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Neutrinos in dense environments undergo collective pair conversions νeν̄e ↔ νxν̄x, where x is a
nonelectron flavor, due to forward scattering off each other that may be a crucial ingredient for supernova
explosions. Depending on the flavor-dependent local angular distributions of the neutrino fluxes, the

conversion rate can be “fast,” i.e., of the order μ ¼ ffiffiffi
2

p
GFnν, which can far exceed the usual neutrino

oscillation frequency ω ¼ Δm2=ð2EÞ. Until now, this surprising nonlinear phenomenon has only been
understood in the linear regime and explored further using numerical experiments. We present an analytical
treatment of the simplest system that exhibits fast conversions, and show that the conversion can be
understood as the dynamics of a particle rolling down in a quartic potential, governed dominantly by μ but
seeded by slower subleading effects.

DOI: 10.1103/PhysRevD.97.023017

I. INTRODUCTION

A core-collapse supernova (SN) offers perhaps the most
extreme laboratory for studying neutrino flavor physics.
While early studies focused on vacuum oscillations and
Mikheyev-Smirnov-Wolfenstein (MSW) matter effects
[1,2], deeper inside a supernova the neutrino density, nν,
is so large that nonlinear neutrino-neutrino interactions can
give rise to much more puzzling collective oscillations [3].
These flavor oscillations, involving pair conversions of

νeν̄e ↔ νxν̄x, where νx ¼ νμ; ντ, or any linear combination
thereof, are collective in nature, i.e., all neutrino energies
oscillate at the same frequency, and occur with a frequency
∼ ffiffiffiffiffiffi

ωμ
p

. Here, ω ¼ Δm2=ð2EÞ is the neutrino oscillation
frequency in vacuum and μ ¼ ffiffiffi

2
p

GFnν is the potential due
to a neutrino density nν. This collective frequency is much
larger than ω and could be the dominant mechanism of
neutrino flavor conversion in supernovae. This has been a
topic of heightened interest [4–27] for the past decade, as
reviewed in Refs. [28–30].
There is still no analytical understanding of collective

effects, in general, and much of our insight still comes from
the simplest model that shows collective bipolar oscilla-
tions: a neutrino and an antineutrino beam interacting with
each other. This system is mathematically equivalent to a
pendulum in flavor space [4,5], similar to how the ordinary

neutrino oscillations in vacuum or matter are equivalent to a
precessing spin [2,31–33]. Depending on the neutrino mass
ordering, the gravitational force for this flavor pendulum
acts upwards or downwards, thereby making certain flavor
configurations unstable, akin to an inverted pendulum.
Bipolar oscillations correspond to the pendulum starting in
an unstable inverted position, slightly offset by a small
mixing angle, and swinging through the lowest position to
the other side. This mechanical analog of the flavor
oscillations forms the basis for much of our intuitive
understanding of the rich and puzzling physics of collective
oscillations.
As early as 2005, it was claimed that even faster flavor

conversions may occur in a SN [34]. Such conversions,
with a rate ∼μ ≫ ffiffiffiffiffiffi

ωμ
p ≫ ω, seem to require nontrivial

flavor-dependent angular distributions for neutrinos and
antineutrinos. This was further studied in Refs. [35–41]
and, as an end product of these studies, it was concluded
that one requires a crossing in the electron lepton number
intensities to obtain a gap in the dispersion relation for
modes of flavor evolution, which leads to convective or
absolute instabilities that causes fast flavor conversion. This
condition is quite similar to how spectral crossings are
needed for the development of the bipolar instability
modes [8].
A major conceptual gap in the understanding of fast

conversions is that fast oscillations have never been studied
analytically in the fully nonlinear regime. As a result, one
doesn’t understand why do the fast oscillations take place.
This is the gap that we will fill in this paper.
Our aim is to discover the mechanical analog of fast

oscillations, roughly analogous to how the flavor pendulum
explains bipolar flavor oscillations. Towards this goal, we
consider the simplest model that shows fast oscillations
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and, under some simplifying assumptions, show that its
dynamics is equivalent to that of a particle in a quartic
potential. Fast oscillations correspond to the inversion of
this potential, leading to an instability. Using the classical
mechanical action, we analytically compute the oscillation
period in the inverted quartic potential and find agreement
with numerical solutions, both for constant and varying
neutrino-induced potential μ. We further explore this
problem, analytically as far as tractable, to identify the
exactly and approximately conserved quantities, and to
provide semiquantitative understanding for two out of the
three different time scales in the problem. We begin our
analysis below.

