
 

Standard model with a complex scalar singlet: Cosmological implications
and theoretical considerations

Cheng-Wei Chiang,1,2,3,4,* Michael J. Ramsey-Musolf,5,6,† and Eibun Senaha1,7,‡
1Department of Physics, National Taiwan University, Taipei, Taiwan 10617, Republic of China

2Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
3Physics Division, National Center for Theoretical Sciences, Hsinchu, Taiwan 30013, Republic of China

4Kavli IPMU, University of Tokyo, Kashiwa 277-8583, Japan
5Amherst Center for Fundamental Interactions, Department of Physics,

University of Massachusetts-Amherst Amherst, Massachusetts 01003, USA
6California Institute of Technology, Pasadena, California 91125, USA

7Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon 34051, Korea

(Received 26 August 2017; published 8 January 2018)

We analyze the theoretical and phenomenological considerations for the electroweak phase transition
and dark matter in an extension of the standard model with a complex scalar singlet (cxSM). In contrast
with earlier studies, we use a renormalization group improved scalar potential and treat its thermal history
in a gauge-invariant manner. We find that the parameter space consistent with a strong first-order
electroweak phase transition (SFOEWPT) and present dark matter phenomenological constraints is
significantly restricted compared to results of a conventional, gauge-noninvariant analysis. In the simplest
variant of the cxSM, recent LUX data and a SFOEWPT require a dark matter mass close to half the mass of
the standard model-like Higgs boson. We also comment on various caveats regarding the perturbative
treatment of the phase transition dynamics.
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I. INTRODUCTION

Explaining the excess of matter over antimatter in the
present Universe is a challenge and the interface of particle
and nuclear physics with cosmology. It is well known that
the standard model (SM) cannot account for the observed
baryon asymmetry of the Universe (BAU) [1]

YB ¼ nB
s

¼ ð8.59� 0.11Þ × 10−11 ðPlanckÞ; ð1Þ

where nB (s) is the baryon number (entropy) density. While
the electroweak (EW) sphalerons of the SM fulfil the
first of the “Sakharov criteria” [2], the presence of baryon
number (B) violating processes, the SM fails with regard to
the remaining two requirements: sufficiently effective CP
violation and out-of-equilibrium dynamics, assuming CPT
symmetry is conserved.

A plethora of baryogenesis scenarios beyond the stan-
dard model (BSM) have been proposed to remedy these SM
shortcomings. Among the most theoretically attractive and
phenomenologically testable is electroweak baryogenesis
(EWBG) [3] (for reviews, see Refs. [4–12]). EWBG
proceeds via bubble nucleation during a first-order electro-
weak phase transition (EWPT), providing the needed out-
of-equilibrium conditions. BSM CP-violating interactions
at the bubble walls generate a net density of left-handed
fermions, biasing the EW sphalerons into the creation
of a nonzero baryon number density that diffuses into the
expanding bubble interiors. For a sufficiently strong first-
order electroweak phase transition (SFOEWPT), the spha-
leron transitions in the bubble interiors are suppressed so as
to preserve the generated baryon asymmetry.
The SM cannot accommodate a first-order EWPT since

the observed Higgs boson is too heavy. Lattice computa-
tions indicate that the maximum mass for a first-order
transition is 70–80 GeV [13–16]. An extended scalar sector
from the SM, however, can allow a SFOEWPT for a mass
of 125 GeV. The simplest such extensions involve the
addition of gauge-singlet scalars. Such scalars may arise in
a variety of contexts, such as the next-to-minimal super-
symmetric standard model or Uð1Þ0 extensions of the SM.
By focusing on the role played by the associated singlet
scalars, one may infer general features of the EWPT that
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are common to these and other scenarios without making
reference to other model-specific details.
The possibilities for a SFOEWPT with an additional

real singlet scalar (dubbed the “xSM” [17]), along with its
phenomenological consequences for collider studies, have
been studied extensively [18–29]. The xSM implies the
existence of two neutral mass eigenstates, H1;2, that are
mixtures of the neutral doublet and real singlet. Signatures
associated with a SFOEWPT include reduced SM-like
Higgs signal strengths, modifications of the Higgs trilinear
self-coupling, exotic decays of the SM-like Higgs boson,
and resonant di-Higgs production. The last provides a
particularly interesting opportunity not only for the LHC
[23,28] but also for a possible future higher-energy pp
collider [26,29]. Under some conditions, when the xSM
assumes a Z2 symmetry, it may also provide a dark matter
(DM) candidate with an associated vector boson fusion
signature for the next-generation pp collider [30].
In this work, we focus on the extension with one

complex scalar singlet, the cxSM. This scenario was
introduced in Ref. [31], where it was shown that one could
obtain both the conditions for a SFOEWPT and a viable
DM candidate even in the absence of a Z2 symmetry. The
presence of a global U(1) symmetry that is both sponta-
neously and softly broken implies the existence of two
mixed states H1;2 of the xSM plus a pseudoscalar dark
matter candidate A. A subsequent extensive study of the
implications for vacuum stability and DM phenomenology
was given in Ref. [32]. A less minimal version of the cxSM
was also studied recently by the authors of Ref. [33] who
also included a nonrenormalizable, CP-violating top quark-
scalar interactions as needed to generate the BAU. For
suitable choices of the model parameters, it appears possible
to obtain both the observed BAU and DM relic density while
satisfying present phenomenological constraints.1

Given the richness of this simple scenario, a more
thorough study of open theoretical issues as well as
phenomenological implications is in order. These issues
include the following:

(i) To what extent do the conclusions of earlier studies
hold when an appropriately gauge-invariant (GI)
treatment of EWPT properties is performed?

(ii) To what extent can the renormalization scale depend-
ence of computed EWPT properties be controlled?

(iii) What can one conclude about the possible thermal
history of electroweak symmetry breaking (EWSB)
in this scenario when a gauge-invariant and scale-
invariant treatment is performed?

(iv) To what extent does the gauge-invariant scale v̄ðTÞ
[35] associated with EWSB characterize the spha-
leron energy EsphðTÞ? Is the latter simply propor-
tional to the former?

In addressing these issues, we perform a GI study of
the cxSM EWPT dynamics following the framework of
Ref. [35] and show how use of a renormalization group
(RG)-improved version of the model significantly reduces
the dependence on the renormalization scale. We also
delineate various possibilities of the cxSM thermal history
and analyze the effectiveness of baryon number preserva-
tion as a function of model parameters. Lastly, we connect
these features to phenomenological signatures. We find that
the null results for spin-independent DM-nucleus scattering
obtained by the LUX collaboration [36] severely constrain
the SFOEWPT-viable parameter space. We can say with
confidence that only the finely tuned region formA ≈mh=2
remains viable, wheremA andmh are the pseudoscalar dark
matter and Higgs boson masses, respectively. While the
parameter space for much larger values ofmA (approaching
1 TeV) may also accommodate the LUX bounds while
providing for a SFOEWPT, the remaining theoretical
ambiguities associated with perturbative treatments of
the EWPT dynamics render this possibility less certain.
Our conclusions in this respect are less optimistic than
those given in Ref. [33] that carried out a gauge-dependent
treatment of the scalar effective potential. Although the
latter study included a wider set of terms in the scalar
potential that we consider below, a comparison of our GI,
RG-improved analysis with the conventional treatment
suggests that the SFOEWPT-viable parameter space asso-
ciated with the wider set of operators used in Ref. [33] may
be more restricted than indicated in that study.
The discussion of our analysis is organized as follows.

