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We develop an innovative technique for studying inhomogeneous phases with a spontaneous broken
symmetry. The method relies on the knowledge of the exact form of the free energy in the homogeneous
phase and on a specific gradient expansion of the order parameter. We apply this method to quark matter at
vanishing temperature and large chemical potential, which is expected to be relevant for astrophysical
considerations. The method is remarkably reliable and fast as compared to performing the full numerical
diagonalization of the quark Hamiltonian in momentum space and is designed to improve the standard
Ginzburg-Landau expansion close to the phase transition points. For definiteness, we focus on
inhomogeneous chiral symmetry breaking, accurately reproducing known results for one-dimensional
and two-dimensional modulations and examining novel crystalline structures, as well. Consistently with
previous results, we find that the energetically favored modulation is the so-called one-dimensional real-
kink crystal. We propose a qualitative description of the pairing mechanism to motivate this result.
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I. INTRODUCTION

QCD at nonzero baryonic densities is expected to exhibit
a rich variety of phases [1]. At sufficiently large values of
the quark chemical potential, μ, the chirally broken and
confined phase should turn into a chirally restored decon-
fined phase. This phase transition is accompanied by the
melting of the chiral condensate and the possible formation
of a color superconducting condensate [2]. These interest-
ing phenomena are expected to occur in a regime
where perturbative QCD computations are insufficient
and ab initio lattice simulations are currently unavailable
due to the sign problem; see, for example, Ref. [3]. Thus,
effective models such as the Nambu-Jona-Lasinio (NJL)
model are commonly used to describe this region of the
phase diagram (see Refs. [4,5] for reviews).
Remarkably, model calculations indicate that various

inhomogeneous phases may arise in quark matter at high
density. Two notable examples are the crystalline color
superconducting phase and the inhomogeneous chiral
symmetry broken ( χSB) phase (see Refs. [6,7] for
reviews). The former is probably located at the onset of
the deconfined phase, for neutral and beta equilibrated

matter, while the latter is expected to arise between the
homogeneous χSB phase and the chirally restored phase if
the quark-antiquark coupling strength is sufficiently large.
More specifically, the inhomogeneous χSB island

extends from zero temperature to the chiral critical point,
which then turns into a Lifshitz point where three phases
(homogeneous χSB, inhomogeneous χSB, and the chirally
restored phase) coexist [8]. The onset of this region,
separating it from the traditional homogeneous χSB phase
on the left, can be characterized by either a first- or second-
order phase transition, depending on the crystalline shape
assumed by the chiral condensate [7]. On the other hand,
the chiral restoration transition is always found (at least in
the chiral limit) to be a second-order one in which the chiral
condensate gradually melts to zero. A remarkable conse-
quence of this is that the position of the chiral restoration
transition is independent of the type of crystalline structure
considered. Regarding the color superconducting phases, it
is known that at asymptotic densities the (spatially homo-
geneous) color-flavor locked phase [9] is favored. At
densities relevant for compact stars, this homogeneous
phase could nevertheless be superseded by a crystalline
color superconducting phase, especially when the con-
straints of charge neutrality and beta equilibrium are
considered. However, whether this phase transition is of
the first or second order is not yet established. The
transition to the normal phase should be of the second
order, although some modulations seem to indicate a first-
order phase transition. The form of the crystalline pattern

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 036009 (2018)
Editors' Suggestion

2470-0010=2018=97(3)=036009(11) 036009-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.036009&domain=pdf&date_stamp=2018-02-12
https://doi.org/10.1103/PhysRevD.97.036009
https://doi.org/10.1103/PhysRevD.97.036009
https://doi.org/10.1103/PhysRevD.97.036009
https://doi.org/10.1103/PhysRevD.97.036009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


has only been semiquantitatively established in Ref. [10] by
a Ginzburg-Landau (GL) expansion.
Having determined the existence of an inhomogeneous

island in the phase diagram, it is natural to ask which
crystalline structure will be the most favored one in this
region. For definiteness, we focus in this work on the
inhomogeneous χSB phase (but we will comment on
applications to the crystalline color superconducting phase,
as well). Contrary to the case of crystalline color-
superconductivity, mean-field model calculations on the
inhomogeneous χSB phase seem to indicate that the favored
type ofmodulation is a one-dimensional real structure called
a “real-kink crystal,” which can be expressed in terms of
Jacobi elliptic functions [7,11,12]. In particular, two-
dimensional structures are found to be strongly disfavored
compared to the one-dimensional ones, both in the vicinity
of the Lifshitz point [13] as well as at zero temperature [14].
The latter result has been obtained through a computation-
ally expensive analysis. Indeed, even within the NJL model
in the mean-field approximation, the evaluation of the free
energy for inhomogeneous phases is a nontrivial task. One
way to obtain it is by performing a full diagonalization of the
quark Hamiltonian and sum over its eigenvalues; alterna-
tively, GL expansions including gradient terms of the order
parameter can be used. Both methods, however, have their
own limitations: the diagonalization of the Hamiltonian can
be performed analytically only in very special cases, while
for most types of modulations, one has to resort to a brute-
force numerical computation in momentum space [14,15].
On the other hand, theGL expansion of the free energy in the
order parameter and its gradients is expected to be valid only
close to the second-order transition to the chirally restored
phase [10,13,16]. But gradients of the order parameter may
not vanish sufficiently fast, even close to the second-order
phase transition point, making the GL expansion power
counting nontrivial. One notable exception is the Lifshitz
point, where both the order parameter and its gradient are
expected to vanish. At any rate, while the determination of
the GL coefficients is in principle straightforward, in the
presence of an inhomogeneous order parameter, the actual
derivation of the GL energy functional becomes extremely
tedious at higher orders. The number of possible terms
steadily increases, and no automated procedure for the
derivation of the coefficients has yet been developed. So
far, for inhomogeneous chiral condensates expansions up to
the order 8 have been derived [13].
In this work, with the aim of going beyond these

