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We explore whether a tree-level expression for the gluon two-point function, supposed to express effects
of an horizon term introduced to eliminate the Gribov ambiguity, is consistent with the propagator obtained
in simulations of lattice-regularized quantum chromodynamics (QCD). In doing so, we insist that the gluon
two-point function obey constraints that ensure a minimal level of consistency with parton-like behavior on
the ultraviolet domain. In consequence, we are led to a position which supports a conjecture that the gluon
mass and horizon scale are equivalent emergent mass-scales, each with a value of roughly 0.5 GeV; and
wherefrom it appears plausible that the dynamical generation of a running gluon mass may alone be
sufficient to remove the Gribov ambiguity.
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I. INTRODUCTION

When quantizing continuum chromodynamics, a gauge
fixing condition must be imposed upon the gluon fields.
Except in particular cases [1–9], that cannot be completed
consistently without adding ghost fields to the Lagrangian
[10]. The classical theory’s gauge invariance is then
replaced by BRST symmetry [11,12], which can be used
in perturbation theory to prove, e.g., renormalizability of
quantum chromodynamics (QCD). Typically, however, the
auxiliary condition meant to select a unique element from
each class of equivalent configurations (a gauge field orbit)
is nonperturbatively inadequate [1–9]. An unknown (prob-
ably infinite) number of configurations remain, each related
to the identified element by a nonperturbative gauge
transformation, and all contributing equally to the integral
that should define the theory. This impedes a rigorous
mathematical formulation of QCD; and hence the domain
of gauge field integration must be restricted further [1,3].
Contemporary efforts to realize a gauge fixing procedure

that selects a unique configuration from each gauge field
orbit are described in Ref. [13]. The analysis is typically
undertaken in Landau gauge, because, e.g., it is a linear
covariant gauge, a fixed point of the renormalization group,

and readily implemented in lattice-QCD. Prominent
amongst associated schemes is a modification of the
standard QCD action to include an “horizon term,”

γ

Z
d4xhðxÞ; ð1Þ

hðxÞ ¼ g2fabcAb
μðxÞ½M−1�adðx; xÞfdecAe

μðxÞ, where g is
the coupling, fAa

μg represents the gluons, and

Mabðx; yÞ ¼ ½−∂2δab þ ∂μfabcAc
μðxÞ�δ4ðx − yÞ ð2Þ

is the Landau gauge Faddeev-Popov operator. The scale γ is
fixed via the “horizon condition,”

hh½γ�i ¼ dðN2 − 1Þ; ð3Þ

where the product dðN2 − 1Þ, d ¼ 4, N ¼ 3, is the number
of components of the gluon field, and the expectation value
indicates gauge-field integration in the presence of γ.
(Issues of BRST (a-)symmetry, renormalizability, etc., of
such an action are canvassed elsewhere [13,14].)
The procedure just described ensures that only those

solutions of the Landau-gauge auxiliary condition which
produce non-negative values for the Faddeev-Popov deter-
minant (DetM ≥ 0) contribute in the gauge-field integra-
tion; i.e., it restricts the integration to those Landau-gauge
configurations which lie within the so-called first Gribov
region, Ω, whose boundary, δΩ, the “Gribov horizon,” is
defined by Landau-gauge configurations for which

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 034010 (2018)

2470-0010=2018=97(3)=034010(9) 034010-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.034010&domain=pdf&date_stamp=2018-02-08
https://doi.org/10.1103/PhysRevD.97.034010
https://doi.org/10.1103/PhysRevD.97.034010
https://doi.org/10.1103/PhysRevD.97.034010
https://doi.org/10.1103/PhysRevD.97.034010
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


DetM ¼ 0. The first Gribov region has significant proper-
ties [13]: Ω contains the trivial A0

μ ≡ 0 configuration, so a
connection with perturbation theory is maintained. It is
intersected by each gauge orbit at least once and is convex
and compact. It follows that all gauge orbits are represented
by configurations within Ω and any set of Gribov copies
within Ω is bounded.
The procedure summarized here refines the original

scheme [10], and its implementation capitalizes on a
finding [15] that one may equivalently define the first
Gribov region to be the set of relative minima of the
functional

