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We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice
directly at Q2 ¼ 0. This is based on the Rome method for computing momentum derivatives of quark
propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius
as well as the isovector induced pseudoscalar form factor at Q2 ¼ 0 and the axial radius. For comparison,
we also determine these quantities with the traditional approach of computing the corresponding form
factors, i.e. Gv

EðQ2Þ and Gv
MðQ2Þ for the case of the vector current and Gv

PðQ2Þ and Gv
AðQ2Þ for the axial

current, at multiple Q2 values followed by z-expansion fits. We perform our calculations at the physical
pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state
contamination, the calculations were done at three source-sink separations and the summation method
was used. The derivative method produces results consistent with those from the traditional approach but
with larger statistical uncertainties especially for the isovector charge and axial radii.
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I. INTRODUCTION

The experimental determinations of the proton (electric)
charge radius rpE have a discrepancy greater than 5-sigma
between the value determined from spectroscopy of muonic
hydrogen [1,2] and the CODATA average [3] of exper-
imental results obtained from hydrogen spectroscopy and
electron-proton scattering. This presently unresolved “pro-
ton radius puzzle” is the focus of various theoretical and
experimental efforts.1 Last year, the CREMACollaboration

reported on their study of muonic deuterium [5]. Their
experiment corroborates the muonic hydrogen result for
the proton charge radius, while finding a similar 6-sigma
discrepancy for the deuteron charge radius with the
CODATAvalues, and a 3.5-sigma discrepancy to electronic
deuterium spectroscopy results [6]. Thus, having a reliable
ab initio calculation of the proton charge radius is a highly
attractive goal for practitioners of lattice QCD.
The conventional approach for determining quantities

like the charge radius on the lattice involves the compu-
tation of form factors at several different discrete values
of the initial and final momenta, p⃗ and p⃗0, that are allowed
by the periodic boundary conditions, followed by a large
extrapolation to zero momentum transfer Q2 ¼ 0. This
introduces a source of systematic uncertainty, analogous to
the systematic uncertainty associated with the choices of
the fit ansatz and range of Q2 in extracting the proton
charge radius from electron-proton scattering data.
Systematic errors of this kind have in fact been proposed
as a possible explanation of the radius puzzle [7–9]. Given
that the smallest nonzero value of Q2 accessible on the
largest available lattices is still an order of magnitude
higher than in scattering experiments [10], a lattice method
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1Interestingly, a recent result of the proton charge radius
obtained by Beyer et al. using spectroscopic measurements of
regular hydrogen has been found to be consistent with the result
of the muonic hydrogen experiment [4].
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for computing rpE and similar observables directly at
Q2 ¼ 0 without the need of a shape fit is highly desirable.
The Rome method, presented in Ref. [11], provides a

way to calculate the momentum derivatives of quark
propagators on the lattice at zero momentum. This enables
calculating the momentum derivatives of the correlation
functions at zero momentum and obtaining the form factors
and their momentum derivatives at vanishing momenta. To
this end, one introduces twisted boundary conditions and
takes the symbolic derivative(s) with respect to the twist
angle (at zero twist angle) before the numerical evaluation
of the path integral over the gauge fields.
For the case of a pion, it was shown in Ref. [12] that the

Rome method for momentum derivatives could be used
to calculate the pion charge radius with finite-volume
effects that are exponentially suppressed, with asymptotic
behavior ∼

ffiffiffiffiffiffiffiffiffi
mπL

p
e−mπL.

We employ the Rome method for extracting the proton
isovector charge radius ðr2EÞv and the isovector magnetic
moment μv ¼ Gv

Mð0Þ, from matrix elements of the vector
current. We also extract the proton axial radius ðr2AÞv and
the induced pseudoscalar form factor at zero momentum,
Gv

Pð0Þ, using nucleon matrix elements of the axial current.
We compare the results from the derivative method with
those from the traditional approach.
The outline of the paper is as follows. We start by

reviewing the electromagnetic and axial form factors in
Sec. II. Section III is devoted to describing the traditional
approach for isolating the nucleon ground state, extracting
the nucleon electromagnetic and axial form factors and the
fits to the Q2 dependence of the form factors using the z
expansion to determine the corresponding radii and form
factors at Q2 ¼ 0. Section IV explains in detail the
derivative method for computing the momentum deriva-
tives of matrix elements atQ2 ¼ 0 using the Rome method,
which we use to determine the charge and axial radii in
addition to the magnetic and induced pseudoscalar form
factors directly at Q2 ¼ 0. In Sec. V, we describe the lattice
methodology and the ensemble of configurations that are
used. Finally, in Sec. VI, we present our numerical results
computed directly at Q2 ¼ 0 and compare them with the
traditional approach. We give our conclusions in Sec. VII.

II. DEFINITIONS OF THE FORM FACTORS

The nucleon matrix elements can be parametrized in
terms of nucleon form factors as

hp⃗0; λ0jOq;μ
X jp⃗; λi ¼ ūðp⃗0; λ0ÞF q;μ

X ðp⃗; p⃗0Þuðp⃗; λÞ; ð1Þ

where p⃗, p⃗0 are the initial and final nucleon momenta, λ, λ0
label the different polarization states, and u is the nucleon
spinor. We are defining the form factors using a current of
flavor q in a proton and jp⃗; λi is a proton state. Oq;μ

X refers
to either the vector (X ¼ V) or the axial (X ¼ A) current.

For the case of the vector current, Oq;μ
V ¼ q̄γμq,

F q;μ
V ðp⃗; p⃗0Þ can be written in terms of the Dirac and

Pauli form factors, Fq
1ðQ2Þ and Fq

2ðQ2Þ, in Minkowski
space as

F q;μ
V ðp⃗; p⃗0Þ ¼ γμFq

1ðQ2Þ þ iσμνðp0 − pÞν
2m

Fq
2ðQ2Þ; ð2Þ

where m is the nucleon mass and Q2 ¼ −ðp0 − pÞ2 ≥ 0 is
the momentum transfer. These form factors can also be
expressed in terms of the nucleon electric GEðQ2Þ and
magnetic GMðQ2Þ Sachs form factors via

GEðQ2Þ ¼ F1ðQ2Þ − Q2

4m2
F2ðQ2Þ; ð3Þ

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: ð4Þ

The charge and magnetic radii, r2E;M, and the magnetic
moment, μ, are defined from the behavior of GE;MðQ2Þ
near Q2 ¼ 0:

Gq
EðQ2Þ ¼ 1 −

1

6
ðr2EÞqQ2 þOðQ4Þ; ð5Þ

Gq
MðQ2Þ ¼ μqð1 − 1

6
ðr2MÞqQ2 þOðQ4ÞÞ: ð6Þ

For the axial vector current, Oq;μ
A ¼ q̄γμγ5q, F

q;μ
A ðp⃗; p⃗0Þ

can be expressed in terms of the axial and induced
pseudoscalar form factors, Gq

AðQ2Þ and Gq
PðQ2Þ, as

F q;μ
A ðp⃗; p⃗0Þ ¼ γμγ5G

q
AðQ2Þ þ γ5

ðp0 − pÞμ
2m

Gq
PðQ2Þ: ð7Þ

The axial form factor admits the following expansion for
small momentum transfer

Gq
AðQ2Þ ¼ gqA

�
1 −

1

6
ðr2AÞqQ2 þOðQ4Þ

�
; ð8Þ

where gqA is the axial-vector coupling constant and rqA is the
axial radius.
In this work, we are considering the isovector electro-

magnetic Sachs form factors which parametrize the matrix
elements of the u − d flavor combination between proton
states and, neglecting the isospin breaking effects, are
equivalent to the difference between the form factors of
the electromagnetic current Vμ

em ¼ 2
3
ūγμu − 1

3
d̄γμd in a

proton and in a neutron, Gp;n
E;MðQ2Þ,

Gv
E;MðQ2Þ ¼ Gp

E;MðQ2Þ −Gn
E;MðQ2Þ

¼ Gu
E;MðQ2Þ −Gd

E;MðQ2Þ≡ Gu−d
E;MðQ2Þ: ð9Þ

NESREEN HASAN et al. PHYS. REV. D 97, 034504 (2018)

034504-2



The isovector axial form factors Gv
A;PðQ2Þ are defined in a

similar way.