limitations, we build a controlled framework for investi-
gating inhomogeneous phases away from the Lifshitz
point (for the astrophysical relevant case of matter at
vanishing temperature) without having to resort to a
brute-force numerical diagonalization of the quark
Hamiltonian in momentum space. For this, we devise an
improved Ginzburg-Landau (IGL) approximation which
can correctly describe both phase transitions delimiting

the inhomogeneous phase to (at least in principle) arbitrary
precision. This is done on one hand by implementing “by
construction” a correct description of the homogeneous
phase which also contains information on long-wavelength
modulations of the chiral condensate and on the other hand
by incorporating a sufficiently large number of appropriate
gradient terms. The latter can be determined straightfor-
wardly without having to resort to the full computation of
the GL coefficients thanks to our analytical knowledge of
the eigenvalue spectrum of a simple modulation of the
condensate, namely, a single plane wave.
This paper is organized as follows. In Sec. II, we

introduce the IGL approximation to describe the inhomo-
geneous phases, focusing on the χSB case. In Sec. III, we
extract the coefficients of the IGL expansion governing the
transition to the chirally restored phase starting from the
single plane wave modulation. In Sec. IV, we compare
the results of the GL and IGL approximation with the
numerical results of the diagonalization of the full quark
Hamiltonian. In Sec. V, we analyze two-dimensional (2D)
modulations including a novel ansatz. A qualitative dis-
cussion of the pairing mechanism is given in Sec. VI. We
finally draw our conclusions in Sec. VII.

II. IMPROVED GINZBURG-LANDAU EXPANSION

To develop our formalism, we focus on the phenomenon
of inhomogeneous χSB breaking starting from a GL
expansion for the free energy in the NJL model within
the mean-field approximation [4,5,17].
The idea behind the GL expansion is that close to the

Lifshitz point the thermodynamic potential can be written
as an expansion in powers of the chiral order parameter
MðzÞ ¼ −2G½SðzÞ þ iPðzÞ� and its spatial derivatives (here,
SðzÞ ¼ hψ̄ψi and PðzÞ ¼ hψ̄iγ5τ3ψi are the scalar and
pseudoscalar chiral condensates, respectively, and G is
the scalar coupling constant in the NJL Lagrangian). More
specifically, for a real modulation, one can write [8,13]

ΩGL¼Ω½0�þ 1

V

Z
dx

�
α2M2þα4ðM4þð∇MÞ2Þ

þα6

�
M6þ3ð∇MÞ2M2þ1

2
ð∇M2Þ2þ1

2
ð∇2MÞ2

�

þα8

�
M8þ14M4ð∇MÞ2−1

5
ð∇MÞ4

þ18

5
Mð∇2MÞð∇MÞ2

þ14

5
M2ð∇2MÞ2þ1

5
ð∇3MÞ2

�
þ�� �

�
; ð1Þ

where αn are some coefficients depending on the micro-
scopic model. The reasoning behind this expansion is that
termswith the same αn are equally important. In other words,
close to the Lifshitz point, both M and ∇M are small; thus,
Mn and ∇mMn−m, with n > m, can be comparable.
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However, this is a very special case because approaching
the second-order phase transition M is expected to vanish,
but ð∇MÞ/M may be nonzero. In particular, at T ¼ 0, and
close to the phase transition to the chirally restored phase,
the power counting underlying Eq. (1) is expected to be
incorrect [7]; more specifically, ∇mMn−m terms can be
larger than the Mn terms. In principle, we expect this to
happen for any sufficiently small temperature away from
the Lifshitz point, but in the following, we will focus for
simplicity on the T ¼ 0 case, which is relevant for
sufficiently old compact stars. Furthermore, Eq. (1) is
insufficient to provide a reasonable description of the
homogeneous χSB phase. This calls for a different scheme
and/or a different approach.
From a technical point of view, the GL coefficients αn in

the NJL model can be easily determined, either from their
general expression [8] or, more pragmatically, by evaluating
the free energy for a homogeneous order parameter and
performing an expansion in powers of M, isolating the
coefficients multiplying the Mn terms. The knowledge of
the αn is, however, insufficient to build a GL functional for
inhomogeneous condensates, as different gradient terms of
the same order carry different relative prefactors compared
to theMn term [see Eq. (1)]. The evaluation of these terms in
the inhomogeneous χSB phase is already quite tedious at
order α6 and becomes increasingly more involved at higher
orders [13].
To improve the GL scheme and to circumvent the above

technical difficulties, let us take one step back and inspect
the structure of Eq. (1). There, we have ordered the terms in
such a way that order by order the first one is Mn and the
last one is ð∇n

2
−1MÞ2. As already noted, these two sets of

terms are particularly relevant; indeed, they are the dom-
inant contributions close to the phase transitions. In
particular, the ð∇n

2
−1MÞ2 terms are the dominant gradient

contributions close to the chirally restored phase because
terms with a higher power of M are suppressed. The Mn

terms, on the other hand, are particularly relevant close to
the transition to the homogeneous χSB phase (indeed, these
are the only terms present in the homogeneous phase, in
which gradients vanish). However, the free energy of the
homogeneous χSB phase is known in an analytical form.
These considerations motivate the following IGL expan-
sion, which for a real order parameter reads

ΩIGL ¼
1

V

Z
dx

�
ΩhomðM2Þþα6ð3ð∇MÞ2M2þ1

2
ð∇M2Þ2Þ

þα8

�
14M4ð∇MÞ2−1

5
ð∇MÞ4þ18

5
Mð∇2MÞð∇MÞ2

þ14

5
M2ð∇2MÞ2

�
þ
X
n≥1

α̃2nþ2ð∇nMÞ2
�
; ð2Þ

where the first and the last terms in the square bracket
characterize this novel expansion technique.

