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We propose a model of inflation capable of generating a population of light black holes (about
10−16–10−14 solar masses) that might account for a significant fraction of the dark matter in the Universe.
The effective potential of the model features an approximate inflection point arising from two-loop order
logarithmic corrections in well-motivated and perturbative particle physics examples. This feature
decelerates the inflaton before the end of inflation, enhancing the primordial spectrum of scalar fluctuations
and triggering efficient black hole production with a peaked mass distribution. At larger field values,
inflation occurs thanks to a generic small coupling between the inflaton and the curvature of spacetime. We
compute accurately the peak mass and abundance of the primordial black holes using the Press-Schechter
and Mukhanov-Sasaki formalisms, showing that the slow-roll approximation fails to reproduce the correct
results by orders of magnitude. We study as well a qualitatively similar implementation of the idea, where
the approximate inflection point is due to competing terms in a generic polynomial potential. In both
models, requiring a significant part of the dark matter abundance to be in the form of black holes implies a
small blue scalar tilt with a sizable negative running and a tensor spectrum that may be detected by the next-
generation probes of the cosmic microwave background. We also comment on previous works on the topic.
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I. INTRODUCTION

Soon after the first detection of gravitational waves
(GW) emitted by a binary black hole (BH) merger [1],
the possibility that BHs could constitute a significant
amount of the Universe’s dark matter (DM) started to
regain attention swiftly. The three detections of this kind of
event that have been reported so far by the LIGO Scientific
Collaboration [1–3] already suggest the existence of a large
population of BHs with masses of the order of a few tens of
M⊙ (1.99 × 1033 g). These values of mass1 have fuelled the
(old) idea [10–12] that long-lived BHs could have been
produced during the very early stages of the life of the
Universe, see [13–16]. In particular, these (primordial)
black holes (PBHs) might have originated from large
cosmological fluctuations produced during inflation. As
the characteristic comoving wavelength, k, of such large

primordial fluctuations becomes comparable to the Hubble
scale (after inflation ends) they would collapse to produce
BHs. These would then behave as nonbaryonic cold DM
throughout the subsequent evolution of the Universe.
The mass of each of the PBHs that are born in this way is

inversely proportional to k2,

MðkÞ≃ 5γ × 1018
�

k
7 × 1013 Mpc−1

�
−2

g; ð1:1Þ

where γ is a constant that models the efficiency of the
process and can be analytically estimated to be around 0.2
[17]. Given that inflation scans through all the range of
scales that are observable today, an interval of masses
which spans many orders of magnitude is a priori possible
for PBHs contributing to DM. However, multiple bounds
exist on this large range. The current situation is shown in
Fig. 1, assuming a monochromatic mass spectrum, appro-
priate for the very narrow mass distributions that we will
consider later.2 We emphasize that all the bounds comewith
various degrees of uncertainty, related in some cases to
assumptions about the astrophysical parameters involved in
deriving each of them. The bounds that are particularly
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1Large (>30 M⊙) BH masses are often said to be somewhat
higher than those that were expected to be detected first by LIGO
according standard formation scenarios [4]. See however [5–9].

2For extended mass functions the allowed parameter space for
PBHs appears to shrink further [18], although studies tailored to
the various constraints separately are still needed.
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sensitive to astrophysical uncertainties have been indicated
in the plot with dashed/dotted lines.
The vast range of possible PBH masses is limited from

below due to Hawking radiation, since very light PBHs
(≲10−17 M⊙) would have entirely evaporated by now [31].
At the large-mass end, several upper bounds on PBHs as DM
exist. Specifically, the dynamics of a star cluster in Eridanus
II [26] and stars in other dwarf galaxies [27] disfavor the
possibility that the DM of the Universe could be in the form
of BHs of a few tens of M⊙. The same mass range is also
constrained by radio and x-ray observations, since emissions
in these frequencies would be produced by the accretion of
interstellar gas onto the PBHs [30]. A severe upper bound
comes from the nonobservation of BH accretion effects on
the cosmic microwave background (CMB); see [32] for an
early analysis. This was used in late 2016 to exclude PBHs
of masses≳102 M⊙ as the main component of the DM [28].
Shortly after, it was argued in [33] (using the same radial
accretion modelling as in [32]) that PBH DM with masses
above 5 M⊙ is disfavored. Moreover, it has been pointed out
very recently that if the gravitational collapse leading to
PBHs occurs via an accretion disk (instead of respecting
spherical symmetry), the CMB implies that PBHs more

massive than 2 M⊙ cannot be the dominant component of
the DM [29]. Finally, the authors of [34] have performed a
study of gravitational microlensing using lensed images of
24 quasars. The quasar microlensing events that they have
identified are shown to be well fitted by a (monochromatic)
distribution of compact objects in the lens galaxies with
masses (in the approximate range of 0.05 M⊙–0.45 M⊙)
and mass fraction in agreement with the expected values for
the stellar component. This has led them to conclude that the
possibility of the DM being constituted by PBH with masses
higher than 10 M⊙ is highly unlikely. Clearly, a conservative
interpretation of the cosmological and astrophysical obser-
vations is required in order to make the case that a sizable
fraction of the DM abundance could be explained by PBH of
large mass. In this respect, it would be very important to
complement and extend with new data the constraints from
quasar microlensing [34], quantifying the amount of PBH
DM that they allow in that range. Further studies on the
constraining power of the CMB would also be helpful.
There is however a different mass window (around

∼10−16.5–10−13 M⊙) for which a significant fraction of
the DM (perhaps most or even all of it in the range
∼10−14–10−13 M⊙) might be due to PBHs. The limits that
are currently available in the literature for these PBHs come
fromneutron star capture in globular clusters (NS) [22], white
dwarfs explosions (WD) [21], femtolensing of gamma-ray
bursts (Femto) [20] and microlensing from Subaru (HSC)
[23]. Taken at face value, these bounds imply that mono-
chromatic PBHs in this range can account at most for
Oð10Þ% of the DM content. However, some of the astro-
physical bounds constraining this region are arguably more
uncertain than those cutting the large-mass end, such as the
CMB ones. In particular, concerning the HSC constraints,
since the Schwarzschild radii for light (≲10−10 M⊙) PBHs
becomes comparable or smaller than the wavelength of the
HSCr-bandfilter, thecorrespondingwaveeffect is expected to
weaken the constraints for thosemasses (once it is computed,
see the discussion in [23]). If the NS and WD bounds could
also be relaxed (which in principle is possible given the
astrophysical uncertainties), PBHs of ∼10−14–10−13 M⊙
might be able to explain the totality of the DM. Although
this low-mass region is not directly relevant for the recent
LIGO detections of binary BH mergers, it is nonetheless
important. This is not only due to the uncertainties in the
bounds, but also because no known astrophysical mechanism
can produce BHs so small.3 Therefore, postulating an alter-
native origin (such as primordial inflationary fluctuations) is
necessary if such objects are to be considered a possible, even
subdominant, DM candidate.
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FIG. 1. Fractional abundance of PBHs for the first example in
Table I (red curve) and observational bounds (for a monochro-
matic mass spectrum). The constraints are from measurements of
the extragalactic gamma-ray background [19], femtolensing of
gamma-ray bursts (Femto) [20], white dwarfs explosion (WD)
[21], neutron star capture (NS) [22], microlensing from Subaru
(HSC) [23] and EROS/MACHO [24], wide binaries observations
(WB) [25], dynamical heating of ultrafaint dwarf galaxies (UFD)
[26,27] (we have taken the solid black line in figure 4 of [26]),
CMB measurements [28,29] and radio and x-rays observations
[30]. The solid (dashed) line shows the constraints from HSC
taking into account (neglecting) the effects of finite source size on
the event rate of microlensing (see figure 25 in [23]). For the
(orange) constraints from CMB anisotropies we also show
conservative (solid) and stronger (dashed) bounds (see figure 14
from [28]). The magenta lines refer to the CMB constraints
derived in [29] assuming that PBHs form with an accretion disk
(dashed and dotted lines refer respectively to the blue and red
areas in their figure 4).

3It is worth putting in perspective the size of BHs of such small
masses. The Schwarzschild radius of a BH is proportional to its
mass. Knowing that it is about 3 km for a ∼M⊙ BH, the typical
scale of such a PBH candidate for DM is roughly between 0.1 Å
and 1 Å, which is comparable to the size of the lightest atoms
such as Hydrogen and Oxygen.
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In this paperwe investigate the extent towhich single field
models of inflation can produce a sizable amount of PBHs
that is interesting as a possible candidate for DM. As
mentioned above, the mass of the individual PBHs that
are produced after inflation depends on the time at which the
large fluctuations that seed their formation cross the Hubble
scale. The times of Hubble crossing for a comovingmode of
wave number k are determined by the equation k ¼ H≡
_a=a, where a is the scale factor of the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric of the Universe andH is
the Hubble function defined with respect to conformal time.
In the standard framework of inflation this happens twice for
each k-mode; first during inflation itself, whenH ¼ H=a is
approximately constant; and then after the end of it, when
H−1 grows in the subsequent epochs. In the usual single field
slow-roll framework, the cosmological perturbations of
wave number kgenerated during inflation remain essentially
constant in between these two crossing times, with an
amplitude, As, that is approximately given by4

As ¼
1

24π2M2
P

V
ϵV

; where ϵV ¼ M2
P

2

�
V 0

V

�
2

; ð1:2Þ

V and V 0 are the inflationary potential and its first derivative
and MP ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.8435 × 1018 GeV is the reduced
Planckmass. Therefore, the mass of the PBHs is determined
by the dynamics of the Universe during inflation and can be
linked to the number of e-folds of expansion elapsed since
the largest observable distance today became equal to H−1

during inflation.
The CMB constrains As to be of the order of 10−9 at

those scales, whereas the values required for creating PBHs
are much larger, typically As ∼ 10−3–10−2. If we assume
that the potential V is nearly constant during inflation
(which is indeed the case in standard slow-roll, leading to a
quasi-de Sitter universe), the expression (1.2) tells that the
required enhancement of As may be achieved by signifi-
cantly reducing the value of the slow-roll parameter ϵV.
Since this parameter quantifies the flatness of the potential,
PBHs are produced provided that the rolling field encoun-
ters a sufficiently flat region of the potential during the
course of inflation, which generates a peak in the spectrum
of primordial fluctuations. To the best of our knowledge,
this idea was first proposed in [35], where it was pointed
out that a single-field inflationary potential that produces a
PBH population capable of accounting for the DM must
feature a near-inflection point.
A renormalizable potential that can have an inflection

point is (see, e.g., [36,37]):

VðϕÞ ¼ a2ϕ2 þ a3ϕ3 þ a4ϕ4; ð1:3Þ

where the ai can be considered constant. This potential
vanishes at its absolute minimum in ϕ ¼ 0, in agreement
with the fact that the current cosmological constant is
negligible in comparison with the energy density stored in
the potential during inflation. A different possibility sharing
these two features is a potential of the form [38]:

VðϕÞ¼ λ0
4!