II. FAST OSCILLATIONS IN 4 BEAM MODEL

The equation of motion (EOM) for a 2-flavor neutrino of
momentum p, represented by a 3-component Bloch vector
is given by,

_Pp ¼
�
ωpBþ μ

Z
dΓ0ð1 − v · v0ÞPp0

�
× Pp; ð1Þ

where B ¼ ðsin 2ϑ0; 0;−cos 2ϑ0Þ for a vacuum mixing
angle ϑ0, and dΓ0 refers to an integral over the 3-momenta
of the other neutrinos. Here, we have ignored ordinary
matter effects and assumed that the above gas of collision-
less neutrinos is homogeneous over a length scale much
larger than the length scale corresponding to fast conver-
sions, and thus the only relevant dynamics is its time
evolution. Similar equations hold for antineutrinos with the
replacement P̄ωp;vp ≡ P−ωp;vp . In the following, we drop the
subscript p for clarity.
The simplest system that shows fast flavor conver-

sions is a set of four beams of neutrinos and antineu-
trinos intersecting each other as shown in Fig. 1 and
governed by Eq. (1). The terms involving v · v0 lead to
terms involving c≡ cos θ, where θ is the angle shown in
Fig. 1. The flavor evolution is more clearly understood
in terms of the following linear combinations of the
polarization vectors,

Q≡ PL þ PR þ P̄L þ P̄R −
2ω

μð3 − cÞB; ð2Þ

D≡ PL þ PR − P̄L − P̄R; ð3Þ

X≡ PL − PR þ P̄L − P̄R; ð4Þ

Y ≡ PL − PR − P̄L þ P̄R; ð5Þ

in terms of which the EOMs take the form

_Q ¼ μ

2
ð3 − cÞD ×Qþ μ

2
ð1þ cÞX × Y; ð6Þ

_D ¼ ωB ×Q; ð7Þ

_X ¼
�
ω

�
3þ c
3 − c

�
Bþ μcQ

�
× Y þ μD ×X; ð8Þ

_Y ¼
�
ω

�
2

3 − c

�
B −

μ

2
ð1 − cÞQ

�
×X

þ μ

2
ð3þ cÞD × Y: ð9Þ

A. Bipolar limit

There are two ways in which the above set of
equations reduce to the previously well-known equations
for the bipolar flavor pendulum, e.g., in Refs. [4,5].
Firstly, if c ¼ −1 then Eqs. (6), (7) decouple from the
rest and simply reproduce the bipolar flavor pendulum.
In this limit, Eqs. (6), (7) imply that X ·Xþ Y · Y is
constant, and if X and Y are initially zero, they remain
zero. Secondly, for any value of c, if X and Y are initially
exactly zero, i.e., there is a L ↔ R exchange symmetry in
Eqs. (4), (5), they do not evolve at all. This is to be
expected because the equations of motion do not break
this symmetry unless the initial conditions do so. In this
case, the first two equations simply reproduce the flavor
pendulum that exhibits bipolar oscillations at a frequency
∼ ffiffiffiffiffiffi

ωμ
p

. In addition, if the initial neutrino-antineutrino
asymmetry α, defined such that P̄z ¼ ð1 − αÞPz is zero,
the Q only evolves in the x − z plane while D acquires a
nonzero component only along the y direction. Here we
take 0 ≤ α ≤ 1 and jPj ¼ 1, corresponding to an excess
of neutrinos over antineutrinos as is expected in SNe. On
the other hand, if there is an excess of antineutrinos, it is
more convenient to define Pz ¼ ð1 − ᾱÞP̄z with 0 ≤ ᾱ ≤ 1

and jP̄j ¼ 1. If α or ᾱ ≠ 0, the pendulum has a spin that
makes it gyrate like a top [5].