FA½U� ¼ 1

2

Z
d4x½Aa

μðxÞ�U½Aa
μðxÞ�U; ð4Þ

where ½Aa
μ�U is a gauge transformation of the field Aa

μ and
the minimization proceeds by choosing those configura-
tions on each orbit which minimize this norm. Plainly, there
can be more than one relative minima, and the set of gauge-
equivalent minima identifies the Gribov copies tied to a
given configuration. From this perspective, the Landau-
gauge ambiguity is resolved if the gauge field integration is
restricted to those configurations for which FA½U� is an
absolute minimum. The domain of such configurations
defines the fundamental modular region, Λ ⊂ Ω, and
quantization of QCD may then properly be achieved by
integrating only over Aa

μ ∈ Λ. However, an issue remains
[8]: no practical, local scheme has yet been devised to
achieve this restriction in continuum QCD.
Our discussion highlights that the Gribov horizon, δΩ,

might play an important role in rigorously defining the
scope of gauge sector interactions. Its existence is imposed
via γ > 0 in Eq. (1), whose value is dynamically deter-
mined; and known to have the potential to modify the
infrared (IR) behavior of the gluon two-point Schwinger
function [16]. Hence, writing g2γ ¼ m4

γ , one may identify
mγ as an interaction-induced mass scale whose value
characterizes the location of the Gribov horizon.
Implemented as described, the gauge-fixed action is

nonlocal because it involves M−1. At the cost of intro-
ducing additional fields, an equivalent local action can be
derived, yielding a tree-level gluon propagator for a theory
whose gauge fields all lie within Ω [1,3],

Dγ
μνðkÞ ¼ TμνðkÞDγðk2Þ; Dγðk2Þ ¼ k2

k4 þ 2Ng2γ
; ð5Þ

TμνðkÞ ¼ δμν − kμkν=k2. It is now plausible to suppose that
Eq. (5) expresses the dominant IR features of the gluon
propagator and hence the scheme employed could be
validated through comparison with Landau-gauge lattice-
QCD (lQCD) results for this Schwinger function. The most
striking feature of Eq. (5) is thatDγðk2Þ → 0 as k2 → 0 and
it is now clear that such behavior is not found in QCD.

Instead, the gluon is characterized by a dynamically
generated IR mass-scale, which ensures the gluon dressing
function is nonzero and finite at k2 ¼ 0 [17–31]. One must,
therefore, conclude that the scheme of Refs. [1,3] is
incomplete.
A modification to the gauge-fixing scheme of Refs. [1,3]

is canvassed in Refs. [21,32] (Other procedures are
described in Refs. [33,34].). It admits the possibility that
the ghost fields used to localize the horizon term develop a
nonzero dimension-two condensate, whose presence fur-
ther modifies the gluon propagator [21,32]:

Dγðk2Þ → D̄ðk2Þ ¼ k2 þM2

k4 þ k2m2 þ λ4
; ð6Þ

where λ4 ¼ 2Ng2γ − μ2M2, m2 ¼ M2 − μ2, with μ2 ∝
hAa

μAa
μi and M2 related to the ghost-field condensate, both

computed within an hadronic medium [35]. Following this
method, which supports a nonzero value for the gluon
propagator in the far-IR, one can obtain fair agreement with
lQCD results for the gluon two-point function [36–38].
Herein, we revisit this issue, using lattice simulations to
constrain the parameters in Eq. (6) after imposing novel
constraints, and this enables us to develop new insights into
their implications and meaning.

II. PARTONIC CONSTRAINTS

Owing to asymptotic freedom, and notwithstanding
confinement and dynamical chiral symmetry breaking,
the scalar functions characterizing any one of the two-
point Schwinger functions associated with QCD’s elemen-
tary excitations can be defined as positive on k2 ∈ ½0;∞Þ
and must then be convex-down and fall no faster
than 1=k2, with modest logarithmic corrections, on P ¼
fk2jk2 > k2P ; for some k2P > Λ2

QCDg. Denoting such a func-
tion by Sðk2Þ, then equally, as may be shown using the
operator product expansion [39], ∃xP < 1=ΛQCD such that
sðx2Þ, the four-dimensional configuration space dual of
Sðk2Þ, is convex-down on Px ¼ fx2j0 < x2 < x2Pg. These
observations simply express the feature that a perturbation
theory is valid in the neighborhood of QCD’s conformal
limit, irrespective of whether that limit is defined in
configuration or momentum space. Consequently, only
those duals which satisfy this reciprocal relationship can
be identified with the theory.
The point is readily illustrated using free-parton propa-