�
1þq1 log

ϕ2

ϕ2
0

þq2

�
log

ϕ2

ϕ2
0

�
2

þ���
�
ϕ4; ð1:4Þ

which describes radiative corrections to a renormalizable
potential for large field values. In this case, λ0, ϕ0 and the qi
are assumed to be constants. Both types of potentials can be
shown to be consistentwith the current CMBconstraints and
to solve the horizon and flatness problems; see in particular
[38]. If their parameters are chosen adequately, these
potentials can be sufficiently flat to reduce the amount of
primordial gravitational waves with respect to the prediction
of VðϕÞ ∝ ϕ4, which is now ruled out by CMB data due to
the strong Planckþ BICEP2 constraint on the tensor-to-
scalar ratio [39]:

r < 0.07 at k ¼ 0.05 Mpc−1 and 95% C:L: ð1:5Þ

The plateaus that these potentials can feature may instead be
suitably engineered to generate PBHs, but in that case they
do not fit the CMBdata. This is because at large field values,
away from the plateau involved in the PBH formation
mechanism, the potentials (1.3) and (1.4) grow as ϕ4 and
ðlogϕÞ2ϕ4, respectively, causing an overproduction of
primordial GW, which violates the upper bound (1.5).
One could conjecture that the difficulty to obtain both

PBHs and successful inflation could be surmounted by
introducing a direct coupling between the scalar field ϕ and
the curvature scalarR. For example, it iswell known that aϕ4

potential leads to an asymptotic plateau at large field
values—after redefining adequately the spacetime metric
and the inflaton—if the fieldϕ is coupled toR through a term
of the form ϕ2R [40]. It might then be possible to generate
PBHs and satisfy all the CMB constraints and obtain a
sufficient amount of inflation from a potential such as (1.3)
or (1.4) by including a non-negligible nonminimal coupling
between ϕ and R. After the appropriate field redefinitions, a
potential with the required characteristics should schemati-
cally look like the one that is shown in Fig. 2. The potential
must be sufficiently flat for large values of the field (where
the primordial spectrum observed with the CMB is gen-
erated) to satisfy the constraint (1.5). It must also have an
approximate plateau at smaller field values (corresponding
to larger values of k) to produce PBHs and, also, a minimum
withV ¼ 0 to reheat theUniverse after inflation ends. In this
paper we explore if the PBHs produced by these models can
be in the adequate mass range and have a sufficient
abundance to constitute the DM of the Universe. We find
that imposing the Planck CMB constraints and requiring a

4We will later show that this approximation cannot be safely
used in the cases of interest, and we will indeed require a more
accurate expression. However, it is sufficient to illustrate well the
point we want to convey now.
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reasonable number of e-folds of inflation, these models can
generate a population of PBHs that falls in the low-mass
window (∼10−16.5–10−13 M⊙) that is potentially interesting
for DM.
Before concluding this section let us mention that a toy

potential with the qualitative features of Fig. 2 was recently
put forward in [41]. That potential is a ratio of polynomials
which appears difficult to justify in an effective quantum field
theory. We focus instead on standard renormalizable poten-
tials (that grow asϕ4 for large field values) andwe emphasise
the role of the nonminimal coupling to gravity to generate the
inflationary plateau. We will comment further on that model
in Sec. VI. Besides, in Ref. [42] a particular case of the
potential (1.4) (corresponding to q1 ¼ 0) with nonminimal
coupling to R has been explored recently. We will comment
on it at the end of Sec. V. Aside from the differences in the
models themselves, our work goes beyond those analysis in
the way we compute the primordial spectrum, for which we
use the Mukhanov-Sasaki formalism [43,44].
In the next section we review the relevant formulas for the

calculation of the mass and abundance of PBHs from the
primordial spectrum of perturbations generated by inflation.
In Sec. III we describe the inflationary set-up that we explore
and provide the details of the method that we use to compute
the spectrum of primordial perturbations. In Sec. IV we list
the requirements that a model must satisfy for successful
inflation and generating PBHs that may account for the DM
of the Universe. In that section we also describe the strategy
we follow to look for such models. Then, in Secs. V and VI
we discuss our results for the potentials (1.4) and (1.3),
respectively. We present our conclusions in Sec. VII.

II. PRIMORDIAL BLACK HOLE PRODUCTION

PBHs are formed when H becomes comparable to the
wavelength of a sufficiently large primordial density
fluctuation, after inflation. Their mass (M) is assumed to
be directly proportional to the mass inside one Hubble
volume at that time:

M ¼ γMH ¼ γ
4

3
πρH−3; ð2:1Þ

where the factor γ depends on the details of the gravita-
tional collapse. The precise relation between M and MH is
uncertain. Here we take γ ¼ 0.2, as suggested by the
analytical model described in [17] for PBHs formed during
the radiation era, which is the situation we assume in what
follows. The relation between the comoving wave number,
k, and the mass of the corresponding PBHs can be obtained
using the conservation of entropy, dðgsðTÞT3a3Þ=dt ¼ 0,
and the scaling of the energy density, ρ ∝ gðTÞT4, with the
temperature, T, during the radiation era:

M¼ γMHðeqÞ

�
gðTfÞ
gðTeqÞ

�
1=2

�
gsðTfÞ
gsðTeqÞ

�−2=3� k
keq

�
−2
; ð2:2Þ

where gðTÞ and gsðTÞ are the effective number of degrees
of freedom in the radiation and the entropy densities,
respectively; and the subscripts eq and f refer to the times
of matter-radiation equality and PBH formation. The
quantity MHðeqÞ ¼ 4πρeqH−3

eq =3 is the horizon mass at
equality. Assuming gðTÞ ¼ gsðTÞ, which for our purposes
is a good approximation even beyond electron-positron
annihilation, one gets:

M ¼ 1018 g

�
γ

0.2

��
gðTfÞ
106.75

�−1=6� k
7 × 1013 Mpc−1

�
−2
;

ð2:3Þ

where we have used that gðTeqÞ ¼ 3.38, keq ¼
0.07Ωmh2 Mpc−1 and we have written the result in terms
of the Standard Model (SM) number of relativistic degrees
of freedom deep in the radiation era, gðTÞ ¼ 106.75.
Assuming the particle content of the SM, this expression
then reduces to the formula (1.1) of the Introduction.
In the context of the Press-Schechter model of gravita-

tional collapse [45], the mass fraction in PBHs of mass M,
which we denote βðMÞ, is given by the probability that the
overdensity δ is above a certain threshold for collapse
δc. Assuming that δ is a random Gaussian variable with
mass- (i.e., scale-) dependent variance, we have:

βðMÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2ðMÞ

p Z
∞

δc

dδ exp

�
−δ2

2σ2ðMÞ
�
: ð2:4Þ

The shape of the probability distribution of δðkÞ and the
value of βðMÞ (for a given δc) are uniquely determined by
the variance σ2ðMÞ, which we assume to be the coarse-
grained variance of the density contrast smoothed on a
scale R ¼ 1=k. For radiation domination this is given by:

σ2ðMðkÞÞ ¼
Z

dq
q
PδðqÞWðqRÞ2

¼ 16

81

Z
dq
q
ðqRÞ4PRðqÞWðqRÞ2; ð2:5Þ

FIG. 2. Schematic representation of the kind of inflationary
potential required to fit the CMB data, produce PBHs and reheat
the Universe after inflation.
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where PR and Pδ are the dimensionless power spectra of
the primordial comoving curvature perturbations and den-
sity fluctuations, respectively; see, e.g., [46,47]. For the
smoothing window function we take for convenience a
Gaussian:WðxÞ ¼ expð−x2=2Þ, although other choices are
possible and βðMÞ should only be weakly dependent
on them.
Finally, the present abundance of PBHs is5:

ΩPBH ¼
Z

dM
M

ΩPBHðMÞ; ð2:6Þ

with [48]

ΩPBHðMÞ
ΩDM

¼ βðMÞ
8×10−16

�
γ

0.2

�
3=2

�
gðTfÞ
106.75

�−1=4� M
1018 g

�
−1=2

ð2:7Þ

and the total cold DM abundance is ΩDM ≃ 0.26 [49].
As it can be noticed from equation (2.4), the mass

fraction of PBHs is exponentially sensitive to the critical
density for collapse δc. In other words, small variations of
δc or PR imply dramatic changes in the present abundance
of PBHs. During radiation domination, the most recent
analyses suggest δc ≃ 0.45 [50–53]. For this value, PBHs
can account for an Oð1Þ fraction of the dark matter content
of the Universe only if the primordial power spectrum
of curvature fluctuations is enhanced at the scale of the
PBHs to be around PR ≃ 10−2.6 As we mentioned in the
Introduction, this is about seven orders of magnitudes
larger than that at the CMB scalePR ≃ 10−9. In the coming
sections we will discuss in quantitative detail how such a
feature can arise in well-motivated models of single-field
inflation.
Before proceeding with that, it is useful to relate the PBH

mass (2.3) to the amount of expansion that the Universe
undergoes during inflation in between the time that some
fiducial scale k� exited the Hubble radius and the time of
exit for the scale of PBH formation. In order to do so, we
assume that the Hubble scale during inflation, HI, is
approximately constant. The amount of expansion we want
to quantify is then

ΔN�
e ¼ log

ak
a�

¼ log
akHI

k�
¼ log

afHf

k�
; ð2:8Þ

where the subscript k indicates the time (during inflation) at
which k ¼ aH ¼ H. Assuming, as before, that the number
of effective degrees of freedom in the entropy and energy
densities are equal, we find that [54]:

ΔN�
e ¼ −

1

2
log

M
M⊙

þ 1

2
log γ þ 1

12
log

gðTÞ
106.75

þ 1

2
log

4.4 × 1024ΩrH2
0

k2�
; ð2:9Þ

where the radiation density is Ωrh2 ¼ 4.18 × 10−5 and
H0 ≃ 0.0007 Mpc−1. Choosing for concreteness k� ¼
k0.05 ¼ 0.05 Mpc−1, which is the reference scale used by
the Planck collaboration, we finally get:

ΔN�
e ¼ 18.37 −

1

2
log

M
M⊙

: ð2:10Þ

For instance, PBHs with mass M ¼ 10−14 M⊙ are asso-
ciated to a comoving scale k−1 which becomes larger than
H−1 approximately 34.5 e-folds after k0.05 does it.

