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In the asymptotic-safety scenario for gravity, nonzero interactions are present in the ultraviolet. This
property should also percolate into the matter sector. Symmetry-based arguments suggest that nonminimal
derivative interactions of scalars with curvature tensors should therefore be present in the ultraviolet
regime. We perform a nonminimal test of the viability of the asymptotic-safety scenario by working in a
truncation of the renormalization group flow, where we discover the existence of an interacting fixed point
for a corresponding nonminimal coupling. The back-coupling of such nonminimal interactions could in
turn destroy the asymptotically safe fixed point in the gravity sector. As a key finding, we observe nontrivial
indications of stability of the fixed-point properties under the impact of nonminimal derivative interactions,
further strengthening the case for asymptotic safety in gravity-matter systems.
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I. INTRODUCTION

The quantum-field theory framework has been success-
fully used in particle physics, various condensed-matter
systems, and even to describe the seeds for structure
formation in the early Universe. However, its full power
might still remain to be discovered. While neither the
standard model nor gravity is ultraviolet (UV) complete
within the perturbative paradigmof asymptotic freedom—in
fact both are effective quantum field theories that hold over a
finite range of energy scales—the asymptotic safety scenario
[1] might provide a consistent quantum field theory descrip-
tion at all energy scales; for reviews see [2–9]. Specifically,
an interacting fixed point of the renormalization group (RG),
triggered by quantum-gravity fluctuations of increasing
strength in the vicinity of the Planck scale, could underlie
a predictive quantum field theory of gravity and matter [10].
In such a setting, it is critical to characterize the interaction
structure of that fixed point. Typically, this is done with the
functional renormalization group [11], which provides a
framework to extract the scale dependence of the running
couplings from the scale dependence of the effective
dynamics. As quantum fluctuations can generically induce

all couplings compatible with the global symmetries of the
model, the underlying space of couplings—the theory space
—is infinite dimensional. For practical reasons, the func-
tional renormalization group requires a truncation of that
space to a (typically) finite-dimensional subspace. Extended
truncations in the case of pure gravity provide compelling
evidence for the existence of an interacting fixed point
[10,12–23]. In particular, the canonical dimensionality of
couplings has proven to be a strong indicator of relevance
and therefore can be used as a powerful guide to set up
reliable truncations [16,24]. Including matter fields into the
setting enlarges the theory space considerably while still
yielding promising hints of a fixed point [25–28]. Thus, the
task of finding good truncations guided by physical insight
becomes even more critical. Similar to pure-gravity studies,
results in gravity-matter models suggest that canonical
dimensionality of couplings remains a good guiding prin-
ciple to determine which couplings are likely to become
relevant, i.e., UVattractive, at the asymptotically safe fixed
point; see, e.g., [29–31]. Despite their canonical irrelevance,
a particular class of matter-gravity interactions is of interest.
Those are couplings, where symmetry-based arguments
imply that no free fixed point should exist under the impact
of gravity. Those directions provide critical tests for the
viability of the asymptotic-safety paradigm. While they are
expected not to feature a fixed point at vanishing coupling,
they are not guaranteed to feature a fixed point at a real value
of the coupling at all. Specifically, it was conjectured [32]
that the interactions compatible with the global symmetries
of the kinetic terms of matter fields cannot become asymp-
totically free when quantum gravity is present. Explicitly,
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such a pattern was already confirmed for a subset of
fermion self-interactions [33,34], scalar self-interactions
[35], scalar-ghost interactions [36], scalar-fermion inter-
actions [37], and vector self-interactions [38]. Here, we
find further evidence for this conjecture, as we highlight
that nonminimal couplings follow the same pattern. The
coupling that we focus on differs from those included
in previous studies: nonminimal interactions of the form
ϕnRm for a scalar field ϕ have been explored [29,30,39–41].
However, these violate the global shift symmetry ϕ →
ϕþ a of the kinetic term for a scalar. Based on this
symmetry argument alone one can infer that they will
feature a fixed point at a vanishing value. Explicit calcu-
lations support this result; see, e.g., [29,30,39–41]. On
the other hand, a class of nonminimal interactions starting
with

Sϕ;Ric½ϕ; g� ¼ σ̄

Z
d4x

ffiffiffi
g

p
Rμν∂μϕ∂νϕ ð1Þ

is compatiblewith shift symmetry. Therefore, we expect that
the corresponding coupling σ̄ cannot feature a fixed point at
vanishing value. As it cannot be 0 at a fixed point its study
constitutes a nontrivial test of asymptotic safety.Moreover, a
large backreaction onto the fixed-point value in the gravity
sector would constitute a sign of possible instabilities of
typically used truncations.