gators, viz. writing Sfðk2Þ ¼ 1=ðk2 þ ν2Þ, with ν being the

parton’s mass, and x ¼
ffiffiffiffiffi
x2

p
,

sfðxÞ ¼
Z

d4k
ð2πÞ4 e

ik·xSfðk2Þ ð7aÞ

¼ 1

4π2
1

x

Z
∞

0

dkk2
J1ðkxÞ

ðk2 þ ν2Þ ð7bÞ
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¼ 1

4π2
ν

x
K1ðνxÞ; ð7cÞ

where J1 is a Bessel function of the first kind and K1 a
modified Bessel function of the second kind. It is important
to highlight here that although the parton mass is an
infrared parameter, it evidently influences the ultraviolet
behavior of the propagator, in both momentum and
configuration spaces. The general nature of this phenome-
non is exemplified in the role of ΛQCD: it is QCD’s
definitive infrared scale and yet it prescribes the evolution
of all quantities on the ultraviolet domain.
An elementary correlator that is consistent with pertur-

bative QCD, i.e., possesses a partonic interpretation in the
ultraviolet, should, inter alia, possess a real, positive
effective mass [40–42]. In dealing with simple states, that
mass is easily read from either the associated momentum-
or configuration-space Schwinger function. It may equally
be obtained via the following mathematical procedure,
which extracts the system’s rest-frame energy:

rest mass ¼ 2
d2

dτ2
σðτÞ

���
τ¼0

; ð8aÞ

σðτÞ ¼
Z

d3x⃗sðxÞ ð8bÞ

¼ 1

π

Z
∞

0

dkSðk2Þ cosðτkÞ: ð8cÞ

Here, σðτÞ is the one-dimensional configuration-space dual
of the momentum-space Schwinger function, which, e.g., is
the type of object studied in numerical simulations of
lattice-regularized QCD in order to extract hadron masses.
Importantly, Eqs. (8b) and (8c) are strictly equivalent
mathematical definitions of σðτÞ and either may therefore
be used to compute the result. It is worth remarking that the
operation which delivers the one-dimensional configura-
tion space dual merely sets-to-zero three components of
the four-vector k before the transform is computed; and in
an O(4)-invariant theory, no direction is preferred in this
operation—all directions are equivalent, so the meaning
of d3x⃗ is simply a convention. A straightforward example
is once again obtained with free parton propagators, in
which case

σfðτÞ ¼
Z

d3x⃗sfð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x⃗2 þ τ2

p
Þ ¼ 1

2ν
e−ντ; ð9Þ

and Eq. (8a) yields rest mass ¼ ν.
In Eqs. (8), (9), one has an illustration of a general result.

Namely, for any system that possesses a partonic inter-
pretation in the ultraviolet, the one-dimensional configu-
ration-space dual of its momentum-space Schwinger

function is convex down on the neighborhood τ≃ 0.
(Additional remarks are supplied in the Appendix.)
We now proceed to elucidate the impact of the convexity

requirements (partonic constraints) on D̄ðk2Þ by consider-
ing its one-dimensional configuration space dual,

ΔðτÞ ¼ 1

π

Z
∞

0

dk cosðτkÞD̄ðk2Þ ð10Þ

¼ ΔPðτÞ½ð1þM2=λ2Þsφ=2 cosðτλsφ=2Þ
− ð1 −M2=λ2Þcφ=2 sinðτλsφ=2Þ�; ð11Þ

where ΔPðτÞ ¼ expð−τλcφ=2Þ=ð2λsφÞ, sφ ¼ ½1 − c2φ�1=2,
sφ=2¼½1−c2φ=2�1=2, cφ¼cosφ¼m2=ð2λ2Þ, cφ=2¼cos1

2
φ¼

½1
2
þm2=ð4λ2Þ�1=2. [The four-dimensional dual is presented

in Eq. (A3).]
The Schwinger function in Eq. (6) is that of a massive

excitation. Consequently, as we have explained, a propa-
gator consistent with the partonic constraint would possess
a one-dimensional dual that behaves as expð−mass × τÞ on
τ≃ 0. This weak constraint is satisfied if

