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Hadron tomography can be investigated by three-dimensional structure functions such as generalized
parton distributions (GPDs), transverse-momentum-dependent parton distributions, and generalized
distribution amplitudes (GDAs). Here, we extract the GDAs, which are s-t crossed quantities of the
GPDs, from cross-section measurements of hadron-pair production process γ�γ → π0π0 at KEKB. This
work is the first attempt to obtain the GDAs from the actual experimental data. The GDAs are expressed
by a number of parameters and they are determined from the data of γ�γ → π0π0 by including
intermediate scalar- and tensor-meson contributions to the cross section. Our results indicate that the
dependence of parton-momentum fraction z in the GDAs is close to the asymptotic one. The timelike
gravitational form factors Θ1 and Θ2 are obtained from our GDAs, and they are converted to the spacelike
ones by the dispersion relation. From the spacelike Θ1 and Θ2, gravitational densities of the pion are
calculated. Then, we obtained the mass (energy) radius and the mechanical (pressure and shear force)

radius from Θ2 and Θ1, respectively. They are calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imass

p
¼ 0.32–0.39 fm, whereas the

mechanical radius is larger
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imech

p
¼ 0.82–0.88 fm. This is the first report on the gravitational radius

of a hadron from actual experimental measurements. It is interesting to find the possibility that the
gravitational mass and mechanical radii could be different from the experimental charge radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hr2icharge
q

¼ 0.672� 0.008 fm for the charged pion. For drawing a clear conclusion on the GDAs

of hadrons, accurate experimental data are needed, and it should be possible, for example, by future
measurements of super-KEKB and international linear collider. Accurate measurements will not only
provide important information on hadron tomography but also possibly shed light on gravitational
physics in the quark and gluon level.

DOI: 10.1103/PhysRevD.97.014020

I. INTRODUCTION

Internal structure of hadrons has been investigated in
terms of form factors and parton distribution functions
(PDFs). Now, the field of hadron tomography, namely

hadron-structure studies by three-dimensional (3D) structure
functions [1–4], is one of fast developing areas in particle and
nuclear physics. The 3D structure functions contain informa-
tion on both the form factors and the PDFs, and they are
ultimate quantities for understanding the nature of hadrons
from low to high energies. Furthermore, it is essential to
investigate the 3D structure of the nucleon for understanding
the origin of nucleon spin because orbital angularmomenta of
partons could play an important role. The 3D structure
functions could be also useful for clarifying internal quark-
gluon configurations of exotic-hadron candidates [4].
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Among the 3D structure functions, generalized parton
distributions (GPDs) [1,2] and transverse-momentum-
dependent parton distributions (TMDs) [3] have been
investigated extensively in recent years. We now have crude
idea on these distributions. There are also generalized
distribution amplitudes (GDAs) [1,4] as one of the 3D
structure functions, and it is rather an unexplored field in
comparison with the GPD and TMD studies. The GDAs can
be obtained theoretically by the s-t crossing of the GPDs.
Here, s and t areMandelstam variables. Therefore, the GDA
studies should also be valuable for the GPD understanding.
In particular, both GPDs and GDAs can be expressed by
common double distributions (DDs) with different Radon
transforms as discussed later in Sec. II E. Therefore, the
GDA studies are valuable also for understanding the GPDs
through the DDs and simply by the s-t crossing.
The GDAs are key quantities for probing 3D structure of

hadrons by timelike processes. In addition, one of the other
important advantages of the GDAs is that 3D tomography is
possible in principle for exotic-hadron candidates [4]
because they can be produced in a pair in the final state,
whereas no stable exotic hadron exists as a fixed target for
measuring their GPDs and TMDs. The constituent counting
rule can be used for identifying the number of elementary
constituents in exotic hadron candidates at high energies.We
should be able to distinguish exotic multiquark states from
the ordinary qq̄ and qqq ones by the counting rule [4,5].
Furthermore, form factors contained in the GDAs should
provide information whether exotic hadron candidates are
diffuse molecular states or compact multiquark ones [4].
Another advantage is that the GDAs and GPDs contain