III. COMPUTATION OF MATRIX ELEMENTS
USING THE TRADITIONAL METHOD

For determining the nucleon matrix elements in lattice
QCD, we compute the nucleon two-point and three-point
functions,

C2ðp⃗; tÞ ¼
X
x⃗

e−ip⃗ x⃗
X
αβ

½ðΓpolÞαβhχβðx⃗; tÞχ̄αð0Þi�; ð10Þ

C
Oq;μ

X
3 ðp⃗; p⃗0; τ; TÞ
¼

X
x⃗;y⃗

e−ip⃗
0x⃗eiðp⃗0−p⃗Þy⃗X

αβ

½ðΓpolÞαβhχβðx⃗; TÞ

×Oq;μ
X ðy⃗; τÞχ̄αð0Þi�: ð11Þ

In this section, we use Minkowski-space gamma matrices.
Above, χ ¼ ϵabcð ~uTaCγ5 1þγ0

2
~dbÞ ~uc is a proton interpolating

operator constructed using smeared quark fields ~q and
Γpol ¼ 1

2
ð1þ γ0Þð1þ γ3γ5Þ is a spin and parity projection

matrix. The three-point correlators have contributions from
both connected and disconnected quark contractions,
but we compute only the connected part since, for the
isovector flavor combination, the disconnected contribu-
tions cancel out.
We will be tracing the correlators with Γpol which

contains the projector ð1þ γ0Þ=2 so that we can effectively
write the overlap of the interpolating operator with the
ground-state proton as hΩjχαð0Þjp⃗; λi ¼ Zðp⃗Þuðp⃗; λÞα
[13,14]. At large time separations, we obtain

C2ðp⃗; tÞ ¼
Zðp⃗Þ2e−Eðp⃗Þt

2Eðp⃗Þ Tr½Γpolðmþ pÞ�

× ð1þOðe−ΔE10ðp⃗ÞtÞÞ; ð12Þ

C
Oq;μ

X
3 ðp⃗; p⃗0; τ; TÞ

¼ Zðp⃗ÞZðp⃗0Þe−Eðp⃗Þτ−Eðp⃗0ÞðT−τÞ

4Eðp⃗0ÞEðp⃗Þ
×
X
λ;λ0

ūðp⃗; λÞΓpoluðp⃗0; λ0Þhp0; λ0jOq;μ
X jp; λi

× ð1þOðe−ΔE10ðp⃗ÞτÞ þOðe−ΔE10ðp⃗0ÞðT−τÞÞÞ; ð13Þ

where ΔE10ðp⃗Þ is the energy gap between the ground and
the lowest excited state with momentum p⃗. By taking τ and
T − τ to be large, unwanted contributions from excited
states can be eliminated. In order to compute C3, we use
sequential propagators through the sink [15]. This has
the advantage of allowing for any operator to be inserted

at any time using a fixed set of quark propagators, but new
backward propagators must be computed for each source-
sink separation T. Increasing T suppresses excited-state
contamination, but it also increases the noise; the signal-
to-noise ratio is expected to decay asymptotically as
e−ðE−3

2
mπÞT [16].

In order to cancel the overlap factors and the dependence
on Euclidean time, we define the normalization ratio, RX

N ,
and the asymmetry ratio, RS, as

RX
N ¼ C

Oq;μ
X

3 ðp⃗; p⃗0; τ; TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ðp⃗; TÞC2ðp⃗0; TÞp ; ð14Þ

RS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ðp⃗; T − τÞC2ðp⃗0; τÞ
C2ðp⃗0; T − τÞC2ðp⃗; τÞ

s
; ð15Þ

and compute their product

Rq;μ
X ðp⃗; p⃗0; τ; TÞ ¼ RX

NRS

¼ Mq;μ
X ðp⃗; p⃗0Þ þOðe−ΔE10ðp⃗ÞτÞ

þOðe−ΔE10ðp⃗0ÞðT−τÞÞ þOðe−ΔEminTÞ;
ð16Þ

as a function of τ ∈ ½0; T� with fixed T. Above,

Mq;μ
X ðp⃗; p⃗0Þ ¼

P
λ;λ0 ūðp⃗; λÞΓpoluðp⃗0; λ0Þhp0; λ0jOq;μ

X jp; λi
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðp⃗ÞEðp⃗0ÞðEðp⃗Þ þmÞðEðp⃗0Þ þmÞp ;

ð17Þ

and ΔEmin ¼ minfΔE10ðp⃗Þ;ΔE10ðp⃗0Þg.
The ratio in Eq. (16) gives an estimate of the nucleon

matrix element hp0; λ0jOq;μ
X jp; λi and produces at large T a

plateau with “tails” at both ends caused by excited states. In
practice, for each fixed T, we average over the central two
or three points near τ ¼ T=2, which allows for matrix
elements to be computed with errors that decay asymp-
totically as e−ΔEminT=2.
Improved asymptotic behavior of excited-state contri-

butions can be achieved by using the summation method
[17,18] which requires performing the calculations with
multiple source-sink separations. Taking the sums of ratios
for each T yields

Sq;μX ðp⃗; p⃗0; TÞ≡ XT−τ0
τ¼τ0

Rq;μ
X ðp⃗; p⃗0; τ; TÞ

¼ cþ TMq;μ
X ðp⃗; p⃗0Þ þOðTe−ΔEminTÞ; ð18Þ

where we choose τ0 ¼ 1 and c is an unknown constant. The
matrix element can then be extracted from the slope of a
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linear fit to Sq;μX ðp⃗; p⃗0; TÞ at several values of T. The leading
excited-state contaminations decay now as Te−ΔEminT .
For calculating the form factors—GEðQ2Þ, GMðQ2Þ for

the case of the vector current and GAðQ2Þ, GPðQ2Þ for the
case of the axial current—we construct a system of
equations parameterizing the corresponding set of matrix
elements at each fixed value of Q2 [19]. We combine
equivalent matrix elements to improve the condition
number [20]. We find the solution of the resulting over-
determined system of equations by performing a linear fit.
This approach makes use of all available matrix elements in
order to minimize the statistical uncertainty in the resulting
form factors.
The charge and axial radii can be extracted from the

slopes of the electric and axial form factors at Q2 ¼ 0,
respectively. For that we need to fit the Q2 dependence of
each form factor. In order to avoid the model dependence
included in the commonly used fit Ansätze, such as a
dipole, we use the model-independent z expansion [21–24],
where each form factor can be described by a convergent
Taylor series in z,

GðQ2Þ ¼
Xkmax

k¼0

akzk; z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffi
tcut

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffi

tcut
p ; ð19Þ

which conformally maps the complex domain of analyticity
in Q2 to jzj < 1. We fix a0 ¼ 1 for fitting GEðQ2Þ since
GEð0Þ ¼ 1. We use the particle production threshold
tcut ¼ ð2mπÞ2 for the vector case and tcut ¼ ð3mπÞ2 for
the axial case. We apply z-expansion fits following the
approach of Ref. [25]. The intercept and slope of the form
factor at Q2 ¼ 0 can be obtained from the first two
coefficients, a0 and a1. We impose Gaussian priors on
the remaining coefficients centered at zero with width equal
to 5maxfja0j; ja1jg. We truncate the series with kmax ¼ 5
after verifying that using a larger kmax produces identical fit
results in our probed range of Q2.
Furthermore, the isovector GP form factor has an

isolated pole at the pion mass below the particle production
threshold. We thus remove this pole before fitting and
perform the z-expansion fit to ðQ2 þm2

πÞGPðQ2Þ.
We perform correlated fits by minimizing

χ2aug ¼
X
i;j

�
GðQ2

i Þ −
X
k

akzðQ2
i Þk

�
S−1ij

×

�
GðQ2

jÞ −
X
k0
ak0zðQ2

jÞk0
�
þ
X
k>1

a2k
w2

; ð20Þ

with respect to fakg, where S is an estimator of
the covariance matrix and the last term augments the
chi-squared with the Gaussian priors. For choosing the
estimator of the covariance matrix, we use S ¼
ð1 − λÞCþ λCdiag, where λ ¼ 0.1, C is the bootstrap

estimate of the covariance matrix and Cdiag is the diagonal
part of C.

