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We consider the theory space as a manifold whose coordinates are given by the couplings appearing in
the Wilson action. We discuss how to introduce connections on this theory space. A particularly intriguing
connection can be defined directly from the solution of the exact renormalization group (ERG) equation.
We advocate a geometric viewpoint that lets us define straightforwardly physically relevant quantities
invariant under the changes of a renormalization scheme.
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I. INTRODUCTION

The theory space is a key ingredient of our modern
understanding of quantum and statistical field theory. On
very general grounds, one may define the theory space as
the set of theories that are identified by the following
common features: dimensionality, field content, and sym-
metries. The renormalization group (RG) brings further
qualitative and quantitative information through the notion
of relevant, irrelevant, and marginal directions. Indeed, the
study of the RG flow of the couplings allows us to define
the continuum limit of quantum field theories and to derive
the scaling properties of the operators by studying the
linearized RG flow around a fixed point [1].
In this work we study the possibility of considering the

theory space as a manifold with geometric structures. In
particular, we will show that it is possible to define
connections on the theory space. The introduction of a
connection is an important step as it allows us to study in a
generalway both local and global quantities defined over the
theory space.Wewill pay particular attention to a connection
stemming directly and nonperturbatively from the exact
renormalization group (ERG) equation. By means of a
connection, it is then straightforward to construct the
quantities that are invariant under the changes of coordi-
nates. A coordinate change can be identified as a change of

schemes (choice of a cutoff function in theERG framework).
Scheme independence is important since physical observ-
ables such as critical exponents are scheme independent.
In different forms, a geometric viewpoint of the theory

space has already been invoked in the past. In [2], the RG
flow is identified as a one-parameter group of diffeomor-
phism generated by the beta functions as a vector field. A
connection was also identified in the formulation of renorm-
alization in coordinate space by requiring covariant trans-
formation properties of the correlation functions [3,4]. Apart
from the linearized behavior around the fixed point, little
effort has beenmade to investigate seriously the information
encoded in the RG flow beyond critical exponents. More
recently, however, the transformation properties ofRG flows
at the second order around a fixed point have been
considered in order to make contact with the operator
product expansion (OPE) [5,6]. We will comment also on
the relation between our result and the OPE.
The paper is organized as follows. In Sec. II we introduce

the theory space as a manifold and explain its basic
features. In Sec. III we consider the ERG equation and
show that its solution implies the existence of a connection
and define its curvature. In Sec. IV we consider a covariant
expansion of the RG flow and comment on its possible
applications. In Sec. V we generalize our consideration to
the full (infinite-dimensional) theory space. We summarize
our findings in Sec. VI.

II. THE THEORY SPACE AS A MANIFOLD

In the Wilsonian renormalization program, one is
instructed to write in the action all possible terms com-
patible with the symmetries and the field content of the
theory. Generally, this implies that one has to consider
infinitely many terms in the Wilson action, and
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consequently introduce infinitely many couplings.
Therefore, the theory space is, generally speaking, infinite
dimensional. However, if we consider only theories that are
defined in the continuum limit, the actual dimension of the
space spanned by the theory is N, the number of relevant
directions associated to the fixed point. In this work we will
mainly consider this latter setting and take a field theory
whose continuum limit is well defined. This permits us to
work with a finite-dimensional manifold. Some consider-
ations regarding the infinite-dimensional theory space will
be given in Sec. V.
Let giði ¼ 1;…; NÞ be the N coupling constants para-

metrizing the theory.1 We view the couplings gi as
coordinates of the theory space and view the latter as a
manifold. A change of scheme, or cutoff function in the
ERG case, results in a possibly very complicated redefi-
nition of the couplings: g0i ¼ g0iðgÞ. We view such a
redefinition as a change of coordinates on the theory space.
Note that schemes like minimal subtraction are not
included straightforwardly in the functional RG equations,
although it is known how to retain the former’s quantities
from the latter; see [7] and references therein. Physical
quantities should not depend on the RG scheme employed.
Hence, in the ERG framework, physical quantities should
be independent from the chosen cutoff function, or,
equivalently, from the specific coordinates employed.
The RG flow is expressed by the beta functions, which

constitute a vector field over the theory space. More
precisely, a RG trajectory is described by the beta functions

βi ¼ dgi

dt
ði ¼ 1;…; NÞ ð1Þ

that enjoy the transformation properties of a vector under a
coordinate change. (We define the “RG-time” t by
t≡− logΛ

μ, whereΛ is the cutoff scale introduced in Sec. III.)
As we already said, physical quantities must be inde-

pendent of the RG scheme used to compute them.
Translated into a geometric language, this means that
physical quantities must be invariant under any change
of coordinates. An example of such a coordinate invariant
quantity is the critical exponents. Let us consider

∂βi
∂gj ¼

∂
∂gj

XN
k¼1

�∂gi
∂g0k β

0k
�

¼
XN
k;l¼1

�∂g0l
∂gj

∂2gi

∂g0l∂g0k β
0k þ ∂g0l

∂gj
∂β0k
∂g0l

∂gi
∂g0k

�
: ð2Þ

It is clear that at a fixed point g� the first term in (2)
vanishes. The critical exponents are defined as the

eigenvalues of the matrix ∂jβ
i at the fixed point. Since

the eigenvalues are independent of the basis used to
compute them, we see that the matrices ∂jβ

i and ∂ 0
jβ

0i

possess the same spectrum and hence yield the same critical
exponents. For later purposes, let us denote the eigende-
composition of the linearized RG flow at the fixed point as
follows:

∂βi
∂gj

����
g¼g�

¼
XN
m;n¼1

Ai
mYm

n ðA−1Þnj ; ð3Þ

where Y is the eigenvalue matrix, and A is the eigenvector

matrix. It is straightforward to check thatAi
j ¼

P
N
k¼1

∂gi
∂g0k A

0k
j .

