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I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both
the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the
deformed phase space requires the machinery of “quasi-Hamiltonian spaces” by Alekseev et al., which is
reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-
duality properties of which are largely enhanced in (3þ 1) spacetime dimensions. This enhancement is due
to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a
Riemann surface defined from the lattice itself, which in turn equips the duality between electric and
magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space
manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the
phase space, its quantum gravitational interpretation, as well as its relevance for the construction of
(3þ 1)-dimensional topological field theories with defects.
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I. INTRODUCTION

The nonperturbative study of Yang-Mills theories and
quantum gravity often appeals to a latticelike regularization.
One feature of this type of regularization is that of spoiling
the symmetry between the electric and magnetic compo-
nents of the field strength tensor. In fact, on the lattice,
magnetic fluxes are encoded in Lie group variables, whereas
electric fluxes are encoded in Lie-algebra variables. This
distinction is particularly relevant since the first live in a
curved compact space, while the latter live in a noncompact
linear space. Quantum mechanically, this leads to non-
commutative electric flux operators—even at the gauge-
covariant level—with a discrete spectrum, while magnetic
flux operators keep enjoying a continuum spectrum and
commute among themselves.
In this paper, I show how to construct a self-dual

deformation of the (classical) Yang-Mills lattice phase
space, with both electric and magnetic degrees of freedom
encoded in compact Lie group variables. Now, while
T�G ≅ G × LieðGÞ�, with G a (compact semisimple) Lie
group, possesses a canonical symplectic structure coincid-
ing with that of Yang-Mills theory restricted to an edge of
the lattice, the space G ×G generally does not admit any
symplectic structure at all. This is the main difficulty in the

path to a self-dual phase space. To solve it, I turn to the
mathematical framework of “quasi-Hamiltonian spaces.”
This framework was developed in the late 1990s mostly

by Alekseev et al. [1–4]. Their principal motivation was to
provide a finite-dimensional construction of the symplectic
structure on the moduli space of flat connection on a
Riemann surface [1,5–8], hence generalizing the work of
Fock and Rosly [9] to the compact group case. In the
process, they solved the more abstract problem of con-
structing a complete and satisfactory theory of group-
valued momentum maps. Their work furthermore connects
to a line of research seeking the “classical” analog of the
quantum group structures of Drinfeld [10].
While these problems are tied to the rich and fruitful

interplay between low-dimensional topology and gauge
theories, some of the results can be brought to fruition in
higher dimensions, too. Indeed, one of the auxiliary con-
structions of Alekseev et al. is that of a quasi-Hamiltonian
structure on the “double”DðGÞ ≅ G ×G, which generalizes
the canonical symplectic structure on T�G. The starting point
of this paper is simply that of employing such a structure to
build the self-dual deformation of the phase space of lattice
Yang-Mills theory advocated above. One important feature
of this construction is its nonlocality: the building blocks
associated to the edges of Γ are quasi-Hamiltonian spaces
which do not carry an actual symplectic structure. The final
gauge-invariant phase space—obtained via a reduction by
the deformed Gauss constraints—is, instead, a full-fledged
symplectic space.
In (3þ 1) spacetime dimensions, the self-dual structures

of the deformed phase space are enhanced by an intimate
interplay between symplectic geometry and topology. This
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enhancement spurs from the isomorphism between the
deformed phase space on a lattice Γ and the moduli space of
an auxiliary flat connection on the Riemann surface SΓ
bounding a tubular neighborhood HΓ of the lattice.1

Furthermore,when interpreted in the light of loopquantum
gravity—it is in this context that many of the ideas presented
in this paper first appeared [14–16]—another layer is added to
the interplay betweendual structures.A4-valent latticeΓ dual
to a triangulationΔ of a three-dimensional Cauchy surface Σ
turns out to encode the geometry of a homogeneously curved
tetrahedra, in which dihedral angles and edge lengths play
dual roles. The appearance of homogeneously curved
(twisted) geometries can be explicitly related to a nonvanish-
ing cosmological constant [14–16]. Moreover, another
appealing feature of the loop gravitational interpretation is
the fact that the quite natural Fenchel-Nielsen coordinates on
the reduced phase space have a clear geometrical signifi-
cance, too [17,18] (see also Refs. [19,20]). Notice, also, that
similar ideas, mostly relying on the Fock-Rosly construction,
have been largely studied in (2þ 1)-dimensional loop
quantum gravity [21–27] (see also Refs. [28,29]).
For what concerns the quantization of the deformed phase

space, from its compactness, one can immediately deduce
that the ensuing Hilbert space is finite dimensional and all
the operators must hence be bounded—a fact particularly
appealing from the quantum gravitational perspective [14–
16] (see also Refs. [30–32]). Although I do not attempt a
rigorous quantization of the deformed phase space in this
paper, it is clear from the previous discussion that a tight
relationshipwith quantum groups is present. In particular, in
(3þ 1) dimensions, the connection with Chern-Simons
theory and the moduli space of flat connection on SΓ proves
that a quantization of this phase space has already been
constructed byDittrich [20],whosemotivationwas rooted in
the study of four-dimensional topological quantum field
theories with defects [33–36].2 The present work sheds
further light on her construction, providing its classical limit
and more evidence for its connection with the Crane-Yetter
model [37,38] (see also Refs. [14,39] in relationship with
this connection). It also suggests new and more geometrical
ways to couple her model to lower-dimensional defects, a
compelling fact from the viewpoint of extended topological
field theories.
The paper is organized as follows. In Sec. II, I give an

overview of the technical content of the paper. This is meant
to serve as a road map (and summary) of the many technical
issues touched upon in the following sections. This section is

not required for following the rest of the paper, since all
notationwill be reintroduced at due time. Section III iswhere
the paper actually starts. It reviews the formal construction
of the phase space of lattice Yang-Mills theory, hence
preparing the terrain for the subsequent deformation pre-
sented in Sec. IV. Reviewing the work of Ref. [1], this
section is mostly technical. It contains, however, somemore
general comments about the structure of the double and its
decomposition on holonomy and flux space, which I believe
to be of more general interest (Sec. IV B). Then, in Sec. V, I
briefly collect some remarks on the notion of self-duality
which emerged so far. This serves as a motivation for
Sec. VI, which discusses the enhanced duality found in
(3þ 1) dimensions. This section is divided in three parts:
in the first part, I present the main ideas and features, mostly
in a discursive way; in the second part, I discuss two basic
examples quite explicitly; and, finally, in the third part, I give
a proof—adapted from Ref. [1]—of the statement that the
deformed (reduced) phase space of latticeYang-Mills theory
on Γ is naturally isomorphic to the moduli space of an
auxiliary flat G-connection on SΓ. This third part contains
many technical details and is not necessary to follow the rest
of the discourse. The remaining three sections are again
largely discursive and explore in a preliminary way the
consequences of the duality structure of the deformed
(3þ 1)-dimensional phase space for the concepts of polari-
zation, excitations, and defects (Sec. VII); for quantization
(Sec. VIII); and for quantum gravity with a cosmological
constant (Sec. IX). Section X contains some closing
remarks. Finally, there are three short Appendixes. The first
two regard the relation between the (quasi)symplectic and
(quasi-)Poisson frameworks,AppendixesA andB,while the
last one discusses the relation between the Poisson (non)
commutativity of the holonomies in the quasi-Poisson
framework with the failure of the Jacobi identity.

II. OVERVIEW

In this section, I briefly and schematically overview the
construction advocated in the paper.
The first step is to regularize the phase space of Yang-

Mills theory through the introduction of a graph Γ ⊂ Σ,
dual to a cellular discretization of Σ, so that its edges carry
holonomies and (electric) flux variables. This construction,
however, leads to an asymmetric treatment of the magnetic
and electric fields: electric degrees of freedom are encoded
into Lie-algebra elements, while magnetic ones are
encoded into Lie-group elements. To restore the symmetry
at the discrete level, I advocated a deformation of the phase
space by a replacement of the Lie-algebra-valued electric
fluxes, with Lie-group-valued electric fluxes,

ðhe; XeÞ ∈ ðG ⋉Ad gÞe ≅ ðT�GÞe
⇝ ðhe; geÞ ∈ ðGh ⋉AD GfÞe ≅ DeðGÞ; ð2:1Þ

1A deformation of Hamiltonian Yang-Mills theory similar in
spirit to the present one, as well as its relation to the moduli space
of flat connection on a Riemann surface, was proposed and
studied by Frolov in the 1990s [11–13]. For more on the
analogies and differences between the two approaches, see the
Note Added at the end of this paper.

2For further connections with the subject of topological phases
of matter, see Ref. [20] and references therein.
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whereDðGÞ is the double ofG and AD is the action ofG on
itself by conjugation. I referred to this procedure as flux
exponentiation; see Fig. 1.
Aiming for a local construction of the phase space of

Yang-Mills theory on Γ, this idea soon encounters a
stumbling block. The issue is that, while T�G carries a
canonical symplectic structure, DðGÞ generally cannot
carry any symplectic structure at all. Following Ref. [1],
I temporarily put this issue aside and rather focused on the
symmetry properties of the phase space.
Yang-Mills theory, regularized on Γ in terms of holon-

omy-flux variables as above, still supports residual gauge
symmetries at the vertices v ∈ Γ. These symmetries are

ðh; XÞ↦ ðg−1t hgs;AdgsXÞ⇝ ðh; gÞ↦ ðg−1t hgs;ADgsgÞ:
ð2:2Þ

At the level of a single edge e ∈ Γ, these symmetries are
generated by the electric fluxes

Xe and ~Xe ¼ −AdheXe ⇝ ge and ~ge ¼ ADheg
−1
e ;

ð2:3Þ
at the source and target vertices of e, respectively.
In the undeformed case, this means that an infinitesimal

gauge transformation Y ∈ g at the source vertex sðeÞ is
generated by the Hamiltonian function

HY ¼ YiXi ¼ hμ; Yi with μðh; XÞ ¼ Xiτi; ð2:4Þ
where the undeformed momentum map was introduced,

μ∶ ðT�GÞ → g; ðh; XÞ↦ X; ð2:5Þ
as a projection on the flux component of the phase space.
[Similarly, there is a momentum map ~μðh; XÞ ¼ ~X asso-
ciated to gauge transformations at the target vertex of e.]
Denoting Y♯ the flow of the gauge transformation Y in

T�G, one has

Y♯ ¼ fHY; ·g iff Y♯ ⌟ ω ¼ dHY ¼ hdμ; Yi; ð2:6Þ
where the symplecitc form on T�G ≅ G × g is

ωðh; XÞ ¼ −dhX; θLh i ¼ hθLh ;∧dXi þ
1

2
hadXθLh ; ;∧θLh i; ð2:7Þ

where θLh ¼ h−1dh and θRh ¼ dhh−1.
Observing that at lowest order in the expansion

g ≈ 1þ X þ � � � ,

θRg ≈ dX ≈ θLg ; ð2:8Þ

the following generalizations were proposed [1]:

ωðh; XÞ ¼ −dhX; θLh i ⇝ ωðh; gÞ

¼
�
θLh ;

∧ 1
2
ðθLg þ θRg Þ

�
þ 1

2
hAdgθLh ; ;∧θLh i ð2:9Þ

Y♯ ⌟ ω ¼ hdμ; Yi ⇝ Y♯ ⌟ ω ¼
�
1

2
ðθLμ þ θRμ Þ; Y

�
: ð2:10Þ

The 2-form ω onDðGÞ is, however, not symplecitc, since it
is neither nondegenerate nor closed,

kerωðh;gÞ ¼ fv ¼ Y♯ for some Y ∈ kerðAdμðh;gÞ þ 1Þg
⊂ X1ðDÞ ð2:11Þ

dω ¼ χμ: ð2:12Þ

For these reasons, I referred to ω in the deformed case as a
“quasisymplectic” 2-form. The fact that ω is not closed
can be interpreted as a violation of the Jacobi identity. As
discussed at the end of Appendix B, one physical infor-
mation contained in the violation of the Jacobi identity is
that the holonomy variables do not Poisson commute with
one another. This fact is a consequence of the curvature of
the flux space, which—after the deformation g ⇝ G—fails
to be a linear space.
To build the phase space associated to the whole

graph Γ, one needs to stitch together multiple copies of
T�G ⇝ DðGÞ. On the deformed side, difficulties arise
when one is required to make sense of the “total” generator
of the gauge transformation at each vertex. Total here
means that the gauge transformation so generated acts in
the same way (diagonally) on the end points of all the
edges that end (or start) at the given vertex. The starting
point is the requirement that the total momentum map—
representing the (deformed) Gauss constraint at v ∈ Γ—is
deformed by

μv ¼
X

e∶v∈∂e
μe ⇝ μv ¼

Y
e∶v∈∂e

 ���
μe ð2:13Þ

(here, the assumption was made that the vertex v is the
source of all e such that v ∈ ∂e). It is clear, however,
that the (cyclical) order of the factors is crucial on the
deformed side. Moreover, since θLg2g1 ≠ θLg2 þ θLg1 , the total

FIG. 1. A representation—within a single copy of G—of the
flux exponentiation and the ensuing relation between the a-b
and holonomy-flux decompositions of the double DðGÞ, i.e.,
DðGÞ ¼ Ga ×Gb ≅ Gh ⋉ Gf .
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quasisymplectic two-forms cannot be simply
P

eωe as in
the underformed case; otherwise, Eq. (2.10) would not be
satisfied for the total gauge transformation described by the
above momentum map.
Consequently, the total phase space associated to Γ has

to be built step by step by fusing together one edge after the
other, taking care of the ordering of this fusion product and
appropriately twisting the corresponding total quasisym-
plectic form.
Finally, once the total, gauge- covariant phase space has

been constructed, one can ask how to reduce it to obtain a
gauge- invariant phase space:

PΓ ¼ ðT�GÞ×E==G×V ⇝ PSD
Γ ¼ DðGÞ×E==G×V: ð2:14Þ

The reduction procedure is completely analogous in the
two cases and interestingly leads in both cases to an actual
symplectic phase space structure on the space of gauge
orbits within the constraint surface kerðμÞ. Intuitively, this
can be traced back to the fact that all the anomalies related
to the deformed case depend on the momentum map μ [see
the rhs of Eqs. (2.11) and (2.12)], whereas at the reduced
level, all symmetries have been “taken care of,” and no
momentum map is left to source such anomalies (in other
words, a quasisymplectic space with trivial group-valued
momentum map is symplectic).
The above construction takes a special meaning in