III. INFLATION AND THE SPECTRUM OF
PRIMORDIAL PERTURBATIONS

We consider a real scalar field coupled to gravity in the
so-called Jordan frame:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
ðM2

Pþξϕ2ÞRþ1

2
gμν∂μϕ∂νϕ−VðϕÞ

�
:

ð3:1Þ

We will later choose V to be equal to either (1.3) or (1.4),
but we keep it generic for the moment. It is worth recalling
that the coupling ξ is generated radiatively even if it is zero
at some scale, and therefore it should be included unless it
is assumed to be so small that its effect is negligible. Since
we only consider potentials that vanish at ϕ ¼ 0, the term
ξϕ2R does not contribute to the actual Planck mass squared
today, which is just m2

P ¼ 8πM2
P. This coupling between ϕ

and R can be recast into a noncanonical kinetic term for
the scalar field by performing a Weyl transformation of
the metric:

~gμνðxÞ ¼ Ω2½ϕðxÞ�gμνðxÞ with Ω2 ¼ 1þ ξϕ2

M2
P
: ð3:2Þ

This leads to

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
−
M2

P

2
~Rþ 1

2
KðϕÞ~gμν∂μϕ∂νϕ − ~VðϕÞ

�
;

ð3:3Þ
where

K ¼ 1

Ω2
þ 3M2

P

2

�
d logΩ2

dϕ

�
2

and ~V ¼ V
Ω4

: ð3:4Þ

The kinetic term of the scalar field can be canonically
normalized with the following field redefinition:

5This ignores the effects of evaporation (which certainly
can be neglected for the masses of interest), mass accretion
and PBH merging.

6This value can be lower if the primordial spectrum is
sufficiently non-Gaussian.
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Ω2
dχ
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ 3M2

P

2

�
dΩ2

dϕ

�
2

s
: ð3:5Þ

In terms of the new field, χðϕÞ, and defining

UðχÞ ¼ ~VðϕðχÞÞ; ð3:6Þ

the action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
−
M2

P

2
~Rþ 1

2
~gμν∂μχ∂νχ − UðχÞ

�
:

ð3:7Þ

This is the form of the action that we will use in later
sections of the paper to compute the inflationary dynamics
and the formation of PBHs from the potentials (1.3)
and (1.4).

A. The dynamics of the inflaton as a function
of the number of e-folds

The evolution of the field χ when ~gμν is chosen to be a
flat FLRWmetric can be conveniently described in terms of
the number of e-folds elapsed from an initial (cosmic) time
ti, which is defined as the integral

NeðtÞ ¼
Z

t

ti

Hðt0Þdt0: ð3:8Þ

Concretely, χðNeÞ obeys the following differential
equation [55],

d2χ
dN2

e
þ 3

dχ
dNe

−
1

2M2
P

�
dχ
dNe

�
3

þ
�
3M2

P −
1

2

�
dχ
dNe

�
2
�
d logU
dχ

¼ 0; ð3:9Þ

where
ffiffiffiffiffiffiffiffi
2ϵU

p ¼ MPðd logU=dχÞ encodes the effect of the
shape of the potential on the trajectory of the field. We
remark that Eq. (3.9) is exact; being, in particular, free from
the slow-roll approximation. This equation can be solved
numerically for any smooth ϵU and it allows a precise
determination of the number of e-folds between some ti and
the end of inflation; which happens when the condition
ϵH ¼ 1 is satisfied, where

ϵH ¼ 1

2M2
P

�
dχ
dNe

�
2

: ð3:10Þ

B. Slow-roll approximation

We consider potentials that are flat enough to guarantee
the application of the slow-roll approximation for the
computation of the spectrum of primordial perturbations

at CMB scales. In this limit, the scalar and tensor spectra at
those scales can be accurately expressed as:

PRðkÞ ¼ As

�
k
k�

�
ns−1þα

2
ln k

k�þ���
; PtðkÞ ¼ At

�
k
k�

�
ntþ���

;

ð3:11Þ
where the parameters ns, α≡ dns=d ln k, etc. are implicitly
evaluated at a fiducial scale k�, for instance k� ¼ k0.05≡
0.05 Mpc−1. At leading order in the slow-roll expansion,
these parameters are simple functions of the inflationary
potential U and its derivatives with respect to χ, which we
denote with primes:

ns ≃ 1þ 2ηU − 6ϵU; α≃ −2ξU þ 16ϵUηU − 24ϵ2U;

As ¼ PRðk�Þ≃ U
24π2ϵUM4

P
ð3:12Þ

and

At ≃ rAs ≃ 16ϵUAs; nt ≃ −
r
8
; ð3:13Þ

where

ϵU ¼ M2
P

2

�
U0

U

�
2

; ηU ¼ M2
P
U00

U
; ξU ¼ M4

P
U0U000

U2
:

ð3:14Þ

A more accurate and precise determination of the scalar
power spectrum is obtained using the expression [56]:

PR ≃ 1

8π2M2
P

H2

ϵH
; ð3:15Þ

where the Hubble function squared can be computed (via
Friedmann’s equation) as

H2 ¼ U
ð3 − ϵHÞM2

P
: ð3:16Þ

In the limit in which ϵH ≪ 3, we have from the last
expression that U ≃ 3M2

PH
2. If, in addition, the condition

jηHj ≪ 3 is also satisfied, where

ηH ¼ ϵH −
1

2

d log ϵH
dNe

; ð3:17Þ

then the slow-roll attractor

dχ
dNe

≃ −
ffiffiffiffiffiffiffiffiffiffiffiffi
2ϵUU
3H2

r
≃ −MP

ffiffiffiffiffiffiffiffi
2ϵU

p
ð3:18Þ

is a good approximation, which also implies that ϵH ≃ ϵU
and, therefore
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PR ≃ V
24π2ϵUM4

P
; ð3:19Þ

in agreement with the expression for As given in (3.12).
Equation (3.15) expresses the power spectrum of primordial
fluctuations as a function of the classical inflaton’s trajec-
tory, which is governed by Eq. (3.9). On the other hand, the
approximation (3.19) to the more accurate expression (3.15)
is a function of the inflaton’s value alone, and, as we have
explained, it implicitly assumes that the trajectory satisfies
the slow-roll approximation ϵH ≪ 3 and jηHj ≪ 3. Indeed,
the slow-roll parameters can also be written as

ϵH ¼ _χ2

2M2
PH

2
; ηH ¼ −

χ̈

H _χ
; ð3:20Þ

where the dots indicate derivatives with respect to cosmic
time. In this way, it is straightforward to see that the previous
two conditions (ϵH ≪ 3 and jηHj ≪ 3) guarantee, respec-
tively, that the first terms of the Friedman and inflaton
evolution equations:

_χ2

2
þU − 3M2

PH
2 ¼ 0; χ̈ þ 3H _χ þ U0 ¼ 0: ð3:21Þ

are negligible, which is precisely the definition of the slow-
roll approximation to the inflaton’s dynamics. For more
details on this approximation and the relation between the
potential and the Hubble slow-roll parameters we point the
reader to Ref. [57] and the Appendix of [55].

C. Mukhanov-Sasaki formalism

In order to compute reliably the mass and abundance of
PBHs as well as the duration of inflation, it is necessary to
describe accurately the dynamics of the inflaton around the
(possibly deformed) inflection point of the potential, which
corresponds to distance scales much smaller than those of
the CMB. It turns out that the (simplest) approximation,
Eq. (3.19), can fail badly in that region. The inaccuracy of
(3.19) can be easily understood by considering an exact
inflection point. In that case, (3.19) diverges when ϵU ¼ 0,
although the actual power spectrum remains finite, thanks
to the non-vanishing velocity of the field. Similarly,
computing the number of e-folds with the usual approxi-
mation consisting in integrating 1=

ffiffiffiffiffi
ϵU

p
over a range of

field values leads to a substantial error if the potential has
an (either approximate or exact) inflection point. The
impossibility of using (3.19) for describing PBH formation
from a very flat inflationary potential has also been recently
pointed out in [54,58].
In addition, the authors of [54] have also shown (using

several toy models) that the application of the approxima-
tion (3.15)–although performing better than (3.19)–may
also lead to a wrong estimate of the mass of the PBHs.
The same issue was discussed as well about ten years
ago in [59], which suggested—also in the context of PBH

formation from inflation—that the approximation (3.15)
can render well the shape of the peak of the primordial
power spectrum provided that the function ϵHðNeÞ does not
grow well above unity. We will show that even if ϵH < 1,
the approximation (3.19) fails if ηH becomes larger than 3,
breaking the slow-roll approximation.
In such a situation, an exact calculation of the primordial

spectrum using the Mukhanov-Sasaki formalism [43,44]
must be done. For the near-inflection points that we
consider, this turns out to be the case, as it can be checked
numerically. The Mukhanov-Sasaki equation is

duk
dτ2

þ
�
k2 −

1

z
d2z
dτ2

�
uk ¼ 0; ð3:22Þ

where τ denotes conformal time (adτ ¼ dt) and

u ¼ −zR; z ¼ a
H

dϕ
dτ

; ð3:23Þ

being R the comoving curvature perturbation, whose
spectrum we are interested in. For scales k ≫ H ¼ aH,
the function u is assumed, as usual, to be in the Bunch-
Davies vacuum, so that its Fourier transform uk satisfies

uk →
e−ikτffiffiffiffiffi
2k

p ð3:24Þ

in the asymptotic past. During inflation, uk evolves in time
according to (3.22). After Hubble crossing (i.e., at the time
when k ¼ H), each mode uk starts approaching a constant
value, which can be found solving (3.22) until k is
sufficiently smaller thanH. The primordial power spectrum
for R can then be obtained as