We note that the coordinate independence of the critical
exponents relies crucially on the vanishing of the inhomo-
geneous term in (2) at the fixed point, so that the matrix of
the linearized RG flow transforms covariantly under a
coordinate transformation at the fixed point. It is clear,
however, that no such simplification occurs when taking
further derivatives of the beta function. To obviate such
difficulties, instead of employing partial derivatives, it is
natural to employ covariant derivatives that allow us to
write down covariant quantities directly. It is the purpose of
this work to show that such a geometric structure, namely, a
connection on the tangent space, can naturally be intro-
duced from the ERG flow equation.

III. A CONNECTION FROM THE ERGE

Let S½ϕ� be a bare action with an ultraviolet (UV) cutoff
incorporated. Following [8], we introduce WΛ½J�, the
generating functional of connected Green functions with
an infrared (IR) cutoff Λ, by

eWΛ½J� ≡
Z

Dϕe−S½ϕ�−ΔSΛþ
R

ddxJϕ; ð4Þ

where

ΔSΛ ¼ 1

2

Z
ddxϕðxÞRΛð−∂2ÞϕðxÞ

is an IR regulator. The kernel RΛð−∂2Þ suppresses the
integration over the modes with momenta lower than the
scale Λ in (4). If we denote the Fourier transform of RΛ by
the same symbol RΛðpÞ, it approaches a positive constant
of order Λ2 as p2 → 0 and vanishes at large momentum.
The Λ-dependence of WΛ, derived in [8], is given by

−Λ
∂WΛ½J�
∂Λ ¼

Z
p
Λ
∂RΛðpÞ
∂Λ

1

2

�
δWΛ½J�
δJð−pÞ

δWΛ½J�
δJðpÞ

þ δ2WΛ½J�
δJð−pÞδJðpÞ

�
: ð5Þ

Here, we wish to consider instead a generalized equation
with a positive anomalous dimension η=2 for the scalar
field [9]:

1Throughout this work the couplings gi are taken to be
dimensionless as all dimensionful quantities have been rescaled
in units of the cutoff.
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−Λ
∂WΛ½J�
∂Λ ¼ η

2

Z
p
JðpÞδWΛ½J�

δJðpÞ þ
Z
p

�
Λ

∂
∂Λ−η

�
RΛðpÞ

·
1

2

�
δWΛ½J�
δJð−pÞ

δWΛ½J�
δJðpÞ þ δ2WΛ½J�

δJð−pÞδJðpÞ
�
: ð6Þ

In the dimensionful convention adopted here, the N param-
eters of the theory, say Giði ¼ 1;…; NÞ, do not run as Λ
changes. To obtain the running parameters of Sec. II, we
introduce ḡiðt;GÞði ¼ 1;…; NÞ as the solution of

∂
∂t ḡ

iðt;GÞ ¼ βiðḡÞ; ð7Þ

satisfying the initial condition

ḡið0;GÞ ¼ Gi: ð8Þ

We then define

gi ≡ ḡi
�
− ln

Λ
μ
;G

�
; ð9Þ

where μ is a reference scale, such that

lim
Λ→∞

gi ¼ gi�; ð10Þ

where g� denotes the fixed point. These g’s are the
parameters discussed in Sec. II, and they parametrize the
theory in the dimensionless convention.
To switch to the dimensionless convention we divide all

physical quantities by appropriate powers of Λ to make
them dimensionless. We define

J̄ðpÞ≡ Λd−2
2 JðpΛÞ ð11Þ

which is a dimensionless field with dimensionless momen-
tum. We then define

WðgÞ½J̄�≡WΛðGÞ½J�; ð12Þ
where g’s are related to G’s via (9). All the Λ-dependence
of the original functional has been incorporated into g’s and
J̄. We wish to emphasize that we consider only theories in
the continuum limit. The Wilson action and the functional
W have an infinite number of terms, but they are related so
that these functionals depend only on a finite number of
couplings. In Appendix C, we give an explicit but pertur-
bative construction of a continuum limit. The continuum
limit in the ERG framework has been discussed in detail
in Ref. [10].
For fixed G’s, we have

−Λ
∂
∂Λ gijG ¼ βiðgÞ; ð13Þ

and for fixed J, (11) gives

−Λ
∂
∂Λ J̄ðpÞjJ ¼

�
d − 2

2
þ p · ∂

�
J̄ðpÞ: ð14Þ

Thus, we obtain

−Λ
∂
∂ΛWΛðGÞ½J�¼

XN
i¼1

βiðgÞ ∂
∂giWðgÞ½J̄�

þ
Z
p

�
d−2

2
þp ·∂

�
J̄ðpÞ δ

δJ̄ðpÞWðgÞ½J̄�:

ð15Þ
Hence, (6) implies that WðgÞ½J̄� obeys the ERG differential
equation

XN
i¼1

βiðgÞ ∂
∂giWðgÞ½J̄�¼

Z
p

�
d−2þη

2
þp ·∂

�
J̄ðpÞ ·δWðgÞ½J̄�

δJ̄ðpÞ þ
Z
p
ð2−η−p ·∂ÞRðpÞ1

2

�
δWðgÞ
δJ̄ðpÞ

δWðgÞ
δJ̄ð−pÞþ

δ2WðgÞ
δJ̄ðpÞδJ̄ð−pÞ

�
;

ð16Þ

where RðpÞ is related to RΛðpÞ of Sec. II by
RΛðpÞ ¼ Λ2Rðp=ΛÞ: ð17Þ

From now on we work only in the dimensionless con-
vention, and we omit the bar above J.
For our purposes, it is useful to think of W as a function

of the couplings,W ¼ WðgÞ, which is a scalar on the theory
space, WðgÞ ¼ W0ðg0Þ. By taking a derivative with respect
to gi, we obtain a zero momentum operator