(3þ 1) spacetime dimensions. In this case, the group
elements ðh; gÞ can be interpreted as the longitudinal
and transverse parallel transports associated to an auxiliary
(Poisson noncommutative) G-connection A along the
boundary of the thickened edges e ∈ Γ; see Fig. 5. More
specifically, the above phase space is isomorphic to the
(Atyiah-Bott) moduli space of flat connection on the
surface SΓ obtained by thickening Γ itself:

PSD
Γ ≅ MflatðSΓ; GÞ: ð2:15Þ

Since SΓ is the Heegaard surface associated to the Heegaard
splitting induced by the cellular decomposition Δ, it turns

out that the face holonomies, hf ¼
Y �

e∶e∈∂fh
ϵ
e, and the

exponentiated fluxes, ge, play perfectly symmetric roles.
This symmetry originates in the symmetric roles played
by the two handle bodies HΓ and HΓ� constituting the
Heegaard decomposition of Σ,

Σ ≅ HΓ ∪SΓ HΓ� where ∂HΓ ≅ SΓ ≅ ∂Hop
Γ� ; ð2:16Þ

induced by the cellular decomposition Δ; see Fig. 3. In
particular, the Gauss constraint and the discrete Bianchi
identities (i.e., the divergencelessness of the electric and
magnetic fields in the absence of electric sources) acquire
perfectly dual geometrical interpretations, since both are
related to the topological contractibility of some paths on

SΓ around the vertices of Δ or Δ� ≅ Γ, respectively
(see Fig. 4).
Therefore, in (3þ 1) dimensions, three notions of sym-

metry and duality mirror each other in a mutual interplay: the
symmetry between the Yang-Mills electric and magnetic
fields, the symplectogeometric symmetry between position
and momentum space (sometimes referred to as “Born
reciprocity,” from Ref. [40]), and the symmetry between
the graph Γ and its dual enhanced to the symmetry between
the two handle bodies in a Heegaard decomposition of the
Caucy surface Σ ≅ HΓ ∪SΓ HΓ� .
If one further specialized to (3þ 1) loop quantum

gravity and curved (twisted) geometries, another element
would be integrated in the above picture: the reduced phase
space attached to a 4-valent vertex of Γ can be interpreted as
the space of shapes of homogeneously curved tetrahedra,
for which the above symmetries take the form of a duality
between the edge length and the dihedral angles.

III. CLASSICAL SPIN-NETWORK
PHASE SPACE

In this section, I briefly review the phase space structure
underlying spin-network states.
Spin networks constitute a specific basis of the gauge-

invariant Hilbert space of a Yang-Mills (YM) theory on a
graph Γ, which can be—but does not have to be—a regular
lattice. They are characterized by the property of diagonal-
izing the electric flux operators on the edges of the graph. I
will use the term more loosely, essentially indicating a
gauge-field configuration on Γ.
More specifically, a configuration of the magnetic-

potential AðxÞ ∈ Ω1ðΣÞ ⊗ LieðGÞ on the d-dimensional
spacelike manifold Σ is regularized via the introduction of
an embedded graph Γ ⊂ Σ. Σ is understood here to be a
Cauchy surface in a globally hyperbolic spacetime
M ≅ Σ ×R. Moreover, it will be useful to assume that
the graph Γ is the connected 1-skeleton of Δ�, the dual
of a cellular discretization Δ of Σ. The graph Γ has, say,
E ¼ #feg oriented edges and V ¼ #fvg vertices and is
closed; i.e., all its vertices have valencies larger than 2,
which corresponds to ∂Σ ¼ ∅. On Γ, AðxÞ is replaced by
parallel transports (hereafter referred to as holonomies)
associated to the oriented edges of the graph,

he ¼ P exp
 ��� Z

e
A ∈ G; ð3:1Þ

and the group of residual gauge transformations is left to act
only at vertices,

he ↦ g−1tðeÞhegsðeÞ; ð3:2Þ

with ðs; tÞ representing the source- and target-vertex maps.
Therefore, the classical configuration space QΓ associated
to a spin-network Γ is given by one copy of the compact
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and semisimple gauge group G per link of the graph,
modulo the residual gauge transformations. Schematically,

QΓ ≅ G×E==G×V: ð3:3Þ

The conjugate variable to the gauge-potential AðxÞ is
the Lie-algebra-valued electric field3 EðxÞ. Upon regulari-
zation, EðxÞ is replaced by Lie-algebra-valued electric
fluxes Xe associated to the codimension-1 cells of Δ, dual
to graph edges,

Xe ¼ Xi
eτi ∈ g; ð3:4Þ

where fτig is an orthonormal basis of g ¼ LieðGÞ with
respect to the Killing form h·; ·i, which is used to raise and
lower Lie-algebra indices.
This flux has to be understood as residing at the source

vertex of e. Then, the action of a gauge transformation is

Xe ↦ Ad−1gsðeÞXe: ð3:5Þ

Fluxes ~Xe residing at the target vertices of their edges can
be readily defined by parallel transport,

~Xe ¼ −AdheXe: ð3:6Þ

The phase space PΓ associated to Γ is therefore

PΓ ≅ ðG × gÞ×E==G×V: ð3:7Þ

The Yang-Mills action, together with a proper under-
standing of the flux regularization leading to the variables
Xe (see, e.g., Ref. [41]), equips PΓ with the following
symplectic structure,

fhe; he0g ¼ 0; fXi
e; he0 g ¼ δe;e0heτi; and

fXi
e; X

j
e0g ¼ δe;e0fijkXk

e; ð3:8Þ

where fijk ¼ h½τi; τj�; τki are the structure constants of g.
The need to lower and raise Lie-algebra indices, in
otherwise very natural expressions, betrays an identifica-
tion of g and its dual g� via the Lie-algebra Killing form
and the consequent translation of the natural symplectic
structure on G × g�.
Indeed, the symplectic structure of Eq. (3.8) is nothing

but the canonical symplectic structure on the cotangent

bundle T�G written in coordinates associated to the left
trivialization of T�G ≅ G × g�. This trivialization is,
however, most intuitively expressed in TG, where it
identifies Th¼eG ¼ g and ThG via the one-to-one map,
which identifies a Lie-algebra element X ∈ gwith the value
of the right-invariant vector-field X̂R ∈ X1ðGÞ at h ∈ G. In
formulas,

X ∈ g ↦ X̂R
h ∈ ThG where

X̂R
hfðhÞ ¼

d
dtjt¼0

fðe−tXhÞ ∀ f ∈ C1ðGÞ: ð3:9Þ

Similarly, using ~X as coordinates on the phase space
corresponds to choosing the opposite trivialization through

the left-invariant vector field: ð ~̂XÞRhfðhÞ ¼ d
dtjt¼0fðe−t ~XhÞ ¼

X̂L
hfðhÞ. Henceforth, I will leave the identification between

g and its dual via the Killing form implicit.
Thus, the classical spin-network phase space is simply

PΓ ≅ ðT�GÞ×E==G×V; ð3:10Þ

where T�G is equipped with the canonical symplectic
structure associated to cotangent bundles.
In order to be able to generalize this construction

appropriately in the following sections, a more formal
understanding of the residual gauge symmetry is needed.
As can be read directly from Eq. (3.8), gauge symmetries
at the source vertex of an edge [see Eqs. (3.5) and (3.2)]
are generated by the flux Xi

e (in turn, at the target vertex,
the symmetries are generated by ~Xi

e). The Hamiltonian
generator of an infinitesimal symmetry parametrized by
Y ∈ LieðGÞ is hence

He
Y ¼ Xi

eYi ¼ hX; Yi; ð3:11Þ

since

fHe
Y; he0g ¼ δe;e0heY and

fHe
Y; Xe0g ¼ δe;e0YifijkXk

eτj ¼ δe;e0 ½X; Y�: ð3:12Þ

Although the previous discussion is tailored to the
residual G symmetry at a vertex of Γ, this can be readily
generalized to an arbitrary phase space P acted upon by a
group G. It is a general fact that the Hamiltonian generator
of an infinitesimal G-symmetry parametrized by a Lie-
algebra element Y ∈ LieðGÞ is a function on phase space
which is linear in Y. For this reason, on very general
grounds, one introduces for each symmetry a momentum
map μ from the phase space P into the dual of the Lie
algebra

μ∶P → LieðGÞ�; ð3:13Þ

3To be precise, in a (dþ 1)-dimensional spacetime, A ∈
Ω1ðΣÞ ⊗ LieðGÞ, and E ∈ Ωd−1ðΣÞ ⊗ LieðGÞ. Under gauge
transformations, A transforms as a connection, and E transforms
in the adjoint representation. Symbolically, fA; Ag ¼ 0 ¼ fE;Eg
and f�E; Ag ¼ δ, where � is the Hodge dual in Ω•ðΣÞ and, in this
de Witt-like notation, δ stands for a Kronecker delta between
internal and tangent-space indices as well as for a Dirac delta
between the space locations.

SELF-DUAL PHASE SPACE FOR (3þ 1)-DIMENSIONAL … PHYS. REV. D 97, 025003 (2018)

025003-5



so that the Hamiltonian generator takes the form

HY ¼ μðYÞ ¼ hμ;Yi and fHY ; ·g ¼ £Y♯ ; ð3:14Þ

where Y♯ stands for the phase space flow (vector field)
associated to the infinitesimal symmetry Y ∈ LieðGÞ and £
stands for the Lie derivative. If the Poisson algebra of the
Hamiltonian generators is a representation of the symmetry
algebra LieðGÞ, then this property is translated into the
equivariance of the momentum map,

£Y♯μ≡ Y♯ ⌟ dμ ¼ ad�Yμ ¼ −adYμ; ð3:15Þ

where in the last step we identified LieðGÞ� and LieðGÞ via
the Killing form.
In the case considered above, the momentum map for

the gauge symmetry at the source of e—when written in the
left trivialization T�G ≅ G × g—is a projection on the flux
factor g.
The quotienting procedure of Eq. (3.10) is a prototypical

example of a Marsden-Weinstein symplectic reduction,
which can be described as follows. Consider a phase space
P0 invariant under the action of some Lie group G, with
equivariant momentum map μ∶P0 → LieðGÞ�. Then, a
canonical phase space structure can be produced on the
“constraint surface” fμ ¼ 0g ⊂ P0 once symmetry-related
configurations are identified, i.e., on P ¼ fμ ¼ 0g=∼G.
This is often denoted as

P ¼ P0==G: ð3:16Þ

The double quotient reminds us that both restriction to the
constraint surface and identification among symmetry-
related configurations are needed. In physicists’ parlance,
dimðGÞ first-class constraints μi ¼ 0 have been imposed in
the passage from P0 to P.
Let me go back to Eqs. (3.7) and (3.8) and reformulate

the symmetry properties of P0 in the momentum map
language. In this context, P0 ≅ ðG × gÞ×E, and G ¼ G×V .
Restricting the attention to a single edge e ∈ Γ, the gauge
group reduces to two copies of Ge ¼ Gs ×Gt, associated
to the source and target of e, respectively. Moreover, the
flow Y♯

e of a gauge transformation Ye ¼ ðYs; YtÞ has the
following form on the holonomy and flux spaces:

Y♯
e ¼ Y♯

ejh þ Y♯
ejf ; with

Y♯
ejh ¼ ŶL

s þ ŶR
t and Y♯

ejf ¼ −adYs
: ð3:17Þ

Finally, an inspection of the symplectic structure associated
to e shows that the momentum map generating the gauge
transformation Y above is given by the source and target
fluxes,

μe ¼ ðμs;μtÞ∶G×LieðGÞ→ LieðGÞ; ðh;XÞ↦ ðX; ~XÞ;
ð3:18Þ

with the identification between LieðGÞ and its dual left
implicit.
Hence, going back to the phase space associated to the

full graph Γ, the momentum map of residual gauge trans-
formations on Γ is

μ∶ P0 ¼ ðG × gÞ×E → g×V;

μ ¼
�
μv ¼

X
e∶v¼sðeÞ

μsðeÞ þ
X

e∶v¼tðeÞ
μtðeÞ

�
v
: ð3:19Þ

Physically, constructing the reduced phase space PΓ as
the symplectic reduction of ðG × gÞ×E with respect to the
momentum maps μv ¼ 0 means restricting to those points
in phase space which respect the vacuum Gauss constraint
(vanishing of the total electric flux) at each vertex, while at
the same time identifying gauge-related configurations.
All the above statements can be translated from a Poisson-

theoretic to a symplectic-theoretic language. Consider a
phase space P equipped with Poisson brackets f·; ·g.
Introduce the bivector P, i.e.,

P ∈ X1ðPÞ ⊗A X1ðPÞ ð3:20Þ

with ⊗A standing for the antisymmetric part of the tensor
product, defined by

Pðdf1 ⊗ df2Þ ¼ ff1; f2g ∀ f1; f2 ∈ C1ðPÞ: ð3:21Þ

Its inverse4 is a 2-form ω ∈ Ω2ðPÞ known as the symplectic
form onP. The existence of such an inverse corresponds to a
nondegeneracy condition on either P or ω, while the Jacobi
identity satisfied by the Poisson brackets5 becomes a simple
closure requirement,

4The bivector P can be seen as a map P♯ from 1-forms to
vector fields:

P♯∶ Ω1ðPÞ → X1ðPÞ; df ↦ P♯ðdfÞ ¼ Pðdf; ·Þ ¼ ff; ·g:

The standard definition of a phase space requires this map to be
invertible. Denote its inverse by ω♭∶ X1ðPÞ → Ω1ðPÞ,

ðP♯Þ∘ω♭ ¼ id:

This can similarly be understood as descending from a 2-form,
ω ∈ Ω2ðPÞ, via ω♭ðvÞ ¼ v ⌟ ω, for all v ∈ X1ðPÞ.