In particular, ΩhomðMðzÞ2Þ is the free energy for a
homogeneous order parameter, evaluated point by point
for a moving average of the mass function defined as

MðzÞ2 ¼ 1

λ

Z
zþλ/2

z−λ/2
M2ðξÞdξ; ð3Þ

where, as we will see, the relevant wavelength scale λ is
determined by the chemical potential μ. If M is spatially
constant, this term gives by construction the free energy of
the homogeneous χSB phase. On the other hand, for a
general oscillation, it captures the long-wavelength modu-
lation of the condensate; from the point of view of an
effective field theory, this can be seen as the dominant term
for long-wavelength fluctuations, while high-frequency
components have been integrated out. The ð∇nMÞ2 term
is instead the dominant one at high frequencies, of the same
order as or higher than μ. Indeed, the last term in Eq. (2)
includes the leading gradient contributions close to the
second-order transition to the chirally restored phase. The
requirement for this term to be dominant is the vanishing
of the amplitude of the chiral condensate, which is what
happens close to the second-order transition to the normal
phase. We labeled the coefficients multiplying these gra-
dient terms as α̃n, as they will be equal to the αn up to a
numerical prefactor. By inspecting Eq. (1), we can see
immediately that α̃4 ¼ α4, α̃6 ¼ α6/2, and α̃8 ¼ α8/5,
whereas for higher orders, these relations have not been
determined until now.
The first and the last terms in the expansion in Eq. (2)

thus guarantee the agreement with the exact result close to
the two phase transitions. The other terms, which are taken
from the traditional GL expansion, are expected to be
relevant in the region between the two phase transitions,
when ∇M ∼M2, or more precisely when the modulation
wavelength, λ, satisfies jMj ∼ 1/λ. As we will see in the
following, the α6 terms will be sufficient to provide a good
qualitative agreement with the full numerical results, and
including the α8 terms will allow us to obtain an excellent
quantitative agreement throughout the whole inhomo-
geneous χSB phase.
The IGL prescription can, of course, be generalized to

complex modulations: for our novel terms, this amounts to
simply replacingM2 by jMj2 in the moving average Eq. (3)
and ð∇nMÞ2 by j∇nMj2 in the leading gradient terms.
One important aspect is that, when derived from an NJL

model, the αn coefficients do not only depend on μ but
are also sensitive to the regularization scale, Λ. However,
once this scale is fixed, the coefficients themselves do not
depend on the considered shape of the modulation of the
condensate. At vanishing temperature and for a Pauli-
Villars regularization with three counterterms, a regulator
Λ, and coefficients c0 ¼ 1; c1 ¼ −3; c2 ¼ 3; c3 ¼ −1 (see
Ref. [12]), we find
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α2 ¼
1

4G
−
NfNc

8π2

�
3Λ2 log

�
4

3

�
− 2μ2

�
;

α4 ¼ −
NfNc

16π2
log

�
32μ2

3Λ2

�
;

α6 ¼
NfNc

96π2

�
11

3Λ2
þ 1

μ2

�
;

α8 ¼
NfNc

256π2

�
1

2μ4
−

85

27Λ4

�
; ð4Þ

where Nf and Nc are the numbers of quark flavors and
colors, respectively.

III. HIGHER-ORDER GRADIENTS FROM
A CDW MODULATION

The only missing ingredients in the IGL expansion of
Eq. (2) are the α̃n coefficients for n > 8. We compute them
by exploiting the analytical knowledge of the eigenvalue
spectrum of the quark Hamiltonian for the so-called chiral
density wave (CDW) ansatz

MðzÞ ¼ Δe2iqz; ð5Þ

corresponding to a static single plane wave modulation,
chosen without loss of generality along the z direction, with
amplitude Δ and wave number 2q. For this simple case, the
quasiparticle dispersion law is known [18,19],

Eϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⊥2 þ jEz þ ϵqj2

q
; ð6Þ

where ϵ ¼ �1, p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
, and Ez ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ Δ2

p
. At

vanishing temperature, the free energy for this modulation
is given by

ΩCDW ¼ −
NfNc

4π2

Z
∞

0

dp⊥p⊥

×
Z

∞

−∞
dpz

X
ϵ¼�

½Eϵ
PV þ ðμ − EϵÞθðμ − EϵÞ� þ Δ2

4G
;

ð7Þ

where again the Pauli-Villars regularization scheme has
been adopted; see Refs. [4,7,12]. We now expand the free
energy in a Taylor-like series,

Ω ¼ Ω0 þ
∂Ω

∂ðΔ2Þ
����
Δ¼0

Δ2 þ 1

2

∂2Ω
∂ðΔ2Þ2

����
Δ¼0

Δ4 þ � � �

¼ Ω0 þ Ω2Δ2 þ Ω4Δ4 þ � � � ; ð8Þ

starting from Ω0 ¼ ΩðΔ ¼ 0Þ. Each term can be separated
in a vacuum contributionΩV

n and a medium contributionΩμ
n

which (at T ¼ 0) depends on the quark chemical potential μ.
For example, the zeroth order is

Ωμ
0 ¼ −

NfNc

4π2
μ4; ð9Þ

which is minus the pressure of a free Fermi gas of massless
particles and is q independent, as it should be.
The first nontrivial term is proportional to Δ2 and is

given by

Ω2 ¼
1

4G
−
NfNc

4π2
lim
Δ→0

Z
∞

0

dp⊥p⊥

×
Z

∞

−∞
dpz

X
ϵ¼�

1

2Eϵ

�
1þ ϵ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ Δ2

p
�

×

�X
j

cj
Eϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
ϵ þ jΛ2

p − θðμ − EϵÞ
�

¼ Ωcond
2 þΩV

2 ð0Þ þΩV
2 ðqÞ þ Ωμ

2ð0Þ þ Ωμ
2ðqÞ; ð10Þ

where the first term is simply a constant due to the
condensation energy, and we write down explicitly the
Pauli-Villars regularization of the vacuum part.
Furthermore, we isolated the medium and vacuum q-
dependent contributions to Ω2, which can be evaluated
analytically,