B. Fast oscillations beyond the bipolar limit

It is thus clear, as was already evident through the linear
analysis in Ref. [37], that one must break the L ↔ R
symmetry to obtain any oscillations faster than the bipolar

FIG. 1. Four-beam model: Electron neutrinos (solid) and
antineutrinos (dashed) travelling along two beams each, one
from the left (red) and another from the right (blue), forward
scatter off each other. We study the time evolution of the flavor
content of these beams.
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oscillations. We will consider initial conditions on the
polarization vectors to be

PL;Rð0Þ ¼ ð0; 0; 1� ϵÞ; ð10Þ

P̄L;Rð0Þ ¼ ð0; 0; 1 −α� ϵÞ; ð11Þ

where α parametrizes the asymmetry between neutrino
and antineutrino number densities and ϵ is the small
difference between the left and right going modes that
breaks the L ↔ R symmetry. In general the motion is
quite complicated but for the above initial conditions and
α ¼ 0, Y is in the y direction only and X remains in the
x − z plane. One can see this by inspecting Eqs. (6)–(9).
This α ¼ 0 limit is significantly simpler and we confine
our attention to it to illustrate the physics of fast
oscillations. Many of the obtained insights will be
relevant more generally.

1. Conserved quantities

We now identify the conserved quantities. Equation (1)
implies that the magnitudes of each of the four polarization
vectors Pp remains constant. Further, Eq. (7) provides that
B ·D is a constant of motion, as in the bipolar case. This
proves conservation of flavor lepton number even for fast
oscillations, as one would expect.
The length of Q, unlike for bipolar oscillations, is not

conserved and changes as

d
dt

ðQ ·QÞ ¼ μ
ð1þ cÞ

2
½QXY�; ð12Þ

where ½� � �� indicates the scalar triple product of the three
vectors. The evolution of the components of Q is shown in
Fig. 2. The dynamics is mainly captured in Qz, with
Qx, Qy ≃ 0.

Likewise, the quantity Q ·D varies as

d
dt

ðQ ·DÞ ¼ μ
ð1þ cÞ

2
½DXY�: ð13Þ

If there is no initial asymmetry, i.e., α ¼ 0 and therefore
Dð0Þ ¼ 0, the rhs of Eq. (13) vanishes because D and
X × Y remain orthogonal, as we argued following
Eqs. (6)–(9). Then, Q ·D is a constant and remains at
its initial value zero. However, for α ≠ 0, i.e., a nonzero
neutrino-antineutrino asymmetry, Q ·D is no longer con-
stant, unlike for the bipolar flavor pendulum [5]. While a
core-collapse SN mostly has an excess of neutrinos over
antineutrinos, in the recently discovered lepton-emission
self-sustained asymmetry (LESA) phenomenon [15] as
well as in binary neutron star mergers [42–44], there can
be an excess of antineutrinos over neutrinos, leading to a
nonzero value of ᾱ. In Fig. 3, we show Q ·D for α ¼ 0 as
well as for α ¼ 0.2 and ᾱ ¼ 0.2. Defining ᾱ, instead of
simply letting α be negative, has the advantage that α ¼ 0.2
and ᾱ ¼ 0.2 are related to each other very simply as is
apparent from Fig. 3. In the limit ω → 0, the replacement
P ↔ P̄ keeps the EOMs unchanged.
As an immediate byproduct, one can solve for D starting

from Eq. (6). Taking a cross product with Q, one gets

D ¼ 2

μð3 − cÞ
Q × _Q
Q2

þQ · D
Q2

Q

þ ð1þ cÞ
ð3 − cÞ

1

Q2
½ðQ ·XÞY − ðQ · YÞX�: ð14Þ

The terms on the first line are identical to the D for the
bipolar pendulum [5], but one must note that Q obeys a
different equation than in the bipolar oscillations. Thus,
even if the terms on the second line are small (they indeed
are), the solution for D is actually different! Moreover,
Q · D is not constant if α ≠ 0, and this expression for D
must be understood as an implicit solution.

FIG. 2. Dynamics of the components of Q. The parameters are
chosen to be ω=μ0 ¼ 10−5, ϑ0 ¼ 10−2 and c ¼ 0.5. Here μ ¼
μ0 ¼ 105 km−1 is the value of μ at the neutrinosphere. Tfast is
matched using the estimate in Eq. (22), which defines Tonset and
Twait as the periods where Qz ≥ 0.99Qzð0Þ.