In Sec. II, we introduce the scalar potential of the cxSM
and analyze EWSB at T ¼ 0. In Sec. III we delineate the
various possibilities for the thermal history of EWSB
in the model and introduce two representative scenarios.
Section IV gives a detailed discussion of the conditions
needed for successful EWBG, also known as a SFOEWPT:
sufficiently rapid bubble nucleation and sufficiently effi-
cient baryon number preservation inside the broken phase
bubbles. In Section V we review the methods for perform-
ing a GI analysis and RG improvement. Section VI
contains an extensive numerical study of the two repre-
sentative EWSB scenarios given in Sec. III. In Secs. VII
and VIII we then apply the constraints from DM phenom-
enology. We conclude in Sec. IX.

II. MODEL

Consider the SM extended with a complex gauge-singlet
scalar field (cxSM). Following Ref. [31], we analyze a
simplified version of the Higgs potential,

V0ðH;SÞ ¼ m2

2
H†H þ λ

4
ðH†HÞ2 þ δ2

2
H†HjSj2 þ b2

2
jSj2

þ d2
4
jSj4 þ

�
a1Sþ b1

4
S2 þ H:c:

�
; ð2Þ

1Reference [34] also considers a complex singlet extension
that includes an additional neutral fermion as the dark matter
candidate.
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where S is the complex singlet scalar. The terms in the first
line on the right-hand side (rhs) of Eq. (2) are invariant
under the global U(1) transformation S → exp ðiθÞS. The
remaining terms on the rhs explicitly break the global U(1)
symmetry. The coefficients a1 and b1 are generally com-
plex. While one of them can be made real through the field
redefinition of S, in general Imðb�1a21Þ is nonvanishing. The
existence of a viable DM candidate requires that one set
the rephasing invariant Argðb�1a21Þ ¼ 0. Note that one may
include additional renormalizable operators that break the
global U(1) [31]. But for simplicity, we have only included
a minimal subset that closes under renormalization. The
study of Ref. [33] includes a subset of these additional
operators.
In the limit of vanishing a1 and b1, the occurrence of a

nonzero vacuum expectation value (VEV) of S, hSi ¼ vS,
breaks the global U(1), giving rise to a massless Nambu-
Goldstone mode, A. The a1 and b1 terms induce a nonzero
A mass without sacrificing its stability, thereby making it a
viable cold DM candidate. In the limit of vanishing a1,
VðH;SÞ also possesses a Z2 symmetry that would be
spontaneously broken by a nonvanishing vS. The explicit
Z2-breaking a1 term thus eliminates any potentially
problematic domain walls (see, e.g., [37] and references
therein). After EWSB, where hH0i ¼ v, the U(1)-symmetric
δ2 term leads to mixing between the SM Higgs boson and
the remaining degree of freedom in S, leading to the two
mass eigenstates H1;2.
For concreteness, we choose the following representa-

tions for the scalar fields after spontaneous symmetry
breaking:

HðxÞ ¼
 

GþðxÞ
1ffiffi
2

p ðv0 þ hðxÞ þ iG0ðxÞÞ

!
; ð3Þ

SðxÞ ¼ 1ffiffiffi
2

p ðvS0 þ SðxÞ þ iAðxÞÞ; ð4Þ

where v0ð≃246 GeVÞ and vS0 are the VEVs at zero
temperature, and G0;� are the Nambu-Goldstone bosons.
For a recent analysis of the Higgs phenomenology of this
model and a comparison with the next-to-minimal super-
symmetric standard model, see Ref. [38] (for a vacuum
stability analysis at the two-loop level, see also Ref. [39]).
In the current investigation, all the complex phases that
can mix SðxÞ with AðxÞ are assumed to be 0, and AðxÞ is
assumed to be the DM candidate.
The tadpole conditions of V0 for h and S are respectively

�∂V0

∂h
�

¼ v0

�
m2

2
þ λ

4
v20 þ

δ2
4
v2S0

�
¼ 0; ð5Þ

�∂V0

∂S
�

¼ vS0

�
b2
2
þ δ2

4
v20 þ

d2
4
v2S0 þ

ffiffiffi
2

p a1
vS0

þ b1
2

�
¼ 0;

ð6Þ

where the symbol h� � �i denotes that the fluctuating fields
are taken to be 0.
For the vS0 ≠ 0 case, after imposing Eqs. (5) and (6), the

mass matrix of the CP-even bosons takes the form

M2
S ¼

0
B@ λ

2
v20

δ2
2
v0vS0

δ2
2
v0vS0

d2
2
v2S0 −

ffiffi
2

p
a1

vS0

1
CA; ð7Þ

which can be diagonalized by an orthogonal matrix O,

OTM2
SO¼

 
m2

H1
0

0 m2
H2

!
; OðαÞ¼

�
cα −sα
sα cα

�
; ð8Þ

where α is the mixing angle such that ðh; SÞT ¼
OðαÞðH1; H2ÞT . In our study, we consider a case in which
H1ðH2Þ is the doublet (singlet) -like Higgs boson by
focusing on the range, −π=4 ≤ α ≤ π=4.
In our study, we fix mH1

¼ 125 GeV. Under this
assumption, λ (d2) for a nonzero α is always greater
(smaller) than that in the α ¼ 0 case. Similarly, the CP-
odd scalar mass is given by

m2
A ¼ −

ffiffiffi
2

p
a1

vS0
− b1: ð9Þ

Using Eqs. (5)–(9), one can trade off some of the original
parameters with physically relevant quantities. Explicitly,
we take the following as the input parameters: v0, vS0,
mH1

ð¼ 125 GeVÞ, mH2
, α, mA, and a1.

For the vS0 ¼ 0 and a1 ¼ 0, on the other hand, one has

m2
H1

¼ λ

2
v20; m2

H2
¼ b1 þ b2

2
þ δ2

4
v20;

m2
A ¼ −b1 þ b2

2
þ δ2

4
v20: ð10Þ

The input parameters in this case are v0,mH1
ð¼ 125 GeVÞ,

mH2
, mA, δ2, and d2.

III. THERMAL HISTORY

The behavior of the potential VðH;SÞ at nonzero temper-
ature, T, can lead to different patterns of symmetry breaking,
depending on the choice of model parameters. To gain some
intuition for various possibilities, we consider the impact
of the thermal mass contributions that are responsible for
symmetry restoration at high T. For simplicity, we begin by
setting a1 ¼ 0. We return to a discussion of the full set of
thermal loop contributions later. The “high-temperature
effective potential” in this case is given by

VHTðφ;φS;TÞ ¼ V0ðφ;φSÞ þ
1

2

�
ΣHφ

2 þ 1

2
ΣSφ

2
S

�
T2;

ð11Þ
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where φ and φS denote the neutral doublet and singlet
background fields, respectively, and

ΣH ¼ λ

8
þ δ2
24

þ 3g22 þ g21
16

þ y2t
4
; ΣS ¼

δ2 þ d2
12

; ð12Þ

where g1 and g2 denote, respectively, the Uð1ÞY and SUð2ÞL
gauge couplings.
The various possibilities for the thermal history of