II. FUNCTIONAL RENORMALIZATION
GROUP SETUP

The functional RG provides a way to derive the explicit
beta functions in a truncation of the full theory space; for
reviews and introductions see [42–46]. It is based on the
Wetterich equation for the flowing action Γk, which
contains the effect of high-momentum quantum fluctua-
tions. Upon a change of the momentum scale k, further
quantum fluctuations are integrated out in the underlying
path integral, resulting in a change of the effective
dynamics encoded in Γk. The scale dependence is encoded
in a scale dependence of the couplings, and thus beta
functions can be read off from k∂kΓk by projecting onto
the appropriate field monomial in the effective dynamics.
The scale derivative of the flowing action is encoded
in a formally exact one-loop equation, the Wetterich
equation [11],

∂tΓk ¼ k∂kΓk ¼
1

2
STr½ðΓð2Þ

k þRkÞ−1∂tRk�; ð2Þ

see also [47]. The supertrace STr implements a summation
over the eigenvalues of the full, regularized propagator

ðΓð2Þ
k þRkÞ−1, where Rk is the regularization kernel and

Γð2Þ
k is shorthand for the second functional derivative of the

flowing action with respect to the fields, and is matrix
valued in field space.

For our functional RG study of the nonminimal cou-
pling, we employ the background field method in a linear
split of the metric

gμν ¼ ḡμν þ hμν; ð3Þ

into a background metric ḡμν and a fluctuation field hμν.
The gauge fixing of the fluctuations is then performed with
respect to the background field. We choose a standard
gauge-fixing condition,

Sgf ½h; ḡ� ¼
1

32πḠ0α

Z
d4x

ffiffiffī
g

p
Fμ½h; ḡ�ḡμνFν½h; ḡ�; ð4Þ

Fμ½h; ḡ� ¼
�
ḡμκD̄λ −

1þ β

4
ḡκλD̄μ

�
hκλ: ð5Þ

Herein, Ḡ0 is the Newton coupling. In the following we
restrict ourselves to the choice β → α → 0, leaving us with
hTT and hTr as the degrees of freedom for gravity (since the
vector degrees of freedom have a vanishing propagator for
this gauge choice),

hμν ¼ hTTμν þ
1

4
ḡμνhTr: ð6Þ

Here hTr denotes the trace of h and hTT denotes
the transverse-traceless component of h satisfying
D̄μhTTμν ¼ 0 and hTT μ

μ ¼ 0. The gauge fixing is supple-
mented by the exponentiated Faddeev-Popov determinant,
i.e., the ghost action

Sgh½h; c; c̄; ḡ� ¼
Z

d4x
ffiffiffī
g

p
c̄μ

δFμ

δhαβ
δQc hαβ; ð7Þ

where we use δQc h to denote the quantum gauge trans-
formation of h with transformation parameter c. For the
linear split employed here we have1

δQc hμν ¼ 2ḡρðμD̄νÞcρ þ cρD̄ρhμν þ 2hρðμD̄νÞcρ; ð8Þ

cf., Appendix B.
Similar to the gauge fixing the cutoff term is a function of

the background Laplacian. Both of these choices break the
split symmetry, which encodes that ḡμν and hμν can be
combined into a full metric. Accordingly, the flow of σ̄ read
off from the background term

ffiffiffī
g

p
R̄μν∂μϕ∂νϕ differs from

the flows of the fluctuation terms, e.g., 1
2
Δ̄hTTμν∂μϕ∂νϕ,

where Δ̄ ¼ −D̄2. As we restrict ourselves exclusively to
fluctuation couplings of the graviton to itself, the ghosts, or

1Note that this immediately implies that at this point there are
no higher graviton-ghost interactions. However, for more general
splits these are present, cf., Appendix B.
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the scalar field, we choose a flat background without loss of
generality in the following discussion.
The setup of our truncation is as follows. We use the

classical action Sclass½h; c; c̄;ϕ; ḡ� as the generator for
vertices,

Sclass½h; c; c̄;ϕ; ḡ� ¼ SEH½ḡþ h� þ Sgf ½h; ḡ� þ Sgh½h; c; c̄; ḡ�
þ Sϕ;kin½ϕ; ḡþ h� þ Sϕ;Ric½ϕ; ḡþ h�;

ð9Þ
with the Einstein-Hilbert action,

SEH½g� ¼ −
1

16πḠ0

Z
d4x

ffiffiffi
g

p
R; ð10Þ

as well as the gauge-fixing, Sgf , and ghost action, Sgh, from
Eqs. (4) and (7), the kinetic part of the action for the scalar
field,

