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We study for the first time the stability against scalar perturbations, and we compute the spectrum of
quasinormal modes of three-dimensional charged black holes in Einstein-power-Maxwell nonlinear
electrodynamics assuming running couplings. Adopting the sixth order Wentzel-Kramers-Brillouin (WKB)
approximation we investigate how the running of the couplings change the spectrum of the classical theory.
Our results show that all modes corresponding to nonvanishing angular momentum are unstable both in the
classical theory and with the running of the couplings, while the fundamental mode can be stable or
unstable depending on the running parameter and the electric charge.
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I. INTRODUCTION

A consistent formulation of quantum gravity is still an
open task. Although so far there are several approaches to
quantum gravity in the literature (see e.g. [1–9] and
references therein), most of them share a common property,
namely that the basic parameters that enter into the action,
such as Newton’s constant, the electromagnetic coupling
or the cosmological constant, become scale dependent
quantities. This does not come as a surprise, since scale
dependence at the level of the effective action is a generic
result of quantum field theory. Scale dependent couplings
are expected to modify, and indeed they do, the properties
of classical black hole backgrounds (see Sec. II below).
Black holes (BHs), a generic prediction of Einstein’s

general relativity (GR), are way more than just mathemati-
cal objects. After Hawking’s seminal work [10,11] in which
it was shown that BHs emit radiation from their horizon,
these objects have become of paramount importance in
theories of gravity and an excellent laboratory to under-
stand quantum gravity. Greybody factors and quasinormal
modes are of special interest that have attracted a lot of

attention over the last years. First, greybody factors are
frequency dependent quantities that measure the modifi-
cation of the original black body radiation, since the
emitted particles feel an effective potential barrier that
backscatters a part of the outcoming radiation back into the
black hole. On the other hand, (in)stability of a system and
how it responds to a small external perturbation have
been always important issues in physics. In particular,
the stability of BHs against small perturbations is an
old subject started with the works of [12–17] (see also
Chandrasekhar’s monograph [18]). Quasinormal modes
(QNM) with a nonvanishing imaginary part, depend
entirely on the few BH parameters, and thus they contain
unique information about the mass, electric charge and
angular momentum of black holes. After the LIGO direct
detections of gravitational waves [19–21], that offer us the
strongest evidence so far that BH exist and merge, QNM of
black holes are more relevant than ever. By observing the
quasinormal spectrum, that is frequencies and damping
rates, we can determine the black hole parameters.
Although greybody factors and quasinormal modes at first
sight may seem completely unrelated, they are in fact
closely related and differ only by the boundary conditions of
the same mathematical problem, see Sec. III. For a review on
BH QNM see [22], and for a more recent one [23].
Gravity in (1þ 2) dimensions, mainly due to the absence

of propagating degrees of freedom as well as its deep
connection to a Yang-Mills theory with only the Chern-
Simons term [24–26], is definitely special and allows us to
study BH that share properties of their four-dimensional
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counterparts, such as Hawking radiation and thermody-
namical properties, in a simpler mathematical framework.
In the original Bañados–Teitelboim–Zanelli (BTZ) black
hole [27,28] the presence of a cosmological constant was
crucial for the existence of the BH horizon. If, however, the
black hole is electrically charged there is a horizon even
without the cosmological constant. Standard Maxwell’s
electrodynamics in four dimensions is both linear and
characterized by a traceless energy momentum tensor. In
(1þ 2)-dimensional spacetimes, however, in the linear
theory the trace of the stress energy tensor does not vanish
any more. It is straightforward to generalize the theory by
assuming a nonlinear electrodynamics described by the
Lagrangian density L ¼ Fk, where F is Maxwell’s invari-
ant and k is an arbitrary rational number. In this class of
theories, called Einstein-power-Maxwell theories (EpM),
the stress energy tensor is traceless for k ¼ D=4, whereD is
the dimensionality of spacetime. Therefore, if k ¼ 3=4 we
have a nonlinear theory in three dimensions with a
vanishing trace of the energy momentum tensor. Black
hole solutions in three and higher dimensions have been
obtained in [29,30], while the running of couplings either in
BTZ or in EpM theory in (1þ 2) gravity has been
investigated in [31,32].
It is the aim of the present work to study for the first time

the stability and compute the quasinormal spectrum of
charged black holes in three-dimensional EpM nonlinear
electrodynamics. Our work is organized as follows: After
this introduction, we present the model and the BH solution
in Sec. II, while in the third section the effective potential
for scalar perturbations is presented. In Sec. IV we obtain
the quasinormal modes, and finally we conclude our work
in the last section. We use natural units where c ¼ 1 ¼ ℏ
and metric signature ð−;þ;þÞ.