EWSB are illustrated in Fig. 1. The transition to the present
“Higgs phase” vacuum may occur either in two steps
[panels (a)–(c)] or a single step [panel (d)]. EWSB at T ¼ 0

requires m2 < 0 but b2 may have either sign. For b2 > 0,
the only relevant impact of the singlet scalars is via thermal
loops. As shown in Refs. [20,40], one requires a large
number of additional singlet scalars to yield a SFOEWPT
in this case. Consequently, we focus on scenarios where
m2 < 0 and b2 < 0, for which T ¼ 0 minima exist for both
v0 and vS0 nonzero.
In the limit of vanishing a1, the only minimum of the

theory at sufficiently high T occurs at the origin, denoted
by “O.” As T decreases, one generically expects that a
secondary minimum at φS ≡ v̄AS ≠ 0 will first appear, since
ΣS < ΣH. At a temperature T1, the minimum at v̄AS becomes
the global minimum, indicated by “A” in Fig. 1. As T
further decreases, an additional minimum at (φ≡ v̄ ≠ 0,
φS ≡ v̄BS ≠ 0) develops, becoming the global minimum at
temperature T2 < T1, corresponding to point “B” in Fig. 1.
The Universe then follows a two-step symmetry-breaking

trajectory in the field space shown in Fig. 1, where one may
have either v̄AS ðT2Þ − v̄BS ðT2Þ > 0 or < 0. We henceforth
denote T2 as the EWSB critical temperature, TC, and the
value of φ at this temperature as v̄ðTCÞ. After a straightfor-
ward calculation, one finds

v̄ðTCÞ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δ2v̄AS ðTCÞ

λ
ðv̄AS ðTCÞ − v̄BS ðTCÞÞ

r
; ð13Þ

TC ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ΣH

�
−m2 −

ðv̄AS ðTCÞÞ2
2

δ2

�s
: ð14Þ

Here, the bar over vðTCÞ indicates that it has been
computed using the high-T effective potential given in
Eq. (11). TC and v̄ðTCÞ obtained in this way are the
leading-order gauge-invariant results. For positive (nega-
tive) δ2 one has v̄AS ðTCÞ larger (smaller) than v̄BS ðTCÞ. In
addition, for positive δ2, the potential has a potential barrier
between the minima at A and B. In this case, the EWPT at
T ¼ TC is first order. Note, however, that a sufficiently
large, positive δ2 may render B at T ¼ 0 metastable, since
the energy difference between phase A and phase B can
become negative. Therefore, there should be an upper
bound on the magnitude of δ2, as is discussed below. For
negative δ2, in contrast, TC is always raised to prevent
v̄ðTCÞ=TC from becoming sizeable. In fact, our numerical
analysis (see below) does not yield a SFOEWPT for δ2 < 0.
Alternately, the EWSB may occur directly from the

origin to point B, as shown by type (d) in Fig. 1. In the high-
T effective theory, this transition is not first order, since v̄AS
is 0, as seen from Eq. (13). However, the additional thermal
corrections appearing in V1ðφ;TÞ (defined below) can
generate a thermal barrier that, in principle, may accom-
modate a first-order transition.
Using the high-T potential with the thermal cubic term of

S, one finds [31]

vðTCÞ
TC

≃ 8ES

λþ 2δ2tan2γðTCÞ þ d2tan4γðTCÞ
; ð15Þ

where tan γðTCÞ ¼ vSðTCÞ=vðTCÞ and ES denotes the
coefficient of the thermal cubic term of S. In this case,
as opposed to the aforementioned two-step EWPT cases,
SFOEWPT is strengthened by the negative δ2 term.
However, it should be emphasized that ES would be highly
suppressed if the singlet Higgs mass is dominated by the
mass parameters b1 and b2, as in the Higgs thermal loop.
In our numerical study below, we do not find any

SFOEWPT-viable parameter choices for this one-
step transition. In addition, inclusion of additional U(1)-
breaking cubic operators, such as H†HS and/or S3 may
also allow for a SFOEWPT [18,33] as they contribute to the
numerator in Eq. (15).

(a) (b)

(c) (d)

FIG. 1. Patterns of symmetry breaking at finite temperature
for a1 ¼ 0. For cases (a) and (b), one has δ2 > 0 and δ2 < 0,
respectively. For case (c), the singlet VEV is nonzero at T ≠ 0
while 0 at T ¼ 0. For case (d), the EWPT occurs in one step.
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The situation can be more complex when taking a1 ≠ 0
and including the remaining zero-temperature and thermal
loop effects encoded in the one-loop effective potential,

Veffðφ;TÞ ¼ V0ðφÞ þ V1ðφ;TÞ; ð16Þ

where φ ¼ ðφ;φSÞ,

V1ðφ;TÞ ¼
X
j

nj

�
VCWðm̄2

jÞ þ
T4

2π2
IB;F

�
m̄2

j

T2

��
; ð17Þ

nj counts the degrees of freedom for particle species j,
and m̄j are φ-dependent masses. The Coleman-Weinberg
potential VCW and IB;Fða2Þ are respectively given by [41,42]

VCWðm2Þ ¼ m4

64π2

�
ln
m2

μ2
− c

�
; ð18Þ

IB;Fða2Þ ¼
Z

∞

0

dxx2 ln
	
1 ∓ e−

ffiffiffiffiffiffiffiffiffi
x2þa2

p 

; ð19Þ

where c ¼ 3=2 for scalars and fermions and 5=6 for gauge
bosons, and μ is the renormalization scale.
For a1 ≠ 0, the high-T minimum no longer lies at the

origin but is shifted by −a1 along the φS direction to O0,
as illustrated in Fig. 2. The transition from O0 → A is a
continuous process as the temperature drops.
In what follows, we exclusively explore illustrative two

scenarios: Type-(a) EWPT with a1 ≠ 0 (corresponding to
Fig. 2) and type-(c) EWPTwith a1 ¼ 0. More explicitly, we
consider two scenarios.

S1:mH2
¼230GeV, vS0 ¼ 40 GeV, a1 ¼ −ð110 GeVÞ3,

S2: mH2
¼mA, vS0 ¼ 0 GeV, δ2 ¼ 0.55, d2 ¼ 0.5,

andmA ¼ mH1
=2 ¼ 62.5 GeV in both cases.2 In Fig. 3, the

evolution of the VEVs with temperature is plotted for S1
(left) and S2 (right). For the former, there is no O → A
transition, as shown in Fig. 2, and we find that the A → B
transition is first order since v̄ has a discontinuity at
T2 ¼ TC ¼ 90.4 GeV with v̄ðTCÞ ¼ 158.2 GeV. For the
latter, on the other hand, one can see that the O → A
transition is second order, with T1 ¼ 224.6 GeV, while
the A → B transition is first order, with T2 ¼ TC ¼
99.8 GeV, v̄ðTCÞ ¼ 167.0 GeV, v̄BS ðTCÞ ¼ 0, and
v̄AS ðTCÞ ¼ 168.4 GeV.
Figure 4 shows contours of the high-T effective potential

at T ¼ 250 GeV (upper left), TC þ 5 GeV (upper right),
TC (lower left), and 0 GeV (lower right) in the case of S2.
The minima of the potential are indicated by the large black
dots. One can see that at TC there exists a barrier between
the pure singlet VEV [point A of Fig. 1(c)] and the pure

doublet VEV [point B of Fig. 1(c)]. At T ¼ 0, the only
minimum occurs along the doublet direction whereas the
extremum along the singlet direction is a saddle point.

IV. BARYOGENESIS

EWBG requires that the transition to the EWSB vacuum
B be strongly first order, associated with both bubble
nucleation and quenching of the EW sphalerons inside the
bubbles. The nucleation rate, ΓN , is governed by the three-
dimensional effective action, S3, which is typically com-
puted using the bounce solution in the presence of
Veffðφ;TÞ at the one-loop order. In this case, the gauge
dependence must be treated with some care. In this paper,
we use the high-T effective potential, Eq. (11), for the
evaluation of ΓN as a first step toward more complete
analyses. For the regions of parameter space explored in
this study, the tree-level T ¼ 0 potential contains a barrier
between the Higgs phase vacuum and the electroweak
symmetric vacuum. Consequently, we need not consider
scenarios with a thermally induced barrier that introduces
problematic gauge dependence.3

The nucleation temperature, TN , is defined as a temper-
ature that satisfies ΓNðTNÞ=H3ðTNÞ ¼ HðTNÞ with HðTÞ
being a Hubble constant [43].4 With an approximation of
ΓN discussed in Ref. [43], the above condition may be cast
into the form

S3ðTNÞ
TN

−
3

2
ln

�
S3ðTNÞ
TN

�
¼ 152.59 − 2 ln g�ðTNÞ

− 4 ln

�
TN

100 GeV

�
; ð20Þ

FIG. 2. Symmetry breaking at finite temperature for a1 ≠ 0. In
this case the O → A transition is absent, and the initially nonzero
v̄AS ðTÞ smoothly increases until the temperature reaches T1 where
EWPT happens.

