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Relativistic effect of entanglement in fermion-fermion scattering
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We study the properties of entanglement entropy among scattering particles as observed from different
inertial moving frames, based on an exemplary QED process e*e™ — utu~. By the explicit calculation
of the Wigner rotation, the entanglement entropy of scattering particles is found to be Lorentz invariant.
We also study the behavior of the entanglement between spin degrees of freedom for scattering particles in
moving frames. This quantity, being found to change with different inertial reference frames, does not

exhibit as a Lorentz invariant.
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I. INTRODUCTION

Quantum information, which was originally formulated
in terms of nonrelativistic quantum mechanics, has received
much interest within the more fundamental framework of
quantum field theory [1-3], since studying quantum
information theoretic issues provides some insight into
the structure of interacting quantum field theories, in
particular, enriching the understanding of conformal field
theories via calculating the entanglement among different
regions. To analyze the structure of interacting quantum
field theory, Refs. [4,5] studied the entanglement entropy of
two divided momentum spaces with the perturbative
calculations method, and this method was then followed
by Ref. [6] for the study of the entanglement between
two scalar particles in the scattering process in a weakly
coupled field theory.

The physics of scattering process plays a crucial role in a
wide variety of physical experiments, which probe the
behavior of elementary particles. In a scattering process, the
final state is determined by an initial state and S matrix.
Thus, the final states are entangled states of in-fields, and
we are interested in quantifying the entanglement entropy
generated by the elastic collision of two initial particles.
The relation between the scattering and the entanglement
entropy in scalar field theory is also studied in Refs. [7-10]
in terms of different S-matrix formalisms which play a
significant role in these computations.
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Lately, Ref. [11] extended the study to the relativistic
regime involving fermions. The entanglement of a two-
fermion state is generally not Lorentz invariant although
certain states and partitions are. This occurs due to the spin
degree of freedom of a particle mixing with momentum
under Lorentz transformation [12]. Peres et al. [13] argued
that the spin entropy determined by the reduced density
matrix tracing out the momentum is not invariant under
Wigner rotation. Czachor et al. [14,15] demonstrated that
the difficulty in defining spin-reduced density matrices in a
Lorentz invariant manner arises from the dependence of the
Wigner rotation on the momentum of the state. Some
research [12,16,17] concentrating on the entanglement of
the biparticle system obtained the following results: that the
entanglement between the total degrees of freedom for two
particles, i.e., including momentum and spin, is Lorentz
invariant, and their spin or momentum entanglement
depending on the frame of reference.

In this paper, using the perturbative method in Refs. [4,6],
we also study the entanglement for spin degrees of freedom
of particles in the fermion-fermion scattering process with a
weak coupling. It is convenient to study an elastic scattering
in two-particle Fock space, where incoming and outgoing
particles can be regarded as asymptotically free particles.
In order to measure the spin entanglement between two
particles, we study mutual information in momentum space,
I(s4,58) = S(s4) + S(sp) — S(saup), where S(s,) is the
von Neumann entropy of the reduced density matrix of spin
degrees of freedom for particle A, and S(s4. ) is the von
Neumann entropy of the reduced density matrix of total spin
degrees of freedom for two particles.

The structure of this work is organized as follows.
In Sec. II, the Wigner rotation is briefly reviewed, and
the properties of entanglement of scattering particles in the
moving frame are studied. In Sec. III, the variation in spin
entanglement in the relativistic frame is carefully analyzed.
Finally, we conclude in Sec. IV.
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II. ENTANGLEMENT ENTROPY OF
SCATTERING PARTICLES

References [6,11] studied the entanglement entropy
between two particles in an elastic scattering process with
a particular perturbative technique. It was found that the
change in entanglement entropy from incoming particles
to outgoing particles is proportional to a cross section in a
weak coupling theory. In order to ascertain the relation
between Lorentz symmetry and the entanglement of
scattering particles in a weak coupling, we calculate this
quantity in different inertial reference frames. In our
context, we adopt Weinberg’s notation [18]: metric sig-
nature, index ordering, and gamma matrix.