ΩV
2 ðqÞ ¼ −

NfNc

4π2
q
X3
j¼0

cj
h�

q −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ jΛ2

q 	
logðjΛ2Þ

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ jΛ2

q
log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ jΛ2

q 	i
; ð11Þ

and

Ωμ
2ðqÞ ¼

NfNc

4π2
q

�
ðμ − qÞ log

�jμ − qj
q

�

− ðμþ qÞ log
�
μþ q
q

��
: ð12Þ

Upon closer inspection, we note that both contributions
carry a logðqÞ term which could possibly spoil any
expansion. However, by adding them up, these log pieces
cancel out. Expanding in q/μ, we obtain

Ω2ðqÞ¼
NfNc

4π2
μ2
�
−log

�
32μ2

3Λ2

��
q
μ

�
2

þ
�
1

3
þ11μ2

9Λ2

��
q
μ

�
4

þ
�
1

10
−
17μ4

27Λ4

��
q
μ

�
6

þ
�
1

21
þ 230μ6

567Λ6

��
q
μ

�
8

þ���
�
;

ð13Þ

which is a controlled expansion as long as q < μ. This
typically turns out to be the case, as we will see in the
following sections. Furthermore, from this expansion, we
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can obtain all the α̃n terms required for the IGL expansion.
Indeed, by inspecting Eq. (2), it is clear that for the CDWall
the terms in the form j∇n

2Mj2 turn into qnΔ2 terms and are
therefore all contained in Ω2. Thus, by expanding Ω2 in
powers of q as in Eq. (13), we can extract these terms to
arbitrarily high order in an extremely simple way.
Comparing the lower-order coefficients with the expres-
sions in Eq. (4), we see that they agree, and pushing our
expansion to higher orders, we find, for example,

α̃10 ¼
NfNc

1024π2

�
230

567Λ6
þ 1

21μ6

�
: ð14Þ

From the above expansion, it is clear that the relevant
frequencies are of the order of μ, suggesting that the scale to
be employed in the moving average Eq. (3) should be of the
order of 1/μ. This scale is also comparable to the radius for
the single soliton introduced in Ref. [20] for the real-kink
crystal modulation (see later), Rsol ¼ π/ð ffiffiffiffiffi

12
p

MvacÞ (Mvac
being the vacuum constituent quark mass), since the
inhomogeneous phase is typically realized for μ ∼Mvac.
In the following, we will choose λ ¼ 1/μ, although
any other choice in the same ballpark leads to similar
results.

IV. BENCHMARKS AND APPLICATIONS
OF THE IGL

We are now ready to evaluate and minimize the IGL free
energy and compare it with the standard GL approximation
[including up to Oðα8Þ terms; see Eq. (1)] and the full
numerical result. We begin by considering two different
one-dimensional (1D) modulations of the condensate, in
order to explore the reliability of the GL and IGL
expansions. We work in the chiral limit using a Pauli-
Villars regulator Λ ¼ 757.048 MeV and a scalar coupling
G ¼ 6.002/Λ2, corresponding to a vacuum constituent
quark mass Mvac ¼ 300 MeV and a pion decay constant
fπ ¼ 88 MeV [12]. We remind that all of our results are
obtained at zero temperature.

A. Chiral density wave

We start by considering the CDW modulation; see
Eq. (5). In Fig. 1, we report the results obtained for the
variational parameters Δ, q (top panel) and the free energy
at the minimum (bottom panel). For the single plane wave,
the numerical results (solid black line) are extremely
reliable and can be used as a benchmark to test the GL
(dashed blue line) and the IGL (dotted red line) approx-
imations. As a first step, we truncated the IGL approxi-
mation to order α̃10. The three approaches give qualitatively
similar results, showing that in this case both Δ and q are
discontinuous at the phase transition between the homo-
geneous and inhomogeneous χSB phases. The value of q
vanishes in the homogeneous χSB phase and jumps to
about 200 MeV at the onset of the inhomogeneous χSB

phase. Then, it monotonically increases, as a function of μ,
in the inhomogeneous phase. The Δ parameter is instead
aboutMvac ¼ 300 MeV in the homogenous χSB phase and
then a decreasing function of μ in the inhomogeneous
phase, eventually vanishing at the second-order transition
to the chirally restored phase.
The first remarkable result visible by inspecting Fig. 1 is

that, even at zero temperature, the standard GL expansion
provides a good quantitative agreement with the results
of the full numerical computation. It fails, however, to

 0

 50

 100

 150

 200

 250

 300

 350

 300  310  320  330  340  350  360

Δ
,q

 (
M

eV
)

μ (MeV)

num
GL
IGL

-5

-4

-3

-2

-1

 0

 300  310  320  330  340  350  360

-
re

st
 (

M
eV

/fm
3 )

μ

Ω
Ω

 (MeV)

num
GL
IGL

FIG. 1. Comparison of the numerical results with the GL
expansion and the IGL approximation for the CDW modulation
as a function of the quark chemical potential. Top: values of Δ
(curves with a decreasing behavior) and q (curves with an
increasing behavior) that minimize the free energy. Both GL
and IGL give good results in the inhomogeneous phase. The GL
tends to favor more the inhomogeneous phase over the chirally
restored phase, and in the homogenous χSB phase, the GL
expansion tends to overestimate Δ. Bottom: free energy (after
subtraction of the free energy of the chirally restored phase,Ωrest).
The approximate expressions almost overlap with the numerical
ones in the inhomogeneous χSB phase. However, in the homog-
enous χSB phase, only the IGL approximation leads to a good
agreement with the numerical results.
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properly reproduce the numerical results in two key
regions: close to the transition to the chirally restored
phase, where it overshoots the transition point, and at the
transition between the homogeneous and inhomogeneous
χSB phases, failing to correctly reproduce the value of Δ in
the homogeneous χSB phase and the transition point. On
the other hand, the IGL exactly does what it is designed for:
it improves the description of these two regions. Most
notably, it exactly reproduces the free energy in the
homogeneous phase and the transition to the inhomo-
geneous χSB phase. Moreover, it shifts the transition to
the chirally restored phase closer to the numerical result.
It is important to stress that close to the chiral restoration

