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We investigate the phase structure of a charged AdS dilaton black hole in the extended phase space
which takes the cosmological constant, i.e. the AdS-Λ parameter, as pressures. Through both thermal
ensemble and quasinormal mode analysis, we find that stable phase of the black hole with nontrivial dilaton
profiles always exists for both large and small couplings when the AdS-Λ is considered as dynamical
degrees of freedom. This forms somewhat of a contrast with previous works. Our results provide new
examples for the parallelism or equivalences between thermal ensemble methods and dynamic perturbation
analysis for black hole phase structures.
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I. INTRODUCTION

Anti–de Sitter space/conformal field theory correspon-
dence [1], i.e., AdS=CFT, is a powerful method to unify
quantum fields and gravitations. This correspondence sug-
gests that physics of the gauge field defined on the AdS
boundary can be derived from gravitations in the bulk space
and vice versa. Studies on thermodynamics of the AdS black
hole are of great interest due to their relevance to thermal
field theories defined on the boundary spacetime [2]. Phase
transitions always occur in ordinary thermodynamic systems,
so we naturally expect that such phenomena also appear in
black holes according to the AdS=CFT correspondence. This
was first discussed by Hawking and Page in [3], where a
thermal radiation/large AdS black hole phase transition was
discovered in simple Einstein gravitations with AdS asymp-
totics.After thatwork, similar phase transitionswere explored
in more gravitation theories with AdS asymptotics [4–7].
Dilaton gravitation theories follow from the low-energy

limit of string theory [8]. But in these low energy theories,
properties of the black hole change drastically due to the
dilaton field. Reference [9] gives asymptotically flat dilaton
black hole solutions in which the dilaton field is coupled
to the Maxwell field in an exponential way. Inspired by
AdS=CFT, asymptotically AdS dilaton black holes attract
more interests in recentworks. Besides the pure cosmological

constant potential, Liouville-type dilaton potential also
enters sights of the researchers. This potential arises from
the supersymmetry breaking of a higher-dimensional super-
gravity model with cosmological constant [10–12]. It is
proved that in one and two Liouville type potential models
[12,13], neither asymptotically flat nor asymptotical AdS
black hole solution is allowed. However, in three potential
case, static and charged asymptoticallyAdSblack hole/brane
solutions are constructed in [14–16], with some phenom-
enological applications discussed in [17,18]. Reference [19]
analyzes thermodynamic stability and phase structures of
such black holes through examinations of the second-order
thermal quantity ð∂2M=∂S2ÞQ and shows that in small
dilaton coupling case, the system allows no Hawking-
Page transition; while in the large α case, some phases of
the system are unstable. Reference [20] explores phase
transitions in this system by the method of thermodynamic
geometries. In this method, divergences of the Ricci scalar
coincide with the phase transition points of heat capacities.
According to [20], the charged AdS dilaton black holes of
[14] enjoy many phase transitions, among which one occurs
between two stable black holes.
Comparing with ordinary thermodynamic systems, the

black hole system contains no obvious notion of pressures.
However, in Refs. [21,22], new perspectives suggest that
pressures can be identified with the negative cosmological
constant P ¼ −Λ=8π ¼ ðd − 1Þðd − 2Þ=ð16πL2Þ with the
conjugate volume defined asV ¼ ð∂M∂PÞQ;S and the black hole
mass interpreted as enthalpies of the system. In this extended
phase space, many new phenomena [23–30] related with the
AdS charged black holes are explored; e.g., the small/large
hole transition is investigated and interpreted as the van der
Waals liquid/gas transition in ordinary thermal systems.
Other transitions like the solid/liquid/gas ones were also
found in Kerr-AdS black holes [31], while the multiply
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reentrant phase transition and triple points are observed in the
charged and rotating Born-Infeld black hole systems [32].
There are two reasons to treat the cosmological constant as an
independent thermodynamic variable. First, just as pointed
out by [21,22] and verified in [23–32], doing so uncovers us
many new interesting feature of black holes being consid-
ered. Second, the cosmological constant in the real Universe
is nonzero, although positively valued and many orders of
magnitude smaller than expectations. Considering our poor
understanding of its origin, assuming independence thermo-
dynamically in general gauge/gravity duality studies is wise
and may shed light on this question’s resolution.
Our purpose in this paper is to investigate the phase

structure and stability issues involved in the charged dilaton
black hole of [15,16] in the extended phase space formu-
lation. According to Refs. [19,20], the charged dilaton black
hole has a rich structure of phases, even when the pressure
effects are not considered. We expect that more interesting
phase transitions will occur in this system when pressures
are considered, just as pointed out previously. One state-
ment of Ref. [19] is that the charged dilaton black holes are
thermodynamically unstable in the large coupling constant
case. It is very natural to ask if such instabilities would still
be the case when the cosmological constant is considered a
dynamic degree of freedom. We will try to understand this
question from both thermoensemble and dynamical pertur-
bation analysis, while previous works [19,20,33–39] are
mainly from thermoensemble aspects. Our dynamic con-
sideration borrows ideas from Refs. [40–42], which calcu-
lated the quasinormal modes (QNMs) in the AdS or
asymptotically AdS-RN black holes and uncovered inter-
esting links between the thermal phase and quasinormal
frequencies (QNFs). We will see that in the charged AdS
dilaton black holes, similar links or parallelisms will also
appear, of course somewhat modulated by the dilaton
coupling constant.
Our work is structured as follows. This section is the

background and introduction. The next section will briefly
review the (nþ 1)-dimensional asymptotically AdS black
hole solution of Einstein-Maxwell-dilaton theory with
Liouville-type potentials. Section III gives the definitions
for all relevant thermodynamic quantities in latter discus-
sions. The generalized first law of black hole thermody-
namics in the extend phase space is also checked in this
section. The phase structure and the thermal stability issue
of the system will be investigated in Sec. IV. Section V will
be devoted to the calculation of the QNMs and possible
parallelism/equivalence analysis between the thermal
ensemble method and dynamic consideration. The last
section is our conclusion and discussions.