Oi ≡ ∂WðgÞ
∂gi ð18Þ

that has covariant transformation properties,

Oi ¼
∂g0j
∂gi O

0
j; ð19Þ

where we have adopted the Einstein convention for
repeated indices.
In full analogy we can define the products of the

operators Oi as follows:

½Oi1 � � �Oin �≡ e−WðgÞ ∂
∂gi1 � � �

∂
∂gin e

WðgÞ: ð20Þ
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For the case of ½Oi1Oi2 � we have

½Oi1Oi2 �≡
∂W
∂gi1

∂W
∂gi2 þ

∂2W
∂gi1∂gi2 : ð21Þ

Clearly ½Oi1Oi2 � is not a covariant quantity. This is because
the “connected term”

Pij ≡ ∂2W
∂gi∂gj ð22Þ

is not covariant. Furthermore, ½Oi1Oi2 � is related to the
product of two (zero momentum) operators, and Pij is
related to the short distance singularities of this product.
Thus, one expects Pij to be related to the OPE’s singu-
larities. The precise relation is hindered by the fact that we
are considering zero momentum operators (i.e., operators
integrated over space). (A detailed discussion regarding
½Oi1Oi2 � and Pij in the general case of momentum-
dependent operators can be found in [11].)
Now we consider the flow equation for the operators Oi

and their products. The flow of the operator Oi can be
directly obtained from (16) by taking a derivative with
respect to gi:

∂βk
∂gi Ok þ

�
β ·

∂
∂g

�
Oi ¼ DOi ð23Þ

(please recall the Einstein convention for the repeated k),
where we define

D≡
Z
p

��
d − 2þ η

2
þ p · ∂p

�
JðpÞ · δ

δJðpÞ
þ ð2 − η − p · ∂ÞRðpÞ
·

�
δWðgÞ
δJð−pÞ

δ

δJðpÞ þ
1

2

δ2

δJðpÞδJð−pÞ
��

: ð24Þ

In deriving (23) we assume that the anomalous dimension η
is independent of g’s. This is actually true only near the
fixed point. The extension to a g-dependent anomalous
dimension is given in Appendix A.
By taking a further derivative of the flow Eq. (16) with

respect to gj, we deduce the flow equation for Pij. This can
be written as

∂2βk

∂gi∂gjOkþ
∂βk
∂gjPkiþ

∂βk
∂gi Pkjþ

�
βk

∂
∂gk−D

�
Pij

¼
Z
p
ðð2−ηÞRðp2Þ−p ·∂pRðp2ÞÞ δOi

δJðpÞ
δOj

δJð−pÞ : ð25Þ

It is interesting to observe that the rhs of (25) is covariant
since it is determined by the product of the covariant

operatorsOi andOj. It follows also that the lhs of (25) must
be covariant, too.
In order to investigate the covariance of the lhs of (25),

let us consider the transformation properties of Pij:

P0
ij ¼

∂gk
∂g0i

∂gl
∂g0j Pkl þ

∂2gk

∂g0i∂g0j Ok: ð26Þ

Pij is not covariant. Hence, the product ½OiOj� is not
covariant as was already pointed out. Now we expand Pij

in terms of a basis of composite operators:

Pij ¼
XN
k¼1

Γ k
i jOk þ

X∞
a¼Nþ1

Γ a
i jOa; ð27Þ

where the operators Ok with k ∈ ½1; N� are the relevant
operators conjugate to the couplings gk, whereas the
operators Oa with a ∈ ½N þ 1;∞Þ are irrelevant operators.
By inserting the expansion (27) into (26), we deduce the
transformation properties of the terms appearing in (27).
More precisely, we find that

Γ0
i
k
j ¼

∂g0k
∂gn

∂gl
∂g0i

∂gm
∂g0j Γ

n
lm þ ∂g0k

∂gl
∂2gl

∂g0i∂g0j ; ð28Þ

for ði; j; kÞ ∈ ½1; N� so that Γi
k
j transforms as a connection

in the theory space. Moreover, we deduce that the second
term in (27) transforms as a tensor:

X∞
a¼Nþ1

Γ0
i
a
jO0

a ¼
∂gk
∂g0i

∂gl
∂g0j

X∞
a¼Nþ1

Γ a
k lOa: ð29Þ

Equation (27), together with the transformation properties
(28) and (29), is one of the main results of this section.
Indeed, our findings entail that, by solving the flow
equation, we can determine a connection over theory space
by considering the expansion of Pij in (27). Note also that,
by definition, this connection is torsionless, i.e., symmetric
in the lower indices.
It is now natural to come back to Eq. (25) and consider its

lhs in view of the expansion (27) and the new connection.
To do so, we also expand the rhs of (25):

Z
p
ðð2 − ηÞRðp2Þ − p · ∂pRðp2ÞÞ δOi

δJðpÞ
δOj

δJð−pÞ
¼ dkijOk þ � � � ; ð30Þ

where the dots are contributions involving only irrelevant
composite operators. In the following we focus our
attention solely on the relevant operators Oiði ¼ 1;…; NÞ.
As we have already pointed out, the rhs of (25) is

covariant, and the lhs should be also. By inserting the
expansions (27) and (30) into (25), we find
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�
βl

∂
∂gl Γ

k
i j − Γ l

i j
∂βk
∂gl þ

∂βl
∂gj Γ

k
l i þ

∂βl
∂gi Γ

k
l j þ

∂2βk

∂gi∂gj
�
Ok

¼ dkijOk; ð31Þ

where we have kept only the terms involving relevant
operators in the expansions (27) and (30). The lhs of (31)
can be rewritten in a geometric fashion and, by selecting the
term proportional to Ok, we can write