Sϕ;kin½ϕ; g� ¼
1

2

Z
d4x

ffiffiffi
g

p
gμν∂μϕ∂νϕ; ð11Þ

and the nonminimal part of the action for the scalar field,
Sϕ;Ric, from Eq. (1). Included in the same shift-symmetric
theory space with the same canonical dimension −2 is a
coupling of the curvature scalar to ∂μϕ∂μϕ. In our study,
it is set to 0, as it does not yield a contribution to the
TT-graviton-two-scalar vertex on a flat background, but
only contributes to the coupling between two scalars and
hTr. Based on the general expectation that the TT-graviton
mode should dominate we focus on σ as the coupling more
likely to feature a significant backreaction on the flow of
couplings included in previous truncations, and therefore
providing a more meaningful test of the robustness of
results in previous truncations.
To generate the vertices we employ the decomposition of

h into hTT and hTr according to Eq. (6), and then expand the
classical action polynomially in the fields,

Sclass½Φ; ḡ� ¼
X∞
n¼0

1

n!
Sðn;0Þclass ½Φ; ḡ�Φn;

Φ ¼ ðhTT; hTr; c; c̄;ϕÞ: ð12Þ
For each new order in this polynomial expansion we
introduce a new coupling according to the following
prescription,

SðnÞEH → ð32πḠnÞn2−1 · 32πḠ0 · S
ðnÞ
EH; n ≥ 2; ð13Þ

Sð2;0Þgf → 32πḠ0 · S
ð2;0Þ
gf ; ð14Þ

Sð1;1;1;0Þgh →ð32πḡc3Þ
1
2 · Sð1;1;1;0Þgh ; ð15Þ

Sð2;nÞϕ;kin →ð32πḡnþ2Þn2 · Sð2;nÞϕ;kin; n ≥ 1; ð16Þ

Sð2;nÞϕ;Ric →ð32πḡnþ2Þn2
σ̄nþ2

σ̄
· Sð2;nÞϕ;Ric; n ≥ 0; ð17Þ

where Sðn1;…;nmÞ
i refers to functional derivatives with respect

to the arguments, i.e.,

Sðn1;…;nmÞ
i ¼ δn1

δϕn1
1

…
δnm

δϕnm
m

S½ϕ1;…;ϕm�: ð18Þ

Finally, we rescale the scalar field and the gravity degrees
of freedom with a wave function renormalization,

hTT →
ffiffiffiffiffiffiffiffi
ZTT

p
hTT; hTr →

ffiffiffiffiffiffiffi
ZTr

p
hTr; ϕ →

ffiffiffiffiffiffi
Zϕ

p
ϕ;

ð19Þ

and switch to dimensionless couplings,

Ḡn¼
Gn

k2
; ḡc3¼

gc3
k2
; ḡn¼

gn
k2
; σ̄n¼

σn
k2

: ð20Þ

In order to extract the beta functions, we need to specify
how to project the flow onto the corresponding field
monomials in our truncated theory space. The general idea
is to employ a simultaneous vertex and derivative expan-
sion, distinguishing different couplings via the order in the
fields and the derivatives. However, for a given order, there
typically still is a large degeneracy. For couplings involving
a graviton we expect the TT mode of the graviton, hTT, to
be less affected by technical choices (such as the choice of
gauge or regulator) than the Tr mode, hTr. Therefore, we
construct the projections such that they project onto the TT
mode if applicable, and thereby reduce this degeneracy
significantly. We derive the anomalous dimensions, ηTT,
ηTr, and ηϕ, as well as beta functions for g3 and σ3. In
Appendix C we report the results for all contributing
diagrams individually. For the anomalous dimensions we
project on

ΓZTT
¼ 1

2
ZTT

Z
d4xhTTμν□hTTμν; ð21Þ

ΓZTr
¼ −

3

16
ZTr

Z
d4xhTr□hTr; ð22Þ

ΓZϕ
¼ 1

2
Zϕ

Z
d4xϕ□ϕ; ð23Þ

where □ ¼ −∂2. These are the only linearly independent
invariants at this order. The interaction monomial for g3 is
given by

Γg3 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32π

g3
k2

ZTT

r
Zϕ

Z
d4xhTTμνϕ∂μ∂νϕ; ð24Þ

which is the only linearly independent invariant involving
one TT graviton, two scalars, and two derivatives. To
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calculate the flow of σ3, i.e., the nonminimal coupling of
one graviton to two scalars induced by the interaction (1),
we project on