transition the IGL is designed for giving a systematic
controlled improvement over the standard GL by the
inclusion of higher-order j∇nMj2 terms, which, as already
discussed, can be straightforwardly extracted from Eq. (13).
This is shown in Fig. 2, where we can see how the second-
order transition is increasingly better described as we
include higher-order terms. In particular, we can see that
in order to get a good qualitative agreement we need at least
theOðα8Þ terms; otherwise, the inhomogeneous χSB phase
extends to arbitrarily high chemical potentials. We can
interpret this result by inspecting Eq. (13), or equivalently
the expressions for the GL coefficients: close to the chiral
restoration transition and for reasonable values of μ/Λ, the
leadingOðα4Þ coefficient is negative and provides an energy
gain in the formation of an inhomogeneous phase, whereas
higher-order terms constitute energy costs. Indeed, whilewe

find that, in principle, within our regularization scheme the
coefficients α4n for n > 1 might flip sign [see Eq. (4)] and
actually favor large q solutions; in practice, this would
require chemical potentials too close to the regulatorΛ for us
to trust the model results in that regime.1 Therefore, we find
that higher-order gradient terms provide (increasingly
smaller) energy costs, which gradually push the phase
transition toward lower chemical potentials, gradually
approaching the full numerical result. In practice, the
convergence of this sum turns out to be very rapid: by
including α̃10 corrections, we are off the full numerical result
for the transition chemical potential by only 2 MeV, and the
IGL results from order α̃12 on become practically indistin-
guishable from the numerical result. In light of this, in the
following, we will consider for simplicity the truncated IGL
expansion at order α̃10, with the understanding that more
refined results can be straightforwardly obtained by simply
adding higher-order gradient terms.

B. Real-kink crystal

The results with the CDW ansatz suggest that the IGL
approximation works extremely well. For a second check,
we compare the GL and IGL results with the numerical
ones for the modulation which has been found to be the
most favored in the inhomogeneous χSB window, namely,
the real-kink crystal (RKC) [7,12]

MðzÞ ¼ Δ
ffiffiffi
ν

p
snðΔzjνÞ; ð15Þ

where snðΔzjνÞ is a Jacobi elliptic function, the shape of
which is characterized by Δ and by the so-called elliptic
modulus ν.
After computing the cell averages over MðzÞ and

plugging them in the GL and IGL expression, we obtain
the results shown in Fig. 3. Again, we find a good
agreement of the GL result with the full computation,
while the IGL provides a significant quantitative improve-
ment, reproducing the full numerical results within a few
percent error. In this case, the effect of the first term in the
IGL expansion in Eq. (2) is more evident. It forces the
average value of the condensate to match the homogeneous
value, sensibly improving the agreement with the numeri-
cal results. This effect is due to the fact that the RKC ansatz
can be seen as a superposition on many different waves
with different amplitudes. The long-wavelength amplitudes
dominate close to the phase transition with the homo-
geneous χSB phase. On the other hand, for a CDW, there is
one single spatial frequency q, which is large. Therefore, in
that case, the IGL does not improve much with respect to
the GL approximation close to this phase transition.
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FIG. 2. Analysis of the IGL approximation for the CDW
condensate. The various lines correspond to the values of Δ
(curves with a decreasing behavior) and q (curves with an
increasing behavior) that minimize the free energy, as a function
of the quark chemical potential. Solid lines are results obtained by
the full diagonalization of the quark Hamiltonian, and the others
correspond to the IGL expansion, Eq. (2), including gradient
terms of different orders. Increasing the number of the gradient
terms, the position of the second-order phase transition is
increasingly well determined.

1This behavior might also be related to the appearance of a
second inhomogeneous phase at high chemical potentials within
NJL model calculations; see the discussions in Refs. [21,22].

CARIGNANO, MANNARELLI, ANZUINI, and BENHAR PHYS. REV. D 97, 036009 (2018)

036009-6



It might be interesting at this point to compare the
spatially modulated quark number density of the system
obtained within the GL and IGL approximations with the
numerical results of Ref. [23]. In our case, it is simply
obtained by differentiating the integrand of Eq. (2) with
respect to μ. This basically amounts to an improvement
over a “local Fermi-gas” approximation [amounting to
simply considering the first term in Eq. (2)], which has
already been found to reproduce very well the behavior of
the density of the system [24]. Our results are shown in
Fig. 4. There, we can see that once again the IGL provides
better agreement with the full result as compared to the GL,
although in this case, the results do not match perfectly,
especially close to the phase transition to the homogeneous
broken phase. This is due to the fact that Δ and ν give the
amplitude and frequency of the density oscillations. Since
both are slightly different from the ones obtained by the
full numerical calculation, the resulting density has an

amplitude and oscillation period different from the numeri-
cal ones.
The RKC modulation is somehow similar to the lasagna

phase in nuclear matter, that is a type of pasta phase [25]
expected to be realized in the inner crust of compact stars.
In this phase, nuclei form sheets immersed in a liquid of
nuclear matter. However, with changing densities, the
Lasagna phase is supposed to be superseded by different
modulations, possibly giving rise to higher-dimensional
structures. Following this analogy, one might expect that
higher-dimensional modulations can become favored at
different values of the quark chemical potential. Another
argument in favor of higher-dimensional modulations comes
from quarkyonic matter studies, in which it is expected that
increasingly complex crystalline structures can be formed
by the chiral condensate as the density increases [26].
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(15). The IGL always performs better than the GL, with a
discrepancy with the numerical method that is larger close to the
χSB phase than at the chirally restored phase. The top panel
corresponds to μ ¼ 310 MeV, while the bottom panel is obtained
for μ ¼ 330 MeV.
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V. TWO-DIMENSIONAL STRUCTURES

Since the IGL provides very accurate results for the order
parameters and free energies of one-dimensional modu-
lations with minimal computational effort, let us now move
on and consider two-dimensional structures. Close to the
Lifshitz point, a systematic GL analysis of different types of
higher-dimensional modulations has been performed in
Ref. [13], while a complementary numerical analysis for
the astrophysically relevant T ¼ 0 case can be found in
Ref. [14]. Comparing the IGL results with the numerical
ones of Ref. [14] for a two-dimensional square lattice with a
sinusoidal ansatz, that is,