IV. DERIVATIVE METHOD

In this section, we explain the details of our approach
for extracting the nucleon charge radius directly at Q2 ¼ 0.
We begin with reviewing the Rome method for computing
the momentum derivatives of quark propagators in
subsection IVA. The flavor structure of the correlators
constructed from the momentum derivatives of the quark
propagators is investigated in IV B. In subsection IV C, we
show how to use the momentum derivatives of the quark
propagator in order to obtain the first- and second-order
derivatives of the nucleon two- and three-point functions
with respect to the initial-state momentum p⃗, and then
obtain momentum derivatives of matrix elements in
subsection IV D. From the latter one can then extract the
charge radius r2E, the magnetic moment μ ¼ GMð0Þ, for the
case of the electromagnetic vector current, and the axial
radius, r2A, and the induced pseudoscalar form factor at zero
momentum, GPð0Þ, for the case of the axial current.

A. Momentum derivatives of quark propagator

On a lattice with finite size and quark fields satisfying
periodic boundary conditions, consider a generic correla-
tion function Cðp⃗; tÞ depending on the three-momentum p⃗
and Euclidean time t, which after fermionic integration
and Wick contractions can be written in terms of quark
propagators and operator insertions as

Cðp⃗;tÞ¼
Z

dUP½U�
X
x⃗;…

e−ip⃗ðx⃗−y⃗ÞTrfG½x;y;U�Γ…g; ð21Þ

where U are gauge links and P½U� is the corresponding
probabilistic weight in the functional integral. The plane-
wave phase factor e−ip⃗ðx⃗−y⃗Þ can then be absorbed into one
of the quark propagators, which results in a momentum
dependent quark propagator G½x; y;U; p⃗� ¼ e−ip⃗ðx⃗−y⃗Þ×
G½x; y;U�. G½x; y;U; p⃗� can be obtained by solving the
lattice Dirac equation with link variables rescaled by a
phase factor:

UkðxÞ → eipkUkðxÞ; ð22ÞX
y

D½x; y;U; p⃗�G½y; z;U; p⃗� ¼ δx;z: ð23Þ

Carrying momentum in a propagator with a uniform Uð1Þ
background field is the same approach as used in a standard
transformation of twisted boundary conditions [26,27].
With p⃗ restricted to be a Fourier momentum in the finite
volume, the above redefinition is exact. However, to obtain
a momentum derivative, we must implicitly make use of
twisted boundary conditions and allow p⃗ to be continuous.
We use the expansion of the lattice Dirac operator,
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D½U; p⃗� ¼ D½U� þ pk
∂D
∂pk

����
p⃗¼0⃗

þ p2
k

2

∂2D
∂p2

k

����
p⃗¼0⃗

þ � � � ; ð24Þ

and D½U; p⃗�G½U; p⃗� ¼ 1 to compute the first-order
momentum derivative of the propagator as

∂D
∂pk

GþD
∂G
∂pk

¼ 0; ð25Þ

where we use the compact notation

∂D
∂pk

≡ ∂D½…;U; p⃗�
∂pk

����
p⃗¼0

; ð26Þ

and similar notation for Gð…;U; p⃗Þ. Multiplying Eq. (25)
from the left by G≡D−1 leads to

∂G
∂pk

¼ −G
∂D
∂pk

G: ð27Þ

Similarly, we can derive the second-order momentum
derivative of the propagator:

1

2

∂2G
∂p2

k

¼ þG
∂D
∂pk

G
∂D
∂pk

G −G
1

2

∂2D
∂p2

k

G: ð28Þ

Using the lattice Dirac operator for the clover-improved
Wilson action, the momentum derivatives of the propa-
gators at a fixed gauge background become [11]

∂
∂pk

Gðx; y; p⃗Þjp⃗¼0⃗
¼ −i

X
z

Gðx; yÞΓk
VGðx; yÞ; ð29Þ

∂2

∂p2
k

Gðx; y; p⃗Þjp⃗¼0⃗
¼ −2

X
z;z0

Gðx; zÞΓk
VGðz; z0ÞΓk

VGðz0; yÞ

−
X
z

Gðx; yÞΓk
TGðx; yÞ: ð30Þ

We drop U from the propagators for brevity. Γk
V and Γk

T are
the point split vector and tadpole currents, respectively.
Those are defined using Euclidean gamma matrices, γkE, as

Γk
VGðz; y;UÞ≡U†

jðz − k̂Þ 1þ γkE
2

Gðz − k̂; yÞ

− UkðzÞ
1 − γkE

2
Gðzþ k̂; yÞ; ð31Þ

Γk
TGðz; y;UÞ≡U†

jðz − k̂Þ 1þ γkE
2

Gðz − k̂; yÞ

þ UkðzÞ
1 − γkE

2
Gðzþ k̂; yÞ: ð32Þ

In the case of a smeared-source smeared-sink propagator
(needed in the two-point function), the phase factor can be
absorbed into the propagator in the following way,

~~Gðx; y; p⃗Þ ¼ e−ip⃗ðx⃗−y⃗Þ
X
x0;y0

Kðx; x0ÞGðx0; y0ÞKðy0; yÞ

¼
X
x0;y0

e−ip⃗ðx⃗−x⃗0ÞKðx; x0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Kðx;x0;p⃗Þ

e−ip⃗ðx⃗0−y⃗0ÞGðx0; y0Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gðx0;y0;p⃗Þ

× e−ip⃗ðy⃗0−y⃗ÞKðy0; yÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Kðy0;y;p⃗Þ

; ð33Þ

whereK is the smearing kernel. The momentum derivatives
can then be calculated using the product rule along with
Eq. (29) and Eq. (30). Denoting the momentum derivative
with 0 for shorter notation, we obtain

ðKGKÞ0 ¼ K0GK þ KðGKÞ0; ð34Þ

ðKGKÞ00 ¼ K00GK þ 2K0ðGKÞ0 þ KðGKÞ00: ð35Þ

For the smeared-source point-sink propagator, which is
needed for the three-point function and for evaluating
Eq. (34) and Eq. (35), we obtain

ðGKÞ0 ¼ G½−iΓVGK þ K0�; ð36Þ
ðGKÞ00 ¼ G½−2iΓVðGKÞ0 − ΓTGK þ K00�: ð37Þ

Organized in this way, we require one additional
propagator solve per derivative. Gaussian Wuppertal
smearing [28] is given by Kðx; y; p⃗Þ ¼P

x0;x00;… K0ðx; x0; p⃗ÞK0ðx0; x00; p⃗Þ…K0ðx0…0; y; p⃗Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NW

, with

K0ðx; y; p⃗Þ ¼ e−ip⃗ðx⃗−y⃗Þ
1

1þ 6α

�
δx;y þ α

X3
j¼1

½ ~UjðxÞδxþ|̂;y

þ ~U†
jðx − |̂Þδx−|̂;y�

�

¼ 1

1þ 6α

�
δx;y þ α

X3
j¼1

½eipj ~UjðxÞδxþ|̂;y

þ e−ip
j ~U†

jðx − |̂Þδx−|̂;y�
�
: ð38Þ

These gauge links ~U can be, for example, APE smeared
[29], and need not match those in the action. The mth
derivative of K0 at zero momentum is equal to

KðmÞ
0 ðx;yÞ≡

� ∂
∂pj

�
m
K0ðx;y;p⃗Þjp⃗¼0

¼ α

1þ6α
½im ~UjðxÞδxþ|̂;yþð−iÞm ~U†

jðx− |̂Þδx−|̂;y�:
ð39Þ

Thus, the first- and second-order momentum derivatives of
smearing with NW iterations, K ¼ KNW

0 , can be computed

COMPUTING THE NUCLEON CHARGE AND AXIAL RADII … PHYS. REV. D 97, 034504 (2018)

034504-5



iteratively using ðKN
0 Þ0 ¼ K0

0K
N−1
0 þ K0ðKN−1

0 Þ0 and
ðKN

0 Þ00 ¼ K00
0K

N−1
0 þ 2K0

0ðKN−1
0 Þ0 þ K0ðKN−1

0 Þ00.