PR ¼ k3

2π2

���� ukz
����2
k≪H

: ð3:25Þ

Equation (3.22) can be written using Ne as time variable:

d2uk
dN2

e
þ ð1 − ϵHÞ

duk
dNe

þ
�
k2

H2
þ ð1þ ϵH − ηHÞðηH − 2Þ − dðϵH − ηHÞ

dNe

�
uk ¼ 0:

ð3:26Þ

For numerical purposes it is convenient to solve sepa-
rately for the real and imaginary parts of each mode uk, in
conjunction with the background field equation (3.9).7

The initial conditions for (3.26) are then set from (3.24)
as follows:

7Equation (3.26) involves the third and second derivatives of
the inflaton χ with respect to Ne, but they can be eliminated using
(3.9) and its first derivative.
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ReðukÞ ¼
1ffiffiffiffiffi
2k

p ; ImðukÞ ¼ 0;

Re

�
duk
dNe

�
¼ 0; Im

�
duk
dNe

�
¼ −

ffiffiffi
k

pffiffiffi
2

p
ki
; ð3:27Þ

where the scale ki is chosen for each k in such a way that
ki ≪ k, so that the integration for each mode is started at a
value of Ne corresponding to H ¼ ki. In practice, it is
sufficient to choose ki a hundredth or a thousandth times
smaller than the wave number of the mode of interest.
Then, each mode has to be evolved sufficiently long, until
juk=zj reaches a constant value, were (3.25) is evaluated.
The properly normalized primordial spectrum can conven-
iently be obtained knowing its amplitude at some scale
(such as k0.05) and using that the ratio PRðkÞ=ðk3jukj2Þ is,
by construction, independent of k.

IV. NUMERICAL SEARCH STRATEGY

The connection between the number of e-folds Ne and
the comoving distance scale k, is established, as we have
explained, through the Hubble crossing condition k ¼
aH ¼ H, which implies that Ne ∝ logðk=HÞ. Concretely,
we write

k ¼ k�
HðNeÞ
H�

eNe−N�
e ; ð4:1Þ

where we link the fiducial scale, k� of (3.11), to the time
t�ðN�

eÞ for which H takes the value H�. In other words, the
number of e-folds elapsed between the times at which k ¼
H and k� ¼ H� is ΔN�

e ¼ Ne − N�
e. In our numerical scans

of the potentials (1.3) and (1.4) we set the “initial” value χ�
of the inflaton (that corresponds to N�

e) in such a way that
the scalar spectral index, ns, in the slow-roll approximation,
Eq. (3.12), satisfies its CMB constraint (at k�) within a ∼3σ
confidence interval. We then solve the Eq. (3.9) imposing
the slow-roll attractor (3.18) as initial condition for the
velocity dχ=dNe at N�

e and determine the number of e-folds
produced until the end of inflation via the condition ϵH ¼ 1.
We also compute the tensor-to-scalar ratio, r, and the
running of the scalar spectral index, α, at k�–using the slow-
roll expressions (3.12) and (3.13)–and we check that they
remain compatible as well with the CMB constraints for a
sufficient number of e-folds. This is generically guaranteed
if the variation of the first three slow-roll parameters (which
are needed to obtain ns, r and α) is sufficiently slow for
several e-folds around N�

e. We also check the validity of the
slow-roll approximation at the scales probed by the CMB
using the Mukhanov-Sasaki equation. Integrating the
evolution equation for the inflaton beyond ϵH ¼ 1, we
get the number of e-folds that it takes the field to arrive to
the minimum of its potential at χ ¼ 0. This also allows to
include in the analysis cases for which there is a temporary
stop of inflation (while ϵH > 1). After having obtained χ as

a (numerical) function of Ne, we can compute the power
spectrum of primordial perturbations as a function of this
trajectory using (3.15), and then convert the result to a
function of k via (4.1). Then, as we already mentioned, we
also solve the Mukhanov-Sasaki equation as explained in
the previous section and compare the resulting primordial
spectrum to the approximation (3.15).
We look for potentials that satisfy the following

requirements:
(i) Compatibility with the current CMB constraints on

the primordial spectra.
The 2015 Planck analysis on inflationary param-

eters [60] indicates that the scalar spectral index at
the scale k0.05 ¼ 0.05 Mpc−1 is about 0.965 with a
(remarkably low) ∼0.5% error at 68% C.L. The
concrete central value and error depend on the
specific correlations of the channels (temperature,
T, and E-mode polarization, E) that are considered,
the datasets with which Planck data are combined
(e.g., baryonic acoustic oscillations) and the assump-
tions that are made about the primordial power
spectrum. For reference, in our work we take

ns ¼ 0.9650� 0.0050 at k0.05 and 68% C:L:

ð4:2Þ

This value very closely agrees with the outcome of
the fit allowing for a nonzero r, assuming α ¼ 0 and
considering TT, EE, and TE correlations together
with low-l polarization data [60]. As wewill see, the
models we consider tend to predict r ∼ 0.03 at k0.05,
which is below the upper bound (1.5), and values of
α well compatible with the constraint

α¼−0.009�0.008 at k0.05 and 68%C:L:; ð4:3Þ

which is also derived from the same data and
assumptions mentioned above [60]. Finally, the
amplitude of the primordial perturbations, as con-
strained by the Planck collaboration, is

As¼2.2�0.1×10−9 at k0.05 and 68%C:L: ð4:4Þ

This condition can easily be satisfied choosing
appropriately a global scaling factor in the poten-
tials (1.3) and (1.4); e.g., the parameter λ0 in the
second case. Indeed, what really matters of (4.4)
for our purposes is not so much its precise value,
but its order of magnitude in comparison to that
needed for generating PBHs, which we discuss
below.

(ii) A number of e-folds in the range ∼50–60, between
the time that today’s largest observable scales
(k ∼ k0.001 ¼ 10−4 Mpc−1) exited the Hubble radius
and the time at which inflation ended.
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This amount of inflation is approximately what is
needed to solve the horizon and flatness problems of
the Universe. The precise value depends on the scale
of inflation, H (which has not been measured yet),
and the details of the reheating process, whose
theoretical computation requires knowing how the
inflaton couples to other degrees of freedom. Typical
models cannot produce more than ΔN0.001

e ∼ 65
e-folds between the time when k0.001 becomes equal
to aH during inflation and the end of the process
[61,62]. As explained above, we determine the
number of e-folds of inflation by integrating
Eq. (3.9) from an initial value of the inflaton χ�
for which the CMB constraints (at k� ¼ k0.05) are
met. The amount of inflation produced between
k0.001 and k0.05 is approximately logð0.05=0.001Þ≃
3.9 e-folds and can be computed exactly (again, by
integrating the dynamics of the inflaton) for each
model. Given this, we can look for models for which
ΔN�

e ¼ Ne − N� at the end of inflation is approx-
imately in the range

ΔN�
e ∈ ∼½45; 55�: ð4:5Þ

In our results we quote the value of ΔN�
e as well as

the total number of e-folds from the scale k0.001 to
the end of inflation, which we denote by ΔN0.001

e .
(iii) A spike in the amplitude of scalar perturbations at a

scale kPBH corresponding to PBH masses in an
interesting window for DM, and with a height of
about seven orders of magnitude more than the
spectrum at CMB scales.
In particular, we anticipate that the models we

propose generate PBHs in the approximate mass
range of

10−16.5 M⊙ to 10−13 M⊙: ð4:6Þ
As shown in Fig. 1 this is the range of masses for
light PBHs that has the potential for explaining a
large amount of the DM abundance. If we neglect
entirely the bounds from neutron star capture in
globular clusters (NS) and take the most
conservative microlensing analysis of Subaru data
(HSC), we see that PBHs of ∼10−13 M⊙ may
explain the totality of the DM. The window gets
enlarged down to ∼10−14 M⊙ if we also disregard
the bound from white dwarf explosions (WD).
Taking ∼10−13 M⊙ and using (2.3), we see that
kPBH must be around 5 × 1012 Mpc−1, which is
many orders of magnitude smaller than any scale
that can be probed with large scale structure data of
the Universe. Using (2.10) we see that this corre-
sponds to ΔN�

e ≃ 33.
Satisfying simultaneously the (mutually competing)

conditions that we have just enumerated cannot generically

be done with a random potential with an inflection point—
whether exact or approximate—and requires a delicate
balance between the parameters of the model. We have
found that a shallow local minimum instead of an exact
inflection point helps to fulfill them. In this situation, the
classical rolling of the inflaton field can be considerably
slowed down, before overcoming the local maximum—that
is also inevitably generated—and heading to the true
minimum of the potential at ϕ ¼ 0. The slow velocity of
the field when it climbs out of the minimum boosts the
power spectrum. This effect can be intuitively understood
from Eq. (3.15), where ϵH is given by (3.10). Since H is
approximately constant around the deformed inflection
point, the amplitude of the spectrum is controlled by the
smallness and (as we will also see) the rate of change of
ϵH.