II. CHARGED DILATON BLACK HOLES
IN ADS SPACE

This section is a review on the asymptotically AdS black
hole solution in dilaton gravitation theory and related

thermodynamic definition. We begin with the action of
(nþ 1)-dimensional (n ≥ 3) Einstein-Maxwell-dilaton
gravity,

S ¼ 1

16πG

Z
dnþ1x

ffiffiffiffiffiffi
−g

p �
R −

4

n − 1
ð∇ΦÞ2

− VðΦÞ − e−4αΦ=ðn−1ÞF2

�
; ð1Þ

where R and Φ are the usual Ricci scalar and dilaton
field, respectively, and the latter has self-interaction VðΦÞ
and nonminimally couples to the electromagnetic field of
kinetic energies F2. The quantity αmeasures the strength of
this coupling. Equation of motions following from this
action have the form

Rμν ¼
1

n − 1
½4∂μΦ∂νΦþ gμνVðΦÞ� þ 2e−

4αΦ
n−1½FγμFβνgγβ

−
1

2ðn − 1Þ gμνF
2� ð2Þ

∇2Φ ¼ ∂μð ffiffiffiffiffiffi−gp
gμν∂νΦÞffiffiffiffiffiffi−gp ¼ n − 1

8

∂V
∂Φ −

α

2
e−

4αΦ
n−1F2 ð3Þ

∇μðe−4αΦ
n−1FμνÞ ¼ ∂μð

ffiffiffiffiffiffi
−g

p
e−

4αΦ
n−1FμνÞ ¼ 0: ð4Þ

By adjusting the form of VðΦÞ appropriately, refer-
ence [15,16] obtains asymptotically AdS black hole sol-
utions of the system analytically,

V ¼ 2Λ
nðn − 2þ α2Þ2 f−α

2½ðnþ 1Þ2 − ðnþ 1Þα2

− 6ðnþ 1Þ þ α2 þ 9� · e−4ðn−2ÞΦ
ðn−1Þα

þ ðn − 2Þ2ðn − α2Þ · e4αΦ
n−1

þ 4α2ðn − 1Þðn − 2Þ · e−2Φðn−2−α2Þ
ðn−1Þα g ð5Þ

ds2 ¼ −N2ðρÞf2ðρÞdt2 þ dρ2

f2ðρÞ þ ρ2R2ðρÞdΩ2
k;n−1 ð6Þ

where dΩ2
k;n−1 is the line element of (n − 1)-dimensional

hyper surface of constant curvature ðn − 1Þðn − 2Þk with
k ¼ �1; 0 corresponding to spheric, hyperbolic, and plane
topology, respectively. In the case of only static electric
fields occur in the system, the only nonzero components of
Fμν could be obtained from the maxwell equation (4)

Ftρ ¼ NðρÞ qe
4αΦ
n−1

½ρRðρÞ�n−1 ð7Þ

according to the Gauss theorem, the total electric charge of
the black hole reads
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Q ¼ 1

4π

Z
ρ→∞

Ftρ
ffiffiffiffiffiffi
−g

p
dn−1x ¼ Ωn−1

4π
q ð8Þ

where Ωn−1 is the volume of ðn − 1Þ-dimensional unit
sphere. With the electrostatic field (7) and metric ansatz (6)
substituted into Eq. (2), Refs. [15,16] obtain

N2ðρÞ ¼
�
1 −

�
b
ρ

�
n−2

�
−γðn−3Þ

ð9Þ

f2ðρÞ ¼
��

k −
�
c
ρ

�
n−2

��
1 −

�
b
ρ

�
n−2

�
1−γðn−2Þ

−
2Λ

nðn − 1Þ ρ
2

�
1 −

�
b
ρ

�
n−2

�
γ
�

·

�
1 −

�
b
ρ

�
n−2

�
γðn−3Þ

ð10Þ

R2ðρÞ ¼
�
1 −

�
b
ρ

�
n−2

�
γ

ð11Þ

γ ¼ 2α2

ðn − 2Þðn − 2þ α2Þ ð12Þ

ΦðρÞ ¼ ðn − 1Þα
2ðn − 2þ α2Þ ln

�
1 −

�
b
ρ

�
n−2

�
ð13Þ

Here b and c are integration constants with dimension
length, they are related with the charge parameter q through

q2 ¼ ðn − 1Þðn − 2Þ2
2ðn − 2þ α2Þ bn−2cn−2 ð14Þ

Reference [19] shows that for this black hole solution, the
Kretschmann scalar RμναβRμναβ and the Ricci scalar R both
diverge at ρ ¼ b, thus ρ ¼ b is the location of curvature
singularity. On the other hand, it can be easily verified that
as ρ → ∞, N2ðρÞ → 1, R2ðρÞ → 1 and

f2ðρÞ ¼

8>>><
>>>:

1þ ρ2

L2 − 2α2

1þα2
ρb
L2 þ α2ðα2−1Þ

ð1þα2Þ2
b2

L2 ; n ¼ 3

1þ ρ2

L2 − α2

2þα2
b2

L2 ; n ¼ 4

1þ ρ2

L2 ; n ≥ 5

ð15Þ

As results, the geometry is asymptotically approximate-
AdS in dimensions 3þ 1 and 4þ 1, while asymptotically
exact AdS in dimenstions nþ 1 ≥ 6. Finally we note that
when α ¼ γ ¼ 0 both the dilaton field and it’s potential will
vanish identically and action (1) will reduce to the usual
Einstein-Maxwell ones, the corresponding dilaton black
holes also naturally simplifies to the usual Riessner-
Nordström-AdS black holes.
Just as will be shown in the following, radial positions of

the black hole horizon defined by fðρþÞ ¼ 0 is important

for our discussion. However, due to the complicated form
of fðρÞ, we cannot find explicit expressions for ρþ through
this definition. Alternatively, we choose to use this defi-
nition to express parameters c in it in terms of ρþ,

c ¼ ρþ ·

�
1 −

�
b
ρþ

�
n−2

�
γ− 1

n−2
·

��
1 −

�
b
ρþ

�
n−2

�
1−ðn−2Þγ

−
2ρ2þ½1 − ð b

ρþ
�n−2ÞγΛ

nðn − 1Þ
� 1

n−2
: ð16Þ

So, in our discussions, the free parameters are chosen as b,
Λ, ρþ, γ, and n.