B. Flavor structure of correlators constructed
from propagator derivatives

In cases where derivatives of nucleon two-point func-
tions need to be evaluated, there is an ambiguity in applying
the above procedure: there are three quark propagators, and
the momentum could be absorbed into any of them. To
resolve this issue, we make explicit use of twisted boundary
conditions, with the understanding that before computing
any correlation functions we will take the derivative with
respect to the twist angle, at vanishing twist angle.
We introduce a third light quark, r, with the same mass as

u and d but with twisted boundary conditions, and a
corresponding ghost quark that cancels its fermion deter-
minant. The three light quarks fu; d; rg contain an approxi-
mate SU(3) flavor symmetry that becomes exact when the
twist angle is zero, or in the infinite-volume limit. Under
this symmetry group there is a baryon octet that contains
the ordinary (untwisted) nucleons, as well as states with one
or two r quarks. We are interested in the states with one r
quark, and we find that there are two kinds: an isospin
singlet and a triplet, the Λr and Σr, respectively. This was
previously discussed in Ref. [30].
For the states with quark content udr, we use interpolat-

ing operators,

χΣr
¼ 1ffiffiffi

2
p ð½rud� þ ½rdu�Þ;

χΛr
¼ 1ffiffiffi

6
p ð2½udr� − ½rud� − ½dru�Þ; ð40Þ

where ½pqr�≡ ϵabcð ~pT
aCγ5

1þγ0
2

~qbÞ~rc. When contracted

with the projector 1þγ0
2
, the flavor-singlet operator,

1=
ffiffiffi
3

p ð½udr� þ ½rud� þ ½dru�Þ, vanishes and theΛr operator

can be simplified to χΛr
¼

ffiffi
3
2

q
½udr�. We consider three-

point functions for the transition from a state with one r
quark to an ordinary nucleon:

CX→N
3 ðp⃗; p⃗0; τ; TÞ
¼

X
x⃗;y⃗

e−ip⃗
0ðx⃗−y⃗ÞTr½Γpolhχðx⃗; TÞOðy⃗; τÞχ̄Xð0Þi�; ð41Þ

where O ¼ ūΓr is a quark bilinear and X is Σr or Λr. The
initial momentum p⃗ is implied in the initial state due to the
twisted boundary conditions for the r quark. The ground-
state contribution is proportional to the matrix element
hNðp⃗0ÞjOjXðp⃗Þi for which we will evaluate ∂

∂p⃗ at
p⃗0 ¼ p⃗ ¼ 0. In practice, we simply use our already coded
expressions for the connected diagrams in the nucleon
three-point functions Cq

3 with Oq ¼ q̄Γq, q ∈ fu; dg, and

replace the propagator connecting the nucleon source
and Oq with a first- or second-derivative propagator. By
comparing the contractions, we find the relations

CΣr→N
3 ¼ 1ffiffiffi

2
p Cd

3;

CΛr→N
3 ¼ 1ffiffiffi

6
p ð2Cu

3 − Cd
3Þ; ð42Þ

where the r propagator is substituted into the evaluation
of the right-hand-side expressions as described above. A
similar consideration was made in Ref. [30]; these relations
could also be derived from SU(3) symmetry.
When forming ratios, we must use the appropriate two-

point functions: taking Eq. (16) with the three-point
function CX→N

3 , all nucleon two-point functions that take
the initial-state momentum p⃗ must be replaced by the two-
point function for state X. Once we have formed the ratios
for the X → N matrix elements, we can invert the relations
in Eq. (42) to obtain the nucleon matrix elements of Ou
and Od.

C. Momentum derivatives of the two-point
and three-point functions

Let us consider the two-point function of the isospin

singlet operator, χΛr
¼

ffiffi
3
2

q
½udr�. This can be written in

terms of smeared-source smeared-sink quark propagators,
~~G, as

CΛr
2 ðp⃗; tÞ ¼ 3

2

X
x⃗

e−ip⃗ x⃗ϵabcϵdef
X
αβ

ðΓpolÞαβfβγδϵf̄αζηθ

× h ~~Gaf
γθ ðx; 0Þ ~~G

be
δη ðx; 0Þ ~~G

cd
ϵζ ðx; 0Þi

¼ 3

2

X
x⃗

ϵabcϵdef
X
αβ

ðΓpolÞαβfβγδϵf̄αζηθ

× h ~~Gaf
γθ ðx; 0Þ ~~G

be
δη ðx; 0Þ ~~G

cd
ϵζ ðx; 0; p⃗Þi; ð43Þ

where fαβγδ is the spin tensor determining the quantum

numbers of theΛr and
~~Gðx; 0; p⃗Þ ¼ e−ip⃗ x⃗ ~~Gðx; 0Þ. By using

the first- and second-order momentum derivatives of a
quark propagator at zero momentum given in Eq. (29) and
Eq. (30), one can straightforwardly calculate the momen-
tum derivatives of the two-point correlators.
For connected diagrams, the three-point function with

current OΓ ¼ q̄Γq and zero sink momentum p⃗0 ¼ 0 can be
written as

C3ðp⃗; τ; TÞ ¼
X
x⃗;y⃗

e−ip⃗ y⃗
X
αβ

ðΓpolÞαβhχβðx⃗; TÞOΓðy⃗; τÞχ̄αð0Þi

∼
X
y⃗

hGSðyÞΓ ~Gðy; 0; p⃗Þi; ð44Þ
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where ~G refers to a propagator with smeared source and
point sink and GSðyÞ is the sequential backward propaga-
tor, which is independent of p⃗. Only the forward propagator
~Gðy; 0; p⃗Þ needs to be expanded using Eq. (29) and
Eq. (30). Hence, no additional backward propagators are
needed. Figure 1 shows graphically the way we compute
the momentum derivatives of the correlation functions on
the quark level. The derivative method cannot be applied to
disconnected diagrams because those involve a quark
propagating from a point to the same point and therefore
the momentum transfer can not be absorbed into the
propagator.