8 This kind of dynamics (using a local minimum) for
producing PBHs has been noticed also in [67], where the
approximation (3.19) was used. However, we find that the
boost in the power spectrum can only be well captured—
when it is large enough to form PBHs—by the Mukhanov-
Sasaki equation. We emphasize the relevance of an accurate
calculation of the spectrum, due to the exponential depend-
ence of the mass fraction on the fluctuations; see
Eqs. (2.4)–(2.7).
In order to investigate the feasibility of PBH production

from a local minimum, we have performed numerical scans
of the parameter spaces of the potentials (1.3) and (1.4),
imposing the existence of such a feature. One can then look
for models where the velocity of the field around the feature
is sufficiently slow to generate a large peak of scalar
perturbations, but such that the field has enough slow-
rolling inertia to overcome the barrier and avoid getting
trapped in the minimum. Clearly, the field may generate a
significant number of e-folds while climbing up the local
maximum. This amount of inflation must be such that the
scale kPBH falls in an adequate range to generate PBHs of
the appropriate mass to satisfy the bounds described above;
see Fig. 1. For the two kinds of potentials that we consider
we have found a strong correlation between ns and the
position and the height of the peak of the power spectrum;
and, correspondingly, the mass and abundance of PBHs.
Namely, the models which comply with the requirements
listed above tend to have ns below the currently measured
central value of (4.2).

V. PRIMORDIAL BLACK HOLES FROM
A RADIATIVE PLATEAU

We will focus first on the potential (1.4), which we can
rewrite, neglecting higher order terms in the logarithm
expansion, as

8The regime in which the slope of the potential becomes
negligible in comparison to the acceleration of the field is
sometimes called “ultra slow-roll”, see e.g., [63–66].
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VðϕÞ¼ λ0
4!

�
1−2ð1þb1Þ log

ϕ2

ϕ2
0

þ2ð1þb2Þ
�
log

ϕ2

ϕ2
0

�
2
�
ϕ4:

ð5:1Þ

With this notation, if b1 ¼ b2 ¼ 0, the potential (5.1) has an
exact inflection point at ϕ ¼ ϕ0. Hence, the parameters b1
and b2 characterize the level of deformation of the plateau
that will lead to PBH formation. As explained in [38], the
functional form of the potential (5.1) can be understood by
considering a renormalizable potential in the limit of a large
field ϕ, where the corresponding quartic term dominates.
The (logarithmic) effect of loop corrections to the potential
can then be encoded in an effective quartic coupling λðϕÞ,
leading to a potential λðϕÞϕ4 as in (5.1). These logarithmic
corrections are motivated by the fact that the inflaton needs
to couple to other fields (and ultimately to the Standard
Model) in order to reheat the universe after inflation [38].
The expression (5.1) thus originates from the general
Coleman-Weinberg effective potential [68] and can be
obtained setting the renormalization scale, μ, to be propor-
tional to either ϕ0 or ϕ, with both choices leading in the end
to the same functional form. The second choice shows
straightforwardly that the parameters b1 and b2 are directly
related to the beta function βλ of the effective quartic
coupling λ and its first derivative at ϕ ¼ ϕ0 [38].
Concretely,

b1¼−1−
1

4

βλ
λ

����
ϕ¼ϕ0

; b2¼−1þ 1

16λ

dβλ
d logμ

����
ϕ¼ϕ0

; ð5:2Þ

where βλ ¼ dλ=d log μ. Therefore, an inflection point can
only become manifest once two-loop effects are taken into
account, since dβλ=d log μ is of order two in the loop
expansion.
Using the one-loop renormalization group (RG)

improvement of the tree-level potential, it is possible to
determine the minimal matter content that is needed to
generate a potential of the form (5.1) with an inflection
point.9 It turns out that coupling a scalar ϕ to fermions and
to another scalar (weakly coupled to the fermions) or to a
Uð1Þ gauge group is sufficient [38]. A well-known (but
non-minimal) example of this is the Standard Model of
particle physics, which would exhibit an inflection point at
large Higgs values if the mass of this boson and the top
quark were in an appropriate ratio, which is actually not too
far from the actual current experimental values.
For the purpose of analyzing the viability of (5.1) for

generating PBHs of an adequate mass for being a sub-
stantial part of the DM, we will consider the parameters λ0,
b1, b2, and ϕ0 as constants. They can be approximately

matched to the parameters of specific particle physics
models such as the ones proposed in [38] by using the
one-loop effective potential and the one-loop RG equa-
tions, together with the conditions (5.2). Such an analysis
shows that the perturbative behavior of the outcoming
models is well under control.
For b1 ≠ −1 ≠ b2, a potential with the qualitative fea-

tures shown in Fig. 2 can only be obtained provided that the
nonminimal coupling to gravity, ξ, of Eq. (3.1) produces an
appropriate flattening in the Einstein frame. This is indeed
possible due to the running of ξ, whose renormalization
group equation is, as it is well known, proportional to
ξþ 1=6; vanishing in the conformal case, see [69]. At one-
loop order, we can parametrize this running with

ξðϕÞ ¼ ξ0

�
1þ b3 log

ϕ2

ϕ2
0

�
; ð5:3Þ

in the same fashion as for the effective quartic coupling
λðϕÞ. In the large field limit, the effective potential in the
Einstein frame approaches asymptotically the constant
value

~Vðϕ → ∞Þ ¼ λ0
12

1þ b2
b23ξ

2
0

M4
P; ð5:4Þ

generating an inflationary plateau. Therefore, the radiative
corrections to a simple renormalizable potential nonmini-
mally coupled to gravity may in principle be sufficient to
generate both primordial inflation and PBHs accounting for
the DM of the Universe.
Following the strategy outlined in Sec. IV, we have found

choices of parameters that give inflationary potentials
approaching the three requirements listed in that section:
compatibility with the CMB, enough inflation and PBHs in
the low-mass window for DM. We give two examples of
parameter choices in Table I. The corresponding derived
cosmological parameters and the PBHs mass and abun-
dance for these examples are given in Table II. These
examples fall into the low-mass window anticipated in
(4.6). In fact, all the viable examples that we have found
belong in this window. In particular, we have not found any
choice of parameters that gives a substantial abundance of
PBHs in the mass regions constrained by EROS and the
CMB (see Fig. 1) and that is also in agreement with the
constraints on ns, r and the number of e-folds. Producing a

TABLE I. Two examples of parameter choices for the potential
of Sec. V.

# λ0 ϕ0 ξ0 b1 b2 b3
1 6.9 × 10−10 1.57353 0.21674 −1.199376 0.022616 0.83335
2 2.2 × 10−6 0.236027 6.32365 −0.842689 −0.249409 1.69240

9This technique resums the leading logarithms at all loop
orders [68], therefore accounting for the main contribution to the
two-loop order term in (5.1).
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large abundance of PBHs with such masses would require
the inflationary plateau and the approximate inflection
point (see Fig. 2) to be closer to each other than in the
case of the examples of Tables I and II; but the separation
between ϕ� and ϕ0 cannot be arbitrarily small; see also
Eq. (2.10). As we already mentioned in Sec. IV, the
examples of the tables have low values of ns, but still
within ∼3σ from the central value of (4.2). For reasons of
computational feasibility we have had to use the approxi-
mation (3.15) as a proxy in a preliminary parameter scan
which allowed us to identify potential regions of interest.
Therefore, we cannot entirely exclude the possibility that
viable examples with higher values of ns could be found if a
more efficient search (e.g., with a Monte Carlo method)
using directly the Mukhanov-Sasaki equation is performed.
Figure 3 shows the potentialUðχÞ for the first example in

Tables I and II. The corresponding spectrum of scalar
primordial perturbations and the Hubble slow-roll param-
eters are displayed in Figs. 4 and 5. The potential has an
asymptotic plateau, where inflation starts, and a local
shallow minimum at lower field values. This feature

produces a very large enhancement of the power spectrum
at about 35 e-folds, when the inflaton rolls slowly climbing
out of the local minimum towards the local maximum. As
shown in Fig. 4, although the approximations (3.15) and
(3.19) can reproduce to some extent the qualitative behav-
ior of the actual spectrum computed with the Mukhanov-
Sasaki equation, none of them can be used to obtain the
peak height and position, which are needed to get the PBH
abundance and mass. Notice that the spikes on the spectrum
from (3.19) are unphysical divergences appearing where
U0ðχÞ ¼ 0, whereas the dip in the actual solution (with the
Mukhanov-Sasaki equation) at around 27 e-folds is actually
a smooth feature.
The reason for the failure of the approximation (3.15),

which underestimates the peak value of the spectrum, is
illustrated with Fig. 5. The absolute value of ηH rises above
3 around the region where PBHs form, meaning that
the slow-roll approximation leading to (3.15) does not
work, due to the second time derivative of χ becoming

TABLE II. Results for the two examples of table I. ϕ� is the value of ϕ corresponding to k� ¼ 0.05 Mpc−1, at
which the primordial parameters are given. ΔN�

e and ΔN0.001
e are the numbers of e-folds from k� and k0.001,

respectively, to the end of inflation. We also give the peak value of the primordial spectrum, the mass of the
corresponding PBHs and their fractional abundance, computed assuming the threshold δc. We recall that the PBH
abundance is very sensitive to the value of δc. For instance, in the first example, decreasing δc by two percent
corresponds to a factor of five enhancement of ΩPBH. Indeed, barring the constraints of Fig. 1, both examples allow
ΩPBH=ΩDM ¼ 1.