III. THERMODYNAMIC DEFINITIONS IN
THE EXTENDED PHASE SPACE

The black hole mass M is conserver charges associated
with time translation symmetries; it can be obtained by the
ADM decomposition of metrics on the spacetime boun-
dary. For dilaton black holes of (6)–(13), Refs. [19,43,44]
tell us

M ¼ ðn − 1ÞΩn−1ρ
n−2þ

16π

�
1þ

ðn − 2 − α2Þð b
ρþ
Þn−2

n − 2þ α2

−
2ρ2þΛð1 − ð b

ρþ
Þn−2Þ n

n−2−
2ðn−1Þ
n−2þα2

nðn − 1Þ
�
: ð17Þ

In the extended phase space thermodynamic, M has the
physical meaning of chemical enthalpy, which is the total
energy of a system including both internal energiesE and the
P-v term, where the latter is used to subtract the infinite term
caused by the space-integration of cosmological constant
[21,27]. The Hawking temperature can be calculated as

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½N2ðρþÞf2ðρþÞ�0 · ½f2ðρþÞ�0

p
4π

ð18Þ

with the definition that fðρþÞ ¼ 0, and the above formula
can be further translated into

T ¼
ðn − 2Þ½1 − ð b

ρþ
Þn−2� 1

2−nþ n−1
n−2þα2

4πρþ

−
½1 − ð b

ρþ
Þn−2� 1

n−2þ 1−n
n−2þα2ρþΛ

2nπðn − 1Þðn − 2þ α2Þ

×

�
ðnðn − 2þ α2ÞÞ − 2ðn − 2Þðn − 1Þ

�
b
ρþ

�
n−2

�
ð19Þ

The entropy of the system, according area laws, is just one
quarter of the event horizon area [19]
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S ¼
Ωn−1bn−1ð1 − ð b

ρþ
Þn−2Þðn−1Þγ2

4ð b
ρþ
Þn−1 ð20Þ

While the electric charge and chemical potentials can be
written, respectively, as

Q ¼ ðbρþÞn−22 Ωn−1

4
ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 2Þ2ðn − 1Þ
n − 2þ α2

s

·

�
1 −

2ρ2þΛð1 − ð b
ρþ
Þn−2Þ n

n−2−
2ðn−1Þ
n−2þα2

nðn − 1Þ
�1

2 ð21Þ

U ¼ A0jρ→∞ − A0jρ→ρþ ¼ −
q

ðn − 2Þρn−2þ
: ð22Þ

The last pair of general coordinates for thermodynamic
discussions is the pressure and volume,

P ¼ −
Λ
8π

; V ¼
�∂M
∂P

�
S;Q

: ð23Þ

With Eqs. (17) and (23), we can express V in terms of b, ρ, α
et al. as follows:

V ¼ ðn − 1Þρnþ
�
1 −

�
b
ρþ

� 2ðn−1Þα2
ðn−2Þðn−2þα2Þ

�
ð24Þ

·
ðn − 2þ α2Þ − ðn − 2Þð b

ρþ
Þn−2

6ðn − 2þ α2Þð1 − ð b
ρþ
Þn−2Þ : ð25Þ

In the case of n ¼ 3, α ¼ 0, this reduces to the volume of
four-dimensional RN-AdS black holes naturally.
With thermodynamic quantities presented above, we

check that in the extended phase space method, the first
law of black hole thermodynamics is indeed properly
holden. In fact, by the link rule of differentiations,�∂M

∂S
�

P;Q
¼
�∂M
∂ρþ ·

∂ρþ
∂b þ∂M

∂b
�

P;Q

	� ∂S
∂ρþ ·

∂ρþ
∂b þ∂S

∂b
�

P;Q�∂ρþ
∂b

�
P;Q

¼−
��∂Q

∂b
�	�∂Q

∂ρþ
��

P�∂M
∂Q

�
P;S

¼
�∂M
∂ρþ ·

∂ρþ
∂b þ∂M

∂b
�

P;S

	� ∂Q
∂ρþ ·

∂ρþ
∂b þ∂Q

∂b
�

P;S�∂ρþ
∂b

�
P;S

¼−
��∂S

∂b
�	� ∂S

∂ρþ
��

P
;

(note the extra minus sign on the right-hand-most expres-
sion, which is caused by the implicit function derivative
Qðb; ρþÞ ¼ Q0) and some tedious but straightforward
calculation with (17), (19), (20), we can easily prove that

�∂M
∂S

�
P;Q

¼ T;

�∂M
∂Q

�
P;S

¼ U: ð26Þ

Thus, these thermodynamics quantities indeed satisfy the
first law of black hole thermodynamics in the extended
phase space method:

dM ¼ TdSþ UdQþ VdP: ð27Þ

According to Eqs. (19) and (23), the system’s equation of
state can be written as

P ¼
nðn − 1Þðn − 2þ α2Þð1 − ð b

ρþ
Þn−2Þ 1

2−nþ n−1
n−2þα2

4ρþðnðn − 2þ α2Þ − 2ðn − 2Þðn − 1Þð b
ρþ
Þn−2Þ

×

�
t −

ðn − 2Þð1 − ð b
ρþ
Þn−2Þ 1

2−nþ n−1
n−2þα2

4πρþ

�
ð28Þ

with parameters b, ρþ, and α et al. related to the specific
volume of the system as follows:

v ¼
4ρþðnðn − 2þ α2Þ − 2ðn − 2Þðn − 1Þð b

ρþ
Þn−2Þ

nðn − 1Þðn − 2þ α2Þð1 − ð b
ρþ
Þn−2Þ 1

2−nþ n−1
n−2þα2

: ð29Þ

As in the usual thermodynamic theories, for the charged
dilaton black holes, the Gibbs free energy and specific heat
of the system are defined as follows,