2We take mA as a variable parameter when discussing the DM
phenomenology in Sec. VII. Furthermore, H2ð¼ SÞ is also the
DM candidate in S2.

3We also observe that for scenarios considered here, use of an
ℏ-expansion to obtain a gauge-invariant S3 is, in principle,
possible.

4Since the bubble velocity is less than the speed of light, a
single nucleated bubble is not able to convert the entire region of
the Universe to the broken phase. Thus, TN defined here merely
represents an upper bound for the onset of the EWPT.
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where g�ðTÞ is the number of relativistic degrees of
freedom in the plasma. Roughly speaking, Eq. (20) implies
that S3ðTNÞ=TN ≃ 150 is needed for the development of
EWPT [43]. As we demonstrate below, choosing param-
eters to decrease the broken phase sphaleron rate (thereby
suppressing baryon number washout) also leads to a larger
S3ðTNÞ=TN . Eventually, one cannot fulfil the condition
of Eq. (20).
Assuming a sufficient nucleation rate, preservation of the

baryon asymmetry inside the bubbles imposes a require-
ment on the EW sphaleron transition rate,

Γsph ¼ AsphðTÞ exp½−EsphðTÞ=T�; ð21Þ

where Esph is the sphaleron energy, Asph is a temperature-
dependent prefactor, and T ≲ TN with TN being the
nucleation temperature that typically lies just below TC.
The effect of baryon number washout inside the bubbles is
characterized by the washout factor

S ¼ nBðΔtEWÞ
nBð0Þ

; ð22Þ

where nBðtÞ is the baryon number density at a time t after
the onset of the transition, nBð0Þ is the initial baryon
number density, and ΔtEW is the duration of the EWPT.
Requiring that S > expð−XÞ, one obtains the baryon
number preservation criterion (BNPC) [35],

EsphðTCÞ
TC

− 7 ln
v̄ðTCÞ
TC

> − lnX − ln

�
ΔtEW
tH

�
þ lnQF þ ln κ; ð23Þ

where tH is the Hubble time, κ is the fluctuation determi-
nant about the classical sphaleron solution, and Q and F
encode the effects of rotational and translational zero
modes as well as the unstable mode about the sphaleron.5

It is convenient to express Esph in terms of an energy
scale ΩðTÞ associated with the EWSB that is typically of
order TC. To this end, we write

EsphðTÞ ¼
4πΩðTÞ

g2
EðTÞ: ð24Þ

When the only scalar fields in the theory are
SUð2ÞL doublets, the natural choice for ΩðTÞ is v̄ðTÞ.
For the cxSM, there exists a second possibility:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̄2ðTÞ þ ðv̄AS ðTÞ − v̄BS ðTÞÞ2

p
. Either choice is acceptable,

as the BNPC depends on Esph and the difference in the
choice of ΩðTÞ is compensated by the corresponding
convention for EðTÞ. Here we follow Refs. [19,44] where
it is argued that ΩðTÞ ¼ v̄ðTÞ encapsulates the primary
T-dependence of the sphaleron energy. Nevertheless, we
find that the residual T-dependence of E can be non-
negligible in some cases. The detailed calculation of
EsphðTÞ is given in the Appendix.
From these considerations, one obtains from the BNPC

(23) a requirement on the ratio v̄ðTCÞ=TC,

v̄ðTCÞ
TC

≳ ζsphðTCÞ: ð25Þ

FIG. 3. Evolution of VEVs as a function of T using the high-T effective potential in type-(a) EWPT with a1 ≠ 0 (left) and type-(c)
EWPTwith a1 ¼ 0 (right). For the former, the A → B transition is first order, with T2 ¼ TC ¼ 90.4 GeV and v̄ðTCÞ ¼ 158.2 GeV. For
the latter, the O → A transition is second order while the A → B transition is first order. It is found that T1 ¼ 224.6 GeV,
T2 ¼ TC ¼ 99.8 GeV, and v̄ðTCÞ ¼ 167.0 GeV.

5The quantity X parametrizes the degree to which the initial
baryon asymmetry may be diluted by sphaleron processes. Its
value depends on the initial value of the asymmetry obtained
from a computation of the CP-violating transport dynamics in a
given model.
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In the literature, one often finds this requirement quoted as
vðTCÞ=TC ≳ 1, where vðTCÞ is computed using the full
one-loop effective potential Veff rather than VHT [45–48].
As discussed in Ref. [35], this procedure, as well as the
conventional method for computing TC, introduces an
unphysical gauge dependence. In what follows, we perform
a gauge-invariant computation. We also address the impact
of the μ-dependence by implementing a RG-improved
analysis. These and other theoretical issues associated with
the BNPC and ΓN are discussed below.

V. GAUGE-INVARIANT METHOD BEYOND
THE LEADING ORDER

Here, we delineate the gauge-invariant treatment for the
EWPT and sphaleron rate. Determination of TC and v̄C
using the high-T effective potential is obviously gauge
independent. Beyond this order, however, the potential

barrier inherently depends on the gauge fixing parameter,
which may lead to the gauge-dependent TC and vC as in
the ordinary method. Nevertheless, the gauge-invariant
TC can still be obtained by use of a method advocated in
Ref. [35] (Patel-Ramsey-Musolf (PRM) scheme). Here
we outline the method briefly.
The Nielsen-Fukuda-Kugo identity [49,50] states that

energies at station points of the effective potential are free
from the gauge fixing parameter, which is described by

∂VeffðφÞ
∂ξ ¼ −Cðφ; ξÞ ∂VeffðφÞ

∂φ ; ð26Þ

where Cðφ; ξÞ denotes some functional (for the explicit
form, see Ref. [49]). We determine TC and vðTCÞ in such a
way that the above identity is satisfied order by order in the
perturbative expansion. Let us expand Veff and C in powers
of ℏ as

FIG. 4. Contours of high-T effective potential at T ¼ 250 GeV (upper left), TC þ 5 GeV (upper right), TC (lower left), and 0 GeV
(Lower Right), where TC ¼ 99.8 GeV, v̄ðTCÞ ¼ 167.0 GeV, v̄BS ðTCÞ ¼ 0 GeV, v̄AS ðTCÞ ¼ 168.4 GeV in the case of S2. The black dots
denote the minima of the potential.
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VeffðφÞ ¼ V0ðφÞ þ ℏV1ðφÞ þ ℏ2V2ðφÞ þ � � � ; ð27Þ

Cðφ; ξÞ ¼ c0 þ ℏc1ðφÞ þ ℏ2c2ðφÞ þ � � � : ð28Þ

For example, the identity to OðℏÞ is found to be

∂V1

∂ξ ¼ −c1
∂V0

∂φ : ð29Þ

Note that the ξ dependence of V1 drops out at the points
where the tree-level potential is extremized, which differs
from the extremum of V1.
Correspondingly, TC to OðℏÞ is determined by the

following degeneracy condition,

V0ðvA0 Þ þ V1ðvA0 ;TCÞ ¼ V0ðvB0 Þ þ V1ðvB0 ;TCÞ; ð30Þ

where vA0 denote the VEVs of phase A while vB0 those of
phase B as defined above.
On the other hand, v̄ðTCÞ in the PRM scheme is

determined by the high temperature potential VHT given
in Eq. (11), which is manifestly gauge invariant.
Though the so-called ring diagrams can also be imple-

mented in a gauge-invariant manner, knowledge of V2 is
indispensable for the consistency of the calculation. Since
V2 in this model is not available to date, we confine
ourselves to the OðℏÞ calculation in this paper.
The appearance of the renormalization scale μ in VCW in