information on form factors of the energy-momentum
tensor so that the gravitational-interaction radius can be
investigated. Although the root-mean-square charge radii
are well known for the nucleons, the gravitational radius
has never been measured experimentally. We try to extract
the gravitational-interaction sizes, namely mass and
mechanical radii, from existing experimental data in this
work. Of course, the gravitational interactions are too weak
to be measured directly for hadrons and elementary
particles, such as quarks and gluons, “usually” in accel-
erator experiments, and there is no reliable quantum theory
for the gravitational interactions at this stage. Nonetheless,
it is interesting that the hadron tomography studies can
access the gravitational information in hadrons through the
energy-momentum tensor.
Fortunately, the Belle collaboration recently reported the

cross sections for the pion-pair production in two-photon
process γ�γ → π0π0 at KEKB with various kinematical
conditions [6,7]. It is our research purpose of this paper to
extract the pion GDAs from the Belle measurements. Our
studies should be the first attempt to extract any hadron
GDAs from actual experimental measurements. Now, other
hadron production processes γ�γ → hh̄ are being analyzed
in the Belle collaboration, so that other GDAs can be

extracted in future. Furthermore, the KEKB accelerator has
just upgraded and accurate measurements are expected in
future for the two-photon processes. The two-photon
processes have been used for investigating existence and
properties of new hadrons in electron-positron annihilation
reactions [8]. The same two-photon processes should be
possible at the future international linear collider [9], and the
GDAs will be investigated in the PANDA project [10]. This
work is merely the first step for determining the GDAs;
however, much progress is expected in the near future.
In this article, the generalized TMD (GTMD) or the

Wigner distribution is explained first as a generating
function for the 3D structure functions in Sec. II. Then,
the GPDs and GDAs are introduced, and the form factors of
energy-momentum tensor in the GDAs are explained in
connection with the gravitational radii. Next, our theoreti-
cal formalism is developed for the γ�γ → π0π0 cross section
and the pion GDAs in Sec. III. The cross section of γ�γ →
π0π0 is expressed in terms of the GDAs. For extracting the
GDAs from the experimental data, we introduce a para-
metrization of the GDAs, which are then determined by the
analysis of the Belle measurement. Our analysis method is
described in Sec. III, results are shown in Sec. IV. Finally,
our studies are summarized in Sec. V.

II. THREE-DIMENSIONAL STRUCTURE
FUNCTIONS OF HADRONS

The 3D structure of hadrons becomes one of hot topics in
hadron physics, and it can be investigated by the GPDs,
TMDs, and GDAs. First, we explain the Wigner phase-
space distribution and the GTMD in Sec. II A as generating
functions for form factors, PDFs, and the 3D structure
functions. Then, we discuss the details of the GPDs and
GDAs which are relevant to our studies including their
relations in Secs. II B, II C, and II D. Both GPDs and GDAs
are expressed by double distributions through Radon
transforms as explained in Sec. II E. The GDAs are related
to the timelike form factors of the energy-momentum
tensor, and then the spacelike gravitational form factors
and radii are explained in Sec. II F.

A. Wigner distribution and three-dimensional
structure functions

The 3D structure functions originate from the generating
function, called the Wigner distribution, which is a phase
space distributionWð⃗r; k⃗Þ expressed by the space coordinate
⃗r and momentum k⃗. In the classical limit of ℏ → 0, it
becomes the δ function δðHð⃗r; k⃗Þ − EÞ, which is the classical
trajectory in the phase space. Therefore, its delocalization
indicates quantum effects, and the Wigner function contains
full information for describing quantum systems.
For the nucleon, the Wigner distribution was originally

defined in Ref. [11] as the 6-dimensional phase-space
distribution Wðx; k⃗T; ⃗rÞ, where x is the Bjorken scaling
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variable and k⃗T is the transverse momentum. However, it
was defined in a special Lorentz frame, so that a new
definition was proposed in the infinite momentum frame
[12] to express it by 5-dimensional phase-space distribution
Wðx; k⃗T; ⃗rTÞ. It is equal to the Δþ ¼ 0 (ξ ¼ 0) limit of the
generalized transverse-momentum-dependent parton dis-
tribution (GTMD) [13].
In Fig. 1, relations of the GTMD and the Wigner

distribution to the form factor, PDF, and 3D structure
functions are shown [11–13] by integrating the GTMD by
various kinematical variables. The form factors and the
PDFs have been investigated until recently, and now the
nucleon-structure studies focus on 3D structure functions,
the GPDs and TMDs. However, there are few recent
research activities on the GDAs which have a close
connection to the GPDs by the s-t crossing.