1

2
ð∇i∇j þ∇j∇iÞβk −

1

2
ðRil

k
j þ Rjl

k
iÞβl ¼ dkij; ð32Þ

where the covariant derivatives are defined as usual as

∇iβ
j ≡ ∂iβ

j þ Γ j
i kβ

k; ð33aÞ

∇i∇jβ
k ≡ ∂ið∇jβ

kÞ − Γ l
i j∇lβ

k þ Γ k
i l∇jβ

l; ð33bÞ

and the curvature is defined by

Ril
k
j ≡ ∂iΓ k

l j − ∂lΓ k
i j þ Γ k

imΓ m
l j − Γ k

lmΓ m
i j : ð34Þ

Equation (32) is one of the main results of this paper. It
shows that the flow equation for Pij can be written in an
inspiring covariant form thanks to the connection defined
by Eq. (27). We also wish to point out that a relation very
similar to our Eq. (32) was derived in a non-ERG context in
[4]. (See also [12].) More details on the derivation of
Eq. (32) are given in Appendix B.
Let us observe that we have constructed the connection

Γ k
i j using the generating functional W. However, it can be

checked that the same steps can be repeated both for the
Wilson action [1,13] and for the effective average action
(EAA) [8,14,15].
Before concluding this section, we wish to show explic-

itly that the curvature defined in (34) is generally nontrivial.
To see this, let us first consider

∂
∂gkPij¼∂k

�XN
l¼1

Γ l
ijOlþ

X∞
a¼Nþ1

Γ a
ijOa

�

¼
XN
l¼1

�
∂kΓ l

ijOlþ
XN
m¼1

Γ l
ijΓm

klOmþ
X∞

a¼Nþ1

Γ l
ijΓa

klOa

�

þ
� X∞

a¼Nþ1

∂kΓa
ijOaþ

X∞
a¼Nþ1

Γa
ij∂kOa

�
: ð35Þ

Moreover, it is convenient to consider the following
expansion:

∂kOa>N ¼
XN
j¼1

Γ j
i aOj þ

X∞
b¼Nþ1

Γ b
i aOb: ð36Þ

From the definition of Pij we deduce

∂iPkj ¼ ∂kPij: ð37Þ

Inserting (35) into (37) and extracting the coefficients of the
relevant operator Ol, we find

�
∂iΓ l

k j þ
XN
m¼1

Γ m
k jΓ l

i m

�
−
�
∂kΓ l

i j þ
XN
m¼1

Γ m
i j Γ l

km

�

¼
X∞

a¼Nþ1

ðΓ a
i jΓ l

k a − Γ a
k jΓ l

i aÞ; ð38Þ

which implies

Rik
l
j ¼

X∞
a¼Nþ1

ðΓ a
i jΓ l

k a − Γ a
k jΓ l

i aÞ: ð39Þ

Equation (39) implies that the curvature is generally non-
zero because there is no reason that the rhs of (39) should
vanish.

IV. A DIFFERENT APPROACH: RIEMANN
NORMAL COORDINATE EXPANSION OF THE

BETA FUNCTIONS

In this section we develop an approach different from the
one considered in Sec. III, where the introduction of the
connection is deeply related to the flow equation and its
solution. Here, we wish to consider solely the theory space
manifold and explore it in a covariant way. As we have
argued in Sec. II, this is important in order to define
physical, i.e., scheme-independent, quantities. We have
already considered the example of the critical exponents.
The critical exponents are calculated by considering linear
perturbations around the fixed point. Nevertheless, infor-
mation is contained also in the higher orders of the
perturbation, although obtaining scheme invariant results
is hindered by the use of a noncovariant expansion.
Therefore, the purpose of this section is to introduce a
covariant expansion around a fixed point.
Before discussing the nature of the covariant expansion

around the fixed point, we remark that in order to define
such an expansion we need a connection to start with. In
Sec. III we have introduced a connection on the theory
space, but this choice is by no means unique. How can we
construct another connection? There is no canonically
defined tensor like the metric and we have only the vector
field defined by the beta function βi. Given such a vector, it
is straightforward to check that

Γi
k
j ≡ ∂gk

∂βl
∂βl

∂gi∂gj ð40Þ

transforms as a connection. [The connection (40) has been
also recently proposed in [5].]
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Let us comment on some features regarding this con-
nection. First of all, the connection (40) is well defined only
when ∂gk

∂βl actually is. For the connection (40) to be defined

then, we need ∂gk
∂βl to be defined. In turn this implies that the

inverse of the matrix ∂iβ
j must exist. This inversion can be

made locally provided that det ∂iβ
j ≠ 0. In our case of

interest, i.e., in the vicinity of a fixed point, requiring
det ∂iβ

j ≠ 0 is tantamount to having no exactly marginal
direction. If an exactly marginal direction is present,
another connection should be considered. Furthermore,
the connection (40) is flat as its curvature vanishes
identically. This is a striking difference from the connection
introduced in Sec. III. We will come back to flat con-
nections in Sec. V.
Let us now assume that we have some connection Γi

k
j

and discuss how to define a covariant expansion for the RG
flow by employing this connection. The RG flow, as
described by the beta function vector field, is a covariant
quantity. In order to keep covariance in an expansion,
however, special care must be taken.
Quite generally, we are given a vector, which we will