Γσ3 ¼ −
1

2

σ3
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32π

g3
k2

ZTT

r
Zϕ

Z
d4x□hTTμνϕ∂μ∂νϕ: ð25Þ

This invariant is one of two linearly independent ones at
this order. A possible choice for the other is given by
lowering the number of derivatives acting on the graviton,

ΓhTTϕ∂4ϕ ∼
Z

d4xhTTμνϕ∂μ∂ν□ϕ: ð26Þ

Using this basis, we project onto the interaction monomial
(25), projecting out the other (26). Note that the inter-
action (25) directly arises from (1), whereas the other
interaction (26) would arise from a higher derivative termR
d4x

ffiffiffi
g

p
ϕΔ2ϕ. For the evaluation of the flow equation (2)

we need to choose a regulator. Our results are obtained with
a spectrally adjusted Litim-type [48] regulator,

Rh
k ¼ 32πḠ0 · ðZTTΠTT þ ZTrΠTrÞðSð2ÞEH þ Sð2Þgf Þrk

�
□

k2

�
;

ð27Þ

Rc
k ¼ Sð0;1;1;0Þgh rk

�
□

k2

�
; ð28Þ

Rϕ
k ¼ ZϕS

ð2;0Þ
ϕ;kinrk

�
□

k2

�
; ð29Þ

where ΠTT is the projector onto the TT mode,

ΠTTμν

αβhαβ ¼ hTTμν; ð30Þ

ΠTr is the projector onto the Tr mode,

ΠTrμν
αβhαβ ¼

1

4
ḡμνhTr; ð31Þ

and rk is the regulator shape function,

rkðzÞ ¼
1

z
ð1 − zÞθð1 − zÞ: ð32Þ

III. FIXED-POINT ANALYSIS

A. Shifted Gaussian fixed point
for the nonminimal coupling

This section treats g3 and the other avatars of the Newton
coupling as a parameter and shows that σ3 can only feature
an interacting fixed point. The beta function for σ3, under
the identification σ5 ¼ σ4 ¼ σ3, G3 ¼ gc3 ¼ g5 ¼ g4 ¼ g3
and with all anomalous dimensions set to 0, reads

βσ3 ¼ 2σ3 −
43

216π
g3 þ

1225

648π
g3σ3 −

341

432π
g3σ23 þ

83

60π
g3σ33:

ð33Þ

The crucial term is the second term, which remains, if σ3 is
set to 0. Accordingly, σ3 cannot feature a free fixed point, as
soon as g3 features an interacting fixed point. This property
is in line with arguments elaborated in [32] and observa-
tions in gravity-matter systems, where interactions that
respect the symmetry of the kinetic terms—in our case,
shift symmetry and Z2 reflection symmetry—are induced
at the UV fixed point by gravity. As expected, the fixed-
point value grows as a function of increasing Newton
coupling, cf., Fig. 1. There, we show the LO, where η ¼ 0,
NLO, where all η’s that arise from scale derivatives of the
regulator are set to 0, and the full case where η introduces a
nonpolynomial dependence of beta functions on the cou-
plings. The NLO case corresponds to the prescription to
recover universal one-loop beta functions for canonically
marginal couplings from the FRG, and is therefore also
referred to as the perturbative approximation. Incidentally,

FIG. 1. The figure on the top shows the fixed-point value for σ3
as a function of the Newton coupling g3, which is treated as a
parameter here. The figure on the bottom shows the critical
exponent as a function of g3. The anomalous dimensions are set
to 0 [gray, dashed line; leading order (LO)], included perturba-
tively [blue, dashed line; next-to-leading order (NLO)] and
included fully (green, solid line; full).
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the LO and NLO case agree due to our definition of the
corresponding interaction term in Eq. (25). As the term
comes with a prefactor that is a product of σ3 and g3, the
factor

ffiffiffiffiffiffiffiffi
ZTT

p
Zϕ is absorbed in the definition of g3. Hence,

βσ3 does not contain any explicit η-terms, except those that
arise from the scale derivative of the regulator.