G ¼ M − TS ð30Þ

Cp ¼ −T
∂2M
∂T2






p fixed

: ð31Þ

In canonical ensembles, we will fix the T, Q parameter
when exploring physics in the P-v and G-P plane; we will
fix the P, Q parameter when exploring the Cp-T physics.
The P-v relation in canonical ensembles is derived from
Eqs. (19), (21), (23) and (29), which will be denoted as

T ¼ Tðb; ρþ; P; α; nÞ; ð32Þ

Q ¼ Qðb; ρþ; P; α; nÞ; ð33Þ

v ¼ vðb; ρþ; P; α; nÞ: ð34Þ

Fixing the value of Q ¼ Q0 allows us to express P as
follows:

P ¼ Pðb; ρþ; Q0; α; nÞ: ð35Þ

Substituting this expression into (32) with fixed T ¼ T0

will yield us
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ρþ ¼ ρþðb; T0; Q0; α; nÞ ð36Þ

Finally, substituting Eq. (36) back into (35) and into (34),
we will get equation of states with fixed temperature and
electric charges:

P ¼ Pðb; T0; Q0; α; nÞ ð37Þ

v ¼ vðn; α; b; T0; Q0Þ: ð38Þ

Similarly, the Cp − T relation in canonical ensembles is
also obtained from Eqs. (30), (21), (23), and (19) with fixed
pressures P ¼ P0:

Q ¼ Qðb; ρþ; P0; α; nÞ ð39Þ

Cp ¼ Cpðb; ρþ; P0; α; nÞ ð40Þ

T ¼ Tðb; ρþ; P0; α; nÞ: ð41Þ

Fixing electric charges Q ¼ Q0 in (39) and solving out
from it ρþ, we will have

ρþ ¼ ρþðb; P0; Q0; α; nÞ: ð42Þ

Substituting this result back into Eqs. (40) and (41), we will
get the equation of state with fixed pressure and electric
charges as follows:

Cp ¼ Cpðb; P0; Q0; α; nÞ ð43Þ

T ¼ Tðb; P0; Q0; α; nÞ: ð44Þ

Due to the complicated form of formulas involved in these
thermodynamical quantities, we will not (sometimes can-
not) write out the concrete form of (37) and (43) here.
However, they indeed play key roles in our numeric
explorations in the following section.

IV. PHASE STRUCTURE AND
THERMODYNAMICAL ANALYSIS

From actions (1), we easily see that different α corre-
sponds to different gravitation theories. For example, α ¼ 0
corresponds to the usual Einstein-Maxwell theory; α ¼ 1
corresponds to the Einstein-Maxwell-dilaton theory that
follow from low energy limit string theories in the Einstein
frame. From the viewpoint of AdS=CFT correspondence,
different α will correspond to different thermodynamic
systems. For this reason, we naturally expect that different
phase structure or transition patterns for different α’s will
occur in the extended phase space thermodynamics. From
another point of view, the value of α characterizes the
strength of string corrections in the full theory. By
comparing phenomena in the nonzero-α theories with those
in the α ¼ 0 one, we have chances to see string effects of

the theory relative to the simple Einstein-Maxwell grav-
itations intuitively.
In the small α limit, the action of the system reduces to

S ∼
1

16π

Z
dnþ1x

ffiffiffiffiffiffi
−g

p ½R − 2Λ − F2�;

the charged dilaton black hole will reduce to the AdS-RN
one correspondingly. Reference [22] shows that the van der
Waals–like critical phenomenon exists in the RN-AdS
black holes. So we naturally expect similar phenomena
will occur in the charged dilaton black holes, especially
for small α cases. To see these phenomena, we plot the P-v
and G − P curves in the canonical ensemble at different
temperatures with varying temperature for small α and a
fixed Q in Figs. 1–3, respectively.
From Fig. 1, we easily see that the charged dilaton black

hole has unique phase in temperatures above some critical
one. While in temperatures lower than that critical value,
three phases are possible, that is, large black hole (LBH
hereafter), small black hole(SBH), and the middle black
hole (MBH) phases. From Fig. 2, we see that both the LBH
and SBH phases have positive specific heat, so both of
them are thermodynamically stable. As comparisons, the
MBH phase is unstable. From Fig. 3, we see that a first-
order phase transition could occur as one varies pressures of
the system at temperature lower than the critical value. This
is a transition between the SBH and LBH phase and has the
same feature as those that occur in the Van derWaals liquid-
gas system. Although, in Figs. 1–3, what we display are
only for parameters with α ¼ 0.01, we note that similar
phenomena always occur as α < 1. This implies that the
stringy or dilaton corrections to the Einstein gravity is not
so remarkable when the coupling constant α is less than 1,
from thermodynamic viewpoints.
As the value of α goes larger than 1, new phenomena

beyond the Van der Waals liquid-gas–like transition occur.

FIG. 1. The P-V line of five-dimensional charged dilaton AdS
black holes with Q ¼ 2.5, α ¼ 0.01. The left panel is the
isotherm line for temperatures being higher than(red), equal to
(green) and lower than(blue) the critical temperature Tc, respec-
tively. The right panel is the magnifying of isotherm lines of
T < Tc. The SBH, MBH, and LBH phases in this panel, are
denoted by cyan, blue, and purple lines, respectively.