Eq. (17) can lead to a significant μ-dependence for TC. To
alleviate this dependence, we replace V0ðφÞ appearing in
the degeneracy condition (30) by the RG-improved poten-
tial ~V0ðφÞ. More explicitly, we replace all the parameters in
V0 with the running ones

~V0ðφ;φSÞ ¼
m2ðμ2Þ

4
φ2 þ λðμ2Þ

16
φ4 þ δ2ðμ2Þ

8
φ2φ2

S

þ b2ðμ2Þ
4

φ2
S þ

d2ðμ2Þ
16

φ4
S þ

ffiffiffi
2

p
a1ðμ2ÞφS

þ b1ðμ2Þ
4

φ2
S: ð31Þ

Here, we use the one-loop β functions [32] to evaluate the
running parameters, and the RG effects on φ and φS are
ignored as they are negligible. Note that the other param-
eters appearing in Eq. (30) remain unchanged in order not
to spoil the gauge independence to this order. Similarly,
V0ðφÞ in Eq. (11) remains as is since the renormalization
scale does not enter the high-T effective potential. In what
follows, we numerically demonstrate that this procedure
eliminates the otherwise problematic μ-dependence while
maintaining gauge invariance.

VI. NUMERICAL ANALYSIS

In this section, we perform a numerical analysis taking
theoretical and experimental constraints into account. The
bounded-from-below conditions for the scalar potential are
imposed as

λ > 0; d2 > 0; −
ffiffiffiffiffiffiffi
λd2

p
< δ2; ð32Þ

where the last condition is only applied to the δ2 < 0 case.
Furthermore, the absolute values of the quartic couplings
are restricted to be less than 4π as a simple criterion of
perturbativity (for more detailed analysis and some subtle-
ties, see Ref. [32]).
The quantities mH2

and α are constrained by direct
searches for a heavy Higgs boson at the LHC, measurements
of Higgs signal strengths [25,39], and electroweak precision
observables. For example, utilizing the two gauge boson
decay modes, mH2

is bounded as a function of sin2 α with
Bnew ¼ 0.0, 0.2 and 0.5, where Bnew denotes the non-SM
contribution to decay width [51]. For the mixing angle, it is
found that cosα≳ 0.8 for mH2

≳ 250 GeV to be consistent
with the EW observables within the 3σ level [39].

A. S1 case

Recall that scenario S1 follows the two-step history of
Fig. 2 with the high-T minimum lying away from the
origin due to the nonvanishing a1. Figure 5 shows the μ-
dependence of TC and the corresponding v̄ðTCÞ with and
without the RG improvement. The input parameters are the
same as in the left plot of Fig 3. The solid curves represent
the former and the dashed ones the latter. One can see that
TC has some renormalization scale dependence before the

FIG. 5. Renormalization scale dependence of TC and v̄C in S1.
The dashed curves are calculated based on the original PRM
scheme to OðℏÞ while the solid ones are the RG-improved
version.
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RG improvement. This results in uncertainties in the
determination of v̄ðTCÞ, which is shown in the plot to
vary from 0 to non-0. This makes it difficult to reach a
conclusion whether or not the EWPT is of first order. After
the RG improvement, however, the renormalization scale
dependence is substantially alleviated, and the EWPT is
seen to be strongly first order.
As discussed above, since the mixing angle α is one of

the most important parameters for both LHC phenomenol-
ogy and for a SFOEWPT, we first quantify the α-depend-
ence of TC and v̄. In Fig. 6, TC and v̄ðTCÞ are plotted as
functions of α where the solid curves correspond to the
PRM schemewith RG improvement, while the dashed ones
are calculated by use of the high-T potential (HT calcu-
lation). One can see that TC decreases (more favorable for
SFOEWPT) as α decreases in both cases. Recall that a
positive, increasing δ2 also leads to a decreasing TC, as seen
from the analytic formula Eq. (14) (with m2 < 0). For
α≲ −22.8°, however, phase A becomes the global mini-
mum, yielding an upper bound δ2 ≲ 2.7 in the HT
calculation. In the PRM calculation, there is an end point
around α≃ −22.3° indicated by the black dots. Below this
point, the vacuum energy of phase B is higher than that of
phase A, even at T ¼ 0. Consequently, the degeneracy
condition (30) is never satisfied.
Note that TC < THT

C in all the range and that the
differences between the HT and PRM results become
more prominent as α increases. Moreover, the tree-level
potential barrier disappears for α≳ −18.5°. Thus, in the HT
calculation, the EWPT transition is second order in this
region, and v̄ can correspondingly be cast into the formffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðT=T0Þ2

p
, where T0 is the critical temperature of the

second-order EWPT. In the PRM calculation, on the other

hand, a small loop-induced contribution to the potential
remains, and one finds that TC < T0. Since this leads to
v̄ðTCÞ > 0, one might naïvely interpret this to indicate the
presence of a SFOEWPT. However, phase A in this case
becomes a saddle point rather than a local minimum, and
thus the region α≳ −18.5° is, in fact, excluded.
As emphasized in Ref. [35], theOðℏÞ computation of TC

is likely an underestimate. In the SM, inclusion of higher
order contributions, either in perturbation theory or lattice
computations, yields a larger value of TC. The correspond-
ing theoretical uncertainty can be significant. Even though
a quantitatively robust statement awaits a more precise
analysis, we are able to identify some general trends: the
realization of SFOEWPT in this model needs a negative α
(corresponding to positive δ2) but not too large in magni-
tude, as shown by the range of Fig. 6.
As discussed in Sec. IV, the actual beginning of the

EWPT occurs at a temperature TN that is somewhat below
the temperature at which the effective potential has two
degenerate minima.6 If TN is sufficiently close to TC, we
can approximate TC as the transition temperature, and thus
EsphðTCÞ=TC ≃ EsphðTNÞ=TN approximately holds. It is
useful to characterize the degree of supercooling by the
quantity

Δ≡ TC − TN

TC
: ð33Þ

It is known that Δ ¼ Oð0.1Þ% in the minimal super-
symmetric SM (MSSM) case (see, e.g., Refs. [45,52]).
Here, we calculate S3ðTÞ to find TN using the high-T

effective potential in Eq. (11). In Fig. 7, the solid curve
shows S3ðTÞ=T as a function of T for α ¼ −20.5° in S1.
The dotted line satisfies the condition in Eq. (20), from
which we obtain S3ðTNÞ=TN ¼152.01 and TN ¼84.9GeV.
Since THT

C ¼ 90.4 GeV, one obtains ΔHT ¼ 6.1%.
We also find that the supercooling becomes larger

as α decreases, and eventually the condition of Eq. (20)
cannot be fulfilled for α≲ −21.4°, rendering a more
stringent lower bound on α than the vacuum degeneracy
condition mentioned above. For the critical α ¼ −21.4°, we
obtain THT

C ¼ 78.1 GeV and TN ¼ 47.3 GeV, leading
to ΔHT ≃ 39.4%.
The degree of supercooling affects the dynamics of the

EWPT and the feasibility of EWBG. As discussed above,
the first-order EWPT proceeds via the bubble nucleation
and expansion. For EWBG to be successful, most of the
region in the symmetric phase has to be converted into
the broken phase via the bubble expansion rather than the
nucleation since the baryon asymmetry is generated by
the scatterings of the particles with the growing bubbles.