FIG. 3. Variation of Q ·D with time for neutrino-antineutrino
asymmetry α ¼ 0 (solid red), α ¼ 0.2 (dashed blue) and ᾱ ¼ 0.2
(dotted black).
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2. Conserved quantities in the limit ω=μ → 0 and α= 0

In addition to the above conditionally but exactly
conserved quantities, there are some approximately con-
served quantities. In the limit of large neutrino interactions,
i.e., ω=μ → 0, Eq. (7) gives that D is a constant. If
further α ¼ 0, then D can be set to zero. This simplifies
Eqs. (6)–(9) immensely, giving

_Q ¼ μ

2
ð1þ cÞX × Y; ð15Þ

_X ¼ μcQ × Y; ð16Þ

_Y ¼ −
μ

2
ð1 − cÞQ ×X: ð17Þ

One then immediately finds thatQ ·X;Q · Y, andX · Y, as
well as 2cQ ·Qþ ð1þ cÞX ·X and ð1 − cÞQ ·Qþ
ð1þ cÞY · Y are conserved in this limit.
Differentiating Eq. (15), one finds

Q̈ ¼ −μ2cð1 − cÞ½jQ0j2 −Q ·Q�Q; ð18Þ

which is a closed equation for Q that derives from the
Lagrangian

LQ ¼ 1

2
j _Qj2 − μ2cð1 − cÞ

�
jQ0j2 −

Q ·Q
2

�
Q ·Q
2

; ð19Þ

where jQ0j is the modulus of Q at time t ¼ 0. Using
Eq. (18), one finds the total energy is

E ¼ 1

2
j _Qj2 þ μ2cð1 − cÞ

�
jQ0j2 −

Q ·Q
2

�
Q ·Q
2

; ð20Þ

which is an additional constant of motion. Note that Q is
confined to the x − z plane when α ¼ 0, and Qx can be
eliminated using E, thereby reducing the problem to the
study of only the z component ofQ to understand the flavor
evolution shown in Fig. 2. Clearly, as Qx ≃Oðϑ0Þ, the
energy E is dominated by Qz.

3. Particle in a quartic potential

An interesting feature is that fast conversions exist only
for certain angular distributions of the neutrino beams.
Using a linear stability analysis, it was shown in Ref. [37]
that fast conversions exist only for c≡ cos θ > 0. The
reason for this becomes obvious if one observes the
potential term VðQzÞ in LQ. Classically, this relates to
motion of a particle in a quartic potential given by

VðQzÞ ≈ μ2cð1 − cÞ
�
jQ0j2 −

Q2
z

2

�
Q2

z

2
: ð21Þ

As shown in Fig. 4, the potential is an inverted quartic for
c < 0 and a quartic for c > 0. The motion ofQz is governed

by this potential. Given the initial condition Qzð0Þ ¼
4½1 − ðω cos 2ϑ0Þ=ð2μð3 − cÞÞ�, for c > 0 the potential
causes Qz to roll down towards the bottom of the potential
well and subsequently oscillate in it. In flavor space, these
are fast conversions. On the other hand, for c < 0 a
potential barrier is encountered by Qz. The value of Qz
therefore remains at its initial value and there are no fast
conversions. Note that the above initial condition for Qz is
for the inverted mass ordering, where ω < 0. For normal
mass ordering, the same initial condition holds with the
replacement ω → −ω. However, fast conversions are
essentially independent of the mass ordering. In fact, even
the triggering of fast conversions, that is dependent on ω,
does not seem to crucially depend on the sign of ω.
In order to verify whether the above analytical approx-

imations explain the evolution ofQ, we numerically solved
Eqs. (6)–(9) and compared with the numerical solution of
Eq. (18). These results are shown in Fig. 2. One observes
that there are three timescales: Tonset, the onset time; Tfast,
characterizing the time-period of fast oscillations; and Twait,
the waiting period in between two oscillations. We do not
expect Eq. (18) to give the correct solution at initial times
up to Tonset and in between the oscillations for the periods
designated Twait. For these periods, roughly Qz ≳
0.99Qzð0Þ and the rhs of Eq. (18) is very small, i.e.,
≲Oðω=μÞ ¼ 10−5. Thus the flavor evolution is governed
by the ω-dependent and otherwise subdominant terms
which we have ignored (see Appendix). On the other
hand, in this regime, the solution is already very well
understood using linear stability analysis. More interest-
ingly, the evolution of Qz is very well explained using
Eq. (18) when it is strongly nonlinear, i.e., deviates
appreciably from its initial value.
One can compute the time period of the fast oscillations

using energy conservation, to get

Tfast ¼ 2

Z
Qmin

z

Qmax
z

dQzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − VðQzÞÞ

p : ð22Þ

This integral is in fact analytically expressible in terms of
an elliptic function. However, the result is opaque and