# ϕ� ΔN�
e ΔN0.001

e ns r α PR
peak Mpeak

PBHs=M⊙ δc ΩPBH=ΩDM

1 12.30539 43.5 47.4 0.9531 0.036 −0.0016 0.048 8.3 × 10−15 0.51 0.039
2 1.494802 53.9 57.8 0.9503 0.027 −0.0018 0.042 6.8 × 10−15 0.47 0.832
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FIG. 3. Inflationary potential UðχÞ for the first example of
Tables I and II. The inset shows the derivative of the potential
between χ ¼ 0 to the region around χ ¼ MP where PBHs are
produced. The number of e-folds that occur in this region is of
Oð10Þ. The potential realizes the qualitative properties we
described with Fig. 2.
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FIG. 4. Blue-continuous line: primordial power spectrum as a
function of the number of e-folds and the comoving wave
number for the potential of Fig. 3, computed using the Mukha-
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non-negligible. Notice also that ϵH remains below 1 up
until the end of inflation, so that there is no temporary stop
of the accelerated expansion of the Universe. However, ϵH
does become close to 1 (ϵH ≃ 0.8) at around 33.4 e-folds,
just before becoming nine orders of magnitude smaller.
This behavior is due to the strong slowdown of the inflaton
when it rolls away from the local minimum of the potential.
It is this enhanced slow-roll which produces PBHs with a
mass peak given by the expression (1.1) at the scale
kðNe ≃ 35Þ≃ 1014 Mpc−1, see Table II and Fig. 1.
It is worth stressing that the PBH abundance has an

exponential dependence on the critical threshold density for
collapse δc. As shown in Table II, the examples we provide
can account for a significant fraction of the DM abundance
for choices of δc close to the values suggested in [16,
50–53], i.e., δc ≃ 0.45. There is still a deal of theoretical
uncertainty on the actual value of δc that is needed for a
collapse leading to PBH formation, and this can actually
depend on the shape of the primordial power spectrum. We
have chosen values of δc which lead to PBH abundances
that nearly top the maxima allowed by current constraints.
This is shown in Fig. 1, where we have plotted the resulting
(rather monochromatic) distributions for our numerical
examples.
As discussed in Sec. II, the PBH abundance also depends

sensitively on the shape and height of PR through
Eqs. (2.4) and (2.5). This, by itself, implies that some
level of fine-tuning is always going to be required for PBH
production with the adequate cosmological density to
account for (at least a significant part of) the DM. In the
context of our model, the peak of the spectrum is
determined by the velocity and acceleration of the inflaton
while the PBHs are generated. This translates into a strong
sensitivity of the PBH abundance on the local properties of
the deformed plateau, which is controlled by the parameters

b1 and b2. In practice, one can easily check that given some
value for b1, the parameter b2 determines the peak height.
We would like to stress, though, that this sensitivity of the
PBH abundance to the parameters of the Lagrangian is by
no means a specific characteristic of our model, and is to be
expect in any model of inflation—single-field or not—
aimed to describe PBH production, because it boils down to
Eqs. (2.4) and (2.5).
A second (and much lesser) possible source of tuning

comes (a priori) from the simple fact that among the vast
range of masses in between the limits set by the Hawking
radiation and the CMB, some values are much more
constrained than others, see Fig. 1. In order for the
PBHs to have masses in the low-mass window that we
have discussed, the peak in the primordial spectrum has to
be localized at specific scales, which means that the
deformed plateau has to be reached by the inflation within
a certain range of e-folds since the largest observable scales
exited the Hubble radius. For instance, the plateau respon-
sible for PBH formation cannot be too close to the
asymptotic inflationary plateau that starts at larger field
values, because if it were the PBHs would turn out to be too
massive. Notably, both of the models we propose generi-
cally tend to generate PBHs in an interesting mass range
once we impose sufficient e-folds to solve the horizon and
flatness problems.
We would like to conclude this section by mentioning

Ref. [42], which considers an action for a scalar field that
can be formally obtained from ours by setting b1 ¼ −1,
inspired from [70,71]. This choice amounts to eliminating
the one-loop correction to the effective quartic coupling at
a specific scale; see (5.2). When a near-inflection point is
arranged in this case (by choosing b3 appropriately), the
remarks that we have made concerning the invalidity of the
slow-roll approximations for computing the primordial
spectrum remain valid.

VI. PRIMORDIAL BLACK HOLES FROM A
POLYNOMIAL POTENTIAL

Here we focus on the potential of Eq. (1.3):
VðϕÞ ¼ a2ϕ2 þ a3ϕ3 þ a4ϕ4. As already mentioned, a
nonminimal coupling to gravity, ξ, is necessary in order
to flatten the potential at field values larger than the
approximate inflection point, to obtain an inflationary
scenario compatible with CMB observations and at the
same time with the production of PBHs. It is convenient to
write the Einstein frame potential ~VðϕÞ of Eq. (3.4) as
follows:

~VðϕÞ ¼ λ
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PÞ2
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FIG. 5. Slow-roll parameters ϵH (orange) and ηH (purple) as
functions of the number of e-folds (with the same convention as
in Fig. 4) for the potential of Fig. 3. The horizontal dashed lines
indicate the values 1 and 3. The inset zooms into the relevant
range of e-folds for PBH formation, where the slow-roll approxi-
mation fails.
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so that it has an exact inflection point at ϕ ¼ ϕ0 if c2 ¼
c3 ¼ 0. With this potential, the examples we have found that
produce a sufficient number of e-folds and a large PBH
abundance in the low-mass window have low values of ns,
more than 3σ away from the current central value, given in
Eq. (4.2). We remind that instead with the potential of
Eq. (1.4) we have found models with low values of ns but
still inside the 3σ uncertainty range (and we give one in the
tablewhich is∼2σ away from the central value). Imposing the
requirements from CMB observations within a 3σ range, we
have only found models with an amplitude of the power
spectrum ≪ 10−2. This means that in these cases the
abundance of the resulting PBHs populations is extremely
small, unless the threshold for collapse is significantly
different from δc ¼ 0.45. As an example, if the peak in the
power spectrum of Fig. 4 were Ps ≃ 10−3 and δc ≃ 0.073,
PBHs would account for ≃8% of the total DM abundance.
Such low values of δc are disfavored [16,50–53].
The potential (6.1) as a function of the Jordan frame field

ϕ, has the same functional formas the toymodel presented in
[41]. However, the two models are fundamentally different
because in our case the potential (6.1) originates from the
nonminimal coupling to gravity

ffiffiffiffiffiffi−gp
ϕ2R and the dynamics

has to be described usingUðχÞ ¼ ~VðϕðχÞÞwith the Einstein
frame field χðϕÞ, as we explained in Sec. III. In Ref. [41] it is
instead assumed that ϕ (and not χ) is the Einstein frame
inflaton. In other words: the change of frame needed to
explain the ratio of polynomials in (6.1) is not implemented
in the analysis of [41]. Notice that the field redefinition from
ϕ to χ does change the shape of the actual inflationary
potential and therefore the model of [41] cannot be consid-
ered a proxy to the dynamics of (1.3) with nonminimal
coupling to R. Our work also goes beyond [41] because
whereas we apply the Mukhanov-Sasaki formalism to
compute the primordial spectrum, Ref. [41] uses the
approximation (3.15). As we have discussed, this approxi-
mationmay fail to reproduce the actual spectrum, depending
on the behavior of the slow-roll parameters. However, we
have checked that both (3.15) and (3.19) reproduce suffi-
ciently well the peak height of the spectrum in the specific
numerical example of the toy model of [41]. In that case,
ϵH < 0.1 and jηHj remains just below 3 around the near-
inflection point. This leads to a lower and broader peak than
in our models, with PRð1014 Mpc−1Þ≃ 8 × 10−5. A value
of the threshold for collapse δc about an order of magnitude
lower than the preferred one—which is δc ≃ 0.45 [50–53]—
would be needed to produced a large population of PBHs
from such a peak.
It is also worth mentioning Ref. [67], which studies PBH

formation from a set-up similar to the one that we have
discussed in this section. However, the quartic self-coupling
of the inflation, λ, in [67] contains a field-dependent piece of
the form θðχ −MÞ logðχ=MÞ, whereM is a constant that is
meant to represent the effect of a cubic coupling between
the inflaton and another scalar. The motivation in [67] to

introduce this term is the claim of the authors that it helps to
fit the CMB data. They compute the primordial spectrum
separately above and below the threshold χ ¼ M, using the
approximation (3.15). However, this extra term introduces a
violation of slow-roll (close to the critical region for PBH
formation) that cannot be described with that approxima-
tion. Besides, the introduction of such an a abrupt change in
λ to describe a coupling between the inflaton and another
field may be questioned. In the presence of such a coupling
one can instead compute the full Coleman-Weinberg effec-
tive potential, and if the effect of the second field is indeed
very important, the dynamics of the system is likely to be
better described as a two-field model.

VII. DISCUSSION AND CONCLUSIONS

In this work we have investigated the possibility that
PBHs may constitute a substantial part of the DM of the
Universe. In order to take seriously this idea, a mechanism
operating before the time of nucleosynthesis that is able to
generate a large abundance of PBHswith adequatemasses is
required. In absence of a concrete and consistent mechanism
for PBH formation, the idea of such objects constituting a
large fraction of the DM could be argued to lack a well-
grounded basis. This has been our main motivation in this
paper to look for such a mechanism. PBHs can form when
the comoving wave number of sufficiently large density
fluctuations becomes comparable to the conformal Hubble
scale after inflation. Within this general framework, the
simplest possibility is that the inflaton itself generates
primordial fluctuations that act as seeds for PBHs. We have
taken on the challenge of finding a single-field model of
inflation with the appropriate properties and that is well
motivated from the point of view of particle physics. Much
of the difficulty to achieve this comes from the fact that the
primordial power spectrum has to be enhanced at specific
small distances (k ∼ 1014 Mpc−1 for the low-mass window)
by roughly seven orders of magnitude with respect to CMB
scales. In what follows we summarize our findings, com-
menting on the main features of our work and mentioning a
couple of directions in which it may be extended.

(i) Models.
The two key features of the models we have

considered are a potential with an approximate
plateau and a generic

ffiffiffiffiffiffi−gp
ϕ2R coupling between

the inflaton and the Ricci scalar.
The first model we have proposed consists in a

simple quartic potential that develops a near-plateau
region due to radiative corrections, Eq. (1.4). This
type of potential arises in the context of renormaliz-
able and perturbative particle physics models [38].
The couplings of the inflaton to other fields that
correct the tree-level potential are motivated by the
requirement of reheating the Universe after inflation.

The second model that we have studied is, again,
a renormalizable potential, Eq. (1.3). In this case,
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differently from the previous one, the cubic and
quadratic terms become comparable to the quartic
term before inflation ends, generating the feature
that leads to PBH formation.
In both cases, the nonminimal coupling toR softens

the approximately quartic growth of the potentials at
large field values, reducing the amount of primordial
GW at CMB scales and thus ensuring compatibility
with current constraints on the tensor-to-scalar ratio.
Whereas the nonminimal coupling parameter can be
assumed to be a constant in the secondmodel, it has to
have a non-negligible running (which is anyway
generic) in the case of the first potential. It is worth
mentioning that thevalues of the nonminimal coupling
that lead to interesting PBH masses are of order 1 or
smaller,which aids to ensure that perturbative unitarity
is preserved up to very high energies, see [72–75].