PHASE STRUCTURE AND QUASINORMAL MODES OF A … PHYS. REV. D 97, 026014 (2018)

026014-5



They are displayed in Figs. 4–5, where α ¼ 2 is chosen as a
representation. Comparing with those revealed in Fig. 1, a
significant new point for the α ¼ 2 case is that there exists a
zeroth-order phase transition in the P-v diagram. As
displayed in Fig. 4, for temperature T > Tc1, as the
pressure increases and exceeds an upper bound P1, the
charged dilaton black hole disappears as an allowed
solution to the action system. This is the zeroth-order
phase transition on pressure p1. While as T < Tc1, a new
type of P-v matter state, the blue line in the figure, occurs.
This state is featured by the lack of higher-pressure region.
On the gravitation side, only two kinds of black holes dual
to this matter state exist—small (unstable) and large

(stable). Recall that in the Van de Waals–like liquid-gas
state, three kinds of dual black holes are there. Figure 5
displays the Gibbs free energy of these black holes
correspondingly. From the figure we easily see that in
the new P-v state, the LBH phase has more lower free
energy is thus thermal-dynamically favored. On the other
hand, by comparing thermal quantities in α ¼ 2 black holes
with those in α ≈ 0 ones, we see that it is the string or
dilaton correction effects that brings the system this zeroth-
order phase transition and makes the phase structure of the
system richer and complicated.
As α gets larger and beyond some critical value α1, the

Van der Waals–like phase structure begins to shrink from
the P-v diagram and disappears completely at another
critical α2. Between α1 and α2, the P-v diagram behaves
like that in Fig. 4. In the current parameter case d ¼ 5,
Q ¼ 2.5, the value of α1 ≈ 1.3, α2 ≈ 2.0. Their concrete
value does not matter in what follows. Figures 6–7 display
the P-v and Cp − T diagram of the system for α ¼ 8, which
is obviously larger than α2. The variation trends of these
diagram will not change qualitatively any more as we

0.5
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1.0

1.5

2.0

0.005 0.010 0.015 0.002 0.003 0.004 0.005

G G

0.08

0.067

FIG. 3. G − P lines of five-dimensional charged dilaton AdS
black hole with Q ¼ 2.5, α ¼ 0.01, at temperatures being lower
than(blue), equal to(green) and higher than(red) the critical
temperature Tc. The right panel is the magnification of the
lowest-temperature line in the left part.

0.0045

0.0050

0.0055

0.0060

FIG. 4. The P-v diagram of five-dimensional charged dilaton
AdS black hole with Q ¼ 2.5, α ¼ 2. The left panel is isotherm
lines with different temperatures. Two critical temperatures Tc1
and Tc2 are displayed in this figure. Across Tc1, the two phase
line becomes three phase, while across Tc1, the three phase line
becomes one phase. The right panel is the magnification of the
isotherm line of T < Tc1.

G

FIG. 5. TheG − P diagram of five-dimensional charged dilaton
AdS black holes whose P-v diagram is displayed in Fig. 4.

0.060.06 0.08 0.08

c

FIG. 2. Cp − T lines of five-dimensional charged AdS dilaton
black holes withQ ¼ 2.5, α ¼ 0.01. The top-left is for cases with
P < Pc, the corresponding P-v line is the right panel of Fig. 1.
The top right is the magnifying of the top-right. The bottom-left
and bottom-right are cases with pressures being equal to (green)
and less than (blue) the critical value Pc, respectively.
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increase the value of α further. From Fig. 7, we easily see
that the LBH phase has positive specific heats, while the
SBH phase, negative ones. So the former is thermody-
namically favored in canonical ensembles. More impor-
tantly, such stable phases continue to exist regardless how
large α is. So, during the process of Van der waals–like
liquid-gas phase structures’ disappearing from Fig. 4, it is
the SBH phase that disappears little by little when α goes
larger than α1. The LBH phase continues to exist and to be
stable in the new P-v state of Fig. 6.
Reference [19] analyzed the thermal stability of these

black holes with the cosmological constant being fixed as a

constant, whose results indicate that there exists a maxi-
mum value αmax for which the black hole solutions are
thermodynamically unstable when α > αmax. However, our
studies here, especially the Cp − T diagrams indicate that,
for large α’s, when the cosmological constant are considered
dynamical degrees of freedom (namely pressures), stable
phase is allowed in the appropriate region of parameters.
Reference [19] uses ð∂2M=∂S2ÞQ as the criteria for ther-
modynamical stabilities, while we use the heat capacity
Cp. Both this two quantities have the same functionality
in analyzing thermodynamical stabilities. But Ref. [19]
does not fix the value of Q in their ∂2M

∂S2 jQ − α figure; see
Fig. 8 for comparisons. It fixes the value of b; ρþ;Λ and
changes the value of α. From Eq. (21), we know that
Q ¼ Qðb; ρþ; α;ΛÞ. In this case, the value ofQwill change
withα. However, in our cases,we fix pressuresP and electric
chargesQ according to Eq. (43) and show that stable phases
(positive specific heat) are indeed possible when we change
the value of pressures.

V. QNMS OR DYNAMIC ANALYSIS

In the previous two sections, we explored variations of
the phase structure of dilaton black holes as the coupling
constant α varies. The results indicate that the Van der
Waals–like liquid-gas phase structure disappears from the
system little by little when α exceeds a critical value, which

FIG. 6. The P-v diagram of five-dimensional charged dilaton
AdS black hole with Q ¼ 2.5, α ¼ 8, at different temperatures.
The right panel is the magnification for the isotherm line with
T < Tc1 from the left.

FIG. 7. The Cp − T diagram of five-dimensional charged AdS
dilaton black holes. Parameters in this figure are corresponding
with the left panel of Fig. 6. The top-right part is magnifications
of the SBH phase line in the top right part, which displays the
Cp − T line when P < Pc. The bottom-left and bottom-right part
are Cp − T lines for pressures equal to(green), higher than(red)
the critical pressure Pc, respectively.