FIG. 4. Left: The potential VðQzÞ for two different values of
c ¼ 0.1 (solid red) and c ¼ −0.1 (dashed blue).
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lengthy and we don’t display it here. Evaluating the same,
we find that it matches quite well with the numerical results
shown in Fig. 5, if we considerQmax

z ≈ 0.99Qzð0Þ. The blue
dots represent the fast time period (excluding the onset and
waiting times, as previously noted) obtained from numeri-
cal solution of Eqs. (6)–(9), whereas the solid blue line is
obtained by evaluating the integral in Eq. (22).
Now we briefly discuss what happens if μ is not a

constant, but rather varies with time as μðtÞ. One expects
that if μðtÞ is time dependent, the energy EðtÞ also becomes
time dependent. Naturally, the time period Tfast also
changes with time. In Fig. 6, we show the evolution of
Qz (top panel) for a time-dependent neutrino poten-
tial μðtÞ ¼ μ0ð1þ t=100Þ.
While this is in general a much more complicated

problem, if the rate of change of μðtÞ is much smaller
than the frequency of fast oscillations (as chosen above)
one can use adiabatic invariance to derive some simple
results. In the adiabatic limit, the action variable of the
system

SðE; μÞ ¼
I

pQdQz ¼
I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðE − VðQzÞÞ
p

dQz ð23Þ

remains invariant to a good approximation. Here the
generalized momentum for the system is pQ ¼ _Qz, neglect-
ing Qx ≃ 0. This action SðEðtÞ; μðtÞÞ remains invariant
under adiabatic changes in μðtÞ while energy changes
appreciably, as shown in the middle panel of Fig. 6. In
Fig. 7, we show the phase trajectory for the time-varying
μðtÞ above. As μðtÞ increases with time, the potential
becomes deeper and the oscillation amplitude decreases but
the energy increases; the closed trajectory in phase space
becomes more oblong along momentum, keeping the
enclosed area constant.
It is possible to analytically perform the integral in

Eq. (23), giving a closed expression for the adiabatic
invariant S in terms of EðtÞ and μðtÞ. One can then compute
an analytical expression for the time-dependent time period
TfastðtÞ, using

FIG. 5. Time periods Tonset, Tfast, and Twait and their linear
dependence on 1=μ. Dots show the numerical data whereas the
lines are the best fit through them. While the fit for Tfast is given
from Eq. (22), those for Tonset and Twait are obtained numerically.

FIG. 6. Top: Variation of Qz for a time-varying neutrino-
neutrino potential given by μðtÞ ¼ μ0ð1þ t=100Þ. Middle: Plot
of the action S and the energy EðtÞ. Note how the energy changes,
but action remains constant. Bottom: Variation of Tfast with time.

FIG. 7. Trajectory in phase space for varying μ. Redder colors
refer to later times and larger μ.
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TfastðtÞ ¼
∂
∂ESðE; μðtÞÞ: ð24Þ

As the expressions are unwieldy, and easily reproduced, we
omit them here. In the bottom panel of Fig. 6, we show the
time period computed analytically in this manner (blue
dots), compared with the same measured from the numeri-
cal solutions of the EOMs (red dots). This is based on a
single calibration between our analytical estimate of Tfast
and the numerics that we used to identify Qmax

z ¼
0.99Qzð0Þ as the boundary where the slower terms become
dominant. Subsequently, this agreement at different and
changing μ highlights that the agreement is not superfluous
or accidental.
The other two time scales, Tonset and Twait, are somewhat

harder to estimate. We have checked numerically that all of
them vary as 1=μ, as seen in Fig. 5. In addition, we find that
Tonset depends logarithmically on the “seed” given in
Eq. (6). Solving Eq. (18) for Qz, and determining Tonset
by checking for small deviations ofQz from its initial value
gives,

Tonset ∝
1

μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cð1 − cÞp ln

�ð3 − cÞ
cos 2ϑ0

μ0
ω

�
; ð25Þ

which underestimates Tonset by approximately a factor of 2,
relative to the numerical value seen in Fig. 2. For Twait as
well, we find numerically that it depends logarithmically on
ϑ0 and ω. More detailed numerical evidence for these
logarithmic dependences is presented in Appendix.