The critical exponent is defined as θσ ¼ − ∂βσ3∂σ3 jσ�3 , i.e.,
θσ < 0 signals irrelevance. As g3 increases, the interaction
∼σ3 is pushed further into irrelevance, cf., lower panel in
Fig. 1. This is in line with the anomalous dimensions
becoming more positive, cf., Fig. 2, which adds a con-
tribution to critical exponents that shifts these towards
irrelevance. Even though the nonuniversal fixed-point
value shows a significant dependence on the approximation
(LO/NLO vs full; cf., Fig. 1), the critical exponent is
reasonably robust. This signals stability of the fixed point
of the gravity-matter system in two ways: First of all, it
supports the main guiding principle that is used to set up
truncations, namely, the assumption that canonically irrel-
evant couplings are not likely to be shifted into relevance.
Secondly, an increasingly negative critical exponent
implies that the fixed point for σ3 remains real if g3 is

increased further. The reason is that fixed points can only
become complex in pairs, i.e., when two distinct fixed
points collide. At such fixed-point collisions, the critical
exponent has to become 0. An increasingly negative critical
exponent implies that the system is protected from such
collisions along the eigendirection corresponding to that
exponent. Accordingly, the weak-gravity bound, which has
been observed in other induced interactions [32,37,38], is
avoided here: No instability is expected even in the strong-
quantum gravity regime, at increasingly large g3. Similarly
to the case of induced four-fermion interactions [32,33],
there is instead a bound in the unphysical regime at g3 < 0.
While we do not explicitly include results including a
cosmological constant or graviton mass parameter here, we

FIG. 2. We show the anomalous dimensions of the TT mode,
the Tr mode, and the scalar, respectively. In each figure the
anomalous dimension is evaluated perturbatively (dashed line;
NLO) and evaluated fully (solid line; full).

FIG. 3. Fixed-point value for σ3 (top panel) and critical
exponent (bottom panel) as a function of the Newton couplings
g3 and G3, which are treated as independent parameters here. The
anomalous dimensions are included fully.
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have checked that there is no value for those couplings that
shifts the bound at g3 < 0 to positive values of g3.
Considering Fig. 1 we note that for rather large values of

g3 ≳ 3 the sign of σ�3 changes. A priori there seems to be no
preferred sign for σ̄ in (1). However, considering the
stability of the conformal mode might provide us with a
preferred choice. For σ̄ being 0 the kinetic term of the
conformal mode has the wrong sign, leading to the standard
conformal mode instability. By turning on σ̄ the conformal
mode and the scalar are coupled. Therefore the stability
analysis might change depending on the sign of σ̄. This is
similar to the pure gravity case when adding an R2 term
with the right sign, cf., [49]. We caution that the question of
stability cannot be answered in a truncation to finite order

in the fields, as higher order terms could potentially induce
global stability. Hence, we leave a thorough discussion for
future work.

B. Distinction of different avatars
of the Newton coupling

The beta function for σ3 depends on the gravity-scalar
couplings g3, g4, and g5 as well as on the three-graviton
and four-graviton coupling G3, G4 and the ghost-graviton
coupling gc3. In a classical setting that respects diffeo-
morphism invariance, these should all be equal and agree
with the corresponding background couplings. However,
due to the presence of the gauge-fixing term and the
regulator diffeomorphism invariance is broken and
encoded in modified Ward identities that relate correlation
functions of the background field and the fluctuation field.
Steps towards imposing the modified Ward identities have
been performed, e.g., in [17,21,50–60]. Here, we simply
explore the dependence of σ�3 on g3 and G3 separately.
Ultimately, the symmetry breaking by the regulator
implies that the UV initial condition of the flow should
contain just the right amount of symmetry breaking such

FIG. 4. Anomalous dimension of the TT mode (upper panel)
and the scalar (bottom panel) as a function of the Newton
couplings g3 andG3, which are treated as independent parameters
here. The anomalous dimensions are included fully.

FIG. 5. Fixed-point values for σ3 (upper panel) and g3 (lower
panel) as a function of the Newton coupling G3. The anomalous
dimensions are set to 0 (gray, dashed line; LO), included
perturbatively (blue, dashed line; NLO), and included fully
(green, solid line; full).
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that an invariant effective action can be recovered in the
IR; see, e.g., the introduction in [44]. Our first observation
is that the nonuniversal fixed-point value switches sign
across the plane spanned by g3 and G3 if the graviton self-
interaction is bigger than the graviton scalar interaction,
G3 > g3, cf., Fig. 3. We also notice that, interestingly, the
critical exponent shows the largest slope in the direction
g3 ≈G3. This identification therefore leads to a strong
deviation from canonical scaling. This behavior is linked
to the behavior of the anomalous dimensions, which grow
increasingly positive as a function of increasing G3, cf.,
Fig. 4. Accordingly, a larger G3 moves the system further
towards the border where the truncation becomes unreli-
able. An estimate of the border is given by η ¼ 2, where
the regulator does not suppress UV modes reliably [26]. In
practice in our beta functions this effect becomes notice-
able at η ≈ 3, cf., (C23), where the η-term flips the sign of
a diagram. In Fig. 4 the role of the different Newton
couplings becomes clear as one of them effectively
determines the strength of the graviton propagator while
the other one determines the strength of the scalar
propagator.