II. SCALE DEPENDENT BLACK HOLE
SOLUTION IN EpM THEORY

In this section we briefly summarize the model, the
equations of motion and the solutions both for the classical
and the scale dependent EpM theory. The notation follows
closely that of previous works on the subject [31–35].

A. Classical EpM

First we consider the classical action

S0 ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

2κ0
R −

1

e2k0
LðFÞ

�
; ð1Þ

where R is the Ricci scalar, G0 ¼ κ0=8π and e0 are the
gravitational and electromagnetic couplings respectively,
F ¼ ð1=4ÞFμνFμν is the Maxwell invariant, Fμν ¼ ∂μAν −
∂νAμ is the electromagnetic field strength tensor, and k is
the arbitrary rational number that defines the theory.
Varying with respect to the Maxwell field Aμ we obtain
its equation of motion

Dμ

�
LFFμν

e2k0

�
¼ 0; ð2Þ

while varying with respect to the metric gμν we obtain
Einstein’s field equations

Gμν ¼
κ0
e2k0

TEM
μν ; ð3Þ

where LF ¼ dL=dF and TEM
μν ¼ LðFÞgμν − LFFμγF

γ
ν is the

electromagnetic energy momentum tensor. For circularly
symmetric solutions we make the ansatz

ds2 ¼ −f0ðrÞdt2 þ f0ðrÞ−1dr2 þ r2dϕ2 ð4Þ

Fμν ¼ ðδrμδtν − δrνδ
t
μÞE0ðrÞ; ð5Þ

and therefore one has to determine a set of two functions
f0ðrÞ, E0ðrÞ, that correspond to the metric function and the
electric field respectively. Assuming k ¼ 3=4 the solution
is found to be

f0ðrÞ ¼ −G0M0 þ
4G0Q2

0

3r
ð6Þ

E0ðrÞ ¼
Q0

r2
; ð7Þ

where M0 and Q0 are the classical values of the mass and
the electric charge of the BH respectively. Given the
solution it is straightforward to compute some properties
of the BH, such as event horizon r0, Hawking temperature
T0 and Bekenstein-Hawking entropy S0, which are found
to be

r0 ¼
4Q2

0

3M0

ð8Þ

T0 ¼
M0G0

4πr0
ð9Þ

S0 ¼
πr0
2G0

: ð10Þ

B. Scale dependent EpM

Now we move on to the scale dependent EpM theory,
which is described by the action

Γ½gμν; Aμ; k� ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

2κk
R −

1

e2βk
LðFÞ

�
: ð11Þ

Note that now we have the same couplings as before, but
they are scale dependent, κk ¼ 8πGk and ek. In addition, in
this case there three independent fields, namely the metric
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gμνðxÞ, the electromagnetic four-potential AμðxÞ, and the
scale field kðxÞ.
Einstein’s field equations as well as the equation of

motion for the Maxwell potential maintain their form

Dμ

�
LFFμν

e2βk

�
¼ 0; ð12Þ

and

Gμν ¼
κk

e2βk
Teffec
μν ; ð13Þ

where the couplings are the scale dependent ones, and also
the matter energy momentum tensor Teffec

μν is given by

Teffec
μν ¼ TEM

μν −
e2βk
κk

Δtμν: ð14Þ

with the additional object Δtμν defined as follows:

Δtμν ¼ Gkðgμν□ −∇μ∇νÞG−1
k : ð15Þ

At this point a couple of remarks are in order. The
renormalization scale k is not a constant, and since there
is one consistency equation missing the corresponding
system of equations of motion is not a closed one. This
implies that the energy momentum tensor is not conserved.
Despite that, this kind of problem has been studied, at least
at the level of renormalization group improvement of black
holes in asymptotic safety scenarios [36–50]. In order to fix
the aforementioned problem, we can use the so–called
principle of minimal sensitivity [33,51–54]. This allows us
to obtain an additional equation using the effective action
(11) and taking the derivative of it with respect to the
renormalization scale k, i.e.

d
dk

Γ½gμν; Aμ; k� ¼ 0: ð16Þ

Using Eq. (16) and the corresponding equation of motion,
we are able to recover the usual energy momentum tensor
conservation (for additional details check [55] and refer-
ences therein). A problem is still present: we need to know
the explicit form of the beta function and, in many cases,
the precise expression of the beta functions is unknown (or
at least unsure). To avoid this problem, we can use
additional constraints as was previously reported in
Ref. [32], for instance the null energy condition

Δtμνlμlν ¼ 0 ð17Þ

with lμ being a null vector. With this, we can solve the
problem for the couplings GðrÞ, eðrÞ etc. directly
[31,34,56,57]. This philosophy of assuring the consistency

of the equations by imposing a null energy condition will
also be used in the present work. Finally, assuming the
same ansatz as before for circularly symmetric solutions,
the lapse metric function is computed to be

fðrÞ ¼ 4G0Q2
0

3rð1þ rϵÞ3 −
G0M0ðr3ϵ2 þ 3r2ϵþ 3rÞ

3rð1þ rϵÞ3 ; ð18Þ

where ϵ is the running parameter which let us move from
the classical solution (ϵ ¼ 0) to the scale dependent one
(ϵ ≠ 0). With this new metric function the horizon rH, the
Hawking temperature TH as well as the Bekenstein-
Hawking entropy are computed to be (at leading order
in ϵ)

rH ≃ r0ð1 − ϵr0Þ ð19Þ

TH ≃ T0

�
1þ ðϵr0Þ2

3

�
ð20Þ

S≃ S0

�
1 −

ðϵr0Þ2
3

�
; ð21Þ

which confirms our initial statement that the running of the
couplings modify the properties of the classical BH back-
grounds.

III. SCALAR PERTURBATIONS

In this section we study the propagation of a probe
minimally coupled massless scalar field Φðt; r;ϕÞ in a
given gravitational background of the form

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dϕ2 ð22Þ

with a known lapse metric function fðrÞ. The starting point
is the well-known wave equation

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞΦ ¼ 0; ð23Þ

which is a partial differential equation for the scalar field.
Next we seek solutions where the time and angular
dependence are known as follows:

Φðt; r;ϕÞ ¼ e−iωtRðrÞeimϕ ð24Þ

with m being is the quantum number of angular momen-
tum. Using the above ansatz it is straightforward to obtain
the radial equation, which is an ordinary differential
equation

R00 þ
�
1

r
þ f0

f

�
R0 þ

�
ω2

f2
−

m2

r2f

�
R ¼ 0; ð25Þ
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where the prime denotes differentiation with respect to
radial distance r. Next we recast the equation for the radial
part into a Schrödinger-like equation of the form

d2ψ
dx2

þ ðω2 − VðxÞÞψ ¼ 0 ð26Þ

by defining new variables, a dependent R → ψ as well as an
independent one r → x as follows:

R ¼ ψffiffiffi
r

p ð27Þ

x ¼
Z

dr
fðrÞ ð28Þ

with x being the so-called tortoise coordinate. Therefore we
obtain for the effective potential the expression

VðrÞ ¼ fðrÞ
�
m2

r2
þ f0ðrÞ

2r
−
fðrÞ
4r2

�
; ð29Þ

which as a function of the radial coordinate can be seen in
Fig. 1 (for three different values of the running parameter)
and 2 (for three different values of the electric charge).
Finally, the Schrödinger-like equation must be supple-

mented by appropriate boundary conditions, which for
asymptotically flat spacetimes are the following:

ψðxÞ →
�
Aeiωx if x → −∞
Cþeiωx þ C−e−iωx if x → þ∞

; ð30Þ

where A, Cþ, C− are arbitrary constants. Up to now,
following the procedure just described one can compute the
so-called greybody factors (GBF), which as already men-
tioned in the Introduction show the modification of the
spectrum of Hawking radiation due to the effective poten-
tial barrier, and where the frequency is real and takes

continuous values. For an incomplete list see e.g. [58–75]
and references therein. Now the QNM are determined
requiring that the first coefficient of the second condition
vanishes, i.e. Cþ ¼ 0. The purely ingoing wave physically
means that nothing can escape from the horizon, while the
purely outgoing wave corresponds to the requirement that
no radiation is incoming from infinity. We thus obtain an
infinite set of discrete complex numbers ω ¼ ωR þ ωIi
called the quasinormal frequencies of the black hole. Given
the time dependence of the probe scalar fieldΦ ∼ e−iωt, it is
clear that unstable modes correspond to ωI > 0, while
stable modes correspond to ωI < 0. The real part of the
mode ωR determines the period of the oscillation,
T ¼ 2π=ωR, while the imaginary part jωIj describes the
decay of the fluctuation at a time scale tD ¼ 1=jωIj.

IV. QN SPECTRUM OF SCALE DEPENDENT
CHARGED BH IN EpM THEORY

As usual in physics, obtaining exact analytical solutions
of realistic problems is extremely hard, and very few cases
are known to exist. Computing the QN spectrum of black
holes is no exception, and it does not come as a surprise the
fact that only in some special cases analytical expressions
have been obtained [76–80]. In this work we adopt the
well-known from standard quantum mechanics WKB
approximation [81,82], which is very popular and has
been applied extensively to the literature. For an incomplete
list see e.g. [83–85] and for more recent works [86–90] and
references therein.
Just to fix the notation, the QN frequencies are given by

ω2 ¼ V0 þ ð−2V 00
0Þ1=2ΛðnÞ − iνð−2V 00

0Þ1=2½1þ ΩðnÞ�;
ð31Þ

where n ¼ 0; 1; 2… is the overtone number, ν ¼ nþ 1=2,
V0 is the maximum of the effective potential, V 00

0 is the

FIG. 1. Effective potential VðrÞ taking G ¼ M ¼ Q ¼ 1 and
m ¼ 0 for ϵ ¼ 0, (solid black line), ϵ ¼ 0.05 (dashed red line)
and ϵ ¼ 0.1 (dotted blue line). Note that the vertical axes is scaled
to 1∶102.

FIG. 2. Effective potential VðrÞ taking G ¼ M ¼ 1, ϵ ¼ 0.05
and m ¼ 0 for Q ¼ 0.7, (solid black line), Q ¼ 0.8 (dashed red
line) and Q ¼ 0.9 (dotted blue line). Note that the vertical axes is
scaled to 1∶102.
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second derivative of the effective potential evaluated at the
maximum, while ΛðnÞ, ΩðnÞ are complicated expressions
of ν and higher derivatives of the potential evaluated at the
maximum, and can be seen e.g. in [84,89]. Here we have
used the WolframMathematica [91] code with WKB at any
order from one to six presented in [92].
We work with the lapse metric function presented in

Sec. II

fðrÞ ¼ 4G0Q2
0

3rð1þ rϵÞ3 −
G0M0ðr3ϵ2 þ 3r2ϵþ 3rÞ

3rð1þ rϵÞ3 ; ð32Þ

where G0, Q0, M0 are the classical values of the gravita-
tional coupling, the electric charge and the mass of the BH
respectively. From now on for simplicity we drop the index
0. In the following we fix G ¼ 1 ¼ M, and we give
emphasis on the effect of the running on the spectrum,
rather than computing as many frequencies as possible,
considering three values of the angular momentum, namely
m ¼ 0, 1, 2 and n ¼ 0, and 3 values of the running
parameter, namely ϵ ¼ 0, 0.05, 0.1. Note that contrary to
the standard Reissner-Nordström BH as well as to the

charged BH in four-dimensional EpM theory, where there
are an inner and an outer event horizon (and also extremal
BHs), here there is a single event horizon.
We summarize our results in the Tables I, II and III