FIG. 8. The α-related stability investigation in our work and
Ref. [19]. The top-left part is copied from Ref. [19], which
displays the quantity ð∂2M=∂S2ÞQ versus α for b ¼ 0.2, l ¼ 1,
n ¼ 5, ρþ ¼ 0.5 (solid line), ρþ ¼ 0.55 (bold line), and ρþ ¼ 0.6
(dashed line). The other three sub-fig is our results for the
behavior of Cp versus α with different pressures for b ¼ 0.2,
Q ¼ 0.05 and n ¼ 5, P ¼ 0.003 (Red line), P ¼ 0.09 (green
line), and P ¼ 0.5 (blue line)
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we have denoted by α1. In gravitational pictures, it is the
SBH phase that begins to disappear when α goes larger
than α1, while the LBH phase continues to be stable no
matter how large α grows into. According to the general
idea of thermodynamic/black-hole correspondence, we
expect that such variation trends should also be embodied
in the change of QNFs either, refs [40–42]. For example,
Ref. [40] uncovers that, differences between thermal-
features of LBH and SBH phases have counter parts in
QNFs. Just as we will show in the following, this fact can
also be reproduced in the dilaton black holes with some
modulations by α.
To see these parallelism or correspondence manifestly,

we need to perturb the dilaton field Φ and calculate the
QNFs numerically. Our calculation method is mainly the
serial expansion of Ref. [45]. However, it should be pointed
out that the key features of this quasinormal modes in AdS
black hole backgrounds is studied in the more earlier work
[46,47]. For convenience, we rewrite the metric (6) as
follows:

ds2 ¼ −FðρÞdt2 þ dρ2

AðρÞFðρÞ þ ρ2HðρÞdΩ2
k;n−1 ð45Þ

FðρÞ ¼ N2ðρÞf2ðρÞ; AðρÞ ¼ N−2ðρÞ;
HðρÞ ¼ R2ðρÞ: ð46Þ

Equations of motion for the dilaton fields’ perturbation in
this background has the form,

∂μ½ ffiffiffiffiffiffi−gp
gμν∂νðδϕÞ�ffiffiffiffiffiffi−gp −

n − 1

8
½V 00ðΦ0Þδϕ�

−
4α2

n − 1
e−

4αΦ0ðρÞ
n−1 F2

tρðρÞgttgρρδϕ ¼ 0; ð47Þ

where Φ0ðρÞ and FtρðρÞ are the classical solution of (13)
and (7), respectively, and V 00ðΦ0Þ is the second or derivative
of (5) with respect to Φ. We use symbols δϕ to denote
perturbations of Φ around the classical profile and write its
general form as follows,

δϕðt; ρ; θ⃗Þ ¼
X
lm

½ρ2HðρÞ�2−d4 ψðρÞYlmðθ⃗Þe−iωðtþρ�Þ; ð48Þ

where ρ� is defined as dρ� ¼ dρffiffiffiffiffiffiffi
AðρÞ

p
FðρÞ. This ansatz for δϕ

has made the infalling condition of QNMs considered in the
factor eiωðtþρ�Þ as long as ψðρÞ takes finite values on the
horizon surface. Substituting (48) into (47), we will get
radial equations for ψðρÞ:

AðρÞFðρÞ d2

dρ2
ψðρÞ þ

�
AðρÞF0ðρÞ þ FðρÞA0ðρÞ

2

− 2iω
ffiffiffiffiffiffiffiffiffiffi
AðρÞ

p �
dψðρÞ
dρ

− VðρÞψðρÞ ¼ 0 ð49Þ

VðρÞ ¼ −
4πPð1 − b2

ρ2
Þ 2α2

2þα2

3ðb2 − ρ2Þ2ð2þ α2Þ2 ½−2b
4α2ð−4þ α2Þ

þ b2ρ2ð−6þ α2Þð2þ α2Þ þ ρ4ð2þ α2Þ2�

−
256q2α2ð1 − b2

ρ2
Þ 4

2þα2A

3π2ρ2ðb2 − ρ2Þ2

−
3AF½ðH0Þ2 − 4HH00�

16H2
þ 3FH0½6Aþ ρA0�

8ρH

þ 3AF0½2H þ ρH0�
4ρH

þ 3F½Aþ ρA0�
4ρ2

: ð50Þ

The standard definition of QNMs requires that the pertur-
bation vanish at infinity as well as purely infalling in the
near horizon region. For numeric conveniences, we change
ρ into x ¼ ρþ

ρ and translate the integration region ρþ<ρ<∞
into 0 < x < 1. By the x-coordinate, Eq. (49) could be
written as

½sðxÞψ 00ðxÞ þ tðxÞψ 0ðxÞ þ uðxÞψðxÞ� ¼ 0 ð51Þ

with coefficient functions sðxÞ, tðxÞ, and uðxÞ defined
correspondingly. The strategy of numeric QNMs is,
expanding both the coefficient function and the goal
function into serial form in the near-horizon region,

fs; t; u;ψg ¼
X∞
n¼0

fsn; tn; un; angðx − 1Þn; ð52Þ

and assuming that as long as the expansion order is taken
high enough, the value of the goal function following from
the series will be valid also on the boundary surface, thus
satisfying conditions ψð0Þ ¼ P

anð−1Þn ¼ 0. So the key
task of finding QNMs is to substitute serial functions (52)
into (51) and calculate the ω-dependent coefficients faωng
to high enough order and zero points of their alternative
summation