One might tentatively associate the instability of the
system for large values of G3 to a type of weak-gravity
bound; however, that idea should be examined more
carefully in a truncation including a beta function for G3.
We now investigate how large the back-coupling of the

induced σ�3 into the flow of the Newton coupling g3 is.
As we do not calculate the flow of G3 here, we adopt the
fixed-point value in the state-of-the-art pure-gravity trun-
cation employed in [21], which is G�

3 ¼ 0.83, for the
remainder of our study.2 The inclusion of one scalar is
not expected to change the fixed-point value ofG3 by much
[25–28,40,61]. Keeping this in mind we observe that g�3
appears to deviate considerably, as g�3 ¼ 3.17 at G3 ¼ 0.83.
Incidentally, we observe that our results appear to favor a
regime of values for G3 ≈ 1 over G3 ≈ 3, as the fixed-point
results for g3 and σ3 are in approximate agreement for
G3 ≈ 1 comparing the LO, NLO, and full case, cf.,
Figs. 5–7. In this regime of values for G3, our truncation
appears reasonably robust, as LO, NLO, and full results are

FIG. 6. Critical exponents as a function of the Newton coupling
G3. The anomalous dimensions are set to 0 (gray, dashed line;
LO), included perturbatively (blue, dashed line; NLO), and
included fully (green, solid line; full).

FIG. 7. Anomalous dimensions of the TT mode (blue line) and
Tr mode (red line) are presented in the upper panel, and the scalar
(green line) is shown in the lower panel. The anomalous
dimensions are evaluated perturbatively (dashed line; NLO)
and evaluated fully (solid line; full).

2Note that these results were obtained in the gauge α ¼ 0,
β ¼ 1.
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in semiquantitative agreement with the same qualitative
dependence on G3.
This analysis reinforces our main point, that interactions

in the gravity sector necessarily percolate into the matter
sector. Even unconventional gravity-matter interactions are
generated. As highlighted in Table I, the induced inter-
actions couple back into the gravity system and in turn
impact the gravitational fixed-point values. Interestingly,
the system is rather robust under the inclusion of σ3. The
gravitational fixed-point values are essentially unaffected,
with the exception of the leading-order result. The same is
true for the critical exponents, which do not change by
more than 10%, and in fact show increasing stability at
increasing order of the approximation, with only a 5%
change of the critical exponent in the full beta function
under the inclusion of σ3. We caution that away from the
linear parametrization, the gravity system might require
larger truncations; see the discussion in Appendix A. On
the other hand, the matter system itself appears to be
less robust, with a significant change in the anomalous
dimension, and even a change of sign. Interestingly, the
anomalous dimension becomes negative under the inclu-
sion of σ3, which contributes to a shift of matter couplings
into relevance at the Gaussian fixed point. For couplings
that are marginally irrelevant in the standard model case,
a shift into relevance at the Gaussian fixed point implies
the potential existence of a predictive, quantum-gravity
induced ultraviolet completion [9,62,63]. We tentatively
conclude that the inclusion of σ3 appears to support the
scenario that a predictive, quantum-gravity induced UV
completion of the standard model might be viable.

IV. CONCLUSIONS AND OUTLOOK

In line with expectations based on symmetry arguments
[32], we have confirmed that an asymptotically safe regime
in gravity is incompatible with a free matter model. Matter
systems can only appear free under the impact of asymp-
totically safe gravity in appropriately chosen truncations.
The general structure of the tentative gravity-matter fixed
point for standard model matter coupled to gravity is that of
a hybrid fixed point: it is free in interactions that break
some of the global symmetries of the kinetic terms. All
other interactions are generically finite in the UV. Here, we

confirm this expectation in a so-far unexplored direction in
theory space, namely, in nonminimal derivative inter-
actions. We find that the gravity-matter system features a
fixed point with finite nonminimal interactions. This is the
first explicit confirmation that the unavoidable presence of
matter interactions in an asymptotically safe matter-gravity
model also extends to mixed matter-gravity interactions.
The back-coupling of the induced nonminimal derivative
coupling σ3 into the gravitational fixed-point values
appears to be small, while there is a sizeable impact on
the matter anomalous dimension, which contributes to
shifting symmetry-protected matter couplings, such as,
e.g., a quartic scalar self-interaction into relevance at their
free fixed point. This constitutes a nontrivial test of the
asymptotic-safety scenario in gravity-scalar systems: while
the inclusion of another set of nonminimal couplings was
part of earlier studies, these particular couplings always
feature the free fixed point as they are protected from the
impact of quantum gravity by global symmetries of the
scalar. On the other hand, the coupling that we explore is
part of the shift-symmetric theory space and as such not
protected by symmetry. Accordingly it is necessarily non-
zero at the fixed point. As such, it corresponds to an
interaction that might destroy the asymptotically safe scale
invariant regime, as there is no a priori reason for the fixed-
point equation to have real fixed-point values. These are
nontrivial results of our study: that there is a real fixed
point, the additional coupling is even more irrelevant than
canonical power-counting suggests, and the back-coupling
into the gravitational fixed-point properties is subleading.
Recently, it was suggested that a regime where the