Mðx; yÞ ¼ Δ cosðqxÞ cosðqyÞ; ð16Þ

we obtain the order parameters and the free energies
reported in Fig. 5. It is clear that the agreement is again
extremely good,2 and we recall that the IGL result can be
computed with very limited numerical effort [basically

amounting to the evaluation of hΩhomðM2Þi, as all the other
terms can be computed analytically].
Using the IGL method, we are in a position to easily test

different 2D modulations. First, we consider a square
lattice with two RKC-type modulations along the x and
y directions, that is,

Mðx; yÞ ¼ ΔνsnðΔx; νÞsnðΔy; νÞ: ð17Þ

The practical implementation of this modulation in the
numerical framework of Ref. [14] would be extremely
complicated, as it would in principle require an expansion
of the order parameter in a largenumber ofFourier harmonics
and a minimization of the free energy with respect to all of
their amplitudes. Instead, within the IGL approximation, it
can be straightforwardly implemented in the same way as
with the 2D cosine. The minimization of the IGL free energy
with respect to Δ and ν yields qualitatively similar results to
the one-dimensional RKC for the order parameters. When
computing the free energy associated with this modulation,
we find, similarly towhat happens with the one-dimensional
modulations, that the RKC-type solution is almost degen-
erate with the cosine one with the exception of the region
close to the onset of the inhomogeneous phase, as shown in
Fig. 6. In that figure, we also see that this type of modulation
is also disfavored with respect to its one-dimensional
counterpart. We performed a further check in this direction
by considering the ansatz

Mðx; yÞ ¼ Δ½ ffiffiffiffiffi
νx

p
snðΔx; νxÞ þ ffiffiffiffiffi

νy
p

snðΔy; νyÞ�; ð18Þ

which can interpolate between a one-dimensional RKC
modulation and a more involved two-dimensional structure.
Consistent with our other results, we find that the minimum
solution always corresponds to one of the two ν being zero,
while the other reduces to the value obtained when minimiz-
ing with the one-dimensional ansatz Eq. (15).
Thus, as it was already found in Ref. [14], we can

confirm within our novel approach that 2D modulations
are disfavored with respect to 1D modulations at vanishing
temperatures. We therefore expect that the same “hier-
archy” found in Ref. [13] close to the Lifshitz point holds
also at vanishing temperatures and that 3D modulations
will thus be even further disfavored compared to two-
dimensional ones.

VI. QUALITATIVE ANALYSIS OF PAIRING

The comparison between the considered 2D modulations
and the 1D modulations suggests that the 1D RKC is
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2D cosine modulation ansatz, see Eq. (16), as a function of the
quark chemical potential. Top: Values of the order parameters
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2It is worth recalling that the numerical results for the 2D
modulations obtained in Ref. [14] may carry some numerical
uncertainty due to the cutoffs implemented in the numerical
diagonalization of the quark Hamiltonian in momentum space.
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always favored. This result is in contrast with what is
expected to occur in crystalline color superconductors, in
which a crystalline 3D pattern seems to be favored [16,27].
It is believed that in color superconductors the occurrence
of the crystalline phase is due to the maximization of
pairing at the Fermi surface; indeed, the presence of a
collective Fermi surface phenomenon seems to be the key
point for obtaining a crystalline phase.
Quite generally, a certain modulation is energetically

favored if the energy gain due to pairing is larger than the
energy cost of having pairs with nonvanishing total
momentum. Let us examine in detail what happens in an
inhomogeneous χSB condensate. For a qualitative under-
standing of the phenomenon, we consider first the effect of
a nonvanishing momentum, and then we allow for pairing.
For understanding whether multidimensional pairing is

favored, we consider what happens for a plane wave
ansatz. As discussed in Refs. [6,16], one way of represent-
ing the Fermi surface effects is to inspect the integrand of
the free energy, corresponding, in our case, to the integrand
appearing in Eq. (7). In Fig. 7, we plot this function
at μ ¼ 335 MeV, that is, within the inhomogeneous
χSB window. The left panel corresponds to the free case,
that is, q ¼ 0 and Δ ¼ 0. The integrand is peaked at p ¼ μ,
meaning that the larger contribution comes from the Fermi
surface, corresponding to the lighter region in Fig. 7. This is
the so-called pairing region, while the parts well inside the
Fermi sphere or well outside it correspond to the blocking
regions (see the discussion in Ref. [16] about pairing and
blocking regions in color superconductors). In other words,
pairing well inside/outside the Fermi sphere has a large
free-energy cost, because particles should climb to the tip
of the free energy (integrand), which is at the Fermi sphere.
On the other hand, particle and hole excitations at the Fermi
sphere are already at the tip of the mountain, that is, to the
largest possible energy, and they can eventually pair at no
cost to form a chiral condensate [28].
Now, we consider a momentum shift of the fermions.

When pairs have nonvanishing total momentum, one can
imagine first displacing fermions by q and then to turn on
pairing. This is exactly what one does when diagonalizing
the full Hamiltonian for the single plane wave to obtain the
free energy in Eq. (7). This procedure is discussed in detail
in Ref. [16] for crystalline color superconductors, where it
is shown how by a proper momentum shift the quark
propagator becomes diagonal (see also Ref. [7] for an
analogous discussion for inhomogeneous chiral conden-
sates). This momentum shift has the effect of separating the
Fermi spheres, as shown in the central panel of Fig. 7 for
q ¼ 241 MeV. Now, the only pairing region corresponds to
the ribbon where the two Fermi spheres touch. This picture
also explains why q < μ; indeed, if this were not the case,
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FIG. 6. Comparison of the free energies for a 1D RKC (15),
a 2D cosine (16), and a 2D RKC (17), within the IGL
approximation.