B. Generalized parton distributions

The GPDs have been investigated by deeply virtual
Compton scattering (DVCS) process as shown in Fig. 2 and
also by meson and lepton-pair production processes
[14,15]. In addition, there are possibilities to study them
at hadron-beam facilities, for example, by N þ N → N þ
π þ B where N and B are the nucleon and baryon [16] and
by an exclusive Drell-Yan process π− þ p → μþμ− þ n
[15,17,18]. Here, we explain the definition of the GPDs by
using the DVCS process (γ� þ h → γ þ h) because its s-t
crossing is the two-photon process (γ� þ γ → hþ h̄) which
is analyzed in this work in terms of the GDAs.
We define kinematical variables for expressing the GPDs

of the nucleon. The initial and final momenta of the nucleon

are p and p0, respectively, as shown in Fig. 2, and they are q
and q0 for the photon. Then, their average momenta and the
momentum transfer are given as [1,2,4,19]

P̄ ¼ pþ p0

2
; q̄ ¼ qþ q0

2
; Δ ¼ p0 − p ¼ q − q0:

ð1Þ

Expressing the momentum squared quantities asQ2 ¼ −q2
and Q̄2 ¼ −q̄2, we define the Bjorken scaling variable x,
momentum-transfer-squared t, and the skewness parameter
ξ as

x ¼ Q2

2p · q
; t ¼ Δ2; ξ ¼ Q̄2

2P̄ · q̄
: ð2Þ

If the kinematical condition Q2 ≫ jtj is satisfied, the
skewness parameter is expressed by the lightcone-
coordinate expression as

ξ ¼ xþ xt=ð2Q2Þ
2 − xþ xt=Q2

≃ x
2 − x

¼ −
Δþ

2P̄þ for Q2 ≫ jtj: ð3Þ

The lightcone notation is given by a ¼ ðaþ; a−; a⃗⊥Þ with
a� ¼ ða0 � a3Þ= ffiffiffi

2
p

and the transverse vector a⃗⊥. Then,
the momenta are expressed as

p≃ ðpþ; 0; 0⃗⊥Þ; p0 ≃ ðp0þ; 0; 0⃗⊥Þ;

q≃
�
−xpþ;

Q2

2xpþ ; 0⃗⊥
�
; q0 ≃

�
0;

Q2

2xpþ ; 0⃗⊥
�
; ð4Þ

by using the relation ðpþÞ2; Q2 ≫ M2; jtj. The scaling
variable x is the lightcone momentum fraction carried by
a quark in the nucleon, whereas the skewness parameter ξ
or the momentum Δ indicates the momentum transfer from
the initial nucleon to the final one or the momentum
transfer between the initial and final quarks. The cross
section of the DVCS γ�h → γh can be factorized into the
hard part of quark interactions and the soft one expressed
by the GPDs as shown in Fig. 2 if the kinematical condition

Q2 ≫ jtj; Λ2
QCD; ð5Þ

is satisfied. Here, ΛQCD is the QCD scale parameter.
The GPDs for the nucleon are defined by off-forward

matrix elements of quark and gluon operators with a
lightcone separation, and quark GPDs are defined byZ

dy−

4π
eixP̄

þy−hNðp0Þjq̄ð−y=2Þγþqðy=2ÞjNðpÞi
���
yþ¼y⃗⊥¼0

¼ 1

2P̄þ ūðp0Þ
�
Hqðx; ξ; tÞγþ þ Eqðx; ξ; tÞ

iσþαΔα

2M

�
uðpÞ:

ð6Þ

FIG. 1. Wigner distribution, GTMD, and 3D structure functions.