M2 ¼ λ2; λ2 ≥
1

3
μ2 ðweakÞ; ð12Þ

for then ΔðτÞjM¼λ ≈ ½expð−ντÞ=ð2νÞ�½1 − 1
2
τ2λ2s2φ=2�, ν ¼

λcφ=2. Notably, Eq. (12) also ensures that, treated as a
polynomial in κ ¼ k2, the zeros of the denominator in
Eq. (6) possess a nonzero imaginary part.
Of course, a necessary and sufficient condition for true

convexity on τ≃ 0 is that Δ00ðτÞ > 0, and

d2

dτ2
ΔðτÞ

���
τ¼0

¼ λ

4cφ=2
½1 − μ2=λ2�; ð13Þ

which is positive so long as

μ2 ≤ λ2 ðstrongÞ: ð14Þ

III. INTERPRETING LATTICE-QCD RESULTS

We now explore the impact of the partonic constraints in
Eqs. (12), (14) on the description of lQCD results for the
gluon two-point function using Eq. (6).
To proceed, we assume that at some renormalization

scale, ζGZ, D̄ðk2; ζ2GZÞ ≔ D̄ðk2Þ in Eq. (6) is a valid
representation of that part of the full gluon two-point
function which is essentially nonperturbative. There is
then a domain of IR momenta, k2 ∈ ½0; k20�, with k0 to
be determined, whereupon Eq. (6) should be capable of
describing the lQCD propagator, D#, computed at a known
renormalization scale, ζ#, after they are both evolved to a
common point ζ0 ∼ 1 GeV, typical of hadron physics. On
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k2 > k20, the usual logarithms and anomalous dimensions
will be generated by renormalization. Since they are absent
from Eq. (6), this formula must thereupon fail.
The gluon two-point function is multiplicatively renor-

malizable, so this perspective can be expressed thus,

∀k2 ∈ ½0; k20�∶D̄ðk2; ζ20Þ ¼ D#ðk2; ζ20Þ; ð15aÞ

D̄ðk2; ζ20Þ ¼ z0ðζ20; ζ2GZÞD̄ðk2; ζ2GZÞ; ð15bÞ

D#ðk2; ζ20Þ ¼ D#ðk2; ζ2#Þ=½ζ20D#ðζ20; ζ2#Þ�; ð15cÞ

where z0, k0 are fit parameters. We will judge the
interpretation reasonable so long as z0 ∼ 1, k0 ∼ 1 GeV,
in which event it is natural to identify ζ0 ¼ k0. There are
five parameters: z0, k0 ¼ ζ0, and M, μ, λ in Eq. (6). They
are determined simultaneously by minimizing the rms
relative-difference between the two sides of Eq. (15a)
for a given value of k20, then optimizing k20 ∈ ½0; k2max� by
seeking that value which produces the global minimum for
this rms relative-difference, where kmax is the largest
momentum at which lQCD results are available.
We first analyze the large-volume quenched simulations

in Ref. [23] (ζ# ¼ 4.3 GeV, kmax ¼ 4.5 GeV), wherewith
our procedure yields the results in Table I A. For this
purpose, the 644 and 804 lattices are indistinguishable [38]:
we use the latter. Row 1 reports the coefficients that achieve

a best fit on the entire domain of available lattice momenta,
i.e., k0 ≔ kmax, unvaried, with ζ0 fixed at the value found to
produce the global minimum when k0 is optimized, viz.
determined in producing row 2. The fit’s quality is apparent
in Fig. 1(a): the ultraviolet (UV) behavior is represented
well at the cost of a poorer description of the IR. This is
unsurprising, given the preponderance of UV lattice results
in the sample domain; and, consequently, z0 deviates
greatly from unity, indicating that on k2 ∈ ½0; k2max� the
lQCD output possesses material perturbative contributions,
which cannot be captured by Eq. (6). The fit nevertheless
exhibits an IR inflection point [at k2ip ¼ ð0.36 GeVÞ2],
signaling that the spectral function associated with this
propagator is not positive-definite. Such behavior is widely
interpreted as an indicator of confinement [40,42–54]. It is
expressed in ΔðτÞ of Eq. (11) via a nonterminating series of
zeros, with the first located at τz ¼ 1.04 fm: at this scale,
even the most tenuous connection with partonic behavior is
lost. (Such inflection points and zeros are listed in
Table I C.)
Row 2 in Table I A lists the coefficients obtained

when fitting the quenched results on k2 ∈ ½0; k20� Here,
z0 is closer to unity, so an interpretation using Eq. (6) is
more credible. The result is the dot-dashed (green) curve in
Fig. 1(a). Here, k2ip ¼ ð0.46 GeVÞ2 and the first zero in
ΔðτÞ lies at τz ¼ 0.99 fm; but, notably, neither the weak nor
strong condition for partonic behavior is satisfied, and