FIG. 7. Two dimensional contour plots of the integrand of the free energy for the CDWansatz, Eq. (7). All the results are obtained for
μ ¼ 335 MeV, but with different values of q and Δ. The lighter region corresponds to the region where the free energy cost for exciting
quasiparticles is smaller. Left: unpaired phase, q ¼ 0 and Δ ¼ 0. Center: q ¼ 241 MeV and Δ ¼ 0. The effect of the large momentum q
is to strongly displace the Fermi spheres. Right: q ¼ 241 MeV and Δ ¼ 44 MeV (corresponding to the energetically favored values at
μ ¼ 335 MeV). The smearing of the lighter region is due to the pairing.
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the two Fermi spheres would have no overlapping regions.
Exciting quasiparticles and/or holes in the pairing ribbon
has no free energy cost, whereas particles from all other
regions should climb an energy barrier. Indeed, we see that
this is exactly what happens for Δ ¼ 44 MeV, right panel,
where the smearing of the touching regions is exactly due to
pairing. It is not possible now to add pairing in different
regions of the Fermi spheres, say, in the region p⊥ ∼ 0,
because these regions are too far apart and therefore the free
energy cost for exciting particles and/or holes would be too
high. Therefore, multidimensional modulations are disfa-
vored in the χSB phase because q is too large.
This does not happen in color superconductors. Indeed,

one important difference between the inhomogeneous χSB
phase and the crystalline color superconductors regards the
magnitude of q. Broadly speaking, q has to be proportional
to the stress exerted on the pairing mechanism. In the χSB
phase, the stress is proportional to μ, because pairing is
related to the formation of a chiral condensate. On the other
hand, in color superconductors, q ∝ δμ, where δμ ≪ μ is
the mismatch between the Fermi spheres due to an
imbalance between quarks of different flavors. For illus-
trative purposes, let us consider the non-energetically-
favored χSB configuration corresponding to small q and
Δ, somehow mimicking what happens in color super-
conductors. We show in Fig. 8 the integrand of Eq. (7),
with q ¼ 30 MeV and Δ ¼ 5 MeV. Again, pairing can
happen in the ribbon where the two Fermi spheres overlap.
However, it is clear now that it would be possible to slightly
modify the Fermi sphere for allowing pairing, say, in the
p⊥ ∼ 0 plane, at a small free-energy cost.

VII. CONCLUSIONS

We have presented a novel approach to study spatially
inhomogeneous pairing by an improved Ginzburg-Landau
expansion, Eq. (2). This approach relies on a scale
separation between long-wavelength fluctuations, domi-
nating the transition to the homogeneous phase, and rapid
fluctuations governing the transition to the chirally restored
phase. The IGL reproduces correctly by construction the
homogeneous limit and allows for a description of the
chiral restoration transition from the inhomogeneous phase
with arbitrarily high precision by a controlled gradient
expansion.
We have applied the IGL to the study of the inhomo-

geneous χSB phase at T ¼ 0, reproducing the results
obtained by numerical methods and extending the analysis
to novel structures. These structures can hardly be studied
by the numerical method, because of the complicated
Fourier expansion technique underlying these methods.
On the other hand, the IGL expansion turns out to
be an extremely powerful tool, allowing us to quickly
examine various crystalline structures to an arbitrarily
accurate approximation. In this way, we checked that
various 2D modulations are disfavored with respect to
the 1D RKC one in Eq. (15), confirming and extending
previous results obtained via brute-force numerical
computations [14].
It is worth emphasizing that no approximate method so

far has been used to analyze the T ¼ 0 case, probably
because the standard GL approximation was assumed to
be unreliable. Actually, we find that the GL approximation
at Oðα8Þ gives a surprisingly good qualitative agreement
with the results of the full numerical computations.
However, to make a quantitative comparison of the free
energies of different structures, a refined approach must be
used, and the IGL devised here performs this task
excellently. In particular, we showed that it is able to
give an accurate description of both the second-order
phase transition to the chirally restored phase and of the
phase transition to the homogeneous χSB phase. As it
turns out, a small number of additional specific gradient
terms is enough to provide excellent agreement with the
numerical data.
Finally, it is worth recalling that fluctuations are

expected to have a strong effect on the formation of
inhomogeneous condensates [29–31], particularly in the
case of lower-dimensional modulations [32] (see also
Ref. [7] for a discussion). The inclusion of fluctuations
in the IGL framework would lead to a systematic improve-
ment beyond the mean-field approximation.
The present work can be extended in many different

ways. The IGL free energy can be used to rapidly evaluate
the free energy of various crystalline color superconducting
configurations, as the ones considered in Ref. [10], and to
extend the analysis to novel modulations. The only mod-
ifications needed in Eq. (2) are the replacement of the free

FIG. 8. Contour plots of the integrand of the free energy
for CDW ansatz, Eq. (7). For μ ¼ 335 MeV, q ¼ 30 MeV,
and Δ ¼ 5 MeV.
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energy of the homogeneous phase with the 2SC one (for
two flavors) or of the color-flavor locked one (for three
flavors) and to replace the αn coefficients with the pertinent
ones, which can, in principle, be obtained by considering
modulations for which the eigenvalue spectrum is known,
such as a simple Fulde-Ferrell-type plane wave [6,33,34].
In this case, one can also compare the IGL results with
those obtained by the numerical method in Ref. [15]. We
will shortly present results on this topic.

Moreover, the IGL can be modified to simultaneously
include the chiral and diquark condensates for examining
the coexistence of the inhomogeneous χSB and of the
crystalline color superconducting phase. In this case, the
color-superconducting phase is expected to arise where
the chiral condensate is small or, equivalently, where the
density is large. Since 1D chiral modulations are favored,
we expect that a cosine modulation, see, for example,
Ref. [6], could be favored.

[1] K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74, 014001
(2011).

[2] K. Rajagopal and F. Wilczek, At The Frontier of Particle
Physics edited by M. Shifman and B. Ioffe (World
Scientific, 2000), p. 2061–2151, DOI: 10.1142/
9789812810458_0043.