D. Momentum derivatives of the ratio

Because we do not know how Zðp⃗Þ depends on the
momentum, we need to compute the momentum derivatives
of the ratio of three-point and two-point functions given in
Eq. (16). Here and in the following, we use Minkowski-
space gamma matrices. We set p⃗0 ¼ 0 and p⃗ ¼ ke⃗j, where
e⃗j is the unit vector in j-direction. For computing the first-
and second-order momentum derivatives of the ratio in
Eq. (16), we start by computing the momentum derivatives
of the normalization ratio part, RX

N , defined in Eq. (14):

ðRX
NðkÞÞ0 ¼

−C0
2ðkÞC3ðkÞ þ 2C2ðkÞC0

3ðkÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ð0ÞC2ðkÞ3

p ; ð45Þ

ðRX
NðkÞÞ00 ¼

ð3½C0
2ðkÞ�2 − 2C2ðkÞC00

2ðkÞÞC3ðkÞ þ 4C2ðkÞð−C0
2ðkÞC0

3ðkÞ þ C2ðkÞC00
3ðkÞÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ð0ÞC2ðkÞ5

p ; ð46Þ

where, for more readability, we suppress the τ, T parameters as well as Oμ
X from the correlation functions and the ratio. We

denote the derivatives with a prime, e.g. C0
2ðkÞ≡ dC2ðkÞ

dk . We know that C0
2ð0Þ ¼ 0 in the infinite-statistics limit because of

parity symmetry. Hence, we can eliminate this from the ratios. Similarly, we can calculate R0
SðkÞ and R00

SðkÞ which can be
used together with Eq. (45) and Eq. (46) to calculate the first- and second-order derivatives of the ratio RX. These derivatives
are computed on the lattice directly at k ¼ 0 as discussed earlier in the previous section.
From the ground-state contributions to the correlation functions given in Eq. (12) and Eq. (13), we find the following

ground-state contribution to their ratio:

RXðkÞ ¼
Tr½ΓpolFXðkÞðmþ Eγ0 − kγjÞ�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðEþmÞp : ð47Þ

We take the derivative with respect to k and obtain

ðRXÞ0ðkÞ ¼
Tr½ΓpolðF 0

XðkÞðmþ Eγ0 − kγjÞ þ FXðkÞðE0γ0 − γjÞÞ�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðEþmÞp −

Tr½ΓpolFXðkÞðmþ Eγ0 − kγjÞ�ð2EþmÞE0

4
ffiffiffi
2

p ½EðEþmÞ�3=2 : ð48Þ

FIG. 1. Left: Nucleon two-point (top) and three-point (bottom) functions. The solid black circles represent the nucleon source and
sink, the black square in the three-point function represents the current insertion. The red line refers to the propagator which we use for
computing the momentum derivatives of the correlators which carry therefore the derivative vertex (solid red circle). The right panel
shows the representation of the derivative vertex for the simplified case of unsmeared propagators.

COMPUTING THE NUCLEON CHARGE AND AXIAL RADII … PHYS. REV. D 97, 034504 (2018)

034504-7



ðRXÞ00ðkÞ can be calculated in a similar way. We use the
continuum dispersion relation EðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
, which

implies Q2 ¼ 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
− 2m2, and find that at k ¼ 0,

the second derivative is needed to obtain the slope of F1:

dF1

dk

����
k¼0

¼ dQ2

dk

����
k¼0

dF1

dQ2

����
Q2¼0

¼ 0;

d2F1

dk2

����
k¼0

¼ 2
dF1

dQ2

����
Q2¼0

: ð49Þ

The same applies for F2, GA, and GP. Furthermore, we
have at k ¼ 0:

Eð0Þ ¼ m; E0ð0Þ ¼ 0; E00ð0Þ ¼ 1=m; ð50Þ

FVð0Þ ¼ F1ð0Þγμ; F 0
Vð0Þ ¼ F2ð0Þ

iσμj

2m
;

F 00
Vð0Þ ¼ 2

dF1

dQ2

����
Q2¼0

γμ − F2ð0Þ
iσμ0

2m2
; ð51Þ

FAð0Þ¼GAð0Þγμγ5; F 0
Að0Þ¼

�
− 1

2mGPð0Þγ5; μ¼ j

0; μ≠ j
;

ð52Þ

F 00
Að0Þ ¼ 2

d
dQ2

GAð0Þγμγ5 þ
�
− 1

2m2 GPð0Þγ5; μ ¼ 0

0; μ ≠ 0
:

ð53Þ

For the renormalized vector current, we use GEð0Þ ¼ 1 and
find nonzero results for the following combinations of j
and μ:

R0
V ¼ 1; ∂1R2

V ¼ −
i
2m

GMð0Þ; ð54Þ

∂2R1
V ¼ i

2m
GMð0Þ; ∂2

1;2;3R
0
V ¼ −

1

4m2
−
1

3
r2E; ð55Þ

and for the axial current,

R3
A ¼ GAð0Þ; ∂3R0

A ¼ 1

2m
GAð0Þ; ð56Þ

∂2
1;2R

3
A ¼ −

1

4m2
GAð0Þ −

1

3
GAð0Þr2A;

∂2
3R

3
A ¼ −

1

4m2
ðGAð0Þ þ 2GPð0ÞÞ −

1

3
GAð0Þr2A; ð57Þ

with ∂j ¼ ∂
∂pj and

r2E ¼ −
6

GEð0Þ
dGE

dQ2

����
Q2¼0

; ð58Þ

r2A ¼ −
6

GAð0Þ
dGA

dQ2

����
Q2¼0

: ð59Þ

From Eq. (54) and Eq. (55), we find the following relations
for the nucleon magnetic moment μ ¼ GMð0Þ and squared
charge radius r2E:

μ ¼ 2imðR2
VÞ0; ð60Þ

r2E ¼ −
3

4m2
− 3

ðR0
VÞ00
R0
V

; ð61Þ

where we average over equivalent vector components and
directions:

ðR2
VÞ0 ¼

1

2
ð∂1R2

V − ∂2R1
VÞ;

ðR0
VÞ00 ¼

1

3
ð∂2

1R
0
V þ ∂2

2R
0
V þ ∂2

3R
0
VÞ: ð62Þ

The squared axial radius r2A and GPð0Þ can be evaluated
using Eq. (56) and Eq. (57) as follows:

r2A ¼ −
3

4m2
−
3

2

∂2
1R

3
A þ ∂2

2R
3
A

R3
A

; ð63Þ

GPð0Þ ¼ m2ð∂2
1R

3
A þ ∂2

2R
3
A − 2∂2

3R
3
AÞ: ð64Þ

To estimate the excited-state effects contributing to the
momentum derivatives of the ratio, we take the momentum
derivatives of the leading contributions in Eq. (16), which
leads to

∂R
∂pi

����
p⃗¼0

∼ e−ΔE10T=2;
∂2R
∂p2

i

����
p⃗¼0

∼ Te−ΔE10T=2: ð65Þ

Likewise, the expected excited-state effects in applying the
summation method to the momentum derivatives of ratios
are given by

∂S
∂pi

����
p⃗¼0

∼ Te−ΔE10T;
∂2S
∂p2

i

����
p⃗¼0

∼ T2e−ΔE10T: ð66Þ

V. LATTICE SETUP

We perform lattice QCD calculations using a tree-level
Symanzik-improved gauge action [31,32] and 2þ 1 flavors
of tree-level improved Wilson-clover quarks, which couple
to the gauge links via two levels of HEX smearing. We
carry out the calculations at the physical pion mass
mπ ¼ 135 MeV, with lattice spacing a ¼ 0.093 fm, and
a large volume L3

s × Lt ¼ 644 satisfying mπL ¼ 4. We are
measuring the isovector combination u − d of the three-
point functions, where the disconnected contributions
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cancel out. We renormalize the axial current using ZA from
[33] and the vector current by imposing Gv

Eð0Þ ¼ 1.
Furthermore, we use three source-sink separations T=a ∈
f10; 13; 16g ranging from 0.9 fm to ∼1.5 fm, and we are
using the summation method for removing contributions
from excited states. We apply our analysis on 442 gauge
configurations, using all-mode-averaging [34,35] with 64
sources with approximate propagators and one source for
bias correction per gauge configuration. For each source
position, we place nucleon sinks in both the forward and
backward directions to double statistics and obtain a total of
56576 samples. We computed the momentum derivatives of
the correlators only in the x direction on a subset of the
gauge configurations (75 configurations) and in the x, y,
and z directions on the rest (367 configurations).