FIG. 6. TC and v̄ðTCÞ as functions of α in S1. The solid
curves are obtained by the PRM scheme with RG improvement
while the dashed ones are obtained by the high-T effective
potential in Eq. (11).

6Such a phenomenon, in which the phase transition delays its
occurrence until the nucleation temperature lower than the critical
temperature, is called supercooling.
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If the supercooling Δ is large, however, the EWPT may
proceed mostly via the nucleation since the nucleation rate
ΓN gets enhanced, spoiling the EWBGmechanism. Prior to
the discovery of the Higgs boson and top quark, these
dynamics of the EWPT in the SMwere studied in Ref. [53].
For mh ¼ 60 GeV and mt ¼ 120 GeV, the supercooling is
found to be around 0.25%. About 10% of the symmetric-
phase region is converted into the broken phase when
bubble nucleation completes, and the rest of the conversion
results from the bubble expansion. An analogous study is
needed for cxSM in order to assess the viability of EWBG.
We now turn to the final set of questions posed in Sec. I:

To what extent does v̄ðTÞ characterize the sphaleron
energy, EsphðTÞ? To that end, we first plot in Fig. 8 the
ratio EsphðTÞ=T vs T for α ¼ −20.5° in S1, where EsphðTÞ
is estimated based on the high-T effective potential in
Eq. (11). From right to left, the three dots mark the results
for EsphðTHT

C Þ=THT
C ¼ 61.31, EsphðTNÞ=TN ¼ 74.23 and

EsphðTCÞ=TC ¼ 78.00 using the values of THT
C , TN and

TC given above. Recall that for this value of α, the tree-level
potential admits a barrier between the phases A and B, so
that the EWPT is first order, even in the HT framework.
Thus, THT

C < T0, where T0 is the temperature at which the
gauge-invariant scale v̄ðTÞ vanishes, implying a vanishing
EsphðTÞ in the computational framework adopted here.
The end point at THT

C simply implies that of the computa-
tional approaches discussed here, the one giving the
maximum TC, and thus, the minimum (but nonvanishing)
EsphðTCÞ=TC, is the HT computation.
In Fig. 9, the dimensionless sphaleron energy EðTÞ is

plotted as a function of T. Apparently, EðTÞ decreases as T
increases, showing that the temperature dependence of

EsphðTÞ is not fully embodied in ΩðTÞ, where we have
taken ΩðTÞ ¼ v̄ðTÞ as indicated above. We conclude that
the naïve scaling formula EsphðTÞ ¼ Esphð0Þv̄ðTÞ=v0 is no
longer valid, especially when T approaches TC (for earlier
studies, see Refs. [45,46,54]). As in Fig. 8, the three dots
correspond to EðTHT

C Þ ¼ 1.82, EðTNÞ ¼ 1.86 and EðTCÞ ¼
1.87 from right to left. Because the deviation from a linear
dependence of EsphðTÞ on v̄ðTÞ is particularly pronounced
in the vicinity of the critical temperature, one should
apply a fair degree of caution before drawing sharp
conclusions about the viability of EWBG based on a

FIG. 8. EsphðTÞ=T as a function of T, where EsphðTÞ is
calculated using the high-T effective potential in Eq. (11).
From right to left, the dots mark for EsphðTHT

C Þ=THT
C ¼ 61.31,

EsphðTNÞ=TN ¼ 74.23 and EsphðTCÞ=TC ¼ 78.00, where
THT
C ¼ 90.4 GeV, TN ¼ 84.9 GeV and TC ¼ 83.1 GeV.

FIG. 9. EðTÞ ¼ g2EsphðTÞ=ð4πv̄Þ as a function of T. The three
dots correspond to EðTHT

C Þ ¼ 1.82, EðTNÞ ¼ 1.86 and EðTCÞ ¼
1.87 from right to left.

FIG. 7. S3ðTÞ=T vs T for α ¼ −20.5° in S1. S3ðTÞ is evaluated
by use of the high-T effective potential in Eq. (11). The dotted
horizontal line satisfies the condition in Eq. (20). In this case, we
have THT

C ¼ 90.4 GeV and TN ¼ 84.9 GeV, with the latter closer
to TC calculated in the PRM scheme.
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one-loop perturbative treatment of the EWPT. As we have
emphasized earlier, inclusion of higher order contributions
can lead to significant variations in TC, implying corre-
sponding variations in the EsphðTÞ=T and, thus, the efficacy
of baryon number preservation in the broken phase.

B. S2 case

This scenario corresponds to the thermal history of
Fig. 1(c). Because the singlet VEV vanishes at T ¼ 0,
one has α ¼ 0. Moreover, there is no constraint among the
parameters b1, b2, δ2 and d2 from the tadpole condition of
Eq. (6), in contrast to the S1 case. Consequently, it is most
instructive to consider the dependence of EWPT properties
on the portal coupling δ2. For purposes of the following
discussion, we also note that a necessary condition for the
existence of the nontrivial vacuum phase A in φS is

½v̄AS ðTÞ�2 ¼ −
2

d2
ðb1 þ b2 þ 2ΣST2Þ > 0; ð34Þ

which implies that b1 þ b2 must be negative as long as ΣS
is positive. While necessary, this condition is not sufficient
since a saddle point is also possible.
Figure 10 shows the dependence of TC and v̄ðTCÞ on δ2.

The line and color styles are the same as in Fig. 6. Below
the left end point at δ2 ≃ 0.51, the potential barrier is
eliminated and thus the EWPT is of second order. In the HT
calculation, phase A becomes the global minimum at T ¼ 0
for δ2 ≳ 0.77. In this case, the EWPT never occurs. In the
PRM case, TC is lower than the HT case as explained
above. Moreover, as in the case of S1, there is a point
where TC cannot be defined due to the absence of vacuum

degeneracy, which corresponds to the right end point at
δ2 ≃ 0.68. Our findings show that the region that is
consistent with SFOEWPT is generally more limited in
the PRM case.
As in the S1 case, we also evaluate S3ðTÞ, EsphðTÞ and E,

fixing δ2 ¼ 0.55. The results are summarized in Table I.
One can see that as in the S1 case, the degree of the
supercooling is ΔHT ≃ 3.2%, about 1 order of magnitude
larger than the typical MSSM value [45,52]. However, one
distinctive feature of S2 is that E is independent of T,
implying that EsphðTÞ ¼ Esphð0Þv̄ðTÞ=v0 as in the SM.
This is due to the fact that there is no singlet Higgs
contribution to Esph since v̄S ¼ 0.
Before closing this section, we comment on the impact

of the DMmass on the viability of a SFOEWPT. In both the
S1 and S2 cases, the T ¼ 0 vacuum energy of phase B
increases as the DM mass increases and surpasses the
vacuum energy of phase A at some particular value. Hence,
no transition to phase B occurs and TC cannot be defined in
the PRM calculation. As is discussed in the next section, a
relatively large DM mass is generally required to obtain the
correct DM relic abundance and evade the LUX con-
straints, but this requirement may be in conflict with the
realization of a SFOEWPT except for a finely tuned region
in the vicinity of the Higgs pole.