[3] G. Aarts, Pramana 84, 787 (2015).
[4] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[5] M. Buballa, Phys. Rep. 407, 205 (2005).
[6] R. Anglani, R. Casalbuoni, M. Ciminale, N. Ippolito, R.

Gatto, M. Mannarelli, and M. Ruggieri, Rev. Mod. Phys. 86,
509 (2014).

[7] M. Buballa and S. Carignano, Prog. Part. Nucl. Phys. 81, 39
(2015).

[8] D. Nickel, Phys. Rev. Lett. 103, 072301 (2009).
[9] M. G. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys.

B537, 443 (1999).
[10] K. Rajagopal and R. Sharma, Phys. Rev. D 74, 094019

(2006).
[11] M. Thies, Phys. Rev. D 69, 067703 (2004).
[12] D. Nickel, Phys. Rev. D 80, 074025 (2009).
[13] H. Abuki, D. Ishibashi, and K. Suzuki, Phys. Rev. D 85,

074002 (2012).
[14] S. Carignano and M. Buballa, Phys. Rev. D 86, 074018

(2012).
[15] D. Nickel and M. Buballa, Phys. Rev. D 79, 054009 (2009).
[16] M. Mannarelli, K. Rajagopal, and R. Sharma, Phys. Rev. D

73, 114012 (2006).
[17] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
[18] F. Dautry and E. Nyman, Nucl. Phys. A319, 323 (1979).

[19] E. Nakano and T. Tatsumi, Phys. Rev. D 71, 114006 (2005).
[20] M. Buballa and S. Carignano, Phys. Rev. D 87, 054004

(2013).
[21] S. Carignano and M. Buballa, Acta Phys. Pol. B Proc.

Suppl. 5, 641 (2012).
[22] S. Carignano, M. Buballa, and B.-J. Schaefer, Phys. Rev. D

90, 014033 (2014).
[23] S. Carignano, D. Nickel, and M. Buballa, Phys. Rev. D 82,

054009 (2010).
[24] M. Buballa and S. Carignano, Eur. Phys. J. A 52, 57 (2016).
[25] D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys. Rev.

Lett. 50, 2066 (1983).
[26] T. Kojo, Y. Hidaka, K. Fukushima, L. D. McLerran, and

R. D. Pisarski, Nucl. Phys. A875, 94 (2012).
[27] M. G. Alford, J. A. Bowers, and K. Rajagopal, Phys. Rev. D

63, 074016 (2001).
[28] T. Kojo, Y. Hidaka, L. McLerran, and R. Pisarski, Nucl.

Phys. A843, 37 (2010).
[29] T.-G. Lee, E. Nakano, Y. Tsue, T. Tatsumi, and B. Friman,

Phys. Rev. D 92, 034024 (2015).
[30] R. Yoshiike, T.-G. Lee, and T. Tatsumi, Phys. Rev. D 95,

074010 (2017).
[31] Y. Hidaka, K. Kamikado, T. Kanazawa, and T. Noumi, Phys.

Rev. D 92, 034003 (2015).
[32] L. D. Landau and E. M. Lifshitz, Statistical Physics Part 1,

Course of Theoretical Physics (Pergamon, New York,
1969).

[33] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[34] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47,

1136 (1964) [Sov. Phys. JETP 20, 762 (1965)].

CRYSTALLINE PHASES BY AN IMPROVED GRADIENT … PHYS. REV. D 97, 036009 (2018)

036009-11

https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1142/9789812810458_0043
https://doi.org/10.1142/9789812810458_0043
https://doi.org/10.1007/s12043-015-0981-0
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/j.physrep.2004.11.004
https://doi.org/10.1103/RevModPhys.86.509
https://doi.org/10.1103/RevModPhys.86.509
https://doi.org/10.1016/j.ppnp.2014.11.001
https://doi.org/10.1016/j.ppnp.2014.11.001
https://doi.org/10.1103/PhysRevLett.103.072301
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.1103/PhysRevD.74.094019
https://doi.org/10.1103/PhysRevD.74.094019
https://doi.org/10.1103/PhysRevD.69.067703
https://doi.org/10.1103/PhysRevD.80.074025
https://doi.org/10.1103/PhysRevD.85.074002
https://doi.org/10.1103/PhysRevD.85.074002
https://doi.org/10.1103/PhysRevD.86.074018
https://doi.org/10.1103/PhysRevD.86.074018
https://doi.org/10.1103/PhysRevD.79.054009
https://doi.org/10.1103/PhysRevD.73.114012
https://doi.org/10.1103/PhysRevD.73.114012
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1016/0375-9474(79)90518-9
https://doi.org/10.1103/PhysRevD.71.114006
https://doi.org/10.1103/PhysRevD.87.054004
https://doi.org/10.1103/PhysRevD.87.054004
https://doi.org/10.5506/APhysPolBSupp.5.641
https://doi.org/10.5506/APhysPolBSupp.5.641
https://doi.org/10.1103/PhysRevD.90.014033
https://doi.org/10.1103/PhysRevD.90.014033
https://doi.org/10.1103/PhysRevD.82.054009
https://doi.org/10.1103/PhysRevD.82.054009
https://doi.org/10.1140/epja/i2016-16057-6
https://doi.org/10.1103/PhysRevLett.50.2066
https://doi.org/10.1103/PhysRevLett.50.2066
https://doi.org/10.1016/j.nuclphysa.2011.11.007
https://doi.org/10.1103/PhysRevD.63.074016
https://doi.org/10.1103/PhysRevD.63.074016
https://doi.org/10.1016/j.nuclphysa.2010.05.053
https://doi.org/10.1016/j.nuclphysa.2010.05.053
https://doi.org/10.1103/PhysRevD.92.034024
https://doi.org/10.1103/PhysRevD.95.074010
https://doi.org/10.1103/PhysRevD.95.074010
https://doi.org/10.1103/PhysRevD.92.034003
https://doi.org/10.1103/PhysRevD.92.034003
https://doi.org/10.1103/PhysRev.135.A550