5In terms of P, the Jacobi identity is encoded in the vanishing
of the so-called Schouten bracket of P with itself, ⟦P; P⟧ ¼ 0.
See Ref. [2].
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dω ¼ 0: ð3:22Þ

From the symplectic perspective, the Hamiltonian flow
equation (3.14) reads

Y♯ ⌟ ω ¼ dHY ≡ hdμ;Yi: ð3:23Þ

Finally, “dual” to the left- (right-)invariant vector fields
X̂L (X̂R, respectively) on G are the Lie-algebra-valued left
(right) Maurer-Cartan 1-forms θL ∈ Ω1ðGÞ ⊗ g (θR,
respectively), fully determined by the conditions

ŶL ⌟ θL ¼ Y ðŶR ⌟ θR ¼ −Y; respectivelyÞ: ð3:24Þ

They satisfy the Maurer-Cartan equations6

dθL ¼ −
1

2
½θL ;∧θL��

dθR ¼ −
1

2
½θR ;∧θR�; respectively

�
: ð3:25Þ

It is useful to recall that in coordinates, at h ∈ G, they read

θLh ¼ h−1dh ðθRh ¼ dhh−1; respectivelyÞ: ð3:26Þ

For future reference, let me remark that if h is close to the
identity, h ¼ eX, at first order in X, one has

θLh ≈ dX ≈ θRh : ð3:27Þ

Hence, it is easy to verify that the canonical symplectic
structure on ðT�GÞ×E derived from Eq. (3.8) takes the
following simple form (see Appendix A),

ω ¼
X
e

ωe where

ðωeÞðh;XÞ ¼ −dhX; θLh i ¼ hθLh ;∧dXi þ
1

2
hadXθLh ;∧θLh i;

ð3:28Þ

where in the last equality the ad-invariance of the Killing
form was used. Notice that ω is invariant under the action
of Ge and that—ω being exact—the Jacobi identity is
manifestly satisfied. Notice also that the curvature of the
compactified configuration space G (dθ ≠ 0) induces a
Poisson noncommutativity in the conjugate flux variables.

IV. SELF-DUAL PHASE SPACE ON Γ

In the description above, the introduction of Γ results in
the compactification of the configuration variable AðxÞ to
the set of group-valued variables fhe ∈ Gg.
While in the continuum the magnetic field is encoded in

the curvature of A, i.e., B ¼ F½A� ¼ dAþ 1
2
½A;∧A�, on Γ,

magnetic fluxes are encoded in face (or plaquette) holon-
omies and thus get “compactified,” too,

hf ¼
Y

e∶e∈∂f

 ���
h
ϵef
e ∈ G; ð4:1Þ

with ϵef ¼ �1 accounting for the relative orientation of e
and f.
In turn, electric fluxes are valued in the Lie algebra in the

continuum as well as on Γ. Self-duality (SD) on Γ hence
demands a further compactification of the electric fluxes.
Requiring a passage from g to G, this procedure is some-
times called “flux exponentiation” (there will be more on
this at the end of the section). Here, I will not attempt its
justification from an action principle, although further
comments on this are provided at the end of Secs. VII
and VIII and especially in the section about the gravita-
tional interpretation, i.e., Sec. IX. Also, at this level, the
flux exponentiation works independently of the dimension
of Σ. In 3þ 1 spacetime dimensions, however, a com-
pletely self-dual description can be given. I will discuss
specifically this situation in Sec. VI.
The goal is to build a SD phase space which reduces to

the standard one in the appropriate small-electric-flux limit.
Schematically, it will have the form

PSD
Γ ≅ “ðG ×GÞ×E==G×V”: ð4:2Þ

The difficulty is that, for G compact and simply connected,
G ×G cannot carry any symplectic structure (i.e., a non-
degenerate closed 2-form), since its second cohomology is
trivial, let alone a canonical one. Therefore, it might be
surprising that something like PSD

Γ can be given a sym-
plectic structure at all. This can be achieved by introducing
the notions of quasi-Hamiltonian G-spaces, which allows
one to equip G ×G with a quasisymplectic structure, and
that of fusion, which allows one to assemble quasi-
Hamiltonian G-spaces together. Then, a generalized
version of a Marsden-Weinstein symplectic reduction
can be used to turn the quasi-Hamiltonian space associated
to Γ, as obtained by fusion, into an actual symplectic space.

6Recalling that θL;R ∈ Ω1ðGÞ ⊗ LieðGÞ, the “commutator-
wedge” notation means that the wedge product is taken among
the 1-form parts of θL;R and the commutator is taken among its
Lie-algebra parts. Take fzag to be coordinates on G; then, the
(left) Maurer-Cartan form reads

θL ¼ θLiμdzaτi ¼ h−1ðzÞ ∂hðzÞ∂za dza;

where in the last equality G is assumed to be a matrix group, and
the Maurer-Cartan equation (3.25) is

dθLi ¼ −
1

2
fjkjθLj ∧ θLk:
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All these technologies have been developed by Alekseev
et al. [3]. In this paper, I will review them and put them into
use. I will proceed in two steps: (i) first, I introduce the
quasisymplectic analog of the edge phase space; then, (ii) I
describe the fusion procedure to obtain PSD

Γ . I will work
in the (quasi)symplectic framework, although a (quasi-)
Poisson framework is also available and is presented in the
Appendix.

A. Quasi-Hamiltonian G-space DðGÞ=G × G

Since many instances of G will appear, playing different
roles, I introduce subscripts as mnemonic labels. For
example, I denote the double DðGÞ ≅ G ×G as

D ≅ Gh ×Gf∋ðh; gÞ ð4:3Þ
whenever its decomposition is thought of in terms of
holonomies h ∈ Gh and exponentiated fluxes g ∈ Gf .
Notice, I am not demanding that D inherits the product
group structure. I will come back on this point at the end of
the section.
For convenience, I also introduce the notation AD for the

action of G on itself by conjugation. This is inspired by the
“exponentiation ladder”:

adYX ¼ ½Y; X� ⇝ AdgX ¼ gXg−1 ⇝ ADgh ¼ ghg−1:

ð4:4Þ
On a single edge, the fundamental properties that we

want to retain from the standard construction are:
(i) the parallel transport of the flux from one end of the

edge to the other according to

~g ¼ ADhg−1 ð4:5Þ
(ii) gauge transformations ðgs; gtÞ ∈ Ge acting on D as

h ↦ g−1t hgs and g ↦ AD−1
gs g ð4:6aÞ

whose infinitesimal version is the flow

Y♯
ejh ¼ ŶL

s þ ŶR
t and Y♯

ejf ¼ ŶL
s þ ŶR

s ð4:6bÞ
generated by Ye ¼ ðYs; YtÞ ∈ LieðGeÞ.

(iii) fluxes g (~g) “generating” gauge transformations at
the source (target) end of the edge, via an equivariant
”momentum map”

(iv) the invariance of the quasisymplectic 2-form’
ωe ∈ Ω2ðDÞ under the action of Ge:

£Y♯
e
ωe ¼ 0: ð4:7Þ

The terms that need clarification in the list above are put in
inverted commas. The analysis being restricted to a single
edge, the label e will be omitted in the rest of this section.

Point iii suggests that the proper generalization of the
momentum map generating gauge transformation at the
source end of an edge e [Eq. (3.18)] is a group-valued
momentum map consisting in the source and target fluxes:

μ ¼ ðμs; μtÞ∶ D → G; μðh; gÞ ¼ ðg; ~gÞ: ð4:8Þ

Notice that the proper generalization of equivariance is
guaranteed by construction, £Y♯μ ¼ −aDYμ, thanks to
point ii.
So far, the meaning of generating is, however, still vague.

Notice that a notion of Hamiltonian function HY for the
infinitesimal symmetry Y ∈ LieðGÞ is problematic; no
natural pairing between group and Lie-algebra elements
exists, which is linear in the latter [cf. Eq. (3.14)].
Indeed, the solution to the above conundrum consists in

bypassing the definition of a Hamiltonian function alto-
gether and finding directly a replacement for Eq. (3.23),
that is Y♯ ⌟ ω ¼ hdμ;Yi, and in particular for its rightmost
term. In this term, the only thing that is needed is a pairing
between a 1-form on the image space of the momentum
map—that is the group in the deformed case—and
Y ∈ LieðGÞ. In the deformed case, this can be achieved
by resorting to the LieðGÞ-valued Maurer-Cartan (MC)
form on G (as well as to the Killing form, as above). The
first obvious issue is that there is not oneMC form but two.
Remarkably, only the symmetric combination is compat-
ible with the antisymmetry of the quasisymplectic form,
and with the gauge transformation of fluxes (ii), thus 7

Y♯ ⌟ ω ¼
�
1

2
ðθLμ þ θRμ Þ; Y

�
; ð4:9Þ

where the factor 1
2
guarantees the correct small-flux limit via

Eq. (3.27). For clarity, let me spell out my notation:
θL;Rμ is the MC form on G evaluated at the image of
the momentum map μ8 also, if G is the Cartesian product
of multiple groups, say G ¼ G1 ×G2, the above has
to be read as θLμ ¼ ðθLμ1 ; θLμ2Þ, Y ¼ ðY1; Y2Þ, and
hθLμ ;Yi ¼ hθLμ1 ;Y1i þ hθLμ2 ;Y2i.
Now that a replacement for the Hamiltonian flow

equation has been found, I can discuss its interplay with
the other desiderata.

7Suppose Y ¼ ðY; 0Þ; then, Y♯ ⌟ ω ¼ haθLμs þ bθRμsÞ; Yi.
Now, contracting Eq. (4.9) with Y♯ gives on the lhs ðY♯ ⊗ Y♯Þ ⌟
ω≡ 0 and on the rhs hðŶL þ ŶRÞ ⌟ ðaθLμs þ bθRμsÞ; Yi ¼hða − bÞY þ bAdμsY − aAd−1μs Y; Yi. Using the symmetry
and Ad-invariance of the Killing form, this gives
ða − bÞ½hY; Yi − hAdμsY; Yi�, which vanishes identically for
all Y iff a ¼ b. A similar computation holds for Y ¼ ð0; YÞ,
while the general case is recovered by linearity.

8More precisely, θLμ ≡ μ�θL is the pullback to D of the MC
form on G via the momentum map μ.
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Condition iv requires ω to be G invariant, i.e., £Y♯ω¼! 0.
Using the equation above, this is9

0¼! Y♯dωþ
�
1

2
dðθLμ þ θRμ Þ;Y

�
; ð4:10Þ

which readily implies

dω ≠ 0: ð4:11Þ

Therefore, ω cannot be symplectic. In the (quasi-)Poisson
framework, this translates into the failure of the Jacobi
identity. To minimize damages, ω’s violation of closedness
is required to take a controllable form—hence, the “quasi”
nomenclature—compatible with Eq. (4.10), i.e.,

dω¼−χμ with χ¼ 1

12
hθL ;∧½θL ;∧θL�i¼ 1

12
hθR ;∧½θR ;∧θR�i;

ð4:12Þ

where the Ad-invariance of the Killing form is used and
χμ ≡ μ�χ is the pullback of the 3-cocycle χ ∈ Ω3ðGfÞ to
DðGÞ by the momentum map μ∶DðGÞ→ Gf .
Another consequence of condition (4.9) is the failure of

ω being nondegenerate everywhere onD. Indeed, using the
Ad-invariance of the Killing form, its rhs can be written as
hθRμ ; 12 ð1þ AdμÞYi, which at ðh; gÞ ∈ D vanishes for those
Y such that AdhY ¼ −Y. Thus, a minimal relaxation of the
nondegeneracy condition means requiring these are the
only vector fields in the kernel of ω, i.e.,

kerωðh;gÞ ¼ fv ¼ Y♯ for some Y ∈ kerðAdμðh;gÞ þ 1Þg ⊂ X1ðDÞ: ð4:13Þ

Notice how the whole quasisymplectic structure of
ðD;ωÞ revolves around the chosen symmetry properties;
even such fundamental features such as the closedness and
nondegeneracy violations depend on the momentum map.
If G ¼ feg is trivial, the definition reduces to that of a
(standard) symplectic space.
Let me summarize what has been done so far. Starting

from the idea of implementing a group-valued momentum
map and from the only sensible ensuing generalization of
the Hamiltonian flow equation (4.9), it was noticed that
both the closedness and nondegeneracy of ω had to be
relaxed. Doing this in a minimal way led to the require-
ments (4.12) and (4.13), respectively. These three equations
can be abstracted from the context in which I have
discussed them and indeed define quasi-Hamiltonian
G-spaces [1].
Now, comparison with Eq. (3.28) suggests the following

generalization of ω from T�G to DðGÞ,

ωðh;gÞ ¼
�
θLh ;

∧ 1
2
ðθLg þ θRg Þ

�
þ 1

2
hAdgθLh ;∧θLh i; ð4:14Þ

where, again, dX ⇝ 1
2
ðθLg þ θRg Þ and adX ⇝ Adg. In fact, as

it turns out, this ω together with the momentum map of
Eq. (4.8) satisfies the three conditions listed above.10

This concludes the discussion of the quasisymplectic
structure on the deformed edge “phase space,” D ¼
Gh ×Gf . Before moving on to the assemblage of many
D’s, one more comment is in order.

B. Too easy to say “G × G”

So far, we have chosen as coordinates on D the
generalization of the holonomy and flux variables on
TG via a left trivialization. In particular, we notice the
natural semidirect product structure that this decomposition
carries,

D ¼ Gh ⋉AD Gf ; ð4:15Þ

the holonomies parallel transport the fluxes via an AD-
action, in strict analogy with TG ¼ G ⋉Ad g [see Eqs. (4.5)
and (3.6)]. It is, however, enlightening to introduce a more
symmetric decomposition of D, where both copies of G
play the same role (see Fig. 1). Let me denote it by

D ¼ Ga ×Gb∋ða; bÞ ð4:16Þ

and define it via the following change of variables:

a ¼ h and b ¼ hg: ð4:17Þ

This decomposition allows one to turn D into a group,
by letting it inherit the natural product group structure
from Ga ×Gb. In the new variables, the naming of which
will be clarified in Sec. VI, the gauge transformation,
the momentum map, and the quasisymplectic 2-form take
all a more symmetric form. Indeed, gauge transformations
now read

a ↦ g−1t ags and b ↦ g−1t bgs; ð4:18Þ

the momentum map

μ ¼ ða−1b; ab−1Þ; ð4:19Þ

9Recall Cartan’s formula, £Y♯
e
ν ¼ dðY♯ ⌟ νÞ þ Y♯ ⌟ dν, for any

ν ∈ Ω•ðDÞ.
10This is much easier to verify in the ða; bÞ variables

introduced in the next section.