VI. RESULTS

A. Derivatives of the two-point functions

We begin by testing our method applied to the simpler
case of two-point functions. From Eq. (12), the ground-
state contribution is

C2ðp⃗; tÞ ¼
Zðp⃗Þ2ðEðp⃗Þ þmÞ

Eðp⃗Þ e−Eðp⃗Þt: ð67Þ

The momentum derivatives of C2ðp⃗; tÞ can then be evalu-
ated at p⃗ ¼ 0, and we obtain

C2ð0; tÞ ¼ 2Z2e−mt; ð68Þ
C0
2ð0; tÞ ¼ 4ZZ0e−mt; ð69Þ

C00
2ð0; tÞ ¼

1

m2
½−ð1þ 2mtÞZ2 þ 4m2ðZ0Þ2 þ 4m2ZZ00�e−mt;

ð70Þ

where Z≡ Zð0Þ. We expect C0
2ð0; tÞ to vanish due to parity

symmetry and our numerical results shown in the left part of
Fig. 2 confirm that, which allows us to set Z0ð0Þ ¼ 0 in
Eq. (70). We apply a combined 1-state fit for C2ð0; tÞ and
C00
2ð0; tÞΛ;Σ using Eq. (68) and Eq. (70) with Z, Z00 and m

being the fit parameters. The results of these fits are shown in
Fig. 2, where the slight differences between the momentum

FIG. 2. C0
2ð0; tÞ (left) and −C00

2ð0; tÞΛ;Σ=C2ð0; tÞ (right). The red and blue bands correspond to the combined fits of C00
2ð0; tÞΛ;Σ

and C2ð0; tÞ.

FIG. 3. The derived values for Zðp⃗2Þ from two-state fits of
C2ðp⃗; tÞ (black points) followed by a linear fit (grey band) for
extracting Zð0Þ and Z00ð0Þ.

TABLE I. Resulting values for Zð0Þ and Z00ð0Þ using either the
combined fit of C2ð0; tÞ and C00

2ð0; tÞΛ;Σ or the fit to Zðp⃗2Þ.
Method Zð0Þ × 107 Z00ð0Þ × 107

Fit C2ð0; tÞ and C00
2ð0; tÞΛ 1.633(14) −9.9ð1.1Þ

Fit C2ð0; tÞ and C00
2ð0; tÞΣ 1.635(15) −8.9ð1.2Þ

Fit Zðp⃗2Þ 1.521(70) −9.6ð1.8Þ

COMPUTING THE NUCLEON CHARGE AND AXIAL RADII … PHYS. REV. D 97, 034504 (2018)

034504-9



derivatives of Σr and Λr two-point functions give an
indication of the systematic errors associated with the
derivative method and motivate the approach described in
Sec. IV B for isolating Σr → N from Λr → N three point

functions when extracting the momentum derivatives of the
matrix elements.
We also try another approach for extracting Zð0Þ and

Z00ð0Þwhere we apply two-state fits to C2ðp⃗; tÞ for different

FIG. 4. Isovector magnetic moment (left) and isovector charge radius (right). For both μv and ðr2EÞv=a2, results from the ratio method
are shown using source-sink separations T=a ∈ f10; 13; 16g, as well as the summation method.

FIG. 5. Isovector electric (top row) and magnetic (bottom row) form factors using both the ratio method with T ¼ 10a (left column)
and the summation method (right column). The blue points show results from the standard method and the red bands show a z-expansion
fit to those points. The green band (top) and point (bottom) show the slope and value of the respective form factor at Q2 ¼ 0, computed
using the momentum derivative method. The black curves result from a phenomenological fit to experimental data by Kelly [36].
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discrete values of p⃗2 which allows us to extract Zðp⃗2Þ. The
extracted values for Zðp⃗2Þ are consistent with a linear
dependence on ðap⃗Þ2. By applying a linear fit to Zðp⃗2Þ
against p⃗2, Zð0Þ can be obtained from the intercept and

Z00ð0Þ from the slope as Z00ð0Þ ¼ 2
∂Zðp⃗2Þ
∂p⃗2 . This is shown

in Fig. 3.
Table I reports a comparison between the extracted

values for Zð0Þ and Z00ð0Þ using the two different
approaches and when using ½C00

2ð0; tÞ�Σ and ½C00
2ð0; tÞ�Λ in

the combined fit. All fit methods lead to consistent values
for both Zð0Þ and Z00ð0Þ.

B. Electromagnetic form factors

The “plateau plots” in Fig. 4 show the results we obtain
using the momentum derivative approach for both Gv

Mð0Þ
(left), computed using Eq. (60), and ðr2EÞv=a2 (right),
extracted from Eq. (61). In each case, we show results
from both the ratio method and the summation method.
Gv

Mð0Þ increases for increased source-sink separations,
indicating that the excited-state contributions are signifi-
cant in this case. The relative statistical uncertainty is much
larger for ðr2EÞv=a2, and therefore we are unable to resolve
any significant excited-state effects.
Figure 5 shows a comparison between our results using

the derivative method and the traditional approach for both
the isovector magnetic moment μv ¼ Gv

Mð0Þ (bottom row)

and the isovector charge radius ðr2EÞv (top row). In Fig 5, we
present the results extracted using both the ratio method
with the smallest source-sink separation T=a ¼ 10 and the
summation method. When going to the summation method,
Gv

EðQ2Þ decreases significantly whereas Gv
MðQ2Þ increases

(especially for small Q2) towards the corresponding phe-
nomenological curve from Kelly [36]. This shows the
nontrivial contribution from excited states associated with
the ratio method using T=a ¼ 10. The summation points
for Gv

EðQ2Þ lie slightly above the corresponding Kelly
curve while those for Gv

MðQ2Þ show a good agreement with
the Kelly curve. The derivative method’s results for both
Gv

Mð0Þ and ðr2EÞv using the summation method are con-
sistent with both the traditional method’s results and the
experiment but with statistical errors roughly twice as large
as the traditional approach for the isovector magnetic
moment and three times as large for the isovector charge
radius, as reported in Table II.

C. Axial form factors

The left-hand side of Fig. 6 shows the isovector induced
pseudoscalar form factor Gv

Pð0Þ extracted using the deriva-
tive method, Eq. (64). The right-hand side of the same
figure shows the extracted ðr2AÞv using Eq. (63). Figure 6
shows the plateau plots for both quantities corresponding
to the three available source-sink separations in addition to

TABLE II. Numerical results for the four different nucleon observables at Q2 ¼ 0, computed with the traditional method (via z
expansion fit to the form factor shape) and with the derivative method.

μv ðr2EÞv ½fm�2 Gv
Pð0Þ ðr2AÞv ½fm�2

T=a ¼ 10 Summation T=a ¼ 10 Summation T=a ¼ 10 Summation T=a ¼ 10 Summation

Traditional method 3.899(38) 4.75(15) 0.608(15) 0.787(87) 75(1) 137(7) 0.249(12) 0.295(68)
Derivative method 3.898(54) 4.46(33) 0.603(29) 0.753(273) 69(1) 137(15) 0.288(61) −0.120ð492Þ

FIG. 6. The induced pseudoscalar form factor at Q2 ¼ 0 (left) and nucleon axial radius (right). For both Gv
Pð0Þ and ðr2AÞv=a2, results

from ratio method are shown using source-sink separations T=a ∈ f10; 13; 16g, as well as the summation method.
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the summation points. For Gv
Pð0Þ, we see a large increase

with the source-sink separation, indicating substantial
excited-state effects, and that leads us to conclude that
the summation point may not be free from excited-state
effects. For ðr2AÞv, the statistical errors are too large to detect
any excited-state effects.
A comparison between our results using the derivative

method and the traditional method for both ðr2AÞv and
Gv

Pð0Þ is shown in Fig. 7, top and bottom row, respectively.
Shown are results from both the ratio method with
T=a ¼ 10 and the summation method. Both Gv

AðQ2Þ and
Gv

PðQ2Þ increase when going to the summation method
indicating the significant excited-state contributions for the
ratio method with T=a ¼ 10. The extracted value for the
axial radius using the derivative method has a much larger
statistical error compared to its value from the traditional
approach. For Gv

P in Fig. 7, before fitting we remove the
pion pole that is present in the form factor, and then restore
it in the final fit curve as was discussed in Sec. III. At
T=a ¼ 10, there is a significant disagreement between
Gv

Pð0Þ from the traditional and the derivative approaches
which is likely due to excited-state effects. The value for
Gv

Pð0Þ using the summation method and the derivative

approach seems to be in good agreement with its value from
the traditional approach despite the large extrapolation
caused by the inclusion of the pion pole in the fit.
However, Gv

Pð0Þ obtained from the derivative method
has statistical uncertainties roughly twice as large as the
traditional approach. Our results for the axial form factors
are reported in Table II.