below, while Figs. 3 and 4 show the real and the imaginary
part of the frequencies respectively versus the electric
charge Q for the fundamental mode m ¼ 0 ¼ n. Each
table corresponds to a certain ðm; nÞ pair, in which we show
the spectrum for several values of the electric charge and for
three values of the running parameter, namely ϵ ¼ 0
(classical case), ϵ ¼ 0.05 and ϵ ¼ 0.1. In Figs. 3 and 4
the three curves correspond to these three values of the
running parameter. We see that for m ¼ 1 and m ¼ 2 both
the real and the imaginary part of the frequencies is
positive, and thus the modes are unstable. The frequencies
increase with the angular momentum and slightly with the
running parameter, and decrease with the electric charge,
but they always remain positive. In addition, for m ¼ 0 we
observe the following features: (a) In the classical case
ϵ ¼ 0 the modes are stable, while (b) when we consider
running of the couplings the modes are stable up to a certain
value of the electric charge Q�, after which the frequencies

TABLE I. Quasinormal modes for the fundamental mode m ¼ 0 ¼ n assuming different values of the electric
charge Q for ϵ ¼ 0, 0.05, 0.1.

Q ϵ ¼ 0 ϵ ¼ 0.05 ϵ ¼ 0.1

0.50 0.0729 − 0.8168 i 0.0728 − 0.8331 i 0.0716 − 0.8488 i
0.75 0.0324 − 0.3632 i 0.0316 − 0.3791 i 0.0280 − 0.3954 i
1.00 0.0182 − 0.2042 i 0.0163 − 0.2205 i 0.0111 − 0.2345 i
1.25 0.0117 − 0.1307 i 0.0087 − 0.1465 i 0.0031 − 0.1573 i
1.50 0.0081 − 0.0908 i 0.0043 − 0.1055 i 0.0008 þ 0.1136 i
1.75 0.0059 − 0.0667 i 0.0017 − 0.0801 i 0.0028 þ 0.0863 i
2.00 0.0046 − 0.0511 i 0.0001 − 0.0631 i 0.0037 þ 0.0679 i
2.25 0.0036 − 0.0404 i 0.0008 þ 0.0511 i 0.0041 þ 0.0551 i
2.50 0.0029 − 0.0327 i 0.0014 þ 0.0424 i 0.0041 þ 0.0456 i
2.75 0.0024 − 0.0270 i 0.0018 þ 0.0357 i 0.0041 þ 0.0385 i
3.00 0.0020 − 0.0227 i 0.0020 þ 0.0306 i 0.0039 þ 0.0331 i

TABLE II. Quasinormal modes assuming different values of the charge Q for m ¼ 1 and for ϵ ¼ 0, 0.05, 0.1.

Q ϵ ¼ 0 ϵ ¼ 0.05 ϵ ¼ 0.1

0.10 84.6627 þ 126.4660 i 84.6552 þ 126.5200 i 84.6457 þ 126.5780 i
0.20 21.1639 þ 31.6191 i 21.1654 þ 31.6604 i 21.1668 þ 31.7029 i
0.30 9.4067 þ 14.0522 i 9.4060 þ 14.0974 i 9.4087 þ 14.1403 i
0.40 5.2913 þ 7.9043 i 5.2923 þ 7.9482 i 5.2954 þ 7.9933 i
0.50 3.3863 þ 5.0590 i 3.3882 þ 5.1027 i 3.3928 þ 5.1492 i
0.60 2.3515 þ 3.5132 i 2.3542 þ 3.5574 i 2.3608 þ 3.6050 i
0.70 1.7278 þ 2.5809 i 1.7310 þ 2.6261 i 1.7398 þ 2.6745 i
0.80 1.3228 þ 1.9762 i 1.3269 þ 2.0218 i 1.3379 þ 2.0711 i
0.90 1.0452 þ 1.5614 i 1.0503 þ 1.6076 i 1.0635 þ 1.6578 i
1.00 0.8465 þ 1.2648 i 0.8527 þ 1.3115 i 0.8681 þ 1.3623 i
2.00 0.2116 þ 0.3162 i 0.2284 þ 0.3665 i 0.2557 þ 0.4168 i
5.00 0.0339 þ 0.0506 i 0.0584 þ 0.0959 i 0.0794 þ 0.1306 i
10.00 0.0085 þ 0.0127 i 0.0284 þ 0.0468 i 0.0422 þ 0.0695 i