TABLE I. Panel A: Analysis of large-volume quenched lQCD results [23] (ζ# ¼ 4.3 GeV, kmax ¼ 4.5 GeV) using the two-point
function in Eq. (6). Row 1: unconstrained fit using simulation results on the entire available domain, k0 ¼ kmax. Row 2: unconstrained fit
on an IR domain. Row 3: fit respecting the weak parton condition, Eq. (12). Row 4: fit respecting the strong parton condition, Eq. (14),
imposing the upper bound. Row 5: fit respecting Eq. (14) and requiringmγ ¼ mg (see Sec. V). Panel B: As Panel A, but for unquenched
results ðNf ¼ 4Þ [43]. Panel C: k2ip—position of the inflection point in D̄ðk2; ζ20Þ when computed using the coefficients listed in the rows
above, e.g., A1 means panel A, row 1; τz—location of the first zero in the associated ΔðτÞ; τF—related parton-persistence or
fragmentation length. (All dimensioned quantities in GeV, except τz, τF, in fm.)

(A) quenched k0 ζ0 λ M z0 M=λ μ=λ

Unconstrained 4.5 1.1 0.84 2.10 0.43 2.49 2.33
ζ0 1.1 0.72 1.09 0.75 1.50 1.27

Weak ζ0 1.0 0.59 0.59 1.04 1 0.45
Strong ζ0 1.0 0.68 0.88 0.84 1.29 1
Str þmγ ¼ mg ζ0 1.0 0.67 0.84 0.87 1.26 0.94

(B) unquenched k0 ζ0 λ M z0 M=λ μ=λ

Unconstrained 4.0 1.1 1.01 2.38 0.59 2.36 1.91
ζ0 1.1 0.95 1.92 0.65 2.02 1.64

Weak ζ0 1.0 0.65 0.65 1.20 1 0.42 I
Strong ζ0 1.0 0.87 1.34 0.93 1.54 1
Str þmγ ¼ mg ζ0 1.0 0.80 1.07 0.89 1.34 0.71

(C) A1 A2 A3 A4 A5 B1 B2 B3 B4 B5

kip 0.36 0.46 0.48 0.48 0.48 0.30 0.42 0.40 0.14
τz 1.04 0.99 0.96 0.97 0.97 1.35 1.05 1.33 1.36
τF 0.67 0.81 0.80 0.66 1.17 1.02
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inspection reveals that ΔðτÞ has an inflection point at
τ ¼ 0.078 fm. Such a striking nonperturbative effect
located deep in the UV is in direct conflict with perturbation
theory. Hence, this fit, too, should be rejected.
It is appropriate now to describe the fit that respects the

weak condition for parton-consistent behavior, Eq. (12):
parameters in row 3 of Table I A and dashed (blue) curve in
Fig. 1(a). Here, z0 is close to unity, and D̄ðk2; ζ20Þ has a
global maximum at k2 ¼ ð0.18 GeVÞ2 and an inflection
point at k2ip ¼ ð0.48 GeVÞ2. The appearance of a global
maximum at k2 > 0 is, perhaps, unexpected, but neither
continuum nor lattice studies of QCD’s gauge sector can
exclude this possibility. In fact, contributions from ghost
loops in the gluon vacuum polarization may produce just
such an effect [55,56]. It is noteworthy that constraining
the behavior of a two-point function on τ≃ 0, viz. a
far-UV domain, inaccessible to lattice simulations, enables

extraction of more reliable information about this func-
tion’s behavior at IR momenta, a domain within which
lattice results are concentrated. This outcome is a natural
inversion of the properties of infrared parameters upon
which we remarked following Eqs. (7).
The associated ΔðτÞ is convex on a domain extending

beyond its first zero, τz ¼ 0.96 fm. In this instance one may
also ask after the persistence of partonic behavior, in which
connection we define a fragmentation length as that scale,
τH, where ΔðτFÞ=ΔPðτFÞ ¼ 1