(ii) Results.
We have demonstrated that the first of the models

we propose, based on the potential (1.4), allows
successful inflation and a population of PBHs which
can account for a significant fraction of the DM. The
resulting PBH mass spectrum is almost monochro-
matic, notably, peaking around 10−16–10−15 M⊙, in
the neighborhood of a mass range where some of the
current constraints on PBHs are arguably less robust
andPBHsmight be all the darkmatter of theUniverse.
Bothmodels exhibit a tendency to produce low values
of the scalar spectral index at CMBscales,ns, with the
highest values typically corresponding to lower PBH
masses. In particular, in the second model requiring a
sufficient population of PHBs to account for a large
DM fraction in the low-mass window seems to imply
values of ns which differ bymore than 3σ with respect
to the currently measured central value (4.2).
Investigating how to reduce this discrepancy with

variants of ourmodels is worth of further study. In this
respect, let us mention that the CMB constraints that
we have quoted so far onns change, shifting its central
value about≲1σ, once the sum of the neutrinomasses
is included as another cosmological parameter of the
base cosmological model [76]. The parameter scan
thatwehaveperformed is not exhaustive and therefore
we cannot exclude with absolute certainty that the
models may hide examples contradicting the general
trend on ns that we have observed. Interestingly, both
models give values of the tensor-to-scalar ratio around
0.03, within the planned reach of future experiments
such asCMB-S4 [77] andLiteBird [78]. Thevalues of
the running of the spectral index in our examples
might also be tested with the next generation of
probes.

(iii) Slow-roll.
We have shown that an accurate computation of

the primordial spectrum leading to PBH formation
requires the use of the Mukhanov-Sasaki formalism.

The application of the standard approximations
based on the potential (3.19) and Hubble (3.15)
slow-roll parameters can lead to severely wrong
estimates of the PBH mass and abundance (by
several orders of magnitude). Concretely, the best
of these two approximations, Eq. (3.15), fails
because it neglects the effect of the acceleration
of the inflaton and its variation, which are encoded
in ηH and the derivative of ϵH − ηH in Eq. (3.26).
This conclusion applies as well to other models of
inflation leading to PBH formation from a very slow
phase of rolling, as it is also pointed out in [54].

(iv) Parameter sensitivity.
The abundance of PBHs depends critically on the

threshold for collapse and the primordial spectrum
peak height. The threshold for collapse is not known
precisely andwe have takenvalues close to δc ¼ 0.45,
as suggested by recent analyses [16,50–53]. In our
models, the height of the primordial spectrum is
determined by the level of deformation of the plateau
that is responsible for PBHgeneration. Due to this, the
PBH abundance at the time of formation is strongly
sensitive to the parameters that control the depth
of the (shallow) local minimum of the potential.10

This sensitivity is also necessarily present in any other
inflationary implementation of PBH formation. In-
deed, the generic mechanism for PBH formation
summarized in Sec. II (of large fluctuations collapsing
upon Hubble crossing) implies that the PBH abun-
dance in any model of inflation aiming to implement
such processwill have a strong parameter dependence.
Remarkably, in our case the PBHs masses turn to be
in an interesting region for explaining DM—the low-
mass window—once a sufficient amount of inflation
for solving the horizon and flatness problems is
imposed.

(v) Current bounds on PBH as DM.
Although a detailed discussion is outside the

scope of our work, we would like to stress the
importance of further observational and theoretical
studies to clarify which are the possible windows
where, given the current and possible future data,
PBHs may be relevant as a DM candidate. At the
PBH low-mass end (limited by Hawking evapora-
tion) the available constraints on the literature come
from: Subaru microlensing [23], hypothetical en-
counters between PBHs and neutron stars in globu-
lar clusters [22] or white dwarfs [21] and lensing of
gamma-ray bursts by PBHs [20]. Some of these
constraints are subject to significant uncertainties.
As we mentioned in the Introduction, taking the

10Notice that in our examples we can approximately compen-
sate a change in δc with a modification of the parameters of the
potential, keeping the same PBH abundance.

GUILLERMO BALLESTEROS and MARCO TAOSO PHYS. REV. D 97, 023501 (2018)

023501-14



most conservative limits from Subaru and neglecting
entirely the bounds from neutron star capture, the
totally of the DM may be accounted for PBHs with
masses in the range that the models we propose are
able to produce.

Let us finally mention two directions along which it would
be interesting to extend our work:

(i) GW background from PBH formation and
merging.
We can also use the Mukhanov-Sasaki formal-

ism to obtain the primordial tensor spectrum at
linear order in perturbations, solving an equation
similar to (3.26) with initial conditions identical
to (3.27). This shows a suppression of the tensor
spectrum at the scales of PBH formation with
respect to the slow-roll approximations. More
importantly, the large scalar fluctuations respon-
sible for PBH formation source a sizable GW
spectrum from second order perturbations, which
may be potentially observable with laser interfer-
ometers, see, e.g., [79,80]. Moreover, extra GWs
are generated if PBHs encounter and merge,
leading to heavier BHs and thus changing their
mass distribution.The spectrum of GW from these
last two effects may lead to interesting constraints
on our mechanism for PBH formation.

(ii) Quantum fluctuations in quasi-de Sitter space.
Our analysis for the dynamics of inflation has been

focused on the classical trajectory of the field, derived
from the action (3.7). One might wonder whether
quantum fluctuations induced during inflation11 may

play a significant role in the dynamics,12 especially in
the vicinity of the local minimum that generates the
PBHs, since in this region the field undergoes a phase
of strong deceleration. Quite generically, the quantum
fluctuations of the inflaton areof theorder ofH=2π and
they do not significantly alter the classical trajectory
provided that _χ=H ≫ H=ð2πÞ. This condition is
equivalent to PR ≪ 1, which is always satisfied
provided that PBHs are not overproduced, as required
for consistency. Nevertheless, it may be worth explor-
ing in some detail the role of these quantum fluctua-
tions during inflation around the shallow minimum,
since they may have interesting effects like, for
instance, broadening the mass function of PBHs.
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[34] E. Mediavilla, J. Jiménez-Vicente, J. A. Muñoz, H. Vives-
Arias, and J. Calderón-Infante, Limits on the mass and
abundance of primordial black holes from quasar gravita-
tional microlensing, Astrophys. J. 836, L18 (2017).

[35] P. Ivanov, P. Naselsky, and I. Novikov, Inflation and
primordial black holes as dark matter, Phys. Rev. D 50,
7173 (1994).

[36] H. M. Hodges, G. R. Blumenthal, L. A. Kofman, and J. R.
Primack, Nonstandard primordial fluctuations from a poly-
nomial inflation potential, Nucl. Phys. B335, 197 (1990).

[37] C. Destri, H. J. de Vega, and N. G. Sanchez, MCMC analysis
of WMAP3 and SDSS data points to broken symmetry
inflaton potentials and provides a lower bound on the tensor
to scalar ratio, Phys. Rev. D 77, 043509 (2008).

[38] G. Ballesteros and C. Tamarit, Radiative plateau inflation, J.
High Energy Phys. 02 (2016) 153.

[39] P. A. R. Ade et al., Improved Constraints on Cosmology and
Foregrounds from BICEP2 and Keck Array Cosmic Micro-
wave Background Data with Inclusion of 95 GHz Band,
Phys. Rev. Lett. 116, 031302 (2016).

[40] B. L. Spokoiny, Inflation and generation of perturbations in
broken symmetric theory of gravity, Phys. Lett. 147B, 39
(1984).

[41] J. Garcia-Bellido and E. R. Morales, Primordial black holes
from single field models of inflation, Phys. Dark Universe
18, 47 (2017).

[42] J. M. Ezquiaga, J. Garcia-Bellido, and E. R. Morales,
Primordial black hole production in critical Higgs inflation,
Phys. Lett. B 776, 345 (2017).

[43] M. Sasaki, Large scale quantum fluctuations in the infla-
tionary universe, Prog. Theor. Phys. 76, 1036 (1986).

[44] V. F. Mukhanov, Zh. Eksp. Teor. Fiz. 94N7, 1 (1988)
[Quantum theory of gauge invariant cosmological pertur-
bations, Sov. Phys. JETP 67, 1297 (1988)].

[45] W. H. Press and P. Schechter, Formation of galaxies and
clusters of galaxies by selfsimilar gravitational condensa-
tion, Astrophys. J. 187, 425 (1974).

[46] S. Young, C. T. Byrnes, and M. Sasaki, Calculating the mass
fraction of primordial black holes, J. Cosmol. Astropart.
Phys. 07 (2014) 045.

[47] A. R. Liddle and D. H. Lyth, Cosmological Inflation
and Large Scale Structure (Cambridge University Press,
Cambridge, 2000), ISBN 9781139175180.