A. Reduced density matrix

Before starting to study the entanglement of scattering
particles in a moving frame, let us recall what Ref. [11]
studied. At weak coupling, we can assume the unitarity of
local interaction terms to be guaranteed at lower orders of
perturbation [6]. The initial and final states can be viewed
as the superposition of the basis of the free Hamiltonian
Hg.. so that we can divide the total Hilbert space as
Hiot = Ha ® Hp. For an elastic scattering process of two
fermions in 2-particle Fock space, incoming and outgoing
particle states can be described as

V2Epay"|0), ® \/2Eby"|0)p, (1)

|p.siq.r) =

where p and q are the three-momenta of particles, and
s, r denote the spin of particles. The fermionic creation/
annihilation operators obey the commutation relations,

{ap. iy = (22)°6% (p — k)5,
{bg. b} = (22)*61) (q = o™ (2)

Then the inner product between two-particle states is
defined as

(k,s";1,7|p.s;q.r) = 2E2E;(27)%8%) (k — p)(27)?
x 8 (1 — q)8'8™ . (3)

One chooses a general initial state,

lini) = Za,;l(;zlp,m;q,az% (4)

01,0,

where the coefficients satisfy Zalmaglgza;,ﬂz =1
The final state is determined by the initial state and the
S matrix [6],

&k 1
fin) = "
= /(2”)32Ek 2ﬂ32E,;;4§a6162 04)
X<k’o-3;l’o-4|s|p701;q,02>. (5)

The T matrix is defined as

iT=8-1,
Q2n)*W(p+q-k=1)
X iMg 51056, (P-q = k. 1),

(6)

<k, 03, l, U4|iT

p,O'l;q,0'2> =

where M, ;. 5.5, 1s the invariant matrix element in a

scattering process.
We introduce a shorthand notation,

M5 (@) = a0, M0, (P q = k1) ()

010,

thus, the final state is simply written as

, Pk Bl
+ ’; / (27)2E, (27)2E,
X (2”)45( >(p +q- k— Z)M630'4 (a)|k’ 03; l? 64>'

(8)

The setting of the entire scattering process is designated to
occur in a large spacetime volume of duration 7" and spatial
volume V; these factors are artifacts caused by regulating
delta functions (Ref. [18]),

\%
5%/(1’ -p) = Wép,p”

T/2 :
d[et(Eﬁn_Eini)t’

1
5T(Eif) = 5T(Eﬁn - Eini) = 5/

-T/2

©)

which implies V = (27)%3{"(0) and T = (27)5(0),
respectively.

From Eq. (5), we can evaluate the total density matrix of
final state by p,p = |fin)(fin|. The reduced density matrix

p&ﬁn) is obtained by tracing out the degrees of freedom for

particle B, pA = N~=ltrgpap, producing the following

result,
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fin
,01(4 )= {ZIO'IO' 2E V|p’01><p’61|

611

/122/ {275(Ey)}?

X Ay ><k,ag|}, (10)

where A\ is the normalization factor fixed by trApgm) =1,

{2”5(Eif)}zv
N = 2Eq2EpV2 +/12/ _—

Aoy (11)
k#p 2Ek2Ep+q—k c

and using two shorthand notations for the long expressions:

*
R
10101 2 :aﬂlﬂzaa’]@’

02

A, = AZZMM M, (@) (12

In the weak coupling, the reduced density matrix for
particle A at order 4> can be written as