SELF-DUAL PHASE SPACE FOR (3þ 1)-DIMENSIONAL … PHYS. REV. D 97, 025003 (2018)

025003-9



and the quasisymplectic 2-form

ωða;bÞ ¼
1

2
hθLa ;∧θLb i þ

1

2
hθRa ;∧θRb i: ð4:20Þ

From this perspective, we see that the Ga ×Gb is the most
natural decomposition, while the Gh ×Gf arises as a “left
trivialization” in which holonomies constitute the diagonal
subgroup of D,

Gh ⊂d Ga ×Gb; ð4:21Þ

and the fluxes are the “rest,”

Gf ≅ Ga × Gb=Gh: ð4:22Þ

This discussion highlights the fact that the fluxes do not
carry any natural group structure in D (they are a coset).
The latter is in a sense only inherited from the group
composition law of the momenta—see the next section—
which in turn provides a preferred parametrization of the
flux space such that the (source) momentum map looks like
a projection.
Then, the AD-action of the holonomies on the fluxes is

just a consequence of the group multiplication in D and of
the choice of coordinates (4.17) on the quotient:

ðh3; h3g3Þ ¼ ða3; b3Þ ¼ ða2; b2Þ ·D ða1; b1Þ
¼ ða2a1; b2b1Þ ¼ ðh2h1; h2g2h1g1Þ
¼ ðh2h1; ðh2h1ÞðAD−1

h1
g2Þg1Þ: ð4:23Þ

I conclude this section with a side remark. Let me
compare this situation with another possible deformation of
T�G, which is GC. In this case, GC can be equipped with a
natural symplectic structure via the Iwasawa decomposition
of GC. For G ¼ SUð2Þ, this reads SLð2;CÞ ¼ SUð2Þ ×
SBð2;CÞ (see Refs. [9,22–27]). The present issue with this
decomposition, which has the nicest symplectogeometric
properties, is that, although the SU(2) is readily interpreted
as the rotation subgroup, the momentum space does not
transform covariantly under rotations. However, boosts
would. These, on the other hand, carry no group structure;
they are just a coset, K ¼ SLð2;CÞ=SUð2Þ. The construc-
tion described in the main text, when applied to
G ¼ SUð2Þ, gives just the Euclidean version of the
rotation-boost construction, the SU(2) fluxes correspond-
ing to “Euclidean boosts.” In the Euclidean, no Iwasawa-
like decomposition is available. On this topic, see also the
concluding paragraph of the Appendix.

C. Fusion and reduction

In the previous section, I reviewed the construction of
the quasi-Hamiltonian G-space De ≅ DðGÞ associated to a
single edge e ∈ Γ. The direct product × eDe is of course

the space in which to perform the analog of the symplectic
reduction. The question is with respect to which momen-
tum map and which symplectic structure. For simplicity, I
start from the case of a single vertex being the source of
various edges.
In the flat case, momenta are valued in the linear space

g�, and therefore they can be summed to one another to
obtain the “total momentum map.” For example, to a given
vertex of Γ, where multiple edges convene, one associates
the total momentum of Eq. (3.19), μv ¼

P
μsðeÞ. Because

of the linearity of this procedure, the symplecitc form is
consistently obtained simply as the sum ω ¼P

ωe. The
Hamiltonian flow equation for the gauge symmetry at v,
embodied by the diagonal action of G ⊂d G×#feg, is then
automatically satisfied.
Consider now the deformed case. Here, momenta are

valued in the nonlinear space G, and their natural compo-
sition is the group product. Schematically,

μv ¼
Y �

μsðeÞ: ð4:24Þ

Not surprisingly, a total quasisymplecitc form
defined as the linear composition

P
ωe turns out not

to be compatible with the quasi-Hamiltomian flow
equation (4.9) for the total momentum. Thus, the simple
sum formula has to be twisted, and, due to the non-
commutativity of G, this twist shall depend on the order
of the factors in μv.
Let me formalize the situation a little more. Consider

two edge spaces, ðD1;ω1;G1; μ1 ¼ ðμs1 ; μt1ÞÞ and
ðD2;ω2;G2; μ2 ¼ ðμs2 ; μt2ÞÞ. Both spaces are G ≅ G2

quasi-Hamiltonian spaces, the (deformed) symmetry group
of which is G ¼ Gs ×Gt. The space ðD2 ×D1;ω2 þ ω1;
G2 × G1; ðμ1; μ2ÞÞ is then naturally equipped with a G4 ¼
G2 × G1 quasi-Hamiltonian structure. The fusion procedure
aims at turning this space into a G3 quasi-Hamiltonian
space; assuming for definiteness that v is the source of both
e1 and e2, after fusion, the symmetry group and momentum
map shall be G3 ¼ Gv ×Gt2 ×Gt1—with Gv the diagonal
subgroup of Gs2 ×Gs1—and ðμv ¼ μ2μ1; μt2 ; μt1Þ, respec-
tively. Notice that the group H ¼ Gt2 ×Gt1 shall be a
complete spectator in the procedure above, hence playing
no role at all. This observation allows one to formulate
fusion in its most general form, without any further
complication.
Given two quasi-Hamiltonian spaces11 Pα ¼ ðPα;ωα;

Gα ¼ G ×Hα; μα ¼ ðμGα
; μHα
ÞÞ, define P2⊛P1 ¼ P2⊛1 ¼

ðP2⊛1;ω2⊛1;G2⊛1; μ2⊛1Þ as follows:
(i) P2⊛1 ¼ P2 × P1 as a manifold

11With apologies for the slight abuse of notation, in the
parentheses, P stands for the manifold underlying the quasi-
Hamiltonian space, stripped of the rest of its structure.
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(ii) symmetry group

G2⊛1 ¼ G ×H2 ×H1; ð4:25Þ

with G the diagonal subgroup of G ⊂d G ×G ⊂
G2 × G1

(iii) total momentum map

μ2⊛1 ¼ ðμG ¼ μG2
μG1

; μH2
; μH1
Þ ð4:26Þ

(iv) quasisymplectic structure

ω2⊛1 ¼ ω2 þ ω1 þ
1

2
hθLμ2 ;∧θRμ1i ð4:27Þ

(in the limit of small momenta—read, fluxes—the
additional term in this equation is of higher order
with respect to the standard symplectic structure and
can be dropped).

It is not hard to check that P2⊛1 satisfies the axioms of
quasi-Hamiltonian spaces, and I will not do it explicitly.
However, I want to highlight the role of the last term of
Eq. (4.27). For this purpose, it is enough to compute the rhs
of Eq. (4.9), with μ ¼ μ2μ1,

hθLμ þ θRμ ;Yi ¼ hθLμ2μ1 þ θRμ2μ1 ;Yi
¼ hAd−11 θL2 þ θL1 þ Ad2θR1 þ θR2 ;Yi
¼ hθL2 þ θR2 ;Yi þ hθL1 þ θR1 ;Yi
þ hθL2 ; ðAd1 − 1ÞYi þ hθR1 ; ðAd−12 − 1ÞYi;

ð4:28Þ

with obvious shorthand notations. The last two terms arise
as a consequence of noncommutativity of G and are
precisely compensated by the extra term in ω2⊛1. Indeed
(neglecting the Hα factors),

Y♯
2⊛1 ⌟ hθLμ2 ;∧θRμ1i ¼ hY♯ ⌟ θL2 ;θ

R
1 i− hθL2 ;Y♯ ⌟ θR1 i

¼ hð1−Ad−1μ2 ÞY;θR1 i− hθL2 ; ðAd1 − 1ÞYi;

where the equivariance of μα was used to compute
Y♯ ⌟ θLμα ¼ ð1 − Ad−1μα ÞY.
Another fact that can be easily checked is the associa-

tivity of the fusion procedure:

P3⊛ð2⊛1Þ ¼ Pð3⊛2Þ⊛1: ð4:29Þ

Subtler is the question about commutativity. Indeed,
although the fusion product is manifestly noncommutative,
P2⊛1 and P1⊛2 are nonetheless isomorphic. The relevant
isomorphism is called the braid isomorphism and is
denoted R12. It essentially consists in acting on the space
P2 via μ1 (note the reverse labels) before proceeding to the

“inverted” fusion. I will comment more about it later. See
Ref. [1], Theorem 6.2, for the precise definition.
Hence, the fusion of the group actions associated to

every single vertex in the graph leads to the quasi-
Hamiltonian space

ðP0ÞSDΓ ¼ ðD×e;ωΓ; G×V; μ ¼ ðμvÞÞ: ð4:30Þ

To build the gauge-invariant symplectic space PSD
Γ , a

generalization of theMarsden-Weinstein reduction is needed.
This exists and in fact works just the sameway. The statement
is the following: let P¼ðP;ω;G×H;ðμG;μHÞÞ be a quasi-
Hamiltonian space; then, the pullback of ω on the
preimage μ−1G ðeÞ of the identity e ∈ G descends to the
reduced space

Pred
e ¼ μ−1G ðeÞ=G ð4:31Þ

in which symmetry-related configurations are identified.
All the extra structure, in turn, naturally descends to the
quasi-Hamiltonian H-space P==G,12

P==μG ¼ ðPred
e ;ωred

e ; H; μredH Þ: ð4:32Þ

As a consequence, if the group H is trivial, the reduced
space is symplectic [cf. the discussion below Eq. (4.13)].
Application of the reduction theorem leads to the

definition of the SD symplectic phase space of gauge-
invariant configurations on Γ as

PSD
Γ ¼ ðP0ÞSDΓ ==ðμvÞv¼1;…;V : ð4:33Þ

Both ðP0ÞSDΓ and PSD
Γ are compact spaces.

Also, I emphasize once more, this construction—in the
formal limit of small fluxes—manifestly recovers the usual
phase spaces P0Γ ¼ ðT�GÞ×E and PΓ ¼ ðT�GÞ×E==ðμvÞ.

V. REMARKS ON SELF-DUALITY

The notion of self-duality employed so far is rather weak.
It only requires holonomies and fluxes to be valued in the
same (group) space. In 3þ 1 spacetime dimensions, how-
ever, the space PSD

Γ carries a richer notion of duality, albeit
not manifestly. Henceforth, I will restrict to this case.
The statement is that the space PSD

Γ can be obtained by
performing the same construction on Γ�, the graph dual to
Γ, provided that the roles of holonomies and fluxes are
exchanged.

12Here, ωred
e and μredH are defined in the obvious way. Denote

ι∶μ−1G ðeÞ↪ P and π∶μ−1G → Pred
e as the embedding and the

projection, respectively. Then, ωred
e is the only 2-form on Pred

e
such that ι�ω ¼ π�ωred

e , and similarly for μredH . Notice that
the restriction ι�μH is H equivariant.
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In the undeformed setting, gauge invariance at the
vertices of Γ is encoded in the Gauss constraint ðμvÞ¼0
of Eq. (3.19) and is enforced on the phase space by the
reduction procedure. Physically, this constraint states that
no charged particle is present on the lattice or—in a
different but equivalent language—that no electric defect
(or excitation) is present.
In the continuum, the vanishing of magnetic fluxes out of

a three-dimensional region is automatically encoded in our
choice of gauge-connection variables, from which the
magnetic field’s property of being divergence free follows
algebraically from the Bianchi identity, dAF½A�≡ 0. On Γ,
this is lifted to the discrete setting; connection variables are
replaced by holonomies along the edges of Γ [Eq. (3.1)],
and the magnetic flux through a given face of Γ is just the
oriented product of the holonomies [Eq. (4.1)]. The total
flux out of a closed surface is then trivial for homological
reasons essentially dual to the Bianchi identity itself.13

At any rate, although trivial once appropriately constructed
out of the edge holonomies, the vanishing of the total flux
out of a 3-cell c in Γ schematically reads

Y
f∶f∈∂c

 ���
hϵf ¼ e; ð5:1Þ

where hϵf is the oriented circulation around f (possibly
parallel transported to a common reference point). This is
nothing but a deformed (and compactified) version of
the sum of the magnetic fluxes out of the 3-cell c,P

f∶f∈∂cΦfðBÞ ¼ 0, where the linear flux14 ΦfðBÞ ¼R
f B ∈ g has been replaced by its “exponentiated version”
hf ∈ G and the sum in g by the group multiplication.
Mutatis mutandis, the previous paragraph can be turned

into a description of the construction of the deformed Gauss
constraint for the exponentiated electric fluxes discussed in
the previous section. Therefore, already at this level, it is
clear that the group elements ge—the exponentiated electric
fluxes—and hf—the compactified magnetic fluxes—play
dual roles (notice the subscripts, standing for the edges and
faces of Γ, respectively).
Of course, the difference is that ge is treated as a

“fundamental” object, while hf ¼
Q⃖

hϵe is treated as a
“composite” one. This difference is, however, lost on the
reduced phase space, in which the ge must satisfy

constraints that make them not independent from one
another and restore the expected symmetry; in vacuum
Yang-Mills, the Gauss law and the Bianchi identity are,
within PSD

Γ , dual to each other as they are in the continuum.
Making this duality completely manifest is the aim of the

next section.

VI. FLAT CONNECTIONS ON
A HEEGAARD SURFACE

A. Overview

In this and the following sections, the focus will be on
the 3þ 1-dimensional case. Thus, Σ is a 3-manifold, and Γ
is an embedded graph dual to a cellular decomposition Δ of
Σ. Name Γ� the 1-skeleton of Δ (Fig. 2). Consider now the
handle body HΓ consisting of a tubular neighborhood of Γ,
i.e., the handle body obtained by “thickening” the edges of
Γ into thin tubes and its vertices into small balls (Fig. 3).
Schematically, HΓ is the topological manifold defined by

HΓ ¼ fx ∈ Σ∶distanceðx;ΓÞ ≤ ϵg; ð6:1Þ

for some positive defined metric on Σ. Its boundary is a
2-surface, SΓ ¼ ∂HΓ. Up to an orientation reversal, the
same topological surface would have been obtained had we
started from Γ�, SopΓ ≅ SΓ� ¼ ∂HΓ� . Also, the gluing of the
two handle bodies, HΓ and HΓ� , via an identification of
their boundaries gives back the topological manifold Σ,

HΓ ∪SΓ HΓ� ≅ Σ: ð6:2Þ

This is called a Heegaard decomposition of Σ, and SΓ ¼ SΓ�
is a Heegaard surface. Noncontractible cycles of SΓ which
are contractible in HΓ (HΓ�) are called a-cycles (b-cycles,
respectively). See Fig. 3.
The self-duality described in the remark above follows

from the following statement: the deformed phase space
PSD

Γ of a discretized G Yang-Mills theory in the vacuum,
i.e., in the absence of charged sources, is isomorphic to
the (canonical) moduli space of flat G-connections on SΓ
equipped with the Atyiah-Bott symplectic structure (see
below),

FIG. 2. Left: A portion of the cellular decomposition Δ with its
1-skeleton, Γ� ¼ Δ1, highlighted. Right: The corresponding
portion of the graph Γ dual to Γ�.