2
; i.e., the configuration-space

Schwinger function deviates from a partonic propagator by
≥50%. Here, τF ¼ 0.67 fm.
The fit also yields a value for the “hA2i” in-hadron

condensate, appearing in the operator product expansion of
the gluon two-point function [21,26,36,37,57,58]:

g2hA2i ¼ 32

3
μ2≕m2

A2 : ð16Þ

Phenomenologically, mA2 ∼ ð1–3 GeVÞ2; but this fit gives
ð0.86 GeVÞ2, as reported in Table II.
Row 4, Table I A specifies the Eq. (14)-consistent fit,

which is the solid (black) curve in Fig. 1(a)—little visually
distinguishes the results obtained from the weak and strong
constraints. Here, z0 is close to unity, k2ip ¼ ð0.48 GeVÞ2,
and ΔðτÞ is convex on a domain extending beyond its first
zero, τz ¼ 0.97 fm, with τF ¼ 0.81 fm.
We now turn to unquenched ðNf ¼ 4Þ results [43]

(ζ# ¼ 4.3 GeV, volume 483 × 96), with the results listed
in Table I B. As evident in Fig. 1(b), there is a paucity of
unquenched results at IR momenta, one consequence of
which is a need to bound the fitting window in order
achieve any reasonable description. Thus, the first row in
Table I B lists the coefficients required to achieve a best fit
on k2 ≤ k2max, kmax ¼ 4.0 GeV, with ζ0 fixed at the value
found to produce the global minimum when k0 is opti-
mized, viz. determined in producing row 2. Owing to the
scarcity of results, the fit is poor at IR momenta [see the
dotted (brown) curve in Fig. 1(b)] and does not describe a
manifestly confined excitation: D̄ðk2 > 0; ζ20Þ has no
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2 
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1.8
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2.2

2.4

2.6

2.8

3

3.2

3.4

FIG. 1. Upper panel—(a). Fit to quenched lattice results [23],
determined as described in connection with Eqs. (15): dotted
(brown) curve—row 1 of Table I A, unconstrained, unbounded
fit; dot-dashed (green) curve—row 2, Table I A, unconstrained,
bounded fit; dashed (blue) curve—row 3, satisfying the weak
condition for partonic behavior, Eq. (12); and solid (black)
curve—row 4, strong condition, Eq. (14). Lower panel—(b).
As upper panel, but for unquenched results ðNf ¼ 4Þ [43]. (The
curves and points associated with the unconstrained fits have
been rescaled by ð1=1.1Þ2. This eliminates an offset from the
constrained results owing to the small difference in optimal
scales: ζ0 ¼ 1.1 GeV cf. ζ0 ¼ 1.0 GeV.)

TABLE II. Dimension-two condensate, mA2 , Eq. (16); gluon
mass-scale, mg ¼ λ2=M; and Gribov horizon parameter, mγ ,
Eq. (17), inferred by fitting lattice results using Eq. (6) subject
to the parton constraints in Eqs. (12), (14), and also subject to
Eq. (14) plus mγ ¼ mg (see Sec. V). The resolving scale is

ζ0 ¼ 1GeV. (ΛMOMðNf¼0Þ
QCD ¼ 0.425ðþ15Þð−9Þ and ΛMOMðNf¼4Þ

QCD ¼
0.560ð�30Þ [57,59,60]. All dimensioned quantities in GeV.)

Weak Strong Necþmγ ¼ mg

Nf mA2 mg mγ mA2 mg mγ mA2 mγ ¼ mg

0 0.86 0.59 0.39 2.22 0.53 0.56 2.05 0.53
4 0.89i 0.65 0.40 2.84 0.56 0.75 1.85 0.60
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inflection point and Δðτ ≥ 0Þ > 0. Furthermore, z0 is far
from unity because of material perturbative contributions to
the lQCD results on this fitting domain.
Row 2, Table I B specifies the fit to unquenched results

on k2 ∈ ½0; ζ20�, ζ0 ¼ 1.1 GeV. Again, z0 is quite different
from unity. The result: dot-dashed (green) curve in
Fig. 1(b), possesses a first-order inflection point, viz. the
first k2-derivative of D̄ðk2; ζ20Þ exhibits an inflection point
at k2ip ¼ ð0.30 GeVÞ2, and yields a form for ΔðτÞ whose
first zero lies at τz ¼ 1.35 fm. Notably, as with the
analogous quenched case, neither Eq. (12) nor Eq. (14) is
satisfied, and inspection reveals that ΔðτÞ has an inflection
point at τ ¼ 0.10 fm. Hence, this fit is unrealistic.
The impact of the weak condition, Eq. (12), is expressed

in row 3, Table I B. Shown as the dashed (blue) curve
in Fig. 1(b), it displays an inflection point at k2ip ¼
ð0.42 GeVÞ2. Computed from there, ΔðτÞ is convex
on a domain that extends beyond its first zero,
τz ¼ 1.05 fm, with τF ¼ 0.66 fm. Again, imposing a
physical constraint on the behavior of a two-point
function at far-UV momenta has enabled extraction of
more reliable information about its IR behavior.
Notwithstanding these features, jz0 − 1j is still too large
for us to be confident that the unquenched results are
consistent with Eq. (6), especially because μ2 < 1 and
hence hAa