P = diag((1 = 2AYL, ... 22 A....),  (13)

where the elements of this matrix correspond to

[p.o1)(p.o| lk.o1) (k.o |
zlEpv L, 2]EkV] ,---, and
_ (I n I 12)
Iy In)
A — {276(Ey) }* (Au Alz)
C T 2EQEQREE, (i VE\ Ay An )
278(Ey) }?
A / { . f)} "45303 (14)
kzp 2EX2EQ2EL2E  (V
Then the entanglement entropy between particle A and B in

the final is Sg‘“) (ﬁn) logpgﬁn)‘

B. Wigner rotations

Before considering the properties of the entanglement
entropy between two fermions in the moving frame, it is
necessary to briefly review the effect of a single fermion
state under Lorentz transformation. As shown in Ref. [19],
for a massive particle, p2 < 0, we can choose a standard
four-momentum k* [usually taken in the particle’s rest
frame, k# = (0, 0,0, 1)], and express any p* of this class as

p' = L",(p)k, (15)

where L#,(p) are some standard Lorentz transformation
that depend on p*, taking the four-momentum k — p.

In terms of standard momentum states |k, o), the corre-
sponding state-vector can be defined as
|p.o) = U(L(p))|k, o), (16)
where
Pk, o) = k'|k, o),
Sk, o) = s(s+ 1)k, o),
J |k, 6) = olk, o), (17)

where s and ¢ are the spin and the z component of the spin
for the particle, respectively.

The effect on the state-vector |p, s) under an arbitrary
Lorentz transformation A (rotation and boost) is

U(A)p,o) = U(L(Ap))U(W(A, p))

o), (18)

where W(A, p) = L' (Ap)AL(p). The transformation
takes k to L(p)k = p, and then to Ap, and then back to
k, so it must be a rotation. These rotations are called the
Wigner rotations, which act only on the spin component ¢
in rest frame. Hence, the state becomes

ZDU c

where D;;(W(A, p)) is the spin s representation of the

rotation W(A, p). The Wigner rotation matrices are given
by Refs. [19,20],

0. (19)

A)|p.o) =

DU (W(A, p)) =

00

<Cos(Qp /2)

—sin(Q,/2) >
sin(Q,,/2)

cos(,/2)

where the Wigner rotation angle €2, depends on the
direction and the rapidity of the boost.

Thus, under Lorentz transformation A, the transformed
spinor u”(p, o) can be rewritten as a Wigner rotation of the
spinors u(py, o),

u™(p,1/2) = cos(Qp/2)u(pa. 1/2)
+ sin(Qy/2)u(pa. —1/2),
uh(p,—1/2) = —sin(Qp/2)u(ps. 1/2)
+cos(€2,/2)u(pa. —1/2). (20)

C. Entanglement entropy of scattering particles
in moving frame

For an observer in a moving frame, the final state under
Lorentz transformation A is
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p’o-l;q762>A

i) = dy,,,

01,02

i / dLM?, (a)lk.

0304

31 04> ) (21)

which has the Lorentz invariance structure,

Pk 1 Bl
dn
/ 2T / P 2E, (27)3 2E;

x (271')45( N(p+qg—k=1). (22)

The general state |k, 63; 1, 64)"
by a Wigner rotation,

appears to be transformed

‘170-4 ZDO' o3 A k)) 004
A
X (WA, D)lkn, 05315, 04). (23)

In the following, we denote D,,(p)= D,
Then the final state is reinterpreted as

|fin)A Z Z a(,l,,zDOJ o

6},05 01,02

+ZZZ/dH2 0‘63 0‘0'4( )Mé\w4

o3 0 03,04
X (a)|k/\,03;l/\,0':‘>. (24)

It is worth noting that

+(W(A. p)).