FIG. 2. Kinematics for GPDs in deeply virtual Compton
scattering process.
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Here, qðy=2Þ is the quark field,M is the nucleon mass, and
σαβ is given by σαβ ¼ ði=2Þ½γα; γβ�. The functions
Hqðx; ξ; tÞ and Eqðx; ξ; tÞ are the unpolarized GPDs of
the nucleon, and there are also gluon GPDs Hgðx; ξ; tÞ and
Egðx; ξ; tÞ defined in a similar way [2]. To be precise, the
link operator needs to be introduced in the left-hand side of
Eq. (6) to satisfy the color gauge invariance. In this article,
it is simply ignored.
The advantages of the GPDs are that they contain both

longitudinal momentum distributions for partons and trans-
verse form factors. In fact, the GPDs Hqðx; ξ; tÞ become
unpolarized PDFs for the nucleon in the forward limit
(Δ; ξ; t → 0):

Hqðx; 0; 0Þ ¼ θðxÞqðxÞ − θð−xÞq̄ð−xÞ; ð7Þ

where θðxÞ is the step function, θðxÞ ¼ 1 for x > 0 and
θðxÞ ¼ 0 for x < 0. Their first moments become Dirac and
Pauli form factors F1ðtÞ and F2ðtÞ, respectively:Z

1

−1
dxHqðx; ξ; tÞ ¼ F1ðtÞ;

Z
1

−1
dxEqðx; ξ; tÞ ¼ F2ðtÞ:

ð8Þ

Another important feature, actually the most important for
high-energy spin physicists, of the GPDs is that a second
moment indicates a quark orbital-angular-momentum con-
tribution (Lq) to the nucleon spin:

Jq ¼
1

2

Z
dxx½Hqðx; ξ; t ¼ 0Þ þ Eqðx; ξ; t ¼ 0Þ�

¼ 1

2
Δqþ þ Lq; ð9Þ

because we know the quark contribution Δqþ ¼ Δqþ Δq̄
from polarized charged-lepton DIS measurements.
The GPDs have been mainly investigated for the

nucleon. However, since the pion GDAs are investigated
in this work and they are related to the pion GPDs by the
s − t crossing, we also show the definition of the pion
GPDs in the same way with Eq. (6) for the nucleon [20]:Z

dy−

4π
eixP̄

þy−hπðp0Þjq̄ð−y=2Þγþqðy=2ÞjπðpÞi
���
yþ¼y⃗⊥¼0

¼ Hπ
qðx; ξ; tÞ: ð10Þ

The pion is a scalar particle, so that the function Eqðx; ξ; tÞ
does not exist.
In comparison with PDF parametrizations, such studies

are still premature for the GPDs due to the lack of
experimental information. The simplest idea is to use the
factorized form into the longitudinal PDF qðxÞ and the
transverse form factor FTðt; xÞ at x [21]. For example, it is
expressed as

Hqðx; ξ ¼ 0; tÞ ¼ qðxÞFTðt; xÞ; ð11Þ

at ξ ¼ 0 for x > 0. Namely, the GPDs contain information
on both the PDFs and the form factors as already shown by
the sum rules in Eqs. (7) and (8).

C. Generalized distribution amplitudes

If we exchange the s and t channels in the Compton
scattering in Fig. 2, it becomes the two-photon process
γ� þ γ → hþ h̄ in Fig. 3. The GDAs describe the produc-
tion of the hadron pair hh̄ from a qq̄ or gluon pair. We
explain kinematical variables for describing the two-photon
process and the GDAs [1,22–26] as shown in Fig. 3. The
initial photon momenta are denoted as q and q0, the final
hadron momenta are p and p0, P is their total momentum
P ¼ pþ p0, and k and k0 are quark and antiquark
momenta. One of the photon is taken as a real one with
q02 ¼ 0, and another one should satisfy the condition

Q2 ¼ −q2 ≫ Λ2
QCD;W

2 ð12Þ

so that the two-photon process is factorized into a hard part
and a soft one in terms of the GDAs as shown in Fig. 3 [27].
Here, W2 is one of the variables in the GDAs, and it is the
invariant-mass squared W2 of the final-hadron pair. It is
also equal to the center-of-mass (c.m.) energy squared s:

W2 ¼ ðpþ p0Þ2 ¼ ðqþ q0Þ2 ¼ s: ð13Þ

The second variable ζ indicates the lightcone momentum
fraction for one of the final hadrons in the total momentum
P as shown in Fig. 3:

ζ ¼ p · q0

P · q0
¼ pþ

Pþ ¼ 1þ β cos θ
2

: ð14Þ

Here, θ is the scattering angle in the c.m. frame of the final
hadrons with the momentum assignments:

FIG. 3. Kinematics for GDAs in two-photon process
γ� þ γ → hþ h̄. This process corresponds to the s − t crossed
one of the Compton scattering process in Fig. 2.
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q ¼ ðq0; 0; 0; jq⃗jÞ; q0 ¼ ðjq⃗j; 0; 0;−jq⃗jÞ;
p ¼ ðp0; jp⃗j sin θ; 0; jp⃗j cos θÞ;
p0 ¼ ðp0;−jp⃗j sin θ; 0;−jp⃗j cos θÞ; ð15Þ

and β is the hadron velocity defined by

β ¼ jp⃗j
p0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
h

W2

s
; ð16Þ

with the final-hadron mass mh. The third variable z is the
lightcone momentum fraction for a quark in the total
hadron-pair momentum P, and it is defined by

z ¼ k · q0

P · q0
¼ kþ

Pþ : ð17Þ

The GDAs are expressed by these three variables, z, ζ,
and W2 ¼ s.
The quark GDAs are defined by the matrix element of

the same operators used in defining the GPDs in Eq. (6)
between the vacuum and the hadron pair:

Φhh̄
q ðz; ζ;W2Þ

¼
Z

dy−

2π
eið2z−1ÞPþy−=2

× hhðpÞh̄ðp0Þjq̄ð−y=2Þγþqðy=2Þj0i
���
yþ¼y⃗⊥¼0

: ð18Þ

We use the notation Φhh̄
q for one specific quark (q) without

the summation over the quark flavor. Here, the kinematical
range of z is 0 ≤ z ≤ 1, whereas the variable z0 ¼ 2z − 1 is
often used with the same notation z (or x) in the range
−1 ≤ z0 ≤ 1 for the distribution amplitude as explained
in Ref. [18]. However, because many articles of the GDAs
use the notation z in the range 0 ≤ z ≤ 1, we follow this
convention in this work. The expression eið2z−1ÞPþy−=2

hhðpÞh̄ðp0Þjψ̄ð−y=2Þγþψðy=2Þj0i is sometimes written
by the equivalent one as e−izP

þy−hhðpÞh̄ðp0Þjψ̄ðyÞγþ
ψð0Þj0i. Furthermore, the gauge link should be introduced
in the nonlocal operator to satisfy the color gauge invari-
ance; however, it is simply neglected in this paper.
There are sum rules for the quark GDAs of the isospin
I ¼ 0 two-pseudoscalar-meson final states [23,24]:Z

1

0

dzΦhh̄ðI¼0Þ
q ðz; ζ;W2Þ ¼ 0;Z

1

0

dzð2z − 1ÞΦhh̄ðI¼0Þ
q ðz; ζ; 0Þ ¼ −4Mh

2ðqÞζð1 − ζÞ; ð19Þ

where Mh
2ðqÞ is the momentum fraction carried by flavor-q

quarks and antiquarks in the hadron h (note: total quark
fraction

P
qM

h
2ðqÞ). As shown in Eq. (44), this integral is

expressed by the energy-momentum tensor of a quark, so

that the right-hand side of Eq. (19) should be described by
the form factors of the energy-momentum tensor at finite
W2 [28]. There are recent theoretical studies on the energy-
momentum tensor for the nucleon [29] and on its lattice
QCD estimate [30]. In general, there are two energy-
momentum tensor form factors for the pion [31,32], and
they are explained in Secs. II F and III H.
Since the GDAs contain intermediate-meson contribu-