4. Asymmetric fast oscillations

We now turn to the case when the initial neutrino-
antineutrino asymmetry is nonzero, i.e., α ≠ 0. Examining
Eq. (7), we notice that one can essentially treat D as a
constant vector in the limit ω=μ → 0. Thus, in Eq. (6) ;Q
acquires an extra precession around the D vector. This
precession is essentially around the z axis, and now allows
the y component of Q to evolve as well. The vectorsX and
Y also acquire similar precessions around D, but each with
a different precession frequency. As these frequencies are
not all identical, there is no “co-rotating” frame where all
the effects of these additional precessions can be com-
pletely removed.
Taking a derivative of Eq. (6), one gets

Q̈ ¼ −μ2cð1 − cÞ½jQ0j2 −Q ·Q�Qþ μ

2
ð3 − cÞD × _Q

þ μ2

2
ð1þ cÞ

�
ðD ×XÞ × Y þ 3þ c

2
X × ðD × YÞ

�
:

ð26Þ

The second term on the r.h.s of the first line represents
the action of a approximately constant magnetic field

D ≈ ð0; 0; 2αÞ in the z direction. The terms on the second
line are approximately equal to ðX:YÞD, which act like a
time-varying electric field in the z direction. Despite these
complications, the interpretation is not too difficult. For
α ¼ 0, the Qz already hovers close to its minimum around
−4, but jQj is constrained to be ≤ 4. Now, with α ≠ 0, the
only possible effect of these new terms can be that Qz
becomes larger close to its minimum. This is exactly what
is seen in Fig. 8; the dips become less deep and are sharper.
Essentially, these electric and magnetic fields push the
particle away from the minimum of the potential well.

III. SUMMARY AND OUTLOOK

In this paper, we studied the simplest toy model of a
homogeneous system of neutrinos and antineutrinos that
shows fast conversions. We find that, in the limit that the
vacuum oscillation frequency ω is much smaller than the
neutrino potential μ, the system is described by a particle
moving in a quartic potential (and an external electric and
magnetic field, if there is neutrino-antineutrino asymme-
try). This simple classical mechanical problem can be
solved exactly. Most importantly, the potential offers a
barrier as opposed to a well, if the angle of intersection of
the beams is larger than π=2, which explains the depend-
ence of fast conversions on the angular distribution of the
beams. Onset of fast conversions corresponds to the particle
rolling down the potential, thereby causing an instability.
Using the action variable and its adiabatic invariance, we
estimated the time period of fast oscillation, both when μ is
constant and when μðtÞ varies with time. We gave numeri-
cal and semianalytical evidence that the onset and waiting
periods for the fast oscillations depend logarithmically on
ϑ0 and Oðω=μÞ. Finally, we argued how our results
generalize to a situation when the number of neutrinos
and antineutrinos is not same. In this case, the particle is
also acted upon by an external electric and magnetic field.
We hope that these results provide some useful insight of

the flavor dynamics associated with fast oscillations, that
has so far only been understood in the linear regime or

FIG. 8. Dynamics of the components of Q for a neutrino-
antineutrino asymmetry α ¼ 0.2. The parameters are chosen to be
ω=μ0 ¼ 10−5, ϑ0 ¼ 10−2 and c ¼ 0.5.
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explored numerically. Hopefully, these insights will be
useful to understand the physics of fast oscillations in more
realistic models of neutrino flavor conversions in core
collapse supernovae.
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APPENDIX: FULL EOMs FOR FAST
CONVERSIONS

In this appendix, for completeness, we provide the
EOMs for the polarization vectors as well as the EOMs
forQ,X and Y without dropping the subleading terms. The
EOMs for the four polarization vectors are given by:

_PL ¼ωB×PLþ μ½ð1þ cÞPR − ð1− cÞP̄L− 2P̄R�×PL;

_PR ¼ωB×PRþμ½ð1þ cÞPL− ð1− cÞP̄R − 2P̄L�×PR;

_̄PL ¼−ωB× P̄Lþμ½ð1− cÞPL− ð1þ cÞP̄Rþ 2PR�× P̄L;

_̄PR ¼−ωB× P̄Rþ μ½ð1− cÞPR − ð1þ cÞP̄Lþ 2PL�× P̄R;