)Dy10,(q)|Pas 013 Gas 05)

Mﬁr\] 0,0304 (k’ [ — P, CI)

=D DDy,

| (Z)Da’lol (p>Da’202 (Q)
75, )

x Ma’ldz(gag(k/\, IN = Pasqn)-

For simplicity, we define

M2 (b) = D Dy, (k) Dy, (1) M3, (@) (25)
Thus, the final state can be expressed as

|ﬁn>A = Zbalvz |pA’ O159As 62>

01,02
&’k 278(E
HY [ )
6304 27[ 2Ek2Ep+q k

X MG, (b)|kn.63: pa + g — kn.04).  (26)

In the analogous calculation, the reduced density matrix
for one particle under the action of Lorentz transformation
A has the following results:

Af
" Zzb”l”2 j—fﬁzzE‘IAvﬂlA|p/\’0—1><pA’6l]|

016' 02

n / &’k (27)5(Ey) (27)5(E})
030, k#p (2”)32Ek2Ep+q—k 2Ek,\

S

<b>>*}|kA,ag><kA,og|.

(27)

Note that regularization factors T, and V/, are not Lorentz
invariant. Since these quantities £,6°)(p — q) and (27)®
(p + q — k— 1) are Lorentz invariant, it is easy to obtain

EpVp = Ep V- TpVp =Tp, Vp,- (28)
Thus, the Lorentz-transformed reduced density matrix
p(A'ﬁ“) can be derived as
A fin)
- {ZI 1a;2EqVq|PA’01><PA,0'1|
oy 5]
+ 12 / d’k  {2725(Eyr)}?
63.0'% k#p (271')3 2Ek2Ep+q—k2Ek
XAf;gglkA70'3><kA’6/3|}, (29)
where
Zba -
0’10 10270/ (;2
1 -
A gy =7 D Mo (B)MS(B)). (30)
04
and N is the normalization factor fixed by trApgA Ain) .

In the weak coupling, the Lorentz-transformed reduced
density matrix at order 1> can be written as

p/(;\,ﬁn) = diag((1 — 2ANTA, . 24N, ), (31)

where the elements of this matrix correspond to

IpA,O;g*iiAﬁH s veey |kA~‘;1E>‘EI‘€/{\*G/]‘ P and
o (Iﬁ z?2>
n In
AN — {275(E)} (Aﬁ A?z)
(2 2 ’
2EQ2ER2E2Ep gV A/2\1 Aé\z

{2”5(Eif)}2 AN

&Pk
A= . 32
Lp (27) 2E2E 2B 2y g v e (32)
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Following the spirit of Ref. [11], the scattering e e™ —
= will be taken into consideration for simplicity. Since
only the s channel contributes to this process, we choose
the following initial state with parametrization of the
entanglement between the spin degrees of freedom,

lini) = cosy|p,1/2;q.1/2) + sinne|p,—1/2;q,—1/2),
(33)

with ¢ = £1/2 representing the spin quantized along the z
axis, 7 € [0, z/2] parametrizing the spin entanglement of the
state, and § € [—x/2, 37/2] labeling the relative phase of the
superposed states |p,1/2;¢,1/2) and |p,—1/2;q,-1/2).

To obtain a more explicit formula, we could make the
simplest choice of evaluating entanglement entropy in the
center of mass frame S. The mass of electronic is ignorable,
since the ratio m,/m, =1/200 is much smaller than the
fractional error introduced by neglecting higher-order terms
in the perturbation series. The initial and final four-
momenta for eTe™ — utyu~ are

p* = (0,0,E,E), q" = (0,0,-E, E),

k* <\/ E? —m?%sin 0,0,V E* — m? cos @, E)
= (—\/E2 — m2sin0,0, —VEX — m? cos 6, E) (34)

It is interesting to study the properties of the entangle-
ment entropy of scattering particles in moving frames,
because spin and momentum become mixed when viewed
by a moving observer [12,21]. Since any transformation
matrix D, ,(p) does not depend on p for a pure rotation
[12], it is sufficient to focus on pure boosts. Without loss of
generality, we make a boost to a frame §’ traveling in the z
direction with rapidity w,

1 0 0 0
0 1 0 0
A =
0O O coshw sinhw
0 O sinhw coshw

where w — 0 means that the reference frame S’ — S.
For the chosen initial state, the matrices in Egs. (13)
and (31),