μAa
μi has the wrong sign when compared with

contemporary phenomenology.
Imposing Eq. (14) (strong) when analyzing the

unquenched propagator yields row 4 of Table I B and
the two-point function depicted by the solid (black)
curve in Fig. 1(b). There is a clear difference between
the impact of the weak and strong conditions. The strong
condition ensures z0 ∼ 1 and the fit is characterized by
k2ip ¼ ð0.40 GeVÞ2, τz ¼ 1.33 fm, and τF ¼ 1.17 fm.

IV. GRIBOV HORIZON PARAMETER

Using the coefficients in Table I, one can compute the
Gribov horizon scale,

m4
γ ≔ g2γ ¼ 1

2N
½λ4 þ μ2M2�; ð17Þ

with the results listed in Table II and compared with the
dressed-gluon mass-scale inferred from the same ensem-
bles: mg ¼ λ2=M.
The pattern of the results in Table II is readily explained.

For instance, compared with the unquenched values, the
sizes of the quenched results are typically smaller owing to
the paucity of unquenched IR data, which leads that fit to a
focus on UV momenta and thus, usually, increased mag-
nitudes for λ, M, μ. Likewise, the sizes obtained with the
weak parton constraint, Eq. (12), are normally smaller than
those found with the strong constraint, Eq. (14), because
the latter also forces larger magnitudes for λ, M, μ.

Focusing now on the Gribov parameter itself, the weak
condition entails mγ < mg, whereas the strong condition
favorsmγ ≳mg. These outcomes are embedded in Eq. (17),
e.g., implementing Eq. (12), one has

m4
γ −m4

g ¼N¼3 λ2

6
½μ2 − 5λ2�; ð18Þ

which is negative for all values of μ2 consistent with
Eq. (12). On the other hand, enforcing Eq. (14),

m4
γ −m4

g ≤
N¼3 λ2

6

�
λ2 þM2 − 6

λ6

M4

�
: ð19Þ

The rhs is positive ∀M > 1.24λ, a condition satisfied by all
fits except, naturally, those obtained using Eq. (12). Which
constraint, then, is more realistic? The value of mA2

suggests the strong condition is better aligned with phe-
nomenology. (The unconstrained fits yield unrealistically
large values of mA2 .) Notably, for μ2 > 0, the weak
condition always produces a global maximum in
D̄ðk2; ζ20Þ at k2 > 0. Hence, a preference for the strong
condition places an upper bound on the strength of
contributions from ghost loops to the gluon vacuum
polarization.

V. CONCLUSION

Reflecting upon our results, consider that in the context
of QCD augmented by the horizon term, Eq. (1), there are
three scenarios.

(i) If g2γ ¼ m4
γ ≫ m4

g, then the Gribov horizon affects
UV modes of the gluon. The validity of standard
perturbation theory shows this is not the case.
Consequently, g2γ ≫ m4

g is unrealistic: had it been
favored by lQCD results, then it would have been
necessary to discard either or both those results and
the horizon condition.

(ii) The converse, mγ ≪ mg, would have indicated that
the gluon mass alone is sufficient to screen IR gluon
modes, in which case the Gribov ambiguity could
have no physical impact and any horizon term is
redundant.

(iii) Our analysis indicates that QCD occupies a middle
ground: mγ ≈mg, with each of a size (∼0.5 GeV)
that one associates with emergent gauge-sector
phenomena. In this scenario, the gluon mass and
the horizon scale play a nearly equal role in screen-
ing long-wavelength gluon modes, thereby dynami-
cally eliminating Gribov ambiguities. Moreover,
together they set a confinement scale of roughly
1 fm, identified with the location of the first zero
in the configuration-space gluon two-point func-
tion. We therefore conjecture that the gluon mass
and horizon condition are equivalent emergent
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phenomena. Plainly, unquenched lQCD results with
better sensitivity to IR momenta are crucial before
anything more can be said with certainty; but if the
quenched results are a reasonable guide, then such
improvement would increase the likelihood that
mγ ¼ mg is realized.