VII. DARK MATTER

In the cxSM, there are two possibilities for dark
matter: (a) a single-component scenario, wherein the
pseudoscalar particle A is the dark matter particle and
(b) a two-component scenario involving both A and S.
Scenario (b) is only possible if vS0 ¼ 0 such as the S2
case. We study the basic dark matter properties in both
the S1 and S2 cases.7 We use micrOMEGAs [55,56]
to calculate the relic density of A, ΩA, and its spin-
independent scattering cross section with the nucleon N,
σNSI. To be consistent with observation, the parameters of
the cxSM must not yield a relic density larger than the
experimental value [57],

ΩDMh2 ¼ 0.1186� 0.0020; ð35Þ
FIG. 10. TC and v̄ðTCÞ as functions of δ2. Below the left end
point (δ2 ≃ 0.51) the EWPT is second order for both HT and
PRM cases, while TC cannot be defined above the right end point
(δ2 ≃ 0.68) in the PRM case. For δ2 ≳ 0.77, phase A turns into
the global minimum at T ¼ 0 in the HT case.

TABLE I. VEVs and sphaleron energies at different temper-
atures, TC, THT

C and TN , for δ2 ¼ 0.55 in S2. The last two
columns are calculated by use of the high-T effective potential
(11).

T (GeV) TC ¼ 84.3 THT
C ¼ 99.8 TN ¼ 96.6

v̄ðTÞ (GeV) 193.0 167.0 173.5
EsphðTÞ=T 84.36 61.67 66.02
EðTÞ 1.92 1.92 1.92

7Note that H2 ¼ S in S2.
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nor should the rate for spin-independent scattering from
the nucleon exceed the current LUX limit [36]. For a DM
mass of around 50 GeV, the maximum spin-independent
cross section is σNSI ≃ 1.1 × 10−46 cm2, assuming the DM
candidate saturates the relic density.8

In the present case, if the relic abundance of A (under-
stood to imply the combined A and S abundance in S2)
is less than the observed DM abundance, σNSI should be
scaled as

~σNSI ¼ σNSI

�
ΩA

ΩDM

�
: ð36Þ

For the maximum allowed ΩAh2 we use the central value
of Eq. (35).
In the left plot of Fig. 11,ΩAh2 is plotted as a function of

mA for case S1. We take α ¼ −22.0° (blue, dot-dashed),
20.5° (red, solid) and −15.0° (magenta, dashed). ΩDMh2 is
shown by the dotted black line. One can see that ΩAh2 is
less than the observed value up to mA≃ a few TeV,
depending on α. Note that ΩAh2 is highly suppressed at
mA ≃mH1

=2 regardless of α, which is due to the resonant
enhancement of the annihilation cross section,

σðAA → H1;2 → XXÞ

∝
���� λH1AAgH1XX

s −m2
H1

þ imH1
ΓH1

þ λH2AAgH2XX

s −m2
H2

þ imH2
ΓH2

����2; ð37Þ

where X denotes the gauge bosons or fermions, ΓH1;2
are the

total widths of H1;2, and s≃ 4m2
A. The Higgs couplings

are, respectively, given by

λH1AA ¼ ðδ2v0 cos αþ d2vS0 sin αÞ=2; ð38Þ

λH2AA ¼ ð−δ2v0 sin αþ d2vS0 cos αÞ=2; ð39Þ

gH1VV ¼ gH1f̄f ¼ cos α; ð40Þ

gH2VV ¼ gH2f̄f ¼ − sin α: ð41Þ

Unlike the real singlet DM scenario, one sees more dips in
the curves of Fig. 11 due to the contribution of H2.
The right plot shows ~σNSI as a function ofmA. The style and

color schemes of the curves are the same as those in the left
plot. The dotted black curve is the LUX exclusion bound.
The allowed regions are mA≳475GeV for α¼−15.0°,
mA≳1560GeV for α¼−20.5°, mA≳1995GeV for
α ¼ −22.0°, and at mA ≃mH1

=2 for the three cases.
It should be emphasized that even though the large mA

regions are consistent with the DM data, the SFOEWPT is
not realized since the T ¼ 0 vacuum energy of phase A is
lower than that of phase B in this regime, as mentioned in
the last paragraph of the previous section. For α ¼ −20.5°,
the occurrence of a SFOEWPT leads to an upper bound
of mA ≲ 700 GeV.
The quantities ΩAh2 and ~σNSI in the case of S2 are shown

in the left and right plots of Fig. 12, respectively. In this
case, the scalar particleH2ð¼ SÞ is also stable. We consider
the illustrative situation in which mH2

¼ mA, and thus

FIG. 11. Scalar dark matter for case S1: (Left) Relic density of A with α ¼ −22.0°, −20.5° and −15.0°. (Right) Scaled spin-
independent DM-nucleon scattering cross section. The allowed region is only at mA ≃mH1

=2≃ 62.5 GeV if a SFOEWPT is required.

8Recently, the ZENON1T experiment has updated the upper
bound on σNSI [58], which is slightly below the LUX bound. Our
conclusions are not substantially affected by the improved limit.
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both particles contribute to the relic density (for a more
general discussion of two-component DM in the cxSM, see
Refs. [31,59]). We take δ2 ¼ 0.7 (blue, dot-dashed), 0.55
(red, solid) and 0.2 (magenta, dashed). One can see that a
larger δ2 gives a smaller ΩAh2. In contrast to the S1 case,
there are regions below 1 TeV for which ΩAh2 ¼ 0.1186 in
all three cases. However, such points are disfavored by the
LUX data, as shown in the right plot. The reason why S2 is
more constrained than S1 by the DM direct detection is that
the scaling factorΩA=ΩDM defined in Eq. (36) is larger than
that in S1. We conclude that only the mA ≃ 62.5 GeV case
is allowed by the LUX data, yet ΩAh2 is well below the
observed value.
Now, we comment on the dependence of mA on TC,

starting with case S2. To be consistent with the nonzero
v̄AS ðTCÞ given in Eq. (34), mA must satisfy

mA <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2
4
v20 − 2ΣST2

C

r
; ð42Þ

where the mass formula (10) is used. Our numerical study
shows that mA ≲ 81.9 GeV. In the S1 case, Eq. (34) does
not apply, while its analog is not particularly enlightening.
Consequently, we draw entirely upon a numerical explora-
tion of the mA-dependence and obtain an upper bound of
around 700 GeV for α ¼ −20.5.

VIII. PHENOMENOLOGICAL DISCUSSIONS AND
COMPARISONS WITH A PREVIOUS STUDY

Let us briefly discuss collider phenomenology of our
benchmark scenarios. We do so simply to illustrate the
degree to which the parameter space leading to both a
viable DM candidate and a SFOEWPT may be probed at
the LHC. We defer a comprehensive analysis to a future

study. For case S1, H2 can decay into an AA pair, with the
partial width given by

ΓH2→AA ¼ λ2H2AA

32πmH2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
A

m2
H2

s
: ð43Þ

For α ¼ −20.5°, we obtain BrðH2 → AAÞ≃ 1. In the
narrow width approximation, this leads to σðgg → H2Þ
BrðH2 → AAÞ ¼ s2ασðgg → H1ð230ÞÞBrðH2 → AAÞ≃
2.36ð5.42Þ pb, where H1ð230Þ denotes a SM-like Higgs
boson with the mass 230 GeV, and where we have
used σðgg → H1ð230ÞÞ ¼ 5.57ð15.1Þ pb at 8 (13) TeV
LHC [60]. With these rates, one could, in principle,
search for an invisibly decaying heavy Higgs boson at
the LHC.9

For case S2, on the other hand, it is difficult to probe
at the colliders as it does not have a distinctive signature.
This is because mH2

¼ mA ¼ mH1
=2 ¼ 62.5 GeV and the

signal strengths of H1 are the same as in the SM. However,
if the DM mass lies slightly below mH1

=2, H1 could have
an invisible decay mode, which can, in principle, be probed
via the vector boson fusion processes. Detailed studies can
be found in Refs. [17,31,62,63].
Before concluding, we make a comparison of this work

with Ref. [33]. The latter study includes the operators
H†HS, SjSj2 and their Hermitian conjugates that are not
considered in the current work. On the other hand, the
tadpole term S does not exist in Ref. [33]. With those
differences in mind, some distinctive conclusions between

FIG. 12. Scalar dark matter for case S2: (Left) Relic density of A and S with δ2 ¼ 0.7, 0.55 and 0.2, where mA ¼ mS is assumed.
(Right) Scaled spin-independent DM-nucleon scattering cross section.