later specify to be βi, and we wish to express this vector at
some point of the manifold via a covariant expansion
around a different point, which we will eventually identify
with the fixed point. This reminds us of the Riemann
normal coordinate expansions: given a tensor at some point
P (coordinatized by gi), we can express this latter tensor via
a covariant series expansion defined via tensorial quantities
evaluated at the point Q (coordinatized by gi�, which
eventually will be identified with the fixed point). More
precisely, such an expansion is found by introducing the
Riemann normal coordinates, which we denote ξi. The
coordinates ξi cover a double role: they are a system of
coordinates equivalent to gi and represent a vector at the
pointQ coordinatized by gi�. In the ξ-coordinate system, the
pointQ is represented by ξi ¼ 0. We refer the reader to [16]
for more details.
Applying the Riemann normal coordinate expansion to

the vector βi, we obtain

βiðgÞ ¼ βiðg�Þ þ ξj∇jβ
iðg�Þ þ

1

2
ξjξk∇j∇kβ

iðg�Þ

þ 1

6
Rjk

i
lβ

jðg�Þξkξl þ � � � : ð41Þ

Note that in order to write down the expansion (41) we need
to have a connection that defines the covariant derivative
and the curvature. The same expression holds for any
connection.
Coming back to physical quantities, it is interesting to

consider what information is contained in the second order
expansion of the beta functions. Let the couplings fǧig be
conjugate to scaling operators in coordinate space with
scaling dimensions Δi ¼ D − yi, and denote the OPE

coefficients cjki. Cardy has shown that the beta functions
around the fixed point can be written as [17]

β̌i ¼ yiǧi −
X
j;k

cjkiǧjǧk þOðǧ3Þ; ð42Þ

where the couplings have been rescaled by an angular
integral factor. One then deduces that

1

2

∂
∂ǧj

∂
∂ǧk β̌

i

����
ǧ¼0

¼ −cjki: ð43Þ

It is natural to ask whether one can use a relation like (43) in
the ERG context. In this section we make the first steps in
this direction. [In Appendix C we also consider the con-
nection of the ERGwith the results ofWegner for the higher
order terms in the expansion of the functional WðgÞ.]
As it has also been noted in [6], it is crucial to discuss the

dependence of the OPE coefficients on the RG scheme
employed to compute the running of the couplings. In order
to arrive at a formula involving the scaling fields conjugate
to fǧig, we consider the eigendirections of the linearized
RG flow and identify the relation between the couplings
fǧig and fgig via the matrix A−1 introduced in Eq. (3).
However, if we wish to compute the OPE coefficients via

Eq. (43) in terms of gi-dependent quantities, we see that we
have to consider the second derivative ∂gj∂gkβ

i. More
precisely, one has to consider the following expression:
cjki ∼ Að−1Þi

l∂gm∂gnβ
lAm

j A
n
k . From the transformation prop-

erties of A and β it is straightforward to check that the so
defined cjki is invariant under coordinate transformations
up to an additive term due to the fact that ∂gm∂gnβ

l does not
transform as a tensor (see also [6]).
To obviate this fact one may consider the covariant

version of ∂gj∂gkβ
i, where the partial derivatives have been

promoted to covariant derivatives:∇gm∇gnβ
l. It is clear then

that the expression Að−1Þi
l∇gm∇gnβ

lAm
j A

n
k is invariant under

a change of scheme and thus it is a physical candidate to be
considered. The purpose of the geometric expansion (41) is
exactly to probe the vicinity of the fixed point in a covariant
fashion, and it provides a natural introduction for the
covariant expression ∇gm∇gnβ

l. Critical exponents are
found by looking at the linear perturbation around the
fixed point, which corresponds to the first term in (41),
where ξ corresponds to the perturbation. The second term
in (41) now contains the information regarding the second
order perturbation around the fixed point in a covariant
manner.
We conclude this section by stressing that the covariant

expansion (41) can be used in the ERG context to define
further physical quantities besides the critical exponents, such
as the Wilson operator product coefficients. Nevertheless,
employing different connections selects different quantities,
and it is not straightforward to deduce their meaning.
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However, the discussion of the previous section and its
connection with the previous works in the literature, e.g.
[12], suggest that OPE coefficients are found by employing
the connection of Sec. III.

V. THE INFINITE-DIMENSIONAL
THEORY SPACE

So farwe have taken the theory space to beN dimensional,
with N being the number of relevant directions. This is
possible solely for renormalizable trajectories, that is, the-
ories whose continuum limit is well defined. However, the
ERG framework can be employed to test the theory space
with its fullest content, i.e., taking into account also the
infinitely many irrelevant directions. The aim of this section
is to discuss how the machinery developed until now is
modified when considering this more general theory space.
In actual applications of the ERG, the need for an ansatz

or some truncation scheme generally requires us to consider
a finite-dimensional approximation of the theory space,
which is then parametrized by n couplings with N relevant
and n − N irrelevant directions. For the purposes of this
section, let us consider n fixed and eventually take the
formal limit n → ∞.
The definition of the connection (40) can be straight-

forwardly extended by truncating the theory space to
include the n − N irrelevant directions. In a typical ERG
computation, where an ansatz SΛ ¼ P

n
i¼1 g

iOi is consid-
ered, we have n coordinates and beta functions, and a
connection may be considered.
Let us go back to the framework developed in Sec. III

and adapt it to the present n-dimensional space. The
expansion (27) of Pij is no longer split in relevant and
irrelevant parts, but we include all the operators in a single
sum (possibly truncated, retaining only n operators).
Extending the range of indices of the connection is not
as innocuous as it may seem. Indeed, by repeating the
reasoning at the end of Sec. III stemming from the relation
∂kPij ¼ ∂iPkj we see that now the curvature identically
vanishes. This is due to the inclusion of the rhs of (38) in
the definition of the curvature.
Is there any obvious reason for this fact? Let us