13This is most easily seen in the Abelian case, where the
Bianchi identity simply follows from d2 ¼ 0, which is the
cohomological dual to the homological identity ∂2 ¼ 0 used
in the lattice construction.

14This is also a schematic expression; in the non-Abelian case,
the magnetic field B ¼ F½A� should also be appropriately parallel
transported throughout f to a common reference point before
being integrated. The same type of parallel transport is at the
origin of the Poisson noncommutativity of the discrete fluxes,
Eq. (3.8).
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PSD
Γ ≅ MflatðSΓ; GÞ; ð6:3Þ

where the ge’s (hf’s) are identified15 with the holonomies
around the a-cycles (b-cycles, respectively) of SΓ. Hence,
self-duality in the form discussed in the previous remark
immediately follows from the symmetry between HΓ and
HΓ� and a- and b-cycles.
It is, nonetheless, crucial to have clear the differences

between the two spaces appearing in Eq. (6.3): PSD
Γ is the

(deformed) phase space of a discretized 3þ 1 gauge theory
in which the G-holonomies of a Poisson- commutative
connection A are Poisson conjugated to (deformed) electric
fluxes also valued in G. In turn,MflatðSΓ; GÞ is the reduced
phase space of an (auxiliary) (2þ 1)-dimensional gauge
theory of a flat Poisson- noncommutative G-connection,
A ∈ Ω1ðMÞ ⊗ g.
The nontrivial curvature of the connection A, as well as

the nonvanishing of the exponentiated fluxes ge, is hence
supported—from the perspective of A—by the nontrivial
topology of SΓ, on which the flat connection A is defined.
In this sense, the excitations of A are mapped onto
topological defects carried by Γ and Γ�.
More specifically, MflatðS;GÞ is the finite-dimensional

symplectic space obtained via symplectic reduction from
the infinite-dimensional space of G-connections on S,
P0SðAÞ. That is,

MflatðS;GÞ ¼ P0SðAÞ==G: ð6:4Þ

This expression needs some clarifications. Let me start
from the group G. This is the group of gauge trans-
formations on S, i.e., the set of G-valued functions on S
equipped with the pointwise group product. Schematically,

G ¼ fMap∶S → Gg: ð6:5Þ

Gauge transformations are generated by the momentum
map16

~μ∶ P0SðAÞ→ LieðGÞ�;

A ↦ ~μ½A; ·� ¼
Z
S
hF½A�; ·i þ

I
∂S
hA; ·i; ð6:6Þ

with

F½A� ¼ dAþ 1

2
½A ;∧A� ð6:7Þ

being the LieðGÞ-valued curvature 2-form of the connection
A. That is, for every ξ ∈ LieðGÞ ≅ CðSÞ ⊗ g, to which the
infinitesimal gauge-transformation flow ξ♯ ∈ X1ðP0SðAÞÞ
is associated (meaning ξ♯ ⌟ δA ¼ dAξ), the following
Hamiltonian flow equation holds:

ξ♯ ⌟ Ω ¼ −δ ~μ½A; ξ�: ð6:8Þ

Here, δ is the functional17 de Rahm differential on P0SðAÞ,
and Ω ∈ Ω2ðP0SðAÞÞ is the (canonical) Atiyah-Bott sym-
plectic 2-form on P0SðAÞ,

Ω ¼ 1

2

Z
S
hδA ;∧δAi: ð6:9Þ

Observe thatMflatðS;GÞ is nothing but the gauge-invariant
phase space of Chern-Simons theory on S × ½0; 1�.
The Atiyah-Bott symplectic form states that the “longi-

tudinal” part ofA is conjugated to its “transverse” part. This
means that holonomies calculated along transversally cross-
ing paths do not Poisson commute. In particular, holonomies
on SΓ “parallel” to the edges of Γ are conjugated to those
along the corresponding a-cycle. This is the first clue toward
the identifications of the holonomies he and fluxes ge with
longitudinal and transverse holonomies along the “edge
tubes” of SΓ, respectively.
To give a precise version of this statement, I will proceed

in two steps: (i) first, I will explicitly show how to read the
construction of the previous section in terms of holonomies
on SΓ, and then (ii) through a natural (albeit highly
noncanonical) gauge-fixing procedure, I will show that
the symplectic form on P0Γ matches that on MflatðSΓ; GÞ.
Beside the (quite simple) gauge fixing, the second step is
nothing but the main result of Ref. [1], which in turn
constitutes itself the very reason why the quasi-
Hamiltonian formalism was devised in the first place.
Consider the graph Γ ∈ Σ, and embed it in R3 in such a

way that when projected on the plane z ¼ 0 only edges

FIG. 3. Left: The tubular neighborhood HΓ� of Γ� with the b-
cycles highlighted. Right: The tubular neighborhood HΓ of Γ
with the a-cycles highlighted.

15This statement is morally correct but requires some technical
clarification, provided further below.

16The inclusion of a nontrivial boundary for S is important, e.g.,
when decomposing SΓ into trinions.

17Throughout these notes, I neglect functional analytical issues
of any sort; see Refs. [1,5–8].
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intersect (transversally) and the vertices are completely
resolved. This equips each vertex v ∈ Γ with a cyclic
orientation. By choosing an edge at each vertex (or cilium),
the cyclical symmetry can be broken. Now, consider the
surface SΓ ⊂ R3, the boundary of a tubular neighborhood
of Γ. Pick on SΓ one of the two graphs homeomorphic to Γ
such that they have the same projection on the plane z ¼ 0.
Schematically, this graph is obtained by displacing Γ in the
positive z direction by ϵ. I will denote this graph Γ, and in
order to distinguish it—when necessary—from the original
one, I rename the latter Γ0. Now, SΓ is decorated with a
graph; in particular, it has V marked points corresponding
to the vertices of Γ and E lines corresponding to edges of Γ.
Besides these decorations, introduce at each vertex v ∈ Γ
one loop ave for each edge e such that v ∈ ∂e, with the
following properties: the loop starts and ends at v and has
linking number þ1 with the corresponding edge e0 ∈ Γ0
and vanishing linking number with all other links.18 At each
vertex, the path obtained by composing the paths avei
according to the edge ordering described above,

γv ¼ aven∘ � � � ∘ave2∘ave1 ; ð6:10Þ

is contractible. See Fig. 4.
Define he as the holonomy of A along the edges e ∈

Γ ⊂ SΓ and gve as the holonomy of A along the loops aev.
Using the flatness of the connectionA on SΓnfv ∈ Γg, and
the observation above, it is immediately seen that

gven � � � gve2gve1 ¼ P exp
 ��� Z

γv

A ¼ e: ð6:11Þ

Furthermore, the same property of A guarantees that

gtðeÞe ¼ heðgsðeÞe Þ−1h−1e : ð6:12Þ

The two equations above have the same form of the
deformed Gauss constraint and of the parallel transport
for the exponentiated fluxes, provided the following nota-
tion is introduced:

ge ¼ gsðeÞe and ~ge ¼ gtðeÞe : ð6:13Þ

Gauge transformations at the marked point also transform
ge and he as expected.
Thus, these are coordinates on the space of flat con-

nections on SΓ which can be readily identified with
coordinates on PSD

Γ , since they satisfy the same set of
constraints. Of course, this does not guarantee that such an
identification also respects the symplectic structure carried

by the two spaces, i.e., that it also defines a symplecto-
morphism between MflatðSΓ; GÞ and PSD

Γ .
The proof of this fact will be provided in the last part

of this section. Before that, I want to present the basic
intuitions and one simple example.

B. Examples

1. Double DðGÞ
The first example I want to consider is the double DðGÞ.

This is the (quasi–)phase space associated to a single edge.
As I discussed, it is most naturally described in terms of the
a- and b-group coordinates, or via a change of variables, in
terms of holonomies and (exponentiated) fluxes

DðGÞ ¼ Ga ×Gb ≅ Gh ⋉ Gf ; ð6:14Þ

where

DðGÞ∋ða; bÞ ¼ ðh; hgÞ: ð6:15Þ

The intuition I want to provide here regards how to read
these variables from the flat connection picture. To build
this one, one needs first to “explode” the spin-network edge
e ∈ Γ into a 2-surface with the topology of a cylinder
Se∈Γ ≅ S1 × ½0; 1�. Then, one needs to pick a marked
point on each of the two S1 boundary components of
Se. These will serve as reference points, at which gauge
transformations are “frozen.” In the language used later, Se
is a 2-punctured sphere with marked boundaries, denoted
S2
n¼2. Schematically,

e ∈ Γ ⇝ Se∈Γ ≅ S1 × ½0; 1� ≅ S2
n¼2: ð6:16Þ

On Se, a flat connection A is defined. A complete set of
gauge-invariant observables of A is then given by its two
parallel transports defined on paths respectively around and
along the tube, which start and end at the two marked
points. In Fig. 5, I have represented both the paths γa (γb),

FIG. 4. Left: The path γv ¼ ave3∘ave2∘ave1 . Right: The path γv is
homotopic to the trivial path; i.e., it is contractible (via deforma-
tion of the path on the “back” of the vertex sphere).

18More precisely, it has linking number þ1 with every close
path l ⊂ Γ0 passing through e0 once and with the correct
orientation and vanishing linking number with any path ~l ⊂ Γ0
which does not pass through e0.
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which correspond to the group elements a ∈ Ga (b ∈ Gb,
respectively) via

a ¼ P exp
 ��� Z

γa

A and b ¼ P exp
 ��� Z

γb

A ð6:17Þ

and the paths γh (γf ), which correspond to the group
elements h ∈ Gh (g ∈ Gf , respectively), via analogous
equations. The space DðGÞ, i.e., the space of flat con-
nection on S2

n¼2 with marked boundaries, is a quasi-
Hamiltonian G×2-space, where the G action corresponds
to the residual gauge symmetry one can perform at the two
marked points.
In Fig. 5, γa is represented as a longitudinal holonomy

which does not wind around the cylinder, while γb winds
around it once. Note that this characterization is purely
conventional, and only the relative statement “γf ¼ γ−1a ∘γb
winds around the cylinder once” is actually meaningful.
To this purpose, see also Ref. [1], Sec. 9.4, on the action of
the mapping class group as an isomorphism of quasi-
Hamiltonian spaces between DðGÞ and itself. In particular,
the maps S;Q∶DðGÞ → DðGÞ are discussed and exchange
the two boundary components (i.e., reverse the orientation
of the edge) and add a 2π Dhen twist to the cylinder,
respectively. See Fig. 6.

2. Torus

The simplest nonempty Γ is the graph Γ1 composed by a
single edge closed on itself via a 2-valent vertex. The
momentum map at this vertex is

μv ¼ μtðeÞμsðeÞ: ð6:18Þ

Thus, the corresponding reduced phase space on the
preimage μ−1v ðeÞ ⊂ DðGÞ is parametrized by pairs ðh; gÞ ∈
Gh ×Gf such that

μvðh; gÞ ¼ ðADhg−1Þg ¼ hg−1h−1g ¼ e; ð6:19Þ

modulo overall gauge transformations where both h and g
transform by conjugation. One immediately recognizes the
description of the moduli space of flat connections on a
torus, which is precisely the exploded version of the graph
Γ1. Technically, this can be obtained by fusion of DðGÞ
with itself and reduction by the constraint μv ¼ e. In the
notation of Ref. [1], the quasi-Hamiltonian space obtained
by fusion of the two factors of DðGÞ is denoted by DðGÞ.
From the flat-connection perspective, the fusion product

DðGÞ corresponds to the gluing of the two boundary
components of the cylinder into a single S1 boundary
component, together with the identification of the two
marked points; see Fig. 7. This produces the quasi-
Hamiltonian phase space associated to a single handle,
that is a torus with a disk removed and a marked point on its
single boundary component. It is a quasi-Hamiltonian G-
space, with a single marked point where to act with the
residual gauge transformations. Going to the preimage
μ−1v ðeÞ corresponds to “filling” the missing disk, and
reducing corresponds to “erasing” that last marked point;
fully gauge-invariant observables on the torus are the only
ones left. See Fig. 8.

C. Proof sketch

To show that the spaces MflatðSΓ; GÞ and PSD
Γ are

symplectomorphic, it is convenient to introduce an extra
step in the procedure above; that is, it is convenient to
split all edges into two “half-edges” via the insertion of
auxiliary 2-valent vertices. The following fact provides the

FIG. 7. The fusion of the two factors of DðGÞ, leading to the
quasi-Hamiltonian space DðGÞ, as represented from the view-
point of the moduli space of flat connections on S2

n¼2.

FIG. 5. The relation between DeðGÞ and the moduli space
of flat connections on the 2-punctured sphere with marked
boundaries, S2

n¼2. For brevity, I have written (a; b;…) instead of
(γa; γb;…).