9Since A is the DM, its typical collider signature is a missing
transverse momentum recoil against a visible system. For
recent Higgs invisible decay searches at the LHC, see, e.g.,
Ref. [61].
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the two studies emerge: in our analysis, (1) the one-step
EWPT (O → B transition) is absent and (2) there is no
parameter space that can accommodate both SFOEWPT
and the observed DM relic density simultaneously in the
large mA region.
The former may be attributed to the model setup

since the operators H†HS and SjSj2 play an important
role in realizing the one-step EWPT, as argued in
Sec. III (see also Ref. [33]). On the other hand, the
latter may be due to the method used in analyzing the
EWPT. At tree level, the approaches are equivalent.
Indeed, as discussed in Ref. [33], mA is irrelevant to
the vacuum energy difference between phases A and B
at the tree level, which implies that the two-step
EWPT is independent of mA. Beyond this order, the
vacuum energies are no longer independent of mA.
Consequently, differences in treating the EWPT beyond
tree level have implications for the viability of a
SFOEWPT as a function of mA. Specifically, in our
gauge-invariant next-to-leading order calculation, a
large mA is not compatible with a SFOEWPT since
the T ¼ 0 vacuum energy of phase A lies below that of
phase B as discussed above. This situation represents a
clear difference from the findings in Ref. [33].

IX. CONCLUSIONS

The complex scalar extension of the SM, or cxSM, is a
minimal scenario with the potential to address two issues in
cosmology: the generation of a SFOEWPT as needed for
EWBG and particle dark matter. With two additional scalar
degrees of freedom, it provides an in-principle viable
DM candidate as the Goldstone boson of a spontaneously
broken global U(1) symmetry (given a mass with soft
symmetry-breaking operators), while allowing the remain-
ing scalar to catalyze a SFOEWPT as in the real scalar
singlet extensions of the SM. The EWPTand DM dynamics
are intertwined, governed by a common set of gauge-
invariant operators.
The cxSM also provides a tractable framework for

addressing several theoretical issues that pertain to the
dynamics of electroweak symmetry-breaking transition.
The purpose of the present study is to determine the
degree to which a careful treatment of these issues,
enumerated in Sec. I, would affect the viability of the
cxSM for both DM and baryogenesis. In general, we
find that the use of a RG-improved potential can be
implemented in a way that essentially eliminates other-
wise problematic scale dependence while allowing for a
gauge-invariant treatment of the EWPT. For the cxSM,
this gauge-invariant, RG-improved treatment generally
leads to a restricted region of the model parameter
space that is consistent with the results of DM direct
detection experiments and a two-step scenario for a
SFOEWPT. For the basis of operators included in our
study, the two-step SFOEWPT is viable only for a

finely tuned region of parameter space where the DM
mass is roughly half that of the SM-like Higgs scalar. It
is possible that inclusion of cubic U(1)-breaking oper-
ators could enable a single-step SFOEWPT with a
wider range of DM masses, though an analysis of this
possibility should be revisited using a gauge-invariant,
RG-improved framework.
Our study also illustrates the need to exercise caution

when applying perturbation theory to EWPT dynamics, a
principle that goes beyond the cxSM.10 We have observed
quantitatively noticeable differences between two gauge-
invariant approaches: the high-temperature effective theory
in which one retains only the finite-T quadratic terms, and
the ℏ-expansion. Use of the latter appears to imply more
effective preservation of the baryon asymmetry than does
the former. These differences can become more pro-
nounced near the critical temperature as well as near the
end points of a first-order transition in various regions of
parameter space, regions where one might expect higher
order contributions to be relatively more important. The
assumption of a T-independent proportionality between
the leading-order sphaleron energy and the gauge-invariant
scale associated with EWSB can also break down in the
vicinity of TC. We anticipate that these lessons will apply to
EWPT dynamics in other models, pointing to the impor-
tance of developing more refined perturbative treatments,
comparing with nonperturbative computations for repre-
sentative benchmark parameter choices, and avoiding
overly strong conclusions regarding the viability of a given
model.
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APPENDIX: SPHALERON SOLUTIONS

To compute EsphðTÞ, we obtain the sphaleron solutions
following a method suggested in Refs. [65,66] and its
extension including a singlet scalar field [44]. We
neglect the effects of Uð1ÞY as they are less than a few
percent [67,68].

10This point has been emphasized in Ref. [35] and more
recently in Ref. [64], which develops a refined thermal resum-
mation method.
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A noncontractible loop configuration is given by

Uðμ; θ;ϕÞ ¼
�
eiμðcos μ − i sin μ cos θÞ eiϕ sin μ sin θ

−e−iϕ sin μ sin θ e−iμðcos μþ i sin μ cos θÞ

�
; ðA1Þ

where μ runs from 0 to π, parametrizing a least energy path between two adjacent topologically distinct vacua. The
configuration at μ ¼ π=2 corresponds to the sphaleron.
The gauge and Higgs fields are expressed in terms of the above noncontractible loop configuration as

Aiðμ; r; θ;ϕÞ ¼
i
g2

fðrÞ∂iUðμ; θ;ϕÞU−1ðμ; θ;ϕÞ; ðA2Þ

Φðμ; r; θ;ϕÞ ¼ v̄ðTÞffiffiffi
2

p
�
ð1 − hðrÞÞ

�
0

e−iμ cos μ

�
þ hðrÞUðμ; θ;ϕÞ

�
0

1

��
; ðA3Þ

Sðμ; r; θ;ϕÞ ¼ v̄BS ðTÞffiffiffi
2

p kðrÞ; ðA4Þ

where v̄ and v̄S are determined using Eq. (11).
The energy functional in the A0 ¼ 0 gauge takes the form

Esph½f; h; k;T� ¼
4πΩðTÞ

g2
EðTÞ; ðA5Þ

where

EðTÞ ¼
Z

∞

0

dξ

�
4f02 þ 8

ξ2
ðf − f2Þ2 þ ξ2

2

v2

Ω2
h02 þ v2

Ω2
h2ð1 − fÞ2 þ ξ2

2

v2S
Ω2

k02 þ ξ2

g22Ω4
VHTðh; k;TÞ

�
; ðA6Þ

with ξ ¼ g2Ωr. The prime on them denotes a derivative with respect to ξ. From the energy functional, one can find the
equations of motion for the sphaleron configurations,

d2f
dξ2

¼ 2

ξ2
ðf − f2Þð1 − 2fÞ − v2h2

4Ω2
ð1 − fÞ; d

dξ

�
ξ2

dh
dξ

�
¼ 2hð1 − fÞ2 þ ξ2

g22

1

v̄2Ω2

∂VHT

∂h ;

d
dξ

�
ξ2

dk
dξ

�
¼ ξ2

g22

1

v̄2SΩ2

∂VHT

∂k ; ðA7Þ

with the boundary conditions,

lim
ξ→0

fðξÞ ¼ 0; lim
ξ→0

hðξÞ ¼ 0; lim
ξ→0

k0ðξÞ ¼ 0; lim
ξ→∞

fðξÞ ¼ 1; lim
ξ→∞

hðξÞ ¼ 1; lim
ξ→∞

kðξÞ ¼ 1: ðA8Þ
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