VII. SUMMARY AND OUTLOOK

In this paper, we presented a derivative method for com-
puting nucleon observables at zero momentum transfer. This
method avoids the large extrapolationneeded in the traditional
approach for computing such quantities. We applied the
derivative method to the nucleon isovector magnetic moment
and electric charge radius as well as the isovector induced
pseudoscalar form factor at Q2 ¼ 0 and the axial radius.
We confirm that our approach produces results consistent

with those obtained using z-expansion extrapolations. At
the source-sink separations we have considered, both
methods appear to be affected by nearly the same amount
of excited-state contamination. Both the z expansion and
the derivative method avoid the model dependence

FIG. 7. Nucleon axial (top row) and induced pseudoscalar (bottom row) form factors using both the ratio method for T ¼ 10a (left
column) and the summation method (right column). The blue points show results from the standard method and the red bands show a z-
expansion fit to those points. The green band (top) and point (bottom) show the slope and value of the respective form factor at Q2 ¼ 0,
computed using the momentum derivative method.
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associated with extrapolations that assume a specific form
of the Q2-dependence, such as a dipole function. In
practice, the z expansion still requires several choices in
the data analysis, such as the prior widths for the expansion
coefficients and the fit range. The derivative method
eliminates these choices, and provides a valuable cross-
check on the z expansion. The excellent agreement between
the two methods is particularly remarkable in the case of
Gv

Pð0Þ, since the pion pole produces a very large effect in
the extrapolation of Gv

PðQ2Þ to Q2 ¼ 0.
Compared to the z expansion, the derivative method

suffers from larger statistical uncertainties, especially for
the isovector charge and axial radii. This may be connected
with the fact that these quantities require a second
momentum derivative. However, Gv

Pð0Þ also requires two
derivatives and is not as noisy. Our quoted errors are
statistical; we still need to estimate and improve control
over systematic uncertainties in order to have a reliable
calculation. The difference between the CODATA value of
ðr2EÞv and its muonic hydrogen measurement is ∼0.06 fm2,
so it will be a challenge to calculate the charge radius with a
total uncertainty significantly less than that.
Due to the larger statistical uncertainties of the deriva-

tive method, our current recommendation is to use z-
expansion fits as the primary approach for determining
observables at zero momentum transfer, and to also
perform calculations using the derivative method as an
independent cross-check. Our present setup of the deriva-
tive method includes computing the momentum deriva-
tives of the nucleon correlators with respect to only the

initial nucleon momentum. As suggested originally for
the pion charge radius in Ref. [12], one can alternatively
obtain the radius by computing the mixed-momentum
derivatives of three-point functions i.e., first-order momen-
tum derivatives with respect to both initial- and final-state
momenta. A calculation including this alternative
approach is currently underway; preliminary results sug-
gest that the statistical uncertainty for the radii is signifi-
cantly reduced [37].

ACKNOWLEDGMENTS

We thank the Budapest-Marseille-Wuppertal Collab-
oration for making their configurations available to us.
This research used resources at Forschungszentrum Jülich
and on CRAY XC40 (Hazel Hen) at HLRS. J. G. was
supported in part by the PRISMA Cluster of Excellence at
the University of Mainz, and S. M. is supported in part by
National Science Foundation Grant No. PHY-1520996.
S. M. and S. S. are supported by the RIKEN BNL Research
Center under its joint tenure track fellowships with the
University of Arizona and Stony Brook University, respec-
tively. M. E., J. N., and A. P. are supported in part by the
Office of Nuclear Physics of the U.S. Department of
Energy (DOE) under Grants No. DE-FG02-96ER40965,
No. DE-SC-0011090, and No. DE-FC02-06ER41444,
respectively. S. K. and N. H. received support from
Deutsche Forschungsgemeinschaft Grant No. SFB-TRR
55. Calculations for this project were done using the QLUA

software suite.

[1] R. Pohl et al., The size of the proton, Nature (London) 466,
213 (2010).

[2] A. Antognini et al., Proton structure from the measurement
of 2S-2P transition frequencies of muonic hydrogen,
Science 339, 417 (2013).

[3] P. J. Mohr, D. B. Newell, and B. N. Taylor, CODATA
Recommended Values of the Fundamental Physical Con-
stants: 2014, Rev. Mod. Phys. 88, 035009 (2016).

[4] A. Beyer, L. Maisenbacher, A. Matveev, R. Pohl, K.
Khabarova, A. Grinin, T. Lamour, D. C. Yost, T. W. Hänsch,
N. Kolachevsky, and T. Udem, The Rydberg constant
and proton size from atomic hydrogen, Science 358, 79
(2017).

[5] R. Pohl et al., Laser spectroscopy of muonic deuterium,
Science 353, 669 (2016).

[6] R. Pohl et al., Deuteron charge radius and Rydberg constant
from spectroscopy data in atomic deuterium, Metrologia 54,
L1 (2017).

[7] I. T. Lorenz and U.-G. Meißner, Reduction of the proton
radius discrepancy by 3σ, Phys. Lett. B 737, 57 (2014).

[8] K. Griffioen, C. Carlson, and S. Maddox, Consistency of
electron scattering data with a small proton radius, Phys.
Rev. C 93, 065207 (2016).

[9] D.W. Higinbotham, A. A. Kabir, V. Lin, D. Meekins, B.
Norum, and B. Sawatzky, Proton radius from electron
scattering data, Phys. Rev. C 93, 055207 (2016).

[10] J. C. Bernauer et al. (A1 Collaboration), High-Precision
Determination of the Electric and Magnetic Form Factors of
the Proton, Phys. Rev. Lett. 105, 242001 (2010).

[11] G. M. de Divitiis, R. Petronzio, and N. Tantalo, On the
extraction of zero momentum form factors on the lattice,
Phys. Lett. B 718, 589 (2012).

[12] B. C. Tiburzi, Finite volume effects on the extraction of
form factors at zero momentum, Phys. Rev. D 90, 054508
(2014).

[13] K. C. Bowler, R. D. Kenway, L. Lellouch, J. Nieves,
O. Oliveira, D. G. Richards, C. T. Sachrajda, N. Stella,
and P. Ueberholz (UKQCD Collaboration), First lattice
study of semileptonic decays of Λb and Ξb baryons, Phys.
Rev. D 57, 6948 (1998).