FIG. 6. The action of the quasi–Hamiltonian space isomor-
phisms S;Q∶DðGÞ → DðGÞ from the viewpoint of the moduli
space of flat connections on the 2-punctured sphere with marked
boundaries S2

n¼2. (The 2π rotation shown in the pictorial
representation of Q is meant to act on the “source end” of the
cylinder.)
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mathematical justification for this step: the fusion and
reduction of two edge spaces De0 and De00 , where
v ¼ sðe00Þ ¼ tðe0Þ, simply gives another edge space De,
such that sðeÞ ¼ sðe0Þ and tðeÞ ¼ tðe00Þ, i.e.,

De0⊛De00==Gv ¼ De: ð6:20Þ

This means that one 2-valent vertex can be freely inserted
on each edge and thus that PSD

Γ can be built out of “open-
vertex” spaces fused together at the 2-valent vertices.
Another useful observation is the fact that the edge-

orientation reversal, as the already-mentioned braid iso-
morphism, is an isomorphism between quasi-Hamiltonian
spaces. In the following, I will use these isomorphisms
without further mention.
Now, let me recall one of the main results of Ref. [1],

Theorem 9.3. The fusion product of n copies of the double
DðGÞ is isomorphic to the moduli space of flat connections
on an (nþ 1)-punctured sphere with one marked point per
boundary component.19 Call this space P0nþ1,

P0nþ1 ¼ Den⊛ � � �⊛De2⊛De1 : ð6:21Þ

This is a quasi-Hamiltonian G×ðnþ1Þ-space, with momen-
tum map

ðμtðenÞ;…; μtðe2Þ; μtðe1Þ; μv ¼ Π n
i¼1μsðeiÞÞ∶D×n → G×ðnþ1Þ;

ð6:22Þ

where I supposed one is gluing n edge spaces all outgoing
from a common vertex v ¼ sðeiÞ.
This is, of course, one of the building blocks of P0Γ. By

going on shell of the constraint μv ¼ e and reducing by the
symmetry it generates, i.e., by gauge transformations at the
common vertex, one finds the moduli space associated to a
single open vertex with n outgoing edges.
I prefer, however, to adopt here a slightly different

viewpoint. The quasi-Hamiltonian space P0nþ1, in spite
of having been constructed in an asymmetric fashion with
respect to its nþ 1 boundary components, it is actually
completely symmetric with respect to their permutation.
Therefore, I invite the reader to think of P0nþ1 in such a way
that vertex v appears just as an open target end of one of the
edges appearing in Eq. (6.21). Pictorially, this corresponds
to moving the reference point from the boundary compo-
nent associated to the open vertex v (i.e., to the would-be
vertex before reduction is taken with respect to the
constraint μv ¼ e) to another boundary component asso-
ciated to one of the 2-valent vertices I introduced within the
edges of Γ. See Fig. 9.
To emphasize this change in perspective, let mewrite this

space as follows,

P0nþ1 ¼ D⊛n;

ðμtð~enÞ; μtð~en−1Þ;…; μtð~e2Þ; μtð~e1Þ; μ~s ¼ Π n
i¼1μsð~eiÞÞ; ð6:23Þ

FIG. 8. The construction of the deformed phase space on Γ1, the graph with a single edge, from the perspective of the moduli space of
flat connections on S2

n¼2. The figure represents the formula DðGÞ==μv ¼MflatðSΓ1
¼ T 2; GÞ.

FIG. 9. The fusion of the three half edges at a common vertex of Γ. The shading signifies that the vertex is left “open.” This fusion
gives a quasi-Hamiltonian space isomorphic to the moduli space of flat connections on S2

n¼4, the base point of which can be moved from
the open vertex of Γ to any other auxiliary 2-valent vertex (nonshaded).

19This is the space of flat connection modulo gauge trans-
formations on a 2-sphere with nþ 1 disks removed and a marked
point at which gauge transformations are frozen on each of the
nþ 1 boundary components homeomorphic to the circle S1. This
space carries an action of the group G×ðnþ1Þ.
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where the correspondence with the previous presentation is
the following:

μtð~enÞ ↔ μv; μtð~ei<nÞ ↔ μtðeiþ1Þ and μ~s ↔ μe1 :

ð6:24Þ

Let me emphasize once more that these two fusion products
are simply two different presentations of the moduli space
of flat connections on the (nþ 1)-punctured sphere with
marked boundaries.
It is now easy to glue the spaces associated to two

neighboring vertices in Γ. Say the two vertices are n- and
m-valent, respectively. First, construct the spaceP0n and P0m
as in Eq. (6.21). Then, “move” their reference points to the
2-valent vertex associated to the edge connecting the two
vertices, as in Eq. (6.23). Finally, fuse the two spaces
together at the 2-valent vertex with respect to the following
composition of momenta at the common vertex,

μ2-valent ¼ μ~snμ~sm; ð6:25Þ

with obvious notation.
The space so obtained is isomorphic to the moduli

space of the ðnþmþ 1Þ-punctured sphere with marked
boundaries:

P0nþ1⊛P0mþ1 ¼ P0mþnþ1: ð6:26Þ

The ðnþmþ 1Þ boundaries include the two open vertices
vn and vm as well as the open 2-valent vertex which sits
within the chosen edge connecting the aforementioned
vertices. The remaining nþm − 2 boundary components
correspond to the ðnþm − 2Þ external legs resulting
from the gluing of an n-valent and an m-valent vertex.
See Fig. 10.
Clearly, it is now possible to proceed recursively, moving

again the reference point to one of the external edges which
connect the newly constructed punctured sphere to yet
another thickened vertex, and so on. This way, one can glue
vertices along a spanning tree τ ⊂ Γ. In other words, all
vertices can be glued to each other along a selection of
edges which do not form closed loops. The result of the

procedure is the G×ð2Eþ1Þ quasi-Hamiltonian space20 P02Eþ1
associated to a (2Eþ 1)-punctured sphere with marked
boundaries.
At this point, any two half-edges which are fused back

together would form a closed loop. From the perspective
of the (2Eþ 1)-punctured sphere above, this corresponds
to identifying two boundary components hence forming
handles.
This step can be unraveled in the following way. Observe

that the action of G×ð2Eþ1Þ on P02Eþ1 is encoded in the
momentum map

ðμtð~e2EÞ;…; μtð~e1Þ; μ~s ¼ Π 2E
i¼1μsð~eiÞÞ: ð6:27Þ

Of the (2Eþ 1) factors above, (2V − 1) correspond to open
vertices (here including the auxiliary 2-valent vertices),
while the remaining 2ðE − V þ 1Þ correspond to open half-
edges. Let me also assume that the last factor corresponds
to the root vertex of τ and—up to repeated use of the
braid isomorphism—that the edges ð~e2E;…; ~e2E−2Vþ3Þ are
associated to the other 2ðV − 1Þ vertices. Eventually, these
factors will disappear by fusion and reduction, hence
implementing gauge invariance at the vertices of Γ (or
“closing” these auxiliary boundary components from the
viewpoint of the punctured sphere).
The remaining 2ðE − V þ 1Þ edges have to be fused

pairwise to form the edges in Γnτ. Again, up to repeated use
of the braid isomorphism, it is possible to assume that the
half-edges to be fused together are closed to one another in
the listing above. That is, pairs of edges ð~e2kþ1; ~e2kþ2Þ are
going to be fused to one another to form handles (the global
range of the index k is k ∈ f0;…; E − Vg). Using the
orientation reversal isomorphism, edges can be flipped so
as to glue the target of ~e2kþ1 to the source of ~e2kþ2. In this
way, at the root vertex, the following ordering of factors
will appear,

FIG. 10. The fusion of two 3-valent open vertices into a 4-valent open vertex. The shaded disks are not associated to (half) edges of the
graph and rather represent an open vertex at which gauge invariance has not yet been imposed (or, equivalently, at which reduction has
not yet been performed). The two leftmost 3-valent vertices are equal to the rightmost term in Fig. 9.

20The counting is as follows: there are V open vertices, plus
(V − 1) open auxiliary 2-valent vertices along the edges of τ, plus
2ðE − V þ 1Þ other factors due to the fact that every edge in Γnτ
is cut in two and one can act independently on the two halves.
Thus, 2Eþ 1 ¼ V þ ðV − 1Þ þ 2ðE − V þ 1Þ.
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μroot ¼
Y �

j
μsð~ejÞ

Y �
k
μtð~e2kÞμsð~e2k−1Þ; ð6:28Þ

where the ranges of j and k are j ∈ f2E − 2V þ 3;…; 2Eg
and k ∈ f1;…; E − V þ 1g, respectively.
Now, using Eq. (6.20), half-edges can be glued together

into single edges,

D~e2kþ1⊛D~e2kþ2==μvk ¼ D~ek ; ð6:29Þ

where μk stands for the G action at the auxiliary 2-valent
vertex separating the two half-edges ~e2kþ1 and ~e2kþ2. Thus,
after fusion and reduction of these pairs of half-edges, the
momentum map reads

ðμtð~e2EÞ;…; μtð~e2E−2Vþ3Þ; μrootÞ; ð6:30Þ

where

μroot ¼
Y �

j
μsð~ejÞ

Y �
k
μtð~ekÞμsð~ekÞ: ð6:31Þ

The first ðE − V þ 1Þ factors in μroot, which are labeled
by k, are the momentum maps associated to the handles,
μhandle−k ¼ μtð~ekÞμsð~ekÞ. This corresponds to the fusion of the
two factors of D~ekðGÞ, which simply means that the source
and target marked points on the handle transform together,
i.e., are attached to the same vertex, as in the “flower”
representation of gauge-fixed spin networks (see, e.g.,
Ref. [42]). In the notation of Ref. [1], the handle quasi-
Hamiltonian space is denoted DðGÞ. This is a quasi-
Hamiltonian G-space.

The remaining 2ðV − 1Þ factors correspond to the
auxiliary edges corresponding to the open vertices but
the root (again, here both the vertices of Γ—except the root
vertex—and the auxiliary 2-valent vertices on the edges
e ∈ τ are included).
As proven in Ref. [1], Theorem 9.3, the quasi-

Hamiltonian G×ð2V−1Þ-space

P0nþ1;g ¼ P0ð2V−1Þ;ðE−Vþ1Þ ¼ DðGÞ⊛2ðV−1Þ⊛DðGÞ⊛ðE−Vþ1Þ

ð6:32Þ

obtained from the previous construction is (naturally)
isomorphic to the moduli space of flat G-connections on
a (2V−1)-punctured Riemann surface with g¼ðE−Vþ1Þ
handles and marked boundary components.21 The index g
stands for “genus.”
To obtain PSD

Γ , it is enough to “fill in” the (2V − 1)
auxiliary boundary components, i.e., setting the fluxes
ðμtð~ejÞ ¼ eÞ. This automatically trivializes the DðGÞ factors
in Eq. (6.32). Accordingly, in the root momentum map,
only the handle factors survive,

μrootjðμtð~ejÞ¼eÞ ¼
Y �

k
μtð~ekÞμsð~ekÞ: ð6:33Þ

What is obtained in this way is the quasi-Hamiltonian
G-space moduli space of flat G-connections on a genus

FIG. 11. Top row: The deformed phase space of a spin-network graph Γ—panel (i)—is built as follows: (ii.a) all the edges of Γ are split
into half-edges via the insertion of 2-valent vertices (represented by ×’s); (ii.b) a spanning tree τ ⊂ Γ is chosen (in red); (iii) the quasi-
Hamiltonian space associated to the corresponding open vertices is constructed (see Fig. 9); (iv) the vertices along τ are fused together (in
this picture, the root is represented by a line, cf. Fig. 10); (v) the remaining edges in Γnτ are glued back together into “handles.” Bottom
row: a representation of steps (iv) to (v) from the perspective of the moduli space of flat connections (one of the shaded holes plays the
role of the root, and it is hence shaded in red in the figure). The last step in the construction (not represented in the figure) is the “closure”
of the open vertices; this corresponds to the final reduction of Eq. (6.34).

21Recall that this means that the gauge symmetry has been
modded out everywhere on the Riemann surface but one marked
point for each of the 2ðV − 1ÞS1 boundary components. Therefore,
there is a residual gauge group acting onP0nþ1;g, which isG

×ð2V−1Þ.
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g ¼ ðE − V þ 1Þ Riemann surface with a marked point
(corresponding to the root vertex). Reduction by the last
remaining constraint, μroot ¼ e, gives a quasi-Hamiltonian
space with trivial group action. As already observed, this is
an actual symplectic space. As Theorems 9.2 and 9.3 of
Ref. [1] show, such a symplectic space is precisely the
moduli space of flat G-connections on a closed genus
g ¼ ðE − V þ 1Þ Riemann surface. That is,

PSD
Γ ≅ P0ð2V−1Þ;ðE−Vþ1Þ==ðμtð~ejÞ ¼ e; μroot ¼ eÞ

≅ MflatðSΓ; GÞ; ð6:34Þ

where SΓ is indeed a closed genus g ¼ ðE − V þ 1Þ
Riemann surface,

SΓ ≅ Sn¼0;g¼ðE−Vþ1Þ: ð6:35Þ

The whole procedure is summarized in Fig. 11.

VII. POLARIZATIONS, EXCITATIONS,
AND DEFECTS

In the previous section, I showed that the deformed phase
space Γ, PSD

Γ acquires in four dimensions a particularly
simple interpretation which makes the duality between its
electric and magnetic components manifest. Indeed, in this
case,PSD

Γ is naturally interpreted as the (finite-dimensional)
reduced phase space MflatðSΓ; GÞ obtained from the
moduli space of flat connectionsA on the Riemann surface
SΓ ¼ ∂HΓ equipped with the Atyiah-Bott symplectic form.
Recall that SΓ is the boundary of a tubular neighborhood
of Γ, denoted HΓ. In this picture, the holonomies and
exponentiated fluxes on Γ are interpreted as the longi-
tudinal and transverse holonomies along the “tubes” of SΓ,
respectively.
Now, suppose Γ is the 1-skeleton of the dual to a cellular

decomposition Δ of the three-dimensional Cauchy hyper-
surface Σ, i.e., Γ ¼ Δ�1. Then, the magnetic and electric
fluxes across the 2-cells of Δ and Δ�, respectively,
correspond to holonomies along the a- and b-cycles of
SΓ. Since these are readily interchanged by considering the
dual cellular decomposition of Γ, this construction makes
completely manifest the duality between its electric and
magnetic components.
In particular, the discrete versions of the Bianchi iden-

tity22 and of the deformed Gauss constraint have the same
nature. The flatness of the connectionA relates them to the
contractibility of certain compositions of b- and a-cycles
associated to the vertices of Δ and Δ�, respectively.
The magnetic and electric variables are conjugate to each

other and therefore offer two different choices of

polarizations of the phase space PSD
Γ . This can be used

to build a Schrödinger representation for the quantum state
space associated to PSD

Γ . Not seeking for the moment a
precise definition of this quantum state space (there will be
more about this later), I will limit myself to generic and
qualitative considerations.
First of all, each choice of polarization comes with an

associated natural notion of the squeezed vacuum state.
The term “vacuum” is used here with the looser, purely
kinematical, acceptation of the preferred reference state.
Consider, e.g., the electric polarization. The corresponding
electric vacuum fixes all electric fluxes to their trivial
value23:

ge∈Γ ¼ e ∀ e ∈ Γ: ð7:1Þ

Similarly, in the magnetic representation, the correspond-
ing magnetic vacuum is defined by

hf ≡ Π e∶e∈∂fhϵe ¼ e ∀ f ∈ Γ: ð7:2Þ

From the perspective of Γ, the above equation is readily
seen to correspond to the so-called BF vacuum [44–48], in
which the curvature of the (3þ 1) connection vanishes. The
electric and magnetic squeezed vacua represent deformed
versions of the high- and low-temperature states of Yang-
Mills theory, respectively.
Note that faces f of Γ (2-cells ofΔ�) are dual to 1-cells of

Δ, i.e., to edges of the discretization Δ. Thus, a choice of
polarization corresponds to the choice of one of the two
complementary handle bodies in the Heegaard splitting
induced by Δ; the imposition of the corresponding vacuum
equations corresponds indeed to the imposition of the
flatness equations in the bulk of either HΓ or HΓ�. This
can be implemented, most naturally, via a Chern-Simons
theory for (an extension of) A within either handle body.
The space of flat G-connections on a 3-manifold H, with
SΓ ¼ ∂H, forms a Lagrangian submanifold ofMflatðSΓ; GÞ
[49] and hence, quantum mechanically, defines a quantum
state of the system (e.g., Ref. [50] or Refs. [15,49]).24 Such

22See Ref. [43] for a detailed treatment of the discretization of
the Bianchi identities in three dimensions.