effective gravitational interaction strength is sufficiently
small could allow us to induce a predictive UV completion
for the standard model [62,63]. In this regime, here para-
metrized by small values of g3 and G3, the induced
interaction σ3 stays close to 0 and features near-canonical
scaling. Accordingly, the impact of σ3 on standard model
couplings, mediated by ηϕ, presumably remains negligible,
cf., Fig. 7, highlighting the robustness of the results in [62,63]
against extensions of the truncation that include induced
interactions. Further, the observation that σ3 shifts ηϕ to
negative values further strengthens the case for this scenario,
as it provides another gravity-induced contribution to the
matter beta functionswith the right sign required to render the
existence of the corresponding matter fixed point feasible.
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APPENDIX A: GENERAL PARAMETRIZATIONS
OF THE METRIC

The beta functions given in Appendix C explicitly
depend on the τ parameter, which parametrizes different
ways in which the full metric may be split into a back-
ground metric and a fluctuating field. Special cases of
interest are τ ¼ 0, which is the usual linear split g ¼ ḡþ h
used in this work and τ ¼ 1, which corresponds to the
exponential split g ¼ ḡeḡ

−1h. In this appendix we discuss
the dependence of our results on τ.
Figure 8 shows the fixed-point values as a function of τ

in the range τ ∈ ½0; 1.5�. Several points should be noted.
First of all there is a large difference between LO and NLO,
but NLO is a fairly good approximation to the full case.
Second, as soon as all anomalous dimensions are kept, the
shifted Gaussian fixed point vanishes before τ reaches
value 1, corresponding to the exponential split. As observed
in [27], setting ηϕ ¼ 0 significantly improves the situation.

In the NLO and full cases the gravitational anomalous
dimensions are both smaller than 0.5 for the critical value of
τ for which the fixed point vanishes. However, the scalar
anomalous dimension takes the value ηϕ ¼ 1.83 there in the
full case, and is greater than 2 there in the NLO case, which
implies a possible breakdown of the truncation; see the
discussion in Sec. III B. We tentatively conjecture that a
larger truncation is required to reach reliable results in the
exponential parametrization.

APPENDIX B: GHOST ACTION
FOR GENERAL SPLIT

For the sake of generality we use a more general split of
the metric,

gμν ¼ ḡμν þ hμν þ τ
X∞
n¼2

1

n!
hμρ1h

ρ1
ρ2…hρn−1ν; ðB1Þ

which allows us to interpolate between the linear split,
τ ¼ 0, and the exponential split, τ ¼ 1. This more general
split does not change the gauge-fixing procedure, but
influences the quantum gauge transformation of h, cf.,
Eq. (8). To work out the details, we use the following
notation,

gμν ¼
X∞
l¼0

XðlÞ
μν; Xð0Þ

μν ¼ ḡμν; ðB2Þ

where the XðlÞ indicate the lth order in the fluctuation field,
h. Furthermore, with YðlÞ we order the quantum gauge
transformation of h according to the number of fluctuation
fields,

δQc hμν ¼
X∞
l¼0

YðlÞ
c μν: ðB3Þ

If we assume a given split, we know the XðlÞ and aim at
deriving the corresponding YðlÞ in order to calculate the
ghost action according to Eq. (7). First we note

δQc gμν ¼
X∞
l¼0

δQc XðlÞ
μν

¼
X∞
l¼1

δXðlÞ
μν

δhαβ
∘ δQc hαβ

¼
X∞
k¼0

X∞
l¼0

δXðlþ1Þ
μν

δhαβ
∘ YðkÞ

c αβ; ðB4Þ

where we use the ∘ to indicate that δXðlþ1Þ
δh is a two point

object that acts on YðkÞ
c ,

δXðlþ1Þ
μν

δhαβ
∘ YðkÞ

c αβ ¼
Z

d4y
δXðlþ1Þ

μνðxÞ
δhαβðyÞ

YðkÞ
c αβðyÞ: ðB5Þ

FIG. 8. Fixed point values for G3 ¼ 0.83 as a function of the τ
parameter. Anomalous dimensions are set to 0 (gray line, LO),
included perturbatively (blue line, NLO), and included fully
(green line, full).
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Here we can reorder the sum according to powers of the
fluctuation field, ðk; lÞ → ðr; sÞ ¼ ðkþ l; kÞ, to get