QUASINORMAL MODES OF SCALE DEPENDENT BLACK … PHYS. REV. D 97, 024027 (2018)

024027-5



acquire a positive imaginary part. This special value is
Q� ¼ 2.13 for ϵ ¼ 0.05 and Q� ¼ 1.39 for ϵ ¼ 0.1. In
previous works [93,94] a similar behavior was observed,
albeit in a completely different context. In particular, in [93]
it was shown that modes are stable for m ≤ 0 and unstable
for m > 0, while in [94] the imaginary part of the modes
change sign for a certain value of the graviton mass.

V. CONCLUSIONS

To summarize, in the present work we have studied the
stability against scalar perturbations of a three-dimensional
charged BH in EpM theory assuming running couplings.
We have considered the case k ¼ 3=4 for which the
electromagnetic stress energy tensor is traceless. Starting
from the wave equation for a massless scalar field we have
obtained a Schrödinger-like equation with an effective
potential, and we have adopted the sixth order WKB
approximation to obtain the quasinormal modes. Our
numerical results have been summarized in tables, and
we have shown graphically the dependence of the real and
the imaginary part of the spectrum on the electric charge for
three values of the running parameter. Our findings show
that (i) all modes corresponding to m > 0 are unstable, and
(ii) the fundamental mode without running is stable, while
with running it is stable only up to a certain value of the
electric charge, which is determined.
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TABLE III. Quasinormal modes assuming different values of the charge Q for m ¼ 2 and for ϵ ¼ 0, 0.05, 0.1.

Q ϵ ¼ 0 ϵ ¼ 0.05 ϵ ¼ 0.1

0.10 1286.10 þ 2080.04 i 1286.11 þ 2080.08 i 1286.11 þ 2080.12 i
0.20 321.526 þ 520.010 i 321.528 þ 520.048 i 321.529 þ 520.087 i
0.30 142.900 þ 231.116 i 142.902 þ 231.154 i 142.904 þ 231.194 i
0.40 80.3815 þ 130.0030 i 80.3832 þ 130.0420 i 80.3852 þ 130.0830 i
0.50 51.4441 þ 83.2016 i 51.4460 þ 83.2412 i 51.4481 þ 83.2845 i
0.60 35.7251 þ 57.7789 i 35.7270 þ 57.8193 i 35.7292 þ 57.8651 i
0.70 26.2470 þ 42.4498 i 26.2490 þ 42.4912 i 26.2515 þ 42.5399 i
0.80 20.0954 þ 32.5006 i 20.0974 þ 32.5432 i 20.1004 þ 32.5952 i
0.90 15.8778 þ 25.6795 i 15.8800 þ 25.7233 i 15.8835 þ 25.7790 i
1.00 12.8610 þ 20.8004 i 12.8633 þ 20.8456 i 12.8676 þ 20.9054 i
2.00 3.2153 þ 5.2001 i 3.2218 þ 5.2665 i 3.2478 þ 5.3792 i
5.00 0.5144 þ 0.8320 i 0.5691 þ 0.9705 i 0.6676 þ 1.1467 i
10.00 0.1286 þ 0.2080 i 0.2140 þ 0.3675 i 0.2943 þ 0.5043 i

FIG. 3. ReðωÞ as a function of the electric charge Q for the
fundamental mode m ¼ 0 ¼ n taking G ¼ M ¼ 1 for: (a) ϵ ¼ 0,
(solid red line), (b) ϵ ¼ 0.05 (dashed blue line) and (c) ϵ ¼ 0.1
(dotted magenta line).

FIG. 4. ImðωÞ as a function of the electric charge Q for the
fundamental mode m ¼ 0 ¼ n taking G ¼ M ¼ 1 for: (a) ϵ ¼ 0,
(solid red line), (b) ϵ ¼ 0.05 (dashed blue line) and (c) ϵ ¼ 0.1
(dotted magenta line).
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