23Notice, however, that the electric fluxes must satisfy non-
trivial Gauss constraints and consequently cannot be treated as
fully independent variables. The previous statement, however,
turns out to have a more precise analog, explained in the next
section. In this section, I will henceforth neglect this type of
subtleties.

24Very roughly, a Lagrangian submanifold of a phase space,
L ⊂ P, is a half-dimensional submanifold which “cuts the phase
space in two,” i.e., denoting the embedding ιL∶L↪P, ι�Lω≡ 0.
Or, in adapted Darboux coordinates, L ¼ fðq; pÞ ∈ P∶p ¼
pLðqÞg. Then, in the adapted Schrödinger representation, the
quantum state ψ ¼ eiS can be introduced, which is associated to
L by the following: ½p̂−pLðq̂Þ�ψ¼0, i.e., ∂qSðqÞ¼pLðqÞ.
Formally, this is solved by S ¼ R

q ι�Lϑ, with ϑ ¼ pdq ∈ Ω1ðPÞ
the symplectic form potential associated to the Darboux coor-
dinates above.
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states can then be interpreted as either a purely electric or a
purely magnetic vacuum for the (3þ 1) theory, depending
on which handle body, HΓ or HΓ�, is chosen [20].
Excitations can be added on the top of these vacua via

the relaxation of Eq. (7.1) or (7.2). These excitations
correspond to nonvanishing electric fluxes or curvature.
Of course, the curvature excitation I am referring to is a
curvature excitation of the (discretized and deformed)
(3þ 1)-connection A and not of the connection A on
the 2-surface SΓ. Indeed, the role of the flatness ofA is that
of implementing—automatically and at the same time—
both the Gauss constraint and the Bianchi identities for the
connection A. The electric and curvature excitation of A,
on the other hand, are supported and allowed for by the
nontriviality of the topology of SΓ; the more refined Δ is,
the more excitations it can support.
From the Chern-Simons handle body perspective,

unfreezing electric degrees of freedom means making
the corresponding a-cycles noncontractible. This can be
achieved via the insertion of Wilson-graph operators in
HΓ. The support of the Wilson-graph operator is nothing
but Γ itself, while the representation attached to the Wilson-
graph operators corresponds to the magnitudes of the
electric field. Analog statements hold for the magnetic
excitations. Thus, the deformation described in this paper
can be obtained via a coupling of the original Wilson-graph
operators supported by Γ to an auxiliary Chern-Simons
theory. It would be interesting to understand whether this
Chern-Simons theory can be somewhat rigorously under-
stood as coming from a QCD θ-term. A similar idea was at
the basis of the construction of Ref. [14] in a quantum-
gravitational context—see Sec. IX.
So far, all considerations have regarded solely the

vacuum sector of YM theory. In other words, I have not
considered so far the coupling to charged sources. In
standard, i.e., undeformed, YM theory, an electric pointlike
source appears as a violation of the Gauss constraint:
dA � E ¼ 4πρ, or in its lattice version—assuming only
outgoing edges—

P
e∶v∈∂eXe ¼ Φv. The deformed analog

of the latter equation is

Y
e∶v∈∂e

 ���
ge ¼ Gv: ð7:3Þ

As I have stressed already, the Gauss constraint has a purely
topological origin from the viewpoint of the flat connection
A on SΓ. This means that the introduction of a source like in
the previous equation requires a modification of the top-
ology of SΓ “around vertex v ∈ Γ.” The simplest such
variation is the introduction of a puncture carrying a
holonomy Gv. The deformed phase space on Γ in the
presence of the defect Gv can be constructed by quasi-
Hamiltonian reduction with respect to the constraint

μv ¼ Gv; ð7:4Þ

rather than μv ¼ e. The resulting phase space will depend
only on the conjugacy class ofGv Cv ¼ ½Gv�conj. Of course,
the same puncture can carry in precisely the same way a
violation of the discretized Bianchi identities. The simplest
way to interpret this type of defects is therefore in terms of
electromagnetic dyons.
A feature of this proposal is that it does not—at least

naively—comply to the Dirac-Goddard-Nuyts-Olive elec-
tromagentic duality [51–55]. It would be interesting to
study this issue further and possibly see whether the
present construction can be modified accordingly. One—
quite vague—hint comes from the following fact: the
gauge group GsðeÞ ×GtðeÞ does not act faithfully on
DeðGÞ, but H ¼ GsðeÞ ×GtðeÞ=ZðGÞd does.25 From this
definition, provided that G is simply connected, it follows
π1ðHÞ ≅ ZðGÞ ≅ ZðHÞ, which is a necessary condition for
the symmetry group to be self-dual in the sense
of Goddard-Nuyts-Olive, i.e., H∨ ≅ H. In the elementary
case, G ¼ SUð2Þ, it turns out precisely that H¼SOð4Þ=
ðZ2Þd≅SUð2Þ×SOð3Þ with SUð2Þ ¼ Spð3Þ ¼ SOð3Þ∨.

VIII. SOME REMARKS ON THE
QUANTIZATION OF PSD

Γ

As a manifold, the phase space PSD
Γ is isomorphic to the

quotient of G2ðE−Vþ1Þ by the action of the momentum map
of Eq. (6.33). Therefore, it is a compact space almost-
everywhere homeomorphic to R2ðE−VÞ dimðGÞ.
Being compact, upon quantization, the ensuing Hilbert

space is expected to possess only a finite number of states.
A more precise version of this statement can be

obtained by an analysis of the symplectic volume of
PSD

Γ ¼ P0Γ==μroot. This can be shown via the construction
of the appropriate Duistermaat-Heckman measure [4]. The
starting point is the definition of the analog of the Liouville
form on P0Γ,

L ¼ 1

n!
ω∧nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��� det	1þAdμ

2


���r ; ð8:1Þ

where n ¼ ðE − V þ 1Þ. Notice how the denominator
vanishes precisely at the points where ω is degenerate;
see Eq. (4.13). As shown in Ref. [4], the Liouville
measure on the double DðGÞ corresponds to the
Riemannian measure on G ×G, and the symplectic
volume of MflatðSΓ; GÞ is shown to match Witten’s
formula [56],26

25ZðGÞd ⊂ ZðGÞ × ZðGÞ ⊂ G ×G is the diagonal embedding
of the center of G, ZðGÞ, in G ×G.

26This version of the formula holds in the vacuum sector only,
i.e., in the absence of electric or magnetic charges. For the most
general case, see Ref. [4].
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VolðPSD
Γ Þ ¼ #ZðGÞvolðGÞ2ðE−VÞ

X
J∈IrrepðGÞ

1

ðdimVJÞ2ðE−VÞ
;

ð8:2Þ

where volðGÞ is the Riemannian volume on G for the
given inner product on g and #ZðGÞ is the cardinality of
the center of G.
On the basis of the discussion of the previous section, the

quantization of PSD
Γ is isomorphic to the Hilbert space of

a G Chern-Simons theory on SΓ. A construction of such a
quantum space in a four-dimensional context appeared in
a recent paper by Dittrich [20], in a setup which can be
interpreted as the quantum analog to the one detailed in this
paper. The comparison with the present paper is, however,
not completely straightforward due to the following
subtlety: rather than attempting a direct construction of
the quantum space of noncommutative flat connections on
SΓ, Dittrich first built the quantum space of a fiducial three-
dimensional BF theory on SΓ, which possesses twice as
many degrees of freedom,27 and then removed half of these
degrees of freedom imposing some constraints. Finally, she
verified that the resulting Hilbert space is isomorphic to that
of the Witten-Reshetikhin-Turaev model [38,57], the model
widely expected to correspond to quantum Chern-Simons
theory [58]. As a result, in Dittrich’s paper, states in the
electric (magnetic) polarization are labeled by elements of a
finite fusion category C associated to the a- (b-)cycles of
SΓ. If C ¼ RepðUqðSUð2ÞÞÞ, with q ¼ ei

2π
k , the number of

states is controlled by the level k ∈ Znf0g.
The classical origin of this parameter has to be looked for

in the normalization of the Killing form h·; ·i⇝ k
4π h·; ·i. As

seen above, this regulates the total volume VolðPSD
Γ Þ and

hence the number of states at the quantum level. It can also
be seen as the parameter regulating the entity of the flux
exponentiation, g ¼ expð2πX=kÞ, which in turn originates
in the particular coupling to the Chern-Simons theory as in
Refs. [14,15]. All these ways of introducing k are in the
end equivalent. For example, the way k appears in the flux
exponentiation formula is dictated by the way one maps the
original momentum—which takes value in the dual of the
Lie algebra—in a Lie-algebra element that can be eventually
exponentiated. In the next section, I will briefly review this
series of works and relate k to the cosmological constant.

IX. GRAVITATIONAL INTERPRETATION AND
THE COSMOLOGICAL CONSTANT

When expressed in terms of Ashtekar variables [59–62],
the kinematical phase space of general relativity, i.e., before

the imposition of the Hamiltonian constraint, is the same as
that of a gauge-invariant SU(2) YM theory.
In this setting, the electric field E ¼ E½q� encodes the

three-dimensional metric qab of the Cauchy slice Σ,28 the
LieðSUð2ÞÞ ≅ R3 indices being identified with indices in
the tangent space, while the connection A ¼ ΓLC½q� þ γK is
a weighted sum of the Levi-Civita connection ΓLC½q� and
the extrinsic curvature tensor K. The parameter γ is known
as the Barbero-Immirzi parameter when real and gives rise
to Ashtekar’s original self-dual formulation when equal to
the imaginary unity. To agree with my previous notation,
here I consider ðA; EÞ to be a canonical pair, although in the
loop quantum gravity (LQG) literature, the convention is
preferred in which Ehere ¼ l−2

Pl ELQG, where l2
Pl ¼ 8πGγ is

the fundamental quantum of area (in units of ℏ).
In the gravitational context, a spin-network Γ is thus

interpreted as a finite-resolution description of the gravita-
tional degrees of freedom ðA;EÞ. In particular, the holon-
omies he encode at the same time the parallel transport along
Σ and its extrinsic curvature, while the discrete electric fluxes
Xe encode the area of the surface dual to the edge e ∈ Γ. In
particular, the spin-network data allow one to reconstruct a
slightly generalized notion of discrete piecewise flat geom-
etry, known as twisted geometries [63–65].
At the core of this reconstruction are (i) the interpretation

of the electric fluxes

Xi
e ¼ l−2

Pl aen
i
e ∈ R3; ð9:1Þ

where ae ∈ Rþ is the area of the dual surface and nie is its
three-dimensional normal unit vector, and (ii) the inter-
pretation of the discrete Gauss constraintX

e∶v∈∂e
aen⃗e ¼ 0 ð9:2Þ

as the requirement for these area vectors to define a (flat)
convex polyhedron. Indeed, according to a theorem due
to Minkowski [66,67], a set of (more than three) vectors
faen⃗eg satisfying the “closure equation” (9.2) defines one
(and only one) convex polyhedron of which the faces have
area ae and outgoing normals n⃗e.
In Refs. [14–16], it was shown that the deformed Gauss

constraint

Y
e∶v∈∂e

 ���
ge ¼ 0 ð9:3Þ

can be used to reconstruct in the 4-valent case exactly
two homogeneously curved (convex) tetrahedra—only
one if the cyclical symmetry of the above equation is
broken—provided the group elements are interpreted as27These degrees of freedom correspond to holonomies and

electric fluxes along both a- and b-cycles. Indeed, in BF theory,
the canonical variables are the same as in Yang-Mills theory, with
a Poisson-commutative gauge connection.

28More precisely, this is encoded in a triad field eia, such that
qab ¼ δijeiae

j
b.
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exponentiated fluxes defined via the non-Abelian Stokes
theorem,

ge ¼ exp

�
l2
PlΛ
3

Xi
eτi

�
¼ P exp
 ��� Z

ΓLC½qo�; ð9:4Þ

qo standing for the homogenous metric of constant curva-
ture Λ. By a homogeneously curved tetrahedron, it is meant
a geodetic tetrahedron flatly embedded in either S3 or H3

(the round 3-sphere or hyperbolic 3-space) of curvature
radius r ¼ � ffiffiffiffiffiffiffiffiffiffiffij3=Λjp

. The sign of the curvature is auto-
matically encoded in the group elements.
Thus, in this setting, the quantity Λl2

Pl plays the same
role as the parameter k discussed in the previous section. As
such, in this framework, the introduction of a cosmological
constant (of either sign) can be used to induce a compacti-
fication of the phase space, with Λ providing an IR cutoff
for the spectra of geometric operators.
Moreover, the ensuing geometries are described in a

self-dual manner, with the electric fluxes being replaced by
holonomies of ΓLC½q�, hence conjugate to the holonomies
of A.
A quantum version of the ensuing self-dual geometries

is provided by the construction of Dittrich [20]. It is
therefore of interest to point out the connections between
her quantum construction, which she proposes to be the
canonical version of the Crane-Yetter topological quantum
field theory (TQFT), with the analysis of Refs. [14–16],
which studies the deformed spin network as issued from a
semiclassical evaluation of the so-called ΛBF theory with a
specific graph insertion.29 Indeed, the comparison is of
interest because it reinforces Dittrich’s proposal in light of
the results of this paper and of the expectation of the Crane-
Yetter TQFT to be a quantum version of ΛBF.30

X. CONCLUSIONS

Using the framework for quasi-Hamiltonian G-spaces
devised by Alekseev et al. in the late 1990s, I have
constructed a deformation of the phase space of lattice
Yang-Mills theory.
This deformation has various desirable properties:
(i) The discretized electric and magnetic variables are

valued in the same space, i.e., the gauge group G.