In the meantime, one can readily check whether mγ ¼
mg is consistent with available lQCD results, and, as
apparent in Fig. 2, that is certainly the case. In this
particular realization of scenario (iii), the horizon term,
and the hA2i and ghost-field condensates may all be
absorbed into a single running gluon mass, mgðk2Þ, whose
dynamical appearance alone is then sufficient to eliminate
the Gribov ambiguity and complete the definition of QCD.
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APPENDIX: CONFIGURATION SPACE DUALS

Beginning with the definition of σðτÞ in Eq. (8c), one has

d2

dτ2
σðτÞ

���
τ¼0

¼ lim
τ→0

d2

dτ2
1

π

Z
∞

0

dkSðk2Þ cosðτkÞ ðA1aÞ

¼ lim
τ→0

1

π

Z
∞

0

dkSðk2Þ½−k2 cosðτkÞ�; ðA1bÞ

where the step that yields Eq. (A1b) is only valid if the
integral converges. Notwithstanding this caveat, a clear
point is made by the formal manipulation; viz., the presence
of the k2 weighting factor in the integrand emphasizes
that the value of σ00ðτ ¼ 0Þ is determined by the ultraviolet
behavior of Sðk2Þ. (Naturally, owing to O(4) invariance,
that behavior is insensitive to the orientation of the
four-vector k.)
This observation is readily illustrated; e.g., consider the

following two Schwinger functions:

S1ðk2Þ ¼
1

k2 þ Λ2
1

; ðA2aÞ

S2ðk2Þ ¼
1

k2 þ Λ2
1

ln½Λ2
2�

ln½k2 þ Λ2
2�;

ðA2bÞ

which, with Λ2
1 < Λ2

2, are identical at infrared momenta but
differ logarithmically in the ultraviolet. (Any two functions
with this property will serve equally well.) It is not difficult
to numerically compute the one-dimensional configuration
space duals of the functions in Eqs. (A2) and, thus, the
second derivatives, which are depicted in Fig. 3. In
accordance with the above observation, these duals differ
only on the ultraviolet domain, τ < 1. On the configura-
tion-space infrared domain, τ > 1, their behavior is effec-
tively identical because this is also a feature of their
momentum-space infrared behavior.
Notably, whilst the functions in Eqs. (A2) are both

convex on k2 > 0, their one-dimensional configuration
space duals are not. This emphasizes the importance of
the partonic constraints we have identified. Evidently,
although it is simple to write a model for a Schwinger
function that is convex in momentum space, it is nontrivial
to build a model that is simultaneously convex on the
ultraviolet domain in both momentum and configuration
spaces. This means that the partonic constraints serve a real
purpose in analyzing models that attempt to relate with
QCD. (N.B. It is straightforward to illustrate that there exist
classes of ultraviolet-equivalent momentum-space models
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FIG. 2. Upper panel—(a). Dot-dashed (purple) curve fit to
quenched lattice results [23], obtained as described in connection
with Eqs. (15), imposing Eq. (14) and mγ ¼ mg. (Best-fit
coefficients in Table. I.) Solid (black) curve, for comparison,
the μ ¼ λ curve from Fig. 1. Lower panel—(b). Same as upper
panel, but for unquenched results ðNf ¼ 4Þ [43].
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for which both the momentum and configuration space
duals are convex.)
The four-dimensional configuration space dual of the

Schwinger function in Eq. (6) is

dðxÞ ¼ 1

4π2x

X
i¼�

aibiK1ðxbiÞ; ðA3Þ

where, with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 − 2λ2Þðm2 þ 2λ2Þ

p
,

a� ¼ r�m2 ∓ 2M2

2r
; b� ¼ 1p

2
ðm2 � rÞ1=2:

ðA4Þ

dðxÞ is a real-valued function because a�, b� are complex
conjugates when r possesses an imaginary part, and one
readily finds

dðxÞ ≈
x≃0 1

4π2x2
; ðA5Þ

which is identical to the x≃ 0 behavior of the free-parton
dual in Eq. (7). The rest-mass associated with this parton is
not manifest in Eq. (A3). It becomes apparent via Eq. (8b).
Given the asymptotic properties of the modified Bessel
function K1, the integral does exist, and the result is given
in Eq. (11). Naturally, it is the same irrespective of whether
one uses Eq. (8b) or (8c), but more easily obtained using the
latter.
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