. 2 O
I <sm n >’
0 cos’py

Ia _ (;(1 + cos 277 cos 2Q,)

lcos2nsinQ, )
1cos2nsinQ, ’

1(1 = cos 27 cos 2Q,)
have the same eigenvalues, sin’y and cos’;. The corre-

sponding entanglement entropy of incoming particles in
different inertial reference frame are

S(ini)

A,ini
E :SEE "=

= —sin?ylog sin’y — cos’nlog cos?y.  (35)
At the lowest order, the scattering amplitude in the
reaction ee” — uTp~ can be written as

Mo16,0,0,(Pq > k)
A _

= —EU(%UZ)Y”M(P,Ul)”(k’ 03)r,v(l.os),  (36)
where mode functions u(p, o) and v(p, o) are chosen as
momentum eigenstates in Ref. [19]. Using the given four-
momentum of scattering particles and Lorentz transforma-
tion A, it is easy to compute Wigner angle Q, and Wigner
rotation matrices Dy,(p) by Ref. [19]. Even though
scattering amplitude M, , ., is different from MA
viewed by the Lorentz-boosted observer, we find

A= AN
_ TVE* = m?(2E* + m* + (E* — m?) cos ffsin 21
% 247E° ’

(37)

where the factors 7 and V are constants which denote the

value of T, and V, in center of mass frame. Furthermore,

the matrices .4; and A2 in Egs. (13) and (31) have the same

roots, and the corresponding entangelment entropy of

outgoing particles viewed by different observers have the
(fin) (A.fin)

same result, Sy = S .

Thus, we find that the entanglement entropy of scatter-
ing particles for the initial and final state are Lorentz
invariant. This is consistent with the fact that a local
unitary transformation will not affect any measure of
entanglement [22,23].

The change in the entanglement entropy of scattering
particles in an arbitrary inertial reference frame is
ASg = —2*log 2 A — (1 = 22 A)(cos*nlog cos’y

+ sin’y log sin?y) + A2 A
PVE? —m’T a1
—W/ (ax log(az)

16E*V?
+ ap log(ay)) + /124410%( 72 >

(38)

At the lowest, A%, the cross section for the scattering
ete™ — putu~ is Lorentz invariant,

PVE?* —m?(2E? + m? + (E? — m*) cos B sin 27)
487 Ed

Olini) =

(39)

From the values of A and oj;;, we can further confirm the
conclusion in Refs. [6,11] that the change in entanglement
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(Ecm=4m,)
0.004W
0.003[ 7=0
0.002 - n=-r1/4
0.001

g 6

FIG. 1. The A?logA?® order contribution to the change in
entanglement entropy of scattering fermions as a function of
entangle parameter n and phase factor f.E_,, is the total initial
energy.

entropy of scattering particles in a weak coupling theory is
proportional to the cross section.

Finally, the leading perturbative contribution of the
change in entanglement entropy of the scattering
particles is

ASp = =A% log 22 A + 0(2?), (40)

where the leading contribution to the spin entanglement
entropy is 4?log 4> and vanishes as 1 — 0. This is con-
sistent with the fact that interactions cause change in the
degree of entanglement between the subsystems [4,24].
From (40), ASy > 0, the interaction between the two
particles could increase the degree of entanglement of
scattering particles, which is analogous to increasing the
entropy principle in thermodynamics.

The change in entanglement entropy of the scattering
fermions in the process ete™ — utu~ is plotted in Fig. 1.
The figure describes a function about the dependence of the
change in entanglement entropy on phase factor /3 for initial
states of different degrees of entanglement, # = 0 (not
entangled), 7 = z/4 (symmetric Bell state), and n = —z/4
(antisymmetric Bell state). The figure tells that, for a initial
state of certain degree of entanglement, in addition to the
effect of interaction, the interference of different histories
corresponding to the superposition state also changes the
entanglement entropy of scattering particles [25].