ðA1Þ

where c≡ cos θ is the cosine of the angle between the
beams, as shown in Fig. 1. Using the definitions for Q, D,
X and Y in Eqs. (2)–(5), we have already shown the
evolution ofQ in the main text and here, in Fig. 9, we show
the evolution ofX and Y, for α ¼ 0. We observe that while
X develops only an x component dominantly (and has a
subleading z component), the quantity Y only has a
nonzero y component. This can also be inferred by
inspecting the EOMs. D remains very small and along
the y direction and we do not show it here.
In the process of identifying the above equations with the

mechanical analog, the crucial approximationwas to drop the
subleading terms of frequency OðωμÞ and smaller. These
terms are manifest in the approximate second-order EOMs
forQ,X, andYwhich, in the limitα ¼ 0, can be arrived at by
taking another time derivative of Eqs. (15)–(17),

Q̈ ¼ μ

2
ð1þ cÞ

�
μcfðY ·QÞY − ðY · YÞQg − μ

2
ð1 − cÞfðX ·XÞQ − ðX ·QÞXg

þ ω

�
3þ c
3 − c

�
fðY ·BÞY − ðY · YÞBg þ ω

�
2

3 − c

�
fðX ·XÞB − ðX ·BÞXg

�
; ðA2Þ

Ẍ ¼ μc

�
μ

2
ð1þ cÞfðY ·XÞY − ðY · YÞXg − μ

2
ð1 − cÞfðQ ·XÞQ − ðQ ·QÞXg

þ ω

�
2

3 − c

�
fðQ ·XÞB − ðQ ·BÞXg

�
þ ω

�
3þ c
3 − c

�
B × _Y; ðA3Þ

FIG. 9. Left: Evolution of X. Right: Evolution of Y. The parameters used here are ω=μ0 ¼ 10−5, ϑ0 ¼ 10−2 and c ¼ 0.5.
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Ÿ ¼ −
μ

2
ð1 − cÞ

�
μ

2
ð1þ cÞfðX ·XÞY − ðX · YÞXg þ μcfðQ · YÞQ − ðQ ·QÞYg

þ ω

�
3þ c
3 − c

�
fðQ · YÞB − ðQ ·BÞYg

�
þ ω

�
2

3 − c

�
B × _X: ðA4Þ

We remind that these equations are based on the assumption
that D is approximately constant and negligible. Also, the
apparently Oðμ2Þ terms on the first line of the above
equations contain subleading OðωμÞ terms themselves.
Analogous to the closed set of equations and the

Lagrangian governing Q given by Eq. (18), one can find
the closed equation for X and Y, each, by neglecting terms
of order Oðω2Þ and OðωμÞ relative to Oðμ2Þ,

Ẍ ¼ μ2
cð1 − cÞ

2

�
jQ0j2 −

ð1þ cÞ
c

ðX ·XÞ
�
X; ðA5Þ

Ÿ ¼ μ2
cð1 − cÞ

2

�
jQ0j2 − 2

ð1þ cÞ
ð1 − cÞ ðY · YÞ

�
Y: ðA6Þ

In this α ¼ 0 limit, the neglect of the subleading contribu-
tions of OðωμÞ and smaller endows a spurious Q → −Q

symmetry toEq. (18). As a result, solving Eq. (18) leads to an
evolution of Q that is exactly symmetric in Qz ↔ −Qz (the
onset and waiting times are equal to the fast oscillation time).
Numerically however, we find that Q hovers longer around
its initial position at the top, than it does at the bottom of the
potential VðQÞ, as seen in Fig. 2. We believe that this slow-
down is due to the neglect of subleading friction-like terms
that arise at the same order as the terms necessary to seed the
fast oscillation. Similar to how theonset period for thebipolar
flavor pendulum depends on ϑ0, the time scales for the fast
oscillation, i.e., Tonset, Tfast, as well as Twait, depend loga-
rithmically on these subleading parameters that seed the
oscillations. In Fig. 10, we show the variation of Tonset, Tfast

and Twait with ω=μ0 and ϑ0, respectively, where μ0 ¼
105 km−1 is the value of μ at the neutrinosphere. Clearly
the time periods vary as μ−1 as shown in Fig. 5, but with
logarithmic corrections proportional to ðω=μ0Þ and ϑ0.
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