COMPUTING THE NUCLEON CHARGE AND AXIAL RADII … PHYS. REV. D 97, 034504 (2018)

034504-13

https://doi.org/10.1038/nature09250
https://doi.org/10.1038/nature09250
https://doi.org/10.1126/science.1230016
https://doi.org/10.1103/RevModPhys.88.035009
https://doi.org/10.1126/science.aah6677
https://doi.org/10.1126/science.aah6677
https://doi.org/10.1126/science.aaf2468
https://doi.org/10.1088/1681-7575/aa4e59
https://doi.org/10.1088/1681-7575/aa4e59
https://doi.org/10.1016/j.physletb.2014.08.010
https://doi.org/10.1103/PhysRevC.93.065207
https://doi.org/10.1103/PhysRevC.93.065207
https://doi.org/10.1103/PhysRevC.93.055207
https://doi.org/10.1103/PhysRevLett.105.242001
https://doi.org/10.1016/j.physletb.2012.10.035
https://doi.org/10.1103/PhysRevD.90.054508
https://doi.org/10.1103/PhysRevD.90.054508
https://doi.org/10.1103/PhysRevD.57.6948
https://doi.org/10.1103/PhysRevD.57.6948


[14] S. Capitani, M. Della Morte, D. Djukanovic, G. von Hippel,
J. Hua, B. Jäger, B. Knippschild, H. B. Meyer, T. D. Rae,
and H. Wittig, Nucleon electromagnetic form factors in
two-flavor QCD, Phys. Rev. D 92, 054511 (2015).

[15] G. Martinelli and C. T. Sachrajda, A lattice study of nucleon
structure, Nucl. Phys. B316, 355 (1989).

[16] G. P. Lepage, The analysis of algorithms for lattice field
theory, in Proceedings of Boulder ASI 1989 (1989),
pp. 97–120.

[17] S. Capitani, B. Knippschild, M. Della Morte, and H. Wittig,
Systematic errors in extracting nucleon properties from
lattice QCD, Proc. Sci., LATTICE2010 (2010) 147 [arXiv:
1011.1358].

[18] J. Bulava, M. A. Donnellan, and R. Sommer (ALPHA
Collaboration), The B�Bπ coupling in the static limit, Proc.
Sci., LATTICE2010 (2010) 303 [arXiv:1011.4393].

[19] P. Hägler, J. W. Negele, D. B. Renner, W. Schroers, T.
Lippert, and K. Schilling (LHPC, SESAM Collaboration),
Moments of nucleon generalized parton distributions in
lattice QCD, Phys. Rev. D 68, 034505 (2003).

[20] S. N. Syritsyn et al. (LHPC Collaboration), Nucleon electro-
magnetic form factors from lattice qcd using 2þ 1 flavor
domain wall fermions on fine lattices and chiral perturbation
theory, Phys. Rev. D 81, 034507 (2010).

[21] B. Bhattacharya, R. J. Hill, and G. Paz, Model independent
determination of the axial mass parameter in quasielastic
neutrino-nucleon scattering, Phys. Rev. D 84, 073006 (2011).

[22] B. Bhattacharya, G. Paz, and A. J. Tropiano, Model-
independent determination of the axial mass parameter in
quasielastic antineutrino-nucleon scattering, Phys. Rev. D
92, 113011 (2015).

[23] R. J. Hill and G. Paz, Model independent extraction of the
proton charge radius from electron scattering, Phys. Rev. D
82, 113005 (2010).

[24] Z. Epstein, G. Paz, and J. Roy, Model independent extrac-
tion of the proton magnetic radius from electron scattering,
Phys. Rev. D 90, 074027 (2014).

[25] J. Green, N. Hasan, S. Meinel, M. Engelhardt, S. Krieg, J.
Laeuchli, J. Negele, K. Orginos, A. Pochinsky, and S.
Syritsyn, Up, down, and strange nucleon axial form factors
from lattice QCD, Phys. Rev. D 95, 114502 (2017).

[26] P. F. Bedaque, Aharonov-Bohm effect and nucleon
nucleon phase shifts on the lattice, Phys. Lett. B 593, 82
(2004).

[27] G. M. de Divitiis, R. Petronzio, and N. Tantalo, On the
discretization of physical momenta in lattice QCD, Phys.
Lett. B 595, 408 (2004).

[28] S. Güsken, A study of smearing techniques for hadron
correlation functions, Nucl. Phys. B, Proc. Suppl. 17, 361
(1990).

[29] M. Albanese et al. (APE Collaboration), Glueball masses
and string tension in lattice QCD, Phys. Lett. B 192, 163
(1987).

[30] F. J. Jiang and B. C. Tiburzi, Flavor twisted boundary
conditions and the nucleon vector current, Phys. Rev. D
78, 114505 (2008).

[31] S. Dürr, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, T.
Kurth, L. Lellouch, T. Lippert, K. K. Szabó, and G. Vulvert,
Lattice QCD at the physical point: Simulation and analysis
details, J. High Energy Phys. 08 (2011) 148.

[32] S. Dürr, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, T.
Kurth, L. Lellouch, T. Lippert, K. K. Szabó, and G. Vulvert,
Lattice QCD at the physical point: Light quark masses,
Phys. Lett. B 701, 265 (2011).

[33] S. Dürr et al. (Budapest-Marseille-Wuppertal Collabora-
tion), Lattice QCD at the physical point meets SU(2) chiral
perturbation theory, Phys. Rev. D 90, 114504 (2014).

[34] T. Blum, T. Izubuchi, and E. Shintani, New class of
variance-reduction techniques using lattice symmetries,
Phys. Rev. D 88, 094503 (2013).

[35] E. Shintani, R. Arthur, T. Blum, T. Izubuchi, C. Jung, and C.
Lehner, Covariant approximation averaging, Phys. Rev. D
91, 114511 (2015).

[36] J. J. Kelly, Simple parametrization of nucleon form factors,
Phys. Rev. C 70, 068202 (2004).

[37] N. Hasan, J. Green, S. Meinel, M. Engelhardt, S. Krieg,
J. Laeuchli, J. Negele, K. Orginos, A. Pochinsky, and S.
Syritsyn, Nucleon radii and form factors at Q2 ¼ 0 using
momentum derivatives, The 35th International Symposium
on Lattice Field Theory (Lattice 2017) (Granada, Spain,
2017), https://makondo.ugr.es/event/0/session/95/
contribution/279.

NESREEN HASAN et al. PHYS. REV. D 97, 034504 (2018)

034504-14

https://doi.org/10.1103/PhysRevD.92.054511
https://doi.org/10.1016/0550-3213(89)90035-7
http://arXiv.org/abs/1011.1358
http://arXiv.org/abs/1011.1358
http://arXiv.org/abs/1011.4393
https://doi.org/10.1103/PhysRevD.68.034505
https://doi.org/10.1103/PhysRevD.81.034507
https://doi.org/10.1103/PhysRevD.84.073006
https://doi.org/10.1103/PhysRevD.92.113011
https://doi.org/10.1103/PhysRevD.92.113011
https://doi.org/10.1103/PhysRevD.82.113005
https://doi.org/10.1103/PhysRevD.82.113005
https://doi.org/10.1103/PhysRevD.90.074027
https://doi.org/10.1103/PhysRevD.95.114502
https://doi.org/10.1016/j.physletb.2004.04.045
https://doi.org/10.1016/j.physletb.2004.04.045
https://doi.org/10.1016/j.physletb.2004.06.035
https://doi.org/10.1016/j.physletb.2004.06.035
https://doi.org/10.1016/0920-5632(90)90273-W
https://doi.org/10.1016/0920-5632(90)90273-W
https://doi.org/10.1016/0370-2693(87)91160-9
https://doi.org/10.1016/0370-2693(87)91160-9
https://doi.org/10.1103/PhysRevD.78.114505
https://doi.org/10.1103/PhysRevD.78.114505
https://doi.org/10.1007/JHEP08(2011)148
https://doi.org/10.1016/j.physletb.2011.05.053
https://doi.org/10.1103/PhysRevD.90.114504
https://doi.org/10.1103/PhysRevD.88.094503
https://doi.org/10.1103/PhysRevD.91.114511
https://doi.org/10.1103/PhysRevD.91.114511
https://doi.org/10.1103/PhysRevC.70.068202
https://makondo.ugr.es/event/0/session/95/contribution/279
https://makondo.ugr.es/event/0/session/95/contribution/279
https://makondo.ugr.es/event/0/session/95/contribution/279
https://makondo.ugr.es/event/0/session/95/contribution/279