consider that we can view the theory space as a space
of functionals, i.e., the Wilsonian actions SΛ, and that
there is a priori no need for this space to be flat.
However, if we assume that such functionals can be
expanded in couplings as SΛ ¼ P

ig
iOi, where the Oi are

independent of gi, we can check that this space enjoys
the properties of a vector space, e.g., distributivityP

ig
iOi þ

P
i ~g

iOi ¼
P

iðgi þ ~giÞOi. Any n-dimensional
vector space is isomorphic to Rn, which is a flat space.
Thus, in this sense, it is appealing to consider the theory
space as a flat manifold.
This is a striking difference from the “continuum

theories subspace” considered in Sec. III. However, this

is not a contradiction. Actually, even if the full theory space
were flat, it would be generally possible to have a curved
subspace expressed in the intrinsic coordinates provided by
the relevant couplings gi with i ¼ 1;…; N.
In the “continuum theories subspace” one could possibly

consider nontrivial topological invariants. For instance, for
a subspace of dimension N ¼ 2p one could consider the
Euler invariant

E2p ¼ ð−1Þp
22pπpp!

Z
ϵi1���i2pR

i1i2 ∧ � � � ∧ Ri2p−1i2p ; ð44Þ

which is defined via the exterior product of p curvature
two-forms R defined in (34). It is not clear, though, if the
above E2p could be of any practical interest.

VI. CONCLUSIONS

In this work we have put forward a geometric viewpoint
on the theory space inspired by the ERG flow equation.
While viewing the theory space as a manifold, we have
introduced further geometric structures. In particular we
have shown it possible to define connections over the
theory space. The theory space has been, for most of this
work, restricted to the space where the continuum limit of
the field theory is well defined.
Remarkably, we have been able to define explicitly two

connections. One stems from the expansion of Pij in
composite operators Ok; see Eqs. (27) and (28). The other
exploits the transformation properties of the beta functions;
see Eq. (40). In Sec. III we have also shown that the ERG
equation associated with the expansion (27) can be written
in a manifestly covariant way.
In Sec. IV we have discussed a different geometric

view on the RG flow. Namely, we have looked at the RG
flow around the fixed point via a covariant expansion by
employing the Riemann normal coordinates. Furthermore,
we have emphasized that our geometric framework allows
us to possibly define further physical quantities directly
from the RG flow. In this case, physical quantities are
identified as scheme-independent quantities, such as the
critical exponents.
In Sec. V we have considered the full (infinite-

dimensional) theory space. We have noted that the full
theory space is actually flat and that one may view the
“renormalizable theories subspace” as a curved submani-
fold embedded in the full (flat) theory space.
Concluding this paper, we would like to remark that the

geometric understanding of the theory space, introduced
here, could be helpful in defining in a suitable manner
further physical quantities, such as the operator product
expansion coefficients, on top of the critical exponents. In
the future, we hope to be able to come back to the
formalism developed in this work and compute explicitly
some of the quantities that we have introduced, like the
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connection Γi
k
j and the associated curvature, in some

approximation scheme (e.g., epsilon or 1=N expansion).

APPENDIX A: INCLUSION OF THE
ANOMALOUS DIMENSION

In Sec. III we derived the geometric relation (32) while
neglecting the coupling dependence of the anomalous

dimension. Here we generalize Eq. (32) by including such
dependence.
The anomalous dimension η ¼ ηðgÞ is a scalar under

coordinate transformations. It follows that a derivative
∂iη ¼ ∇iη is a covariant quantity, whereas a second
derivative is not. By taking a derivative with respect to
gj of (16) we obtain

∂βi
∂gj Oi þ

�
β ·

∂
∂g

�
Oj ¼ DOj þ

Z
p

1

2

∂η
∂gj JðpÞ

δW
JðpÞ þ

1

2

Z
p

�
−

∂η
∂gj Rðp

2Þ
��

δW
δJðpÞ

δW
δJð−pÞ þ

δ2W
δJðpÞδJð−pÞ

�
; ðA1Þ

which is equivalent to Eq. (23) when η is a constant. Equation (A1) can be written in a more geometric fashion as follows:

∇jβ
iOi þ βi∇iOj ¼ DOj þ∇jη

Z
p

1

2
JðpÞ δW

JðpÞ −
1

2
∇jη

Z
p
Rðp2Þ

�
δW

δJðpÞ
δW

δJð−pÞ þ
δ2W

δJðpÞδJð−pÞ
�
;

where we used the fact that the connection is symmetric.
By differentiating once again with respect to gi we obtain

β ·
∂
∂gPij −

∂βk
∂gj Pki þ

∂βk
∂gi Pkj þ

∂βk
∂gi∂gj Ok ¼ rhs ðA2Þ

where

rhs ¼ DPij þ
Z
p
ðð2 − ηÞRðp2Þ − p · ∂pRðp2ÞÞ δOi

δJðpÞ
δOj

δJð−pÞ

þ 1

2

∂η
∂gi

Z
p
JðpÞ δ

δJðpÞ
∂W
∂gj þ

1

2

∂η
∂gj

Z
p
JðpÞ δ

δJðpÞ
∂W
∂gi þ

1

2

∂2η

∂gi∂gj
Z
p
JðpÞ δW

δJðpÞ

−
∂2η

∂gi∂gj
Z
p
Rðp2Þ

�
1

2

δW
δJðpÞ

δW
δJð−pÞ þ

1

2

δ2W
δJðpÞδJð−pÞ

�

−
∂η
∂gj

Z
p
Rðp2Þ

�
δW

δJð−pÞ
δOi

δJðpÞ þ
1

2

δ2Oi

δJðpÞδJð−pÞ
�
−

∂η
∂gi

Z
p
Rðp2Þ

�
δW

δJð−pÞ
δOj

δJðpÞ þ
1

2

δ2Oj

δJðpÞδJð−pÞ
�
:

Following the same steps as in Sec. III, using Eq. (A2), and dropping terms coming from irrelevant operators, we can rewrite
(A2) as follows:

�
1

2
ð∇i∇j þ∇j∇iÞβk −

1

2
ðRil

k
j þ Rjl

k
iÞβl

�
Ok

¼ dkijOk þ
1

2
∇iη

Z
p
JðpÞ δ

δJðpÞ
∂W
∂gj þ

1

2
∇jη

Z
p
JðpÞ δ

δJðpÞ
∂W
∂gi þ

1

2
∇i∇jη

Z
p
JðpÞ δW

δJðpÞ

−∇i∇jη

Z
p
Rðp2Þ

�
1

2

δW
δJðpÞ

δW
δJð−pÞ þ

1

2

δ2W
δJðpÞδJð−pÞ

�
−∇jη

Z
p
Rðp2Þ

�
δW

δJð−pÞ
δOi

δJðpÞ þ
1

2

δ2Oi

δJðpÞδJð−pÞ
�

−∇iη

Z
p
Rðp2Þ

�
δW

δJð−pÞ
δOj

δJðpÞ þ
1

2

δ2Oj

δJðpÞδJð−pÞ
�
: ðA3Þ

The first line in (A3) corresponds to (32) for the case of constant η. As in the case of Eq. (30), the η-dependent lines in (A3)
can be expanded in the Ok basis, retaining only the relevant operators.
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APPENDIX B: THE ROLE OF IRRELEVANT
OPERATORS IN (32)

In deriving Eq. (32) we truncated the expansion (27) for
Pij by retaining only the relevant operators. One may
wonder if any effect is to be expected from the irrelevant
operators, since the RG flow of irrelevant operators mixes
in general with relevant ones. In this appendix we discuss
this point in detail.
Let us first introduce irrelevant composite operators.

From the transformation property (29) we deduce that
an irrelevant operator is a scalar quantity labeled by an
index a ∈ ½N þ 1;∞Þ. Such index then cannot be traced
back to a coordinate index; rather it can be thought
of as an “internal index.” For this reason, in this
section we shall denote the composite operators via
greek indices μ ¼ a ∈ ½N þ 1;∞Þ. Adopting this nota-
tion we can write the coordinate transformation prop-
erty (29) as

Γ0
i
μ
jO0

μ ¼
∂gk
∂g0i

∂gl
∂g0j Γ

μ
k lOμ; ðB1Þ

where the sum over μ is intended. An operator Oμ

transforms as a scalar, and Γ μ
i j transforms as a tensor in

the two lower indices. Furthermore, an operator Oμ

satisfies the following ERG equation:

�
β ·

∂
∂g −D

�
Oμ þ yμOμ ¼ Mμ

iOi þMμ
νOν; ðB2Þ

where we split the mixing into relevant and irrelevant
operators in the rhs. From the transformation properties
of Oi and Oμ, we deduce that the matrix Mμ

i transforms
as a vector. Moreover, at the fixed point, the ERG
Eq. (B2) reduces to

ðyμ −DÞOμ ¼ 0; ðB3Þ

where −yμ ≥ 0 is the scaling dimension of Oμ in
momentum space.
Employing the notation introduced so far, we can rewrite

the expansion (27) as follows:

Pij ¼ Γ k
i jOk þ Γ μ

i jOμ: ðB4Þ

Then, plugging the expansion (B4) into (25), it is straight-
forward to check that a new term appears in (32). Such a
term arises due to the following contribution:

�
βk

∂
∂gk −D

�
Pij ⊃ Γ μ

i j

�
βk

∂
∂gk −D

�
Oμ

¼ Γ μ
i jð−yμOμ þMμ

kOk þMμ
νOνÞ:

Thus we see that also a term proportional to the relevant
operator Ok is generated and that Eq. (32) is generalized to

1

2
ð∇i∇j þ∇j∇iÞβk −

1

2
ðRil

k
j þ Rjl

k
iÞβl þ Γ μ

i jMμ
k ¼ dkij;

ðB5Þ

where the last term on the lhs transforms also as a tensor.
Note that at a fixed point Eq. (B5) reads

1

2
ð∇i∇j þ∇j∇iÞβkjFP ¼ dkijjFP;

since the last term in (B5) does not contribute to the fixed
point formula.
Now let us discuss in more detail the presence of the

term Γ μ
i jMμ

k in (B5). In particular, we wish to make two
observations which reveal that Γ μ

i jMμ
k constitutes a sub-

leading contribution to (B5).
The first observation is based on an explicit estimate of

the cutoff dependence in the dimensionful convention. A
careful analysis, based on the choice of coordinates found
in [18,19], shows that the contribution due to the irrelevant
operators in (B4) is subleading in the large Λ limit. More
precisely, denoting yO ≡ d − ΔO, where ΔO is the scaling
dimension of an operator OðxÞ, the leading contributions
scale like Λyk−yi−yj . For yk > yi þ yj, this leads to a
singular behavior that can be put in correspondence with
the nonintegrable short distance singularities in the OPE
via dimensional analysis arguments. The term Γ μ

i jMμ
k

does not contribute to the singular behavior and can be
dropped in (B5) when considering nonintegrable short
distance singularities as it scales like Λðyμ−yi−yjÞ<0. This
observation makes evident a link with some previous
works in the literature (see in particular [3,20–22]), where
the nonintegrable short distance singularities are consid-
ered, and a geometric formula fully analogous to (32) is
derived.
As a second observation, we note that in order to write

down (B5) a certain basis of irrelevant operators has
been selected. If we limit ourselves to consider non-
integrable short distance singularities, i.e., scaling dimen-
sions such that yk > yi þ yj, then the term Γ μ

i jMμ
k is

dismissed. Hence this truncation has the nice feature of
being independent of the convention chosen for the
irrelevant operators.