P
aωn ð−1Þn. Using Eqs. (52) and (51), it can be

easily verified that

ai ¼
Xi−1
j¼0

−1
i½ði − 1Þs1 þ t0�

½ði − j − 2Þði − j − 1Þsjþ2

þ ði − j − 1Þtjþ1 þ uj�ai−j−1: ð53Þ

The leading coefficient a0 is undetermined. But it does not
affect the quasinormal frequencies ω due to linearities of the
perturbation equation (51). With these preparations, we
routinely calculate the QNFs numerically with fixed dilaton
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coupling α and the relevant thermodynamical quan-
tities P; ρþðb; T;Q; αÞ; bðP; T;Q; αÞ.
In Table I, we list frequencies of the first1-order QNMs of

dilaton perturbations in the LBH phase corresponding to
isothermal lines in Fig. 9 with T ¼ 0.05, Q ¼ 2.5 and
α ¼ 0.001, 0.5, 1, 1.33, 2, respectively. It’s easy to note that
due to the negativeness of the quasinormal frequencies’
imaginary part, see Figs. 10 and 11, such dilaton black
holes are dynamically stable in the parameter region of
LBH phases; see Ref. [48,49] and related works. We also
note that for LBH phases with equal αs, as the horizon
radius decreases or as the pressure increases along the
isothermal line, both the real and absolute of the imaginary
parts of the frequencies increase; see Fig. 10. While as α
varies in this phase, the variation of the QNFs is almost
negligible; see Fig. 11.
In Table II, we list the third2-order QNFs for some typical

small black holes along the isothermal line with T ¼ 0.05
and α ¼ 0.001, 0.125, 0.25, 0.375, 0.5, respectively.
Similar to the LBH phase, we note that all such dilaton
black holes are dynamically stable in the parameter region
we choose due to the negativeness of the quasinormal
frequencies’ imagery part; see Figs. 12 and 13.
Comparing Figs. 10 and 12, we observe that similar

phenomena occurs to the dilaton black hole as well simple
ones of Ref. [40]. That is, as two thermodynamically stable
phase in the Van der Waals–like system, SBH and LBH
phase indeed have different evolving trends in their QNFs

as one goes along the isothermal line towards pressure
increasing direction. In the LBH phase, the QNFs decrease
as the pressure increases. While in the SBH phase, the
trends just reverses. Of course, the quantitative trends in the
dilaton black holes are α dependent.
In the previous section, we observed that the LBH and

SBH phase has different evolving trends as α becomes
large. That is, the LBH continues to exist and be stable, but
the SBH experience a process of disappearing from the
system. From Figs. 11 and 13, we see that this phenomenon

TABLE I. This table shows how quasinormal frequencies
change as the black hole horizon size ρþ increases in the
LBH phase along the isothermal line with T ¼ 0.05, Q ¼ 2.5
with three different αs 0.001; 0.5; 1; 4=3; 2.

α Pð10−3Þ ρþðbÞ ω

La1 0.001 2.5 10.3964ðb ¼ 0.242Þ 0.4467 − 0.2515i
Lb1 0.001 2.0 14.6426ðb ¼ 0.15Þ 0.4526 − 0.2906i
Lc1 0.001 1.5 21.2986ðb ¼ 0.088Þ 0.4559 − 0.3223i
La2 0.5 2.5 10.4166ðb ¼ 0.256Þ 0.4471 − 0.2521i
Lb2 0.5 2.0 14.6492ðb ¼ 0.159Þ 0.4527 − 0.2907i
Lc2 0.5 1.5 21.194ðb ¼ 0.094Þ 0.4544 − 0.3206i
La3 1 2.5 10.4072ðb ¼ 0.296Þ 0.44687 − 0.25182i
Lb3 1 2.0 14.6833ðb ¼ 0.183Þ 0.4533 − 0.2915i
Lc3 1 1.5 21.1998ðb ¼ 0.1085Þ 0.4545 − 0.3207i
La4 4=3 2.5 10.4275(0.3313) 0.44727 − 0.2524i
Lb4 4=3 2.0 14.6863(0.2053) 0.45338 − 0.29155i
Lc4 4=3 1.5 21.2552(0.1213) 0.45529 − 0.32158i
La5 2 2.5 10.4281(0.4176) 0.4472 − 0.25247i
Lb5 2 2.0 14.6401(0.2599) 0.45251 − 0.29057i
Lc5 2 1.5 21.2514(0.15291) 0.45523 − 0.32152i

FIG. 9. The position of parameters in the P-v and G − P line
whose QNFs are presented in Tables I and II. In the LBH
phase, T ¼ 0.05, Q ¼ 2.5 with S-subscript a, b, c denoting three
pressure values and j ¼ 1, 2, 3, 4, 5 five α s 0.001; 0.5; 1; 4=3; 2,
respectively. In the SBH phase, T ¼ 0.05, Q ¼ 2.5 with
L-subscript a, b, c denoting pressures and j ¼ 1, 2, 3, 4, 5 five
αs 0.001,0.125,0.25,0.375,0.5, respectively.

FIG. 10. QNFs as the pressure increases in the LBH phase,
corresponding to Lc1 → Lb1 → La1 in Table I with α ¼ 0.001,
the arrow indicates directions of the pressure’s increasing.
The right one corresponds to the case of α ¼ 0.5.

FIG. 11. QNFs as the dilaton coupling α changes in LBH
phase. Red, green, blue color part corresponds to Lc1 → Lc5,
Lb1 → Lb5, La1 → La5 in Table I with P ¼ 0.0015, P ¼ 0.002,
P ¼ 0.0025, respectively.

1If we take second- or third-order QNMs, the results are
similar.

2The reason we take third-order quasinormal modes in SBH
phases is that, as α increases, the first- and second-order QNM’s
frequency quickly flows to the ωr ¼ 0 line.
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also has counterparts in the QNFs. That is, in the LBH
phase, the QNF is almost α-independent while in the SBH
phase, the case becomes remarkably different. We tracked
in the left part of Fig. 14 evolutions of the real part of the
first-, second-, and third-order QNFs in the SBH phase as α
varies, from which we see that as α goes to some upper

limit αc, the real part of these QNFs all flows to zero
uniformly.