(ii) In (3þ 1) dimensions, this fact is promoted to a full
duality between the electric and magnetic variables
which admits a geometric interpretation in terms of
an auxiliary, Poisson-noncommuting, flat connec-
tion defined on the Heegaard surface associated to
an Heegaard splitting of the Cauchy surface Σ.

(iii) Independently from the spacetime dimension, the
resulting phase space is compact and of finite
volume, a fact that upon quantization gives rise to
a finite Hilbert space.

After a detailed review of the construction of the above
phase space, I discussed, from a classical perspective, the
notions of electric and magnetic vacua in this deformed
setting as well as the nature of the excitations these vacua
support. Emphasis was put in the description of such
excitations from the Heggaard surface viewpoint. The
notion of defects associated to charged particles has been
briefly discussed, as well.
After a few remarks on the quantization of the deformed

phase space, I gave a succinct summary of the interpreta-
tion of this deformed phase space in terms of piecewise
homogeneously curved geometries. My collaborators
and I had, in fact, already studied this very topic in the
past years as the basis of a framework for covariant (3þ 1)-
dimensional loop quantum gravity in the presence of a
cosmological constant.
The framework presented here is the classical precursor,

and as such the geometric and intuitive analog, of Dittrich’s
[20] proposal for studying TQFTs and topological order
in four spacetime dimensions, via a generalization of the
Walker-Wang string-net-like model [33] baring a solid
relationship with the Crane-Yetter topological field theory
[37,38]. I believe, this classical model—being geometric in
nature—can be used to develop intuition about the alge-
braic quantum models, as well as about the (semi)classical
limit of some of their observables, as in Refs. [14–16].
Moreover, as highlighted in my brief discussion on
excitations and defects, it can also guide how to perform
the coupling of sources and hence the construction of more
refined models of (extended) TQFTs.
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29Actually, the analysis of [14,15] goes further: it shows how to
reconstruct a four-dimensional homogeneously curved simplex,
out of a combination of holonomy data.

30The latter is a theory defined by the action SΛBF ¼
1
2κ

R
B ∧ F − Λ

6
B ∧ B. Integration of the momentum B,

gives the topological term of the θQCD action, i.e.
3

4κΛ

R
F ∧ F ¼ 3

4κΛ

H
CS, with F and CS the curvature and

Chern-Simons forms of a connection. This correspondence with
Chern-Simons is the simple-minded classical analog of the
correspondence between the Crane-Yetter and the Reshetikhin-
Turaev models of [38].
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Note added.—Recently, I learned that Frolov proposed a
very similar construction in the mid-1990s [11–13] (see also
Ref. [24]), in which he had also noticed the relation to the
moduli space of flat connections on a certain 2-surface as
well as some of the ensuing dualities [13]. His construction
makes use of combinatorial quantization and applies, e.g., to
the complex groups SLðN;CÞ. He then proposes to add
reality conditions to restrict his construction onto its real
forms SUðNÞ and SLðN;RÞ. This procedure, however,
requires a careful analysis, which has not been provided.
Indeed, subtleties are bound to arise from the phase space
reductionwith respect to these new “reality constraints.” For
example, assuming the reality constraints are first class, it
has not been discussed what kind of new gauge trans-
formations—to be eventually modded out—they generate;
similarly, assuming they are second class, new Dirac
brackets would have to be introduced. None of these issues,
nor others, have, however, been discussed. Here, I avoided
all of them by employing the quasi-Hamiltonian formalism
of Alekseev and collaborators, which directly applies to all
the groups considered above. As shown in the last section of
Ref. [1] (with reference to Ref. [68]), the two procedures
agreewhenever both are applicable, e.g., forG ¼ SLðN;CÞ.
I thank Prof. Frolov for kindly bringing his work to my
attention.

APPENDIX A: FROM THE SYMPLECTIC TO
THE POISSON STRUCTURE ON G × g

As a warm-up, let me first show how to translate from the
symplectic to the Poisson framework in the flat case. The
symplectic form is

ω ¼ −dhX; θLh i

¼ hθLh ;∧dXi þ
1

2
hX; ½θLh ;∧θLh �i

¼ θLh
a ∧ dXa þ 1

2
fijkXiθLh

j ∧ θLh
k; ðA1Þ

where Einstein’s summation convention is in order, θLh
i ¼

hτi; θLh i, and fijk is completely antisymmetric. Now, using
the notation of footnote 4,

ω♭ð∂XiÞ ¼ ∂Xi ⌟ ω ¼ −θLh i ðA2aÞ

ω♭ððτ̂iÞLÞ ¼ ðτ̂iÞL ⌟ ω ¼ dXi þ fijkXjθLh
k: ðA2bÞ

Now, using P♯∘ω♭ ¼ id, we obtain by linearity

∂Xi ¼ −P♯ðθLh iÞ ðA3aÞ

ðτ̂iÞL ¼ P♯ðdXi þ fijkXjθLh
kÞ ¼ P♯ðdXiÞ þ fijkXjP♯ðθLh kÞ:

ðA3bÞ

Hence,

P♯ðθLh iÞ ¼ −∂Xi and P♯ðdXiÞ ¼ −fijkXj∂Xk þ ðτ̂iÞL;
ðA4Þ

and

PðθLh i ⊗ θLh
jÞ ¼ P♯ðθLh iÞ ⌟ θLh j ¼ 0 ðA5aÞ

PðdXi ⊗ θLh
jÞ ¼ P♯ðdXiÞ ⌟ θLh j ¼ δij ðA5bÞ

PðdXi ⊗ dXjÞ ¼ P♯ðdXiÞ ⌟ dXj ¼ fijkXk: ðA5cÞ

Multiplying by τj the second equation and recalling
that ff1; f2g ¼ Pðdf1 ⊗ df2Þ and that—in coordinates—
θLh ¼ h−1dh, one finds

fh;hg¼0;fXi;hg¼hτi and fXi;Xjg¼fijkXk: ðA6Þ

APPENDIX B: QUASI-POISSON
STRUCTURE ON DðGÞ

I will now move on to the translation between the
quasisymplectic and the quasi-Poisson case. Since—in this
case—ω is degenerate, one cannot expect to recover the
quasi-Poisson bivector on DðGÞ by simply inverting ω. To
take into account the nontrivial kernel of ω♭, Eq. (4.13), the
relation between the two gets in fact twisted:

P♯∘ω♭ ¼ idTD −
1

4
ðτiÞ♯ ⊗ ðθLμ i − θRμ

iÞ: ðB1Þ

Notice, in the limit of small fluxes, this reduces to the usual
inverse condition.
Now, contracting this equation with Y♯ ¼ ðY; 0Þ♯ ¼

ŶLjh þ ðŶL þ ŶRÞjf , and using (4.9), one obtains

P♯∘ω♭ðY♯Þ ¼ 1

2
P♯ðhY; θLμs þ θRμsiÞ

¼ 1

2
P♯ðhð1þ AdμsÞY; θRμsiÞ

¼ Y♯ −
1

4
ð2Y − AdμsY − Ad−1μs YÞ♯s

¼ 1

4
ðð1þ Ad−1μs Þð1þ AdμsÞYÞ♯s: ðB2Þ

An analogous equation can be found for Y♯ ¼ ð0; YÞ, and
by replacing 1

2
ð1þ AdμÞY ⇝ Y, the following condition

can be deduced:

P♯ðhY; θRμ iÞ ¼
1

2
ðð1þ Ad−1μ ÞYÞ♯: ðB3Þ
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This is the quasi-Hamiltonian flow equation in the Poisson
language, generalizing (3.14).
Choosing again Y ¼ ðY; 0Þ, and further contraction with

θLh , gives

PðhY; θRg i ⊗ θLh Þ ¼
1

2
ð1þ Ad−1g ÞY: ðB4Þ

Similarly, contraction with θRg gives

PðhY; θRg i ⊗ θRg Þ ¼ −
1

2
ð1 − AdgÞð1þ Ad−1g ÞY

¼ 1

2
ðAdg − Ad−1g ÞY: ðB5Þ

Finally, consider Y ¼ ð0; YÞ in the quasi-Hamiltonian flow
equation, and contract with θRh :

PðhY; θR~g i ⊗ θRh Þ ¼ −
1

2
ð1þ Ad−1~g ÞY: ðB6Þ

Now, using

θR~g ¼ ð1 − Ad~gÞθRh − Adhg−1θ
R
g ðB7Þ

and AdhθLh ¼ θRh , the above equation can be recast in the
form

Pðhð1 − Ad−1~g ÞY; θRh i ⊗ θRh Þ

¼ AdhPðhAdgh−1Y; θRg i ⊗ θLh Þ −
1

2
ð1þ Ad−1~g ÞY

¼ 1

2
Adhð1þ Ad−1g ÞAdgh−1Y −

1

2
ð1þ Ad−1~g ÞY ¼ 0;

ðB8Þ

where in the second step I used Eq. (B4).
Summarizing,

PðθRh i ⊗ θRh
jÞ ¼ 0 ðB9aÞ

PðθRg i ⊗ θLh
jÞ ¼ 1

2
δij þ 1

2
hτi;Adgτji ðB9bÞ

PðθRg i ⊗ θRg
jÞ ¼ 1

2
hAdgτi; τji −

1

2
hτi;Adgτji: ðB9cÞ

Curiously, it is found that the holonomies quasi-Poisson
commute, even though the momentum space has been
curved. This mismatch, however, is not worrying, since
this is not yet an actual phase space. Nevertheless, I will
comment again on this point at the end of this section.

Finally, in terms of ða; bÞ, these become

PðθRa i ⊗ θRa
jÞ ¼ 0 ¼ PðθRb i ⊗ θRb

jÞ;

PðθRb i ⊗ θLa
jÞ ¼ 1

2
hτi;Adbτji þ

1

2
hAd−1a τi; τji; ðB10Þ

that is

P ¼ 1

2
hτ̂Lb ⊗A τ̂La i þ

1

2
hτ̂Rb ⊗A τ̂Ra i: ðB11Þ

Unsurprisingly, ða; bÞ are the closest to Darboux coordi-
nates in the quasi-Poisson setting.
For G ¼ SUð2Þ,

τk¼−
i
2
σk; h·; ·i¼−2Trð··Þ; and fijk¼ ϵijk: ðB12Þ

Also, denoting the tensor product A ⊗ B ¼ A1B2,

4τi1τ
i
2 ¼ 1 − 2η with η · ða ⊗ bÞ ¼ b ⊗ a: ðB13Þ

Hence, the only nontrivial quasi-Poisson bracket in
D ¼ SUð2Þa × SUð2Þb can be written as

a−12 fb1; a2gb−11 ¼ −τi1τ
j
2ðTrðτjAd−1b τiÞ þ TrðτiAdaτjÞÞ

¼ −ðAdbτiÞ1τi2 − τi1ðAd−1a τiÞ2; ðB14Þ

and thus

fb1; a2g ¼ −b1a2τi1τi2 − τi1τ
i
2b1a2

¼ −
1

4
ð2b1a2 − 2b1a2η − 2ηb1a2Þ ðB15Þ

or, equivalently,

fa1; b2g ¼
1

2
ða1b2 − a1b2η − ηa1b2Þ: ðB16Þ

Finally, fusion can also be performed in the Poisson
framework. Similarly to the symplectic case, a term has to
be added to the sum of the quasi-Poisson bivectors to make
it again compatible with the new quasi-Hamiltonian flow
equation. See Ref. [3] for the original construction and
Ref. [16] for a worked-out example in a simple case.

APPENDIX C: REMARKS ON EXPONENTIATED
FLUXES, BOOSTS, AND QUASI-POISSON

COMMUTATIVITY

As I have emphasized at the end of Sec. IVA, the
deformed fluxes are best understood as elements in the
coset Ga ×Gb=Gdiag, which—as a manifold—can be iden-
tified with the group G (the momentum map then provides
a definite one-to-one mapping between this manifold and
the group G). In the case of G ¼ SUð2Þ, the double is
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ismorphic to (the universal cover of) the group of rotation

of R4, DðSUð2ÞÞ ≅ gSOð4Þ. Then, the a- and b-factors
corresponding to its left and right SU(2) components, the
diagonal SU(2) subgroup corresponds to spacetime rota-
tions, and the exponentiated fluxes correspond to the
Euclidean boosts identified with elements of Gf . With
the construction of Sec. IVA, the group of Euclidean
rotations of R4, D can be turned into a quasi-Hamiltonian
SU(2)-space.
A similar construction can be performed on (the uni-

versal cover of) the group of Lorentz transformations of

R3;1, SLð2;CÞ ≅ gSOð3; 1Þ: this group can be turned into
a quasi-Hamiltonian SU(2)-space with quasisymplectic
form ωK and momentum map μK . The latter is valued in
the space of boosts identified with K ¼ fg ∈ SLð2;CÞ∶
g ¼ g†g, where † stands for transposition followed by
complex conjugation. The construction is detailed in
Ref. [1], and although it differs from the one reviewed

in this paper, it is just an adaptation thereof. On the other
hand, it is also well known [22–27] that SLð2;CÞ is a
Poisson-Lie space, which supports an actual symplectic
2-form ωPL and is equipped with a momentum map μPL
valued in the Iwasawa subgroup SBð2;CÞ ¼ SLð2;CÞ.
It turns out that the two constructions are equivalent for

SLð2;CÞ, although only the quasi-Hamiltonian one works
for DðSUð2ÞÞ. This is proved in Ref. [1], Sec. X. In this
proof resides the solution of the puzzle of the commuting
holonomies discussed after Eq. (B9),

ωPL ¼ ωK þ τμK where dτ ¼ χ; ðC1Þ

so that Eq. (4.12) is satisfied. Notice that when pulled back
to K, χ is exact, since it is closed and the boost space is
contractible. Therefore, the noncommutativity of the hol-
onomies, rather than being contained in ωK , is contained in
τμK or—more generally—in χ.
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