first
order. That is, that the only terms which contribute to the
effective potential are those with double trace terms, i1 ¼
−i2 and j1 ¼ j2 ¼ 1 in Eq. (19).
Such a limitation on the possible terms does not follow

merely from the global symmetry of ZðNÞ, but must be a
larger symmetry special to infinite N. If this happens, and
the deconfining transition is critical first order at infinite N,
then even though the transition is of first order, one has a
conformally symmetric theory at Tþ

d . For an ordinary
second-order transition, continuity implies that the critical

Crossover 1st

m=2nd

(a)

b1<0

b1>0

1st

2nd

GWW 2nd

m=

GWW Critical 1st
b1=0

GWW

(b)

FIG. 9. Phase diagram as a function of heavy quark massm. For
an infinite number of colors and flavors, the phase diagram
depends on the value of quartic coupling b1 for the first Polyakov
loop ρ1.
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exponents, etc., are the same on either side of the phase
transition. In the present case, as the energy density and
order parameter are discontinuous at Td, it is even possible
that there is a different conformally symmetric theory at T−

d .
This cannot be studied in our models, since the free energy
is of order ∼N2 above Td, and only ∼1 below.
While base speculation, gauge theories are objects of

singular beauty, especially in the limit of infinite N.
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APPENDIX A: LARGE N PERTURBATION
THEORY IN THE PRESENCE OF THE

BACKGROUND FIELD

It is interesting to consider whether the simple structure
of Eq. (20) persists to higher loop order. It is well known
that because of infrared divergences in 3þ 1 dimensions at
nonzero temperature, the free energy is a power series not
in g2, but in

ffiffiffiffiffi
g2

p
. At nonzero temperature, gluons have

Euclidean energies ¼ 2πTn, where n is an integer,
n ¼ 0;�1;�2…. Static modes with n ¼ 0 have zero
energy at tree level. At one loop order the static modes
develop a thermal (Debye) mass ∼gT. Integration over
these modes in three spatial dimensions gives a term in the
free energy ∼TðgTÞ3 ∼ g3T4. Beyond ∼g3, higher-order
corrections to the free energy are ∼g4; g5, etc.1

This power counting changes in the presence of a
background field for the thermal Wilson line. For a constant
background field Aij

0 ∼ Tθiδij=g, gluon modes in the
adjoint representation have Euclidean energies
∼Tð2πnþ θi − θjÞ. Consequently, assuming a general
background field with θi ≠ θj, the energy of off-diagonal
gluons is always nonzero, even if n ¼ 0. In contrast,
diagonal gluons are insensitive to the background field
and have modes with zero energy.
Consider, however, the free energy in the limit of large

N. There are ∼N2 off-diagonal gluons, and only ∼N
diagonal gluons. Thus only off-diagonal gluons contribute
to the term in the free energy ∼N2, and for this term the free
energy is a power series in g2N. This assumes, of course,
that the θi are not small, jθij > g.
It would be useful to compute the effective potential for a

thermal Wilson line to three loop order at large N, ∼g4N2

[51]. The leading terms at largeN can, but need not, include
terms with four traces. As we saw in this paper, terms with

four traces, að2;2Þð1;−1Þ ¼ b1 ≠ 0, greatly affect the properties of

the deconfining phase transition.

APPENDIX B: ALTERNATIVE FORM OF THE
FREE ENERGY FGWW

In this Appendix, we show another way to compute the
free energy for the GWW potential based on the paper [2].
The potential given in Eq. (35) can be written in terms of
the eigenvalue density as

VGWW ¼
Z

dθρðθÞ
Z

dθ0ρðθ0Þ
X∞
n¼1

an cosðnðθ − θ0ÞÞ

− 2h
Z

dθρðθÞ cos θ; ðB1Þ

where an > 0. The equation of motion can be found
by taking a functional derivative δVGWW=δθðxÞ as in
Sec. IV B:

0 ¼
Z

dθ0ρðθ0Þ
X∞
n¼1

nan sinðnðθ − θ0ÞÞ − h sin θ: ðB2Þ

We integrate it with respect to θ,

C ¼
Z

dθ0ρðθ0Þ
X∞
n¼1

an cosðnðθ − θ0ÞÞ − h cos θ; ðB3Þ

where C is a constant. By setting θ ¼ 0, we have

C ¼
Z

dθ0ρðθ0Þ
X∞
n¼1

an cosðnθ0Þ − h: ðB4Þ

Substituting this into Eq. (B3) and integrating it withR
dθρðθÞ, we have
Z

dθρðθÞ
Z

dθ0ρðθ0Þ
X∞
n¼1

an cosðnðθ − θ0ÞÞ

¼
Z

dθρðθÞ
X∞
n¼1

an cosðnθÞ þ hðρ1 − 1Þ: ðB5Þ

Here ρ is the solution for the equation of motion. Therefore
using this expression into Eq. (B1), we obtain the free
energy

FGWWðhÞ ¼
Z

dθρðθÞ
X∞
n¼1

an cosðnθÞ − hðρ1 þ 1Þ

¼
X∞
n¼1

anρn − hðρ1 þ 1Þ: ðB6Þ

This agrees with Eqs. (31) and (32) when Veff is given as
in Eq. (35).1Additionally, there is a logarithmic dependence on g.
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