VI. CONCLUSIONS AND DISCUSSION

We investigate in this work phase structures of a charged
AdS dilaton black hole constructed in [14–16] from both
thermal ensemble and dynamical aspects and get results
consistent to each other. On the thermal ensemble side, we
treat the cosmological constant as independent dynamic
variables and derive out its conjugate partner thermal
volumes and check the generalized first law of black hole
thermodynamics in the extended phase space. The dilaton
coupling α measures the strength of string corrections to
the Einstein-Maxwell gravitations. To see these correction
effects, we compare the P-v, G − P, and Cp − T lines for
some typical values α ≠ 0 (corrected gravitation theories)
with those of α ¼ 0 (Einstein-Maxwell gravity, van der
Waals–like phase structure) in canonical thermal ensem-
bles. In small α cases, phase structures in the dilaton theory
are smoothly joined with those of Einstein-Maxwell theory,
comparing Figs. 1, 2, 3 with the relevant figures from [22]
and Ref. [29]. However, as α increases, new phase
structures appear in the P-v plane (see Fig. 4), which is
characterized by the lack of a middle-sized black hole
configuration. As α increases further, the Van der Waals–
like phase structure featured by 3-size BH’s existence
disappears, only the new phase structure featured by the
2-size BHs’ existence is left, see Figs. 6 and 7. Based on
these results, we conclude that the dilaton or string effect on
the phase structure of BHs in the corresponding gravitation
theory is remarkable.
In dynamic considerations, we perturb the dilaton fieldΦ

and study their QNMs on series of BHs along the
isothermal line with various dilaton couplings α. Fixing
α, we compare evolving trends of SBH and LBH QNFs,
and see totally different features between the two; see
Figs. 10 and 12. This tells us that, as two thermodynamic

TABLE II. This table shows how the quasinormal frequencies
change as the black hole horizons ρþ increase for small black
holes phase in the isothermal curves with T ¼ 0.05, Q ¼ 2.5
under the α ¼ 0.001, 0.125, 0.25, 0.375, 0.5, respectively

α Pð10−3Þ ρþðbÞ ω

Sa1 0.001 6 2.22632(1.491) 3.162 − 0.109i
Sb1 0.001 5 2.27789(1.4803) 3.066 − 0.107i
Sc1 0.001 4 2.34339(1.4621) 3.011 − 0.105i
Sa2 0.125 6 2.22675(1.4974) 3.12 − 0.131i
Sb2 0.125 5 2.2779(1.4867) 3.028 − 0.132i
Sc2 0.125 4 2.34302(1.4685) 2.977 − 0.134i
Sa3 0.25 6 2.22859(1.5164) 2.998 − 0.201i
Sb3 0.25 5 2.27916(1.5055) 2.918 − 0.209i
Sc3 0.25 4 2.3432(1.4872) 2.879 − 0.224i
Sa4 0.375 6 2.23176(1.5477) 2.794 − 0.317i
Sb4 0.375 5 2.280829(1.5366) 2.732 − 0.341i
Sc4 0.375 4 2.34361(1.518) 2.714 − 0.377i
Sa5 0.5 6 2.23589(1.5909) 2.508 − 0.485i
Sb5 0.5 5 2.28307(1.5795) 2.468 − 0.531i
Sc5 0.5 4 2.34353(1.5607) 2.469 − 0.601i

FIG. 12. QNFs as the pressure increases in the SBH phase,
corresponding to Sc1 → Sb1 → Sa1 in Table II with α ¼ 0.001,
the arrow indicates directions of the pressure increasing. The right
one corresponds to cases with α ¼ 0.125

FIG. 14. The left panel is the evolving trends of first-, second-,
and third-order QNFs’ real part in the SBH phase featured by
thermal parameters P1 ¼ 0.006, T ¼ 0.05 and Q ¼ 2.5. αc ≈
1.33 is an upper limit of α approaching which the real part of all
QNFs flows to zero. The right panel shows isothermo line of the
system featured by parameters T ¼ 0.05, Q ¼ 2.5 and α ¼ 4=3.
Pressures in this line is bounded from above by P < P1 ¼ 0.006.

FIG. 13. QNFs as the dilaton coupling α changes in the SBH
phase. Red, green, blue points corresponds to data set Sc1 → Sc5,
Sb1 → Sb5, La1 → La5 in Table II with P ¼ 0.004; P ¼ 0.005;
P ¼ 0.006, respectively. Arrow is the direction of α’s increasing.
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phase, they also display different features under dynamic
perturbations. This is consistent with results reported in the
literature [40]. But in our cases, modulated by the dilaton
coupling constant α. Furthermore, we observe new paral-
lelism between the feature of QNMs and thermal phases;
see Fig. 14. On the thermal ensemble side, as α increases,
the SBHs’ Van der Waals–like isothermal line experiences
a process of losing the higher pressure part, while the LBHs
do not. In dynamic considerations, the “laziness” of LBHs
manifests as the almost α independence of QNFs; see
Fig. 11. While the SBHs’ QNF manifests a very sensitive
dependence on α; see Fig. 13. This parallelism between
the thermal phase structure and dynamic features of the
spacetime geometry can be seen as a new word of the more
fundamental principle of thermodynamic/black holes or
gauge/gravity duality.
There are statements in the literature that the charged

dilaton black hole is a thermal system unstable in the large α
case based on analysis of the ∂2M=∂S2 versusα relationwith
fixed value of cosmological constant. However, our studies

based on both the thermal ensemble and dynamic perturba-
tion analysis indicate that, when the cosmological constants
are treated as independent thermodynamic variables, this
instability will disappear in appropriate parameter ranges.
Supports from the former can be seen from the positiveness
of capacities of Fig. 8, while supports from the latter can be
seen from the negativeness of the QNFs in various perturba-
tions in Figs. 10, 11, 12, and 13.
As discussions, we point out here that the following

extensions are still worthwhile to explore. The first is,
thermodynamics of the other related AdS dilaton black
holes in the extended phase space method, especially that
our conclusions in this work are gravitation theory model
dependent or not. The second is the dynamical analysis of
more general perturbation on both the dilaton and metric
fields. Such analysis may reveal, more comprehensively,
the stability issues of these charged dilaton black holes.
Finally, finding out if true thermal systems dual to these
charged dilaton black holes exist in nature is also a valuable
pursuit.
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