III. SPIN ENTANGLEMENT OF SCATTERING
PARTICLES IN A MOVING FRAME

In the previous calculation, the initial state and the final
state of two fermions can be regarded as generated by the
basis of an asymptotically free Hamiltonian, and their total
Hilbert space can be divided into H,, = Hy ® Hp. For a
subsystem, say A, choosing spin state as the complete
basis, its Hilbert space H, could be further divided into
H,, ® H,,, i.e., the spin and momentum degrees of
freedom of subsystem A. After performing the same

decomposition for subsystem B, the total Hilbert space
for the initial state and final state can be decomposed into
H, ®H, ® H,, ® H,,.Itis interesting to investigate a
particular quantity, the mutual information between spin
degrees of freedom for two fermionic field,

I(s4,55) = S(s4) +S(sp) —S(sa Usg), (41

which measures the spin entanglement between two par-
ticles. Here S(X) is the Von Neumann entropy of the
reduced density matrix of subsystem X. Furthermore, the
properties of the mutual information in moving frame will
be studied.

In the following, we calculate the spin entanglement
entropy of outgoing particles in the scattering process
ete™ — putu~, with the same initial spin state parametri-
zation as (33),

|ini) = cosn|p, 1/2;q,1/2) + sinne|p,—1/2;q,—-1/2).
(42)

As explained in the previous section, the final state is
determined by the initial state and S matrix. From Eq. (29),
the reduced density matrix pﬁf’f‘“) is obtained by tracing out

the momentum degrees of freedom for particle A,
(A fin) (A fin)

ps,  =1tr, py ", producing the following results at
order A*

PN — (1= 2AM A 42BN (43)
where

IA _ (1/1\1 I?Z)
]é\l 112\2
{2”5(Eif)}2

BA _ / d3k (AII\I "411\2 )
k#p (277:)3 2Eq2Ep2Ek2Ep+q—k Vv Aé\l "43\2 ’

AA — / d’k {2ﬂ5(Eif)}2 AA. (44)
kep (27)3 2EQ2E,2E2Ey o i V™0

Both entanglement parameter # and phase factor f can
control the degree of entanglement for initial state, while
we choose f as zero for simplicity. In the analogous
calculation, the eigenvalues of the spin reduced density

matrix pﬁf’ﬁn) can readily be obtain,
T2>VE?* —m?
& =sin?yp + —————((8 cos 2 — 8 + 3b2
k1 n-+ 1992V ES (( n +3by
— 16 cosnsin®n) E? — 2(—1 + cos 2n + sin 257)>m?),
TAVE* —m?
A = cos?y — ——————((8 = 3b% +8cos2
T n 1922VES (( 1t n

+ 16 cosn? sinn) E? + 2(1 + cosn — sin 257)>m?),
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where bA =/ dt9A The corresponding entanglement entropy is

—cos?ylog(cos’y) — sin’ylog(cos’y) + AL f1(n, ) + O(4%), if n#0;

2log °T 2 . (45)
— =25 fo(n, w) + O(2), if n=0.

S(AVﬁn) (SA) _ {

where f, and f, are functions of parameter 5 and e for the given particle energy E and mass m. Obviously, S(-fin) (sg) has
the same value as S (s ,).
The total spin reduced density matrix for two particles at A> order can be written as