GUILLERMO BALLESTEROS and MARCO TAOSO PHYS. REV. D 97, 023501 (2018)

023501-16

https://doi.org/10.1093/mnras/stx1959
https://doi.org/10.1093/mnras/stx1959
https://doi.org/10.1093/mnras/152.1.75
https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1103/PhysRevLett.116.201301
https://doi.org/10.1103/PhysRevLett.116.201301
https://doi.org/10.1016/j.dark.2016.10.002
https://doi.org/10.1016/j.dark.2016.10.002
https://doi.org/10.1103/PhysRevLett.117.061101
https://doi.org/10.1103/PhysRevD.94.083504
https://doi.org/10.1086/153853
https://doi.org/10.1086/153853
https://doi.org/10.1103/PhysRevD.96.023514
https://doi.org/10.1103/PhysRevD.81.104019
https://doi.org/10.1103/PhysRevD.81.104019
https://doi.org/10.1103/PhysRevD.86.043001
https://doi.org/10.1103/PhysRevD.86.043001
https://doi.org/10.1103/PhysRevD.92.063007
https://doi.org/10.1103/PhysRevD.87.123524
https://doi.org/10.1103/PhysRevD.87.123524
http://arXiv.org/abs/1701.02151
https://doi.org/10.1051/0004-6361:20066017
https://doi.org/10.1088/0004-637X/790/2/159
https://doi.org/10.3847/2041-8205/824/2/L31
https://doi.org/10.3847/2041-8205/824/2/L31
https://doi.org/10.1103/PhysRevLett.119.041102
https://doi.org/10.1103/PhysRevD.95.043534
https://doi.org/10.1103/PhysRevD.96.083524
https://doi.org/10.1103/PhysRevD.96.083524
https://doi.org/10.1103/PhysRevLett.118.241101
https://doi.org/10.1103/PhysRevLett.118.241101
https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1086/587831
https://doi.org/10.1086/587831
https://doi.org/10.1088/1475-7516/2017/05/017
https://doi.org/10.3847/2041-8213/aa5dab
https://doi.org/10.1103/PhysRevD.50.7173
https://doi.org/10.1103/PhysRevD.50.7173
https://doi.org/10.1016/0550-3213(90)90177-F
https://doi.org/10.1103/PhysRevD.77.043509
https://doi.org/10.1007/JHEP02(2016)153
https://doi.org/10.1007/JHEP02(2016)153
https://doi.org/10.1103/PhysRevLett.116.031302
https://doi.org/10.1016/0370-2693(84)90587-2
https://doi.org/10.1016/0370-2693(84)90587-2
https://doi.org/10.1016/j.dark.2017.09.007
https://doi.org/10.1016/j.dark.2017.09.007
https://doi.org/10.1016/j.physletb.2017.11.039
https://doi.org/10.1143/PTP.76.1036
https://doi.org/10.1086/152650
https://doi.org/10.1088/1475-7516/2014/07/045
https://doi.org/10.1088/1475-7516/2014/07/045


[48] K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada, and T. T.
Yanagida, Inflationary primordial black holes as all dark
matter, Phys. Rev. D 96, 043504 (2017).

[49] P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological
parameters., Astron. Astrophys. 594, A13 (2016).

[50] I. Musco, J. C. Miller, and L. Rezzolla, Computations of
primordial black hole formation, Classical Quantum Gravity
22, 1405 (2005).

[51] I. Musco, J. C. Miller, and A. G. Polnarev, Primordial black
hole formation in the radiative era: Investigation of the
critical nature of the collapse, Classical Quantum Gravity
26, 235001 (2009).

[52] I. Musco and J. C. Miller, Primordial black hole formation in
the early universe: critical behaviour and self-similarity,
Classical Quantum Gravity 30, 145009 (2013).

[53] T. Harada, C.-M. Yoo, and K. Kohri, Threshold of primor-
dial black hole formation, Phys. Rev. D 88, 084051 (2013);
Erratum, Phys. Rev. D 89, 029903(E) (2014).

[54] H. Motohashi and W. Hu, Primordial black holes and slow-
roll violation, Phys. Rev. D 96, 063503 (2017).

[55] G. Ballesteros and J. A. Casas, Large tensor-to-scalar ratio
and running of the scalar spectral index with instep inflation,
Phys. Rev. D 91, 043502 (2015).

[56] E. D. Stewart and D. H. Lyth, A more accurate analytic
calculation of the spectrum of cosmological perturbations
produced during inflation, Phys. Lett. B 302, 171 (1993).

[57] A. R. Liddle, P. Parsons, and J. D. Barrow, Formalizing the
slow roll approximation in inflation, Phys. Rev. D 50, 7222
(1994).

[58] C. Germani and T. Prokopec, On primordial black holes
from an inflection point, Phys. Dark Universe 18, 6 (2017).

[59] S. Chongchitnan and G. Efstathiou, Accuracy of slow-roll
formulae for inflationary perturbations: Implications for
primordial black hole formation, J. Cosmol. Astropart.
Phys. 01 (2007) 011.

[60] P. A. R. Ade et al., Planck 2015 results. XX. Constraints on
inflation, Astron. Astrophys. 594, A20 (2016).

[61] S. Dodelson and L. Hui, A Horizon Ratio Bound for
Inflationary Fluctuations, Phys. Rev. Lett. 91, 131301
(2003).

[62] A. R. Liddle and S. M. Leach, How long before the end of
inflation were observable perturbations produced?, Phys.
Rev. D 68, 103503 (2003).

[63] N. C. Tsamis and R. P. Woodard, Improved estimates of
cosmological perturbations, Phys. Rev. D 69, 084005
(2004).

[64] W. H. Kinney, Horizon crossing and inflation with large eta,
Phys. Rev. D 72, 023515 (2005).

[65] J. Martin, H. Motohashi, and T. Suyama, Ultra slow-roll
inflation and the non-Gaussianity consistency relation,
Phys. Rev. D 87, 023514 (2013).

[66] K. Dimopoulos, Ultra slow-roll inflation demystified, Phys.
Lett. B 775, 262 (2017).

[67] K. Kannike, L. Marzola, M. Raidal, and H. Veermae, Single
field double inflation and primordial black holes, J. Cosmol.
Astropart. Phys. 09 (2017) 020.

[68] S. R. Coleman and E. J. Weinberg, Radiative corrections as
the origin of spontaneous symmetry breaking, Phys. Rev. D
7, 1888 (1973).

[69] I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro,
Effective Action in Quantum Gravity (CRC Press, 1992),
ISBN 9780750301220.

[70] Y. Hamada, H. Kawai, K.-y. Oda, and S. C. Park, Higgs
Inflation is Still Alive after the Results from BICEP2, Phys.
Rev. Lett. 112, 241301 (2014).

[71] F. Bezrukov and M. Shaposhnikov, Higgs inflation at the
critical point, Phys. Lett. B 734, 249 (2014).

[72] J. L. F. Barbon and J. R. Espinosa, On the naturalness of
Higgs inflation, Phys. Rev. D 79, 081302 (2009).

[73] C. P. Burgess, H. M. Lee, and M. Trott, Power-counting and
the validity of the classical approximation during inflation,
J. High Energy Phys. 09 (2009) 103.

[74] C. P. Burgess, H. M. Lee, and M. Trott, Comment on Higgs
inflation and naturalness, J. High Energy Phys. 07 (2010)
007.

[75] G. Ballesteros, J. Redondo, A. Ringwald, and C. Tamarit,
Standard model–axion–seesaw–Higgs portal inflation. Five
problems of particle physics and cosmology solved in one
stroke, J. Cosmol. Astropart. Phys. 08 (2017) 001.

[76] M. Gerbino, K. Freese, S. Vagnozzi, M. Lattanzi, O. Mena,
E. Giusarma, and S. Ho, Impact of neutrino properties on the
estimation of inflationary parameters from current and
future observations, Phys. Rev. D 95, 043512 (2017).

[77] K. N. Abazajian, CMB-S4 science book, first edition,
arXiv:1610.02743.

[78] T. Matsumura et al., Mission design of LiteBIRD, J. Low
Temp. Phys. 176, 733 (2014).

[79] L. Alabidi, K. Kohri, M. Sasaki, and Y. Sendouda, Observ-
able spectra of induced gravitational waves from inflation,
J. Cosmol. Astropart. Phys. 09 (2012) 017.

[80] J. Garcia-Bellido, M. Peloso, and C. Unal, Gravitational
Wave signatures of inflationary models from primordial
black hole dark matter, J. Cosmol. Astropart. Phys. 09
(2017) 013.

[81] C. Pattison, V. Vennin, H. Assadullahi, and D. Wands,
Quantum diffusion during inflation and primordial black
holes, J. Cosmol. Astropart. Phys. 10 (2017) 046.

PRIMORDIAL BLACK HOLE DARK MATTER FROM SINGLE … PHYS. REV. D 97, 023501 (2018)

023501-17

https://doi.org/10.1103/PhysRevD.96.043504
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1088/0264-9381/22/7/013
https://doi.org/10.1088/0264-9381/22/7/013
https://doi.org/10.1088/0264-9381/26/23/235001
https://doi.org/10.1088/0264-9381/26/23/235001
https://doi.org/10.1088/0264-9381/30/14/145009
https://doi.org/10.1103/PhysRevD.88.084051
https://doi.org/10.1103/PhysRevD.89.029903
https://doi.org/10.1103/PhysRevD.96.063503
https://doi.org/10.1103/PhysRevD.91.043502
https://doi.org/10.1016/0370-2693(93)90379-V
https://doi.org/10.1103/PhysRevD.50.7222
https://doi.org/10.1103/PhysRevD.50.7222
https://doi.org/10.1016/j.dark.2017.09.001
https://doi.org/10.1088/1475-7516/2007/01/011
https://doi.org/10.1088/1475-7516/2007/01/011
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1103/PhysRevLett.91.131301
https://doi.org/10.1103/PhysRevLett.91.131301
https://doi.org/10.1103/PhysRevD.68.103503
https://doi.org/10.1103/PhysRevD.68.103503
https://doi.org/10.1103/PhysRevD.69.084005
https://doi.org/10.1103/PhysRevD.69.084005
https://doi.org/10.1103/PhysRevD.72.023515
https://doi.org/10.1103/PhysRevD.87.023514
https://doi.org/10.1016/j.physletb.2017.10.066
https://doi.org/10.1016/j.physletb.2017.10.066
https://doi.org/10.1088/1475-7516/2017/09/020
https://doi.org/10.1088/1475-7516/2017/09/020
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevLett.112.241301
https://doi.org/10.1103/PhysRevLett.112.241301
https://doi.org/10.1016/j.physletb.2014.05.074
https://doi.org/10.1103/PhysRevD.79.081302
https://doi.org/10.1088/1126-6708/2009/09/103
https://doi.org/10.1007/JHEP07(2010)007
https://doi.org/10.1007/JHEP07(2010)007
https://doi.org/10.1088/1475-7516/2017/08/001
https://doi.org/10.1103/PhysRevD.95.043512
http://arXiv.org/abs/1610.02743
https://doi.org/10.1007/s10909-013-0996-1
https://doi.org/10.1007/s10909-013-0996-1
https://doi.org/10.1088/1475-7516/2012/09/017
https://doi.org/10.1088/1475-7516/2017/09/013
https://doi.org/10.1088/1475-7516/2017/09/013
https://doi.org/10.1088/1475-7516/2017/10/046