APPENDIX C: CARDY’S FORMULA

Let us consider a generic fixed point with N relevant
directions. Following [23] we construct the Wilson action
perturbatively around the fixed point. Let us denote the
relevant parameters with scale dimension yi > 0 by
giði ¼ 1;…; NÞ. The generating functional WðgÞ with an
IR cutoff is determined by
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XN
i¼1

βiðgÞ ∂
∂gi e

WðgÞ½J� ¼
Z
p

��
p ·∂pþ

D−2

2
þ γ

�
JðpÞ · δ

δJðpÞþð−p ·∂pþ2−2γÞRðpÞ ·1
2

δ2

δJðpÞδJð−pÞ
�
eWðgÞ½J�: ðC1Þ

Denoting the fixed point functional W� ¼ Wðg ¼ 0Þ, we rewrite this in a form more convenient for perturbative
calculations:

XN
i¼1

βiðgÞ ∂
∂gi e

WðgÞ−W� ¼
Z
p

��
p · ∂p þ

D − 2

2
þ γ

�
JðpÞ δ

δJðpÞ

þ ð−p · ∂p þ 2 − 2γÞRðpÞ ·
�
δW�½J�
δJð−pÞ

δ

δJðpÞ þ
1

2

δ2

δJðpÞδJð−pÞ
��

eWðgÞ−W�
: ðC2Þ

We assume a constant anomalous dimension γ for sim-
plicity. We wish to solve this perturbatively by expanding
the functional as

WðgÞ ¼ W� þ
XN
i¼1

giWi þ
XN
i;j¼1

1

2
gigjWij

þ
XN
i;j;k¼1

1

3!
gigjgkWijk þ � � � ðC3aÞ

and the beta functions as

βiðgÞ ¼ yigi þ
1

2

XN
j;k¼1

βijkg
jgk þ 1

3!

XN
j;k;l¼1

βijklg
jgkgl þ � � � :

ðC3bÞ
We can regard gi as the coefficient of an external source

with zero momentum. Hence,

Oi1;…;in ¼ e−W
� ∂n

∂gi1∂gi2 � � � ∂gin e
WðgÞjg¼0 ðC4Þ

is the nth order product of composite operators Wi ¼
∂
∂gi WðgÞjg¼0 with zero momentum. We obtain, up to third

order,

Oi ¼ Wi; ðC5aÞ

Oij ¼ ½OiOj� ¼ OiOj þWij; ðC5bÞ

Oijk ¼ ½OiOjOk� ¼ OiOjOk þWijOk þWikOj

þWjkOi þWijk: ðC5cÞ

Oi1;…;in satisfies the ERG equation

�
−
Xn
j¼1

yij þD
�
Oi1���in ¼

XN
j¼1

� X
1≤α<β≤n

βjiαiβOji1���biα���biβ ���in þ
X

1≤α1<α2<α3≤n
βjiα1 iα2 iα3

O
ji1���biα1 ���biα2 ���biα3 ���in þ���þβj;i1���inOj

�
; ðC6Þ

where D is the functional differential operator defined by
the right-hand side of (C2). We have thus shown that the
higher order derivatives of the beta functions give mixing of
the operator products.
We only consider the first two cases: n ¼ 1, 2. Taking

n ¼ 1 in (C6), we obtain

ðyi −DÞWi ¼ 0; ði ¼ 1;…; NÞ; ðC7Þ
implying that Wi is a composite operator of scale
dimension −yi. (This was actually taken for granted.)
Taking n ¼ 2 in (C6), we obtain

ðyjþyk−DÞWjk¼−
XN
i¼1

Wiβ
i
jkþ

Z
p
ð−p ·∂pþ2−2γÞRðpÞ

·
δWj

δJðpÞ
δWk

δJð−pÞ: ðC8Þ

The integral is local, and we can expand

Z
p
ð−p · ∂p þ 2 − 2γÞRðpÞ · δWj

δJðpÞ
δWk

δJð−pÞ ¼
X∞
i¼1

dijkOi;

ðC9Þ

where Oi ¼ Wiði ¼ 1;…; NÞ, and Oi>N are irrelevant
operators of scale dimension −yi ≥ 0. Hence, we obtain

ðyjþyk−DÞWjk ¼
XN
i¼1

Wiðdijk−βijkÞþ
X
i>N

dijkOi: ðC10Þ

In the absence of degeneracy, i.e.,

yj þ yk ≠ yi ðC11Þ
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for any i; j; k ≤ N, we can choose

βijk ¼ 0 ðC12Þ

so that

Wjk ¼
X∞
i¼1

dijk
yj þ yk − yi

Oi: ðC13Þ

Hence, the beta functions are linear up to second order. This
is expected from the old result of Wegner [23]. (In the
absence of degeneracy, the parameters can be chosen to
satisfy linear RG equations.)
Alternatively, we can demand Wjk be free of

Wiði ¼ 1;…; NÞ. We must then choose

βijk ¼ dijk: ðC14Þ

We obtain

Wjk ¼
X
i>N

dijk
yj þ yk − yi

Oi ðj; k ¼ 1;…; NÞ: ðC15Þ

Let g0iði ¼ 1;…; NÞ be the choice of parameters for this
alternative convention. These are related to g’s satisfying
(C12) as

g0i ¼ gi þ 1

2

XN
j;k¼1

dijk
yj þ yk − yi

gjgk

to order g2. (C14) is a relationverymuch likewhat Cardy has
obtained using UV regularization in coordinate space [17].
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