P — (1= 2 A)Ch + 2D, (46)
where
It I Tha i
oA — I Ihi Iy Ihn
I Thin Tho o
Ihn Thin Iho o
AA _ / d3k {Zﬂé(Eif)}z AA
4p (27)3 2E2E2E 2, o V]
Al At At Ahy
DA — / &’k {276(Ey) } Ay Abn Abn Aby 47)
#p (27)° 2E2E2E2E iV Ay A ARy A
Ay Adyy ARy A
and
_ i _
Ifr\laza’la’z - b“lﬂzba’o— Af)‘\3o‘ 040, _MQWA (Mfr\ga;)T' (48)
Similarly, the entanglement entropy between spin and momentum for outgoing particles is derived as
2 log 2°T
SO () = = ==25 fa.0) + O(2). (49)
Finally, according to Eq. (41), the spin entanglement entropy of outgoing particles is
_ Alog2*T 2 ifn=0:
Jadin) _ = f3(n ) + O(4), - ifn=0; (50)
—2cos’nlog(cos?y) — 2sin’ylog(cos’y) + BT £, (n, @) + O(22), if n #0.
where
E2 _ m2
5 =T (209, — (diy1p + diiy; + diy)).
E>—m’ A A A A A :
Jfa (divyy + 2(diyp + diy)) + diyyy + (=diyyy + diyyy) 08 2 = (diyy; + diyyy) sin2n),
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0.00010
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0.001 |
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FIG.2. The A% log A? order contribution to spin entanglement entropy of outgoing fermions as a function of rapidity . The left figure is
for the initial state with parameter 7 = 0 (not entangled). The right figure is for the initial state with n = z/32,7/8,7/4.

with d},; = [ d0AL;,. The functions f3 and f, appearing
in the entanglement entropy for eTe™ — u*u~ is plotted in
Fig. 2.

According to Eq. (50) and Fig. 2, the spin entanglement
of outgoing particles in the moving frame monotonously
decreases with the increasing of rapidity @, which indicates
that the spin entanglement entropy is not Lorentz invariant.
This variation shows that the Lorentz boost may induce the
decoherence of the spin entanglement. While this does not
mean that a Lorentz transformation always decreases the
spin entanglement entropy of outgoing particles. One
approach to obtain the reverse effect is to apply the
appropriate boost along other axis. As mentioned in
Ref. [12,13], as the spin and momentum degrees of freedom
being entangled by Lorentz boosts, an increasing in spin
entanglement would occur at the expense of momentum
entanglement, since the entanglement of scattering particles
is Lorentz invariant. In the limit @ — oo (boost to the speed
of light), the spin entanglement entropy of outgoing
particles reaches a constant that only depends on the degree
of entanglement for incoming particles. In particular, if the
initial state is not entangled, the spin entanglement entropy
of the final state will vanish when viewed from a Lorentz-
transformed frame along the z direction.

IV. CONCLUSION

We study the properties of entanglement entropy among
scattering particles as observed from different inertial
moving frames, based on an exemplary QED process
ete™ - utu~. By explicit calculation of the Wigner
rotation, two inertial frames moving with constant relative
velocity report the same result for the entanglement entropy
of scattering particles. This result further confirms the
conclusion in Ref. [6,11] that the change in entanglement
entropy in a weak coupling theory is proportional to cross

section which is a Lorentz invariant. Combining the
supports from studies in Refs. [§-10] on the relation
between entanglement entropy of scattering particles and
cross section in other contexts, our work indicates that the
entanglement between total degrees of freedom for two
particles, including momentum and spin, is Lorentz invari-
ant. We also study the mutual information between spin
degrees of freedom for two fermionic field substitutes for
spin entanglement entropy of scattering particles. This
quantity, being calculated in moving frame and found to
change with different inertial reference frames, does not
exhibit as a Lorentz invariant.

Although the investigations are based on the scattering
process eTe~ — ptu~, similar results can be expected for
general fermion-fermion scattering with a weak coupling.
It would be interesting to generalize our computations to
higher orders in perturbation theory which considers the
running of coupling constants. Corresponding investiga-
tions in a strong coupling field theory is also expected to
advance the further study on the relation between the
scattering and the entanglement entropy. In the AdS/CFT
correspondence, both the scattering amplitude and entan-
glement entropy in a strongly coupled field theory are
associated with minimal surfaces in a bulk gravity theory
[26,27]. Tt is also interesting to attempt the holographic
understanding of the relation between the scattering and
entanglement entropy by means of AdS/CFT.
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