δQc gμν ¼
X∞
r¼0

Xr
s¼0

δXðr−sþ1Þ
μν

δhαβ
∘ YðsÞ

c αβ: ðB6Þ

Further, we can calculate directly

δQc gμν ¼ Lcgμν ¼
X∞
r¼0

LcXðrÞ
μν; ðB7Þ

where Lc is the Lie derivative with respect to the ghost
vector field c. By comparison of the same orders in h we
infer that

Xr
s¼0

δXðr−sþ1Þ
μν

δhαβ
∘ YðsÞ

c αβ ¼ LcXðrÞ
μν; r ∈ f0; 1;…g:

ðB8Þ

In particular, we can separate the term YðrÞ
c , to find a

recursion relation

YðrÞ
c αβ¼

�
δXð1Þ

μν

δhαβ

�−1
∘
�
LcXðrÞ

μν−
Xr−1
s¼0

δXðr−sþ1Þ
μν

δhρσ
∘YðsÞ

c ρσ

�
;

r≥1; ðB9Þ

with initial condition

Yð0Þ
c αβ ¼

�
δXð1Þ

μν

δhαβ

�−1
∘LcXð0Þ

μν ¼
�
δXð1Þ

μν

δhαβ

�−1
∘Lcḡμν:

ðB10Þ

For our particular choice of parametrization, cf., Eq. (B1),
the operator δXð1Þ

δh is just the identity. If we further simplify
this to the linear split, i.e., Xð1Þ ¼ h and Xðn>1Þ ¼ 0, we
immediately get

τ ¼ 0∶

Yð0Þ
c μν ¼ Lcḡμν ¼ cρ∂ρḡμν þ 2ḡρðμ∂νÞcρ ¼ 2ḡρðμD̄νÞcρ;

ðB11Þ

Yð1Þ
c μν ¼ Lchμν ¼ cρD̄ρhμν þ 2hρðμD̄νÞcρ; ðB12Þ

YðnÞ
c μν ¼ 0; n > 1: ðB13Þ

Using Eq. (B3) this combines into

δQc hμν ¼ 2ḡρðμD̄νÞcρ þ cρD̄ρhμν þ 2hρðμD̄νÞcρ; τ ¼ 0:

ðB14Þ

APPENDIX C: EVALUATION OF THE DIAGRAMS

In the following we present the results of the individual diagrams contributing to the anomalous dimensions
ηTT, ηTr, and ηϕ as well as the flow of g3 and σ3. The graviton anomalous dimensions, ηTT, ηTr, are driven by the
following diagrams,

ðC1Þ

where the graviton is represented by double lines, the ghost by dotted lines, and the scalar by dashed lines. Further, ~∂t ¼ k ~∂k
is the logarithmic scale derivative with respect to the scale dependence of the regulator,

~∂tfðRk0 ; kÞ ¼ ½∂t0fðRk0 ; kÞ�k0¼k: ðC2Þ

The individual diagrams of ηTT evaluate to

ðC3Þ

EICHHORN, LIPPOLDT, and SKRINJAR PHYS. REV. D 97, 026002 (2018)

026002-10



ðC4Þ

ðC5Þ

ðC6Þ

ðC7Þ

ðC8Þ

whereas the diagrams of ηTr result in

ðC9Þ

ðC10Þ

ðC11Þ

ðC12Þ

ðC13Þ

NONMINIMAL HINTS FOR ASYMPTOTIC SAFETY PHYS. REV. D 97, 026002 (2018)

026002-11



ðC14Þ

Next we consider the scalar anomalous dimension, ηϕ, which is given by

ðC15Þ

Here we find

ðC16Þ

ðC17Þ

Finally we have the couplings between one graviton and two scalars, g3 and σ3, which are driven by

ðC18Þ

For βg3 these diagrams evaluate to

ðC19Þ

ðC20Þ

ðC21Þ

ðC22Þ

EICHHORN, LIPPOLDT, and SKRINJAR PHYS. REV. D 97, 026002 (2018)

026002-12



ðC23Þ

while for βσ3 we have

ðC24Þ

ðC25Þ

ðC26Þ

ðC27Þ

ðC28Þ
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