tions as explained in Sec. III E, the second sum of Eq. (19)
should be a complex value at finiteW2. There are resonance
terms and the continuum one which contains a quark part of
the form factor Fh

qðW2Þ defined in Eq. (94). The explicit
expression is shown later in Eqs. (124) and (125) for
analyzing actual experimental data. Therefore, our studies
can suggest the optimum form factor Fh

qðW2Þ of the energy-
momentum tensor for the continuum part of the hadron h,
and they are related to the size of gravitational interaction.
The gravitational radii of a hadron are discussed in more
details in Sec. II F. The sum rule of Eq. (19) was derived for
the kinematical point of W2 ¼ 0 [23,24], and then it was
considered even at finite W2 as the form of form factor of
the energy-momentum tensor [28]. However, since there
are two gravitational form factors for the pion in general, a
relation between the GDAs and the form factors is newly
derived in Sec. III H of this article.
The GDAs are defined for the hadron-antihadron system,

so that they satisfy the charge-conjugation invariance [2]:

Φhh̄
q ð1 − z; ζ;W2Þ ¼ −CΦhh̄

q ðz; ζ;W2Þ
¼ −Φhh̄

q ðz; 1 − ζ;W2Þ; ð20Þ

where C is the charge-conjugation operator. We may note
that the gluon GDA should satisfy the condition

Φhh̄
g ðz; ζ;W2Þ ¼ Φhh̄

g ð1 − z; ζ;W2Þ
¼ Φhh̄

g ðz; 1 − ζ;W2Þ; ð21Þ

due to the translational invariance in defining the gluon
GDA and C invariance. As shown in Fig. 4, the gluon
GDA contributes to the two-photon cross section as a next-
to-leading order term [24,25], so that it is neglected in our
current leading-order analysis.

1. Generalized distribution amplitudes for pions

The pion GDAs are investigated in this work, and there
are two notation types for them. One is the representation
based on the C-parity eigenstates, and the other is by the
isospin. In order to avoid confusion, we explain them here
in details.
First, we consider possible two-pion states. Denoting I

for the isospin, we have the I ¼ 1 ππ state which is
antisymmetric under the exchange of the pions. On the
other hand, the I ¼ 0 and I ¼ 2 ππ states are symmetric:
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j00i ¼ 1ffiffiffi
3

p ðπþπ− þ π−πþ − π0π0Þ;

j20i ¼ 1ffiffiffi
6

p ðπþπ− þ π−πþ þ 2π0π0Þ: ð22Þ

Since the C parity of γ�γ is even, the ππ state needs to
satisfy C¼ð−1ÞLþS¼ð−1ÞL ¼þ1 with S ¼ 0. Therefore,
L should be even. The Pauli principle indicates

ð−1ÞLð−1ÞIð−1ÞS ¼ 1; ð23Þ

so that the isospin states should be I ¼ 0 or 2. The GDAs
are defined in Eq. (18) by the matrix element of the vector-
type nonlocal operator. Since the isospin of q̄q is 0 or 1,
the only possible choice for the ππ isospin is I ¼ 0. In this
way, only the ππ sates allowed in the γ�γ process should
have I ¼ 0 with L ¼ even numbers ð0; 2;…Þ.
For the actual pion GDAs which are investigated in this

work, we may express them as C-parity eigenstates [24]

Φππð�Þ
q ðz; ζ;W2Þ ¼ 1

2
½Φπþπ−

q ðz; ζ;W2Þ
�Φπþπ−

q ðz; 1 − ζ;W2Þ�; ð24Þ

where (�) indicates theC parity. Therefore, the πþπ− GDAs

are given by Φπþπ−
q ¼ ΦππðþÞ

q þΦππð−Þ
q , and the C-even

part satisfies ΦππðþÞ
q ðz; ζ;W2Þ ¼ −ΦππðþÞ

q ð1 − z; ζ;W2Þ.
The π0π0 GDAs contain only the C-even function:

Φπ0π0
q ðz; ζ;W2Þ ¼ ΦππðþÞ

q ðz; ζ;W2Þ: ð25Þ

Then, the isospin invariance leads to the relations between

the u- and d-quark GDAs asΦππðþÞ
u ¼ ΦππðþÞ

d andΦππð−Þ
u ¼

−Φππð−Þ
d .
On the other hand, the isospin decomposition of the

pion GDAs is discussed in Ref. [23] first by defining them
as the twist-2 chiral-even amplitudes by

Φπaπbðz; ζ;W2Þ

¼
Z

dy−

2π
eið2z−1ÞPþy−=2

× hπaðpÞπbðp0Þjψ̄ð−y=2Þγþ ~Tψðy=2Þj0i
���
yþ¼y⃗⊥¼0

; ð26Þ

where ψ is the quark field with u and d quark components
ψ ¼ ðudÞ, ~T is the flavor matrix: ~T ¼ Î=2 ( ~T ¼ τ3=2) for the
isosinglet (isovector) GDA. The notation Î is the identity
matrix. They are expressed by the isoscalar and isovector
GDAs as

Φπaπb ¼ δabTrð ~TÞΦππðI¼0Þ

þ 1

2
Trð½τa; τb� ~TÞΦππðI¼1Þ: ð27Þ

They satisfy the symmetry relations due to the charge
conjugation:

ΦππðI¼0Þðz; ζ;W2Þ ¼ −ΦππðI¼0Þð1 − z; ζ;W2Þ
¼ ΦππðI¼0Þðz; 1 − ζ;W2Þ;

ΦππðI¼1Þðz; ζ;W2Þ ¼ ΦππðI¼1Þð1 − z; ζ;W2Þ
¼ −ΦππðI¼1Þðz; 1 − ζ;W2Þ: ð28Þ

If the isospin-symmetry relations are satisfied for the pion
GDAs, the isosinglet and isovector GDAs are related to the
C even and odd GDAs as

ΦππðI¼0Þ ¼ ΦππðþÞ
u ¼ ΦππðþÞ

d ;

ΦππðI¼1Þ ¼ Φππð−Þ
u ¼ −Φππð−Þ

d : ð29Þ

In this work of the π0π0 production process, only the
following isoscalar or C-even GDAs are involved in the
cross section γ�γ → π0π0:

Φπ0π0
q ðz; ζ;W2Þ ¼ ΦππðI¼0Þðz; ζ;W2Þ

¼ ΦππðþÞ
q ðz; ζ;W2Þ; ð30Þ

where q indicates u or d. This function is parametrized
and used for the analysis of π0π0 production data later by
using Eq. (65).

D. Relation between GPDs and GDAs

As obvious from the diagrams of the DVCS and two-
photon process in Figs. 2 and 3, respectively, the GPDs
and GDAs are related with each other by the s-t crossing as
long as the factorization conditions are satisfied. Namely,
the scale Q2 should be large enough for the factorization:
Q2 ≫ W2;Λ2

QCD in γ�γ→ hh̄;Q2 ≫ jtj;Λ2
QCD in γ�h → γh.

By the s-t crossing, the final hadron h̄ with the momentum
p0 becomes the initial hadron h with p, which indicates the

FIG. 4. Contribution to the two-photon cross section from the
gluon GDA.
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momentum changes from p and p0 in the GDAs to p0 and
−p in the GPDs. It means that both variables are related by
the relations [1,24].

z0 ↔
1 − x=ξ

2
; ζ ↔

1 − 1=ξ
2

; W2 ↔ t; ð31Þ

and then the GDAs are GPDs are related to each other by

Φhh̄
q ðz0; ζ;W2Þ

↔ Hh
q

�
x ¼ 1 − 2z0

1 − 2ζ
; ξ ¼ 1

1 − 2ζ
; t ¼ W2

�
: ð32Þ

The physical regions of the kinematical variables are

0 ≤ z ≤ 1; j1 − 2ζj ≤ 1; W2 ≥ 0;

jxj ≤ 1; jξj ≤ 1; t ≤ 0: ð33Þ

However, the relation of Eq. (32) indicates that the physical
GDAs do not necessary correspond to the physical regions
in Eq. (33) of the GPDs:

0 ≤ jxj < ∞; 0 ≤ jξj < ∞; jxj ≤ jξj; t ≥ 0:

ð34Þ

Namely, the GDAs could lead to the unphysical kinemati-
cal regions, jxj > 1, jξj > 1, and t > 0, of the GPDs.
Equation (32) also indicates the relation jξj ≥ jxj, which
is called as the Efremov-Radyushkin-Brodsky-Lepage
(ERBL) region. The ERBL region of the GPDs can be
investigated, for example, by the hadronic reaction N þ
N → N þ π þ B [16]. However, GDA studies will provide
another information on the ERBL GPDs although it is in
the unphysical region of t > 0.

E. Radon transforms for GPDs and GDAs
by using double distributions

We explained definitions and basic properties of the
GPDs and GDAs. They are related with each other by the
s-t crossing. The studies of the GDAs should be valuable
for the GPD studies and vice versa. In fact, both GPDs and
GDAs are expressed by the common double distributions
(DDs) by different Radon transforms. The Radon transform
is defined in n dimensions for an arbitrary function fðxÞ
by [33]

f̂ðp; ξÞ ¼
Z

dnxfðxÞδðp − ξ · xÞ; ð35Þ

where x is the n-dimensional space coordinate
[x ¼ ðx1; x2;…; xnÞ] and ξ is the unit vector in n dimen-
sions [ξ ¼ ðξ1; ξ2;…; ξnÞ]. Because of the δ function, the

integral is over the n − 1-dimensional plane constrained
by p ¼ ξ · x.
Using this Radon transform, we can express the GPDs

and GDAs in terms of double distributions (DDs),
Fqðβ; α; tÞ and Gqðβ; α; tÞ, defined by the matrix element
[1,20]

hhðp0Þjq̄ð−y=2Þ=yqðy=2ÞjhðpÞiy2¼0

¼ 2P · y
Z

dβdαe−iβP·yþiαΔ·y=2Fqðβ; α; tÞ

− Δ · y
Z

dβdαe−iβP·yþiαΔ·y=2Gqðβ; α; tÞ; ð36Þ

for the scalar hadron h like the pion. The kinematical
support region is given by jβj þ jαj ≤ 1 for the DDs. Using
the Radon transform, we can express the GPDs in terms of
these DDs as

Hqðx; ξ; tÞ ¼
Z

dβdαδðx − β − ξαÞ

× ½Fqðβ;α; tÞ þ ξGqðβ; α; tÞ�: ð37Þ

Namely, the GPDs are obtained by integrating the DDs over
the slight line x ¼ β þ ξα as shown in Fig. 5.
The parton distribution functions (PDFs) are obtained as

a special case of this integral over the vertical line in Fig. 5
with the constraint of the forward limit (t ¼ 0), and they are
expressed as

qðxÞ ¼
Z

1−x

−1þx
dαFqðβ; α; t ¼ 0Þ: ð38Þ

There are similar relations of the gluon DD to the gluon
GPDs and PDF [1].

FIG. 5. Kinematical support region of the double distributions
and integral paths for obtaining the GPDs, GDAs, and PDFs.
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As just an example, we introduce a simple parametriza-
tion for the DDs Fqðβ; αÞ, which are expressed by the
corresponding PDF qðβÞ multiplied by a profile function
hqðβ; αÞ as [34]

Fqðβ; αÞ ¼ hqðβ; αÞqðβÞ: ð39Þ

The profile function may be expressed as

hqðβ; αÞ ¼
Γð2bþ 2Þ

22bþ1½Γðbþ 1Þ�2
½ð1 − jβjÞ2 − α2�b
ð1 − jβjÞ2bþ1

; ð40Þ

if the GPDs become the ξ-independent ones Hqðx; ξÞ ¼
θðxÞqðxÞ − θð−xÞq̄ð−xÞ in the limit b → ∞.
The matrix element associated with the GDAs is also

expressed in the same way by the DDs as [1,20]

hhðpÞh̄ðp0Þjq̄ð−y=2Þ=yqðy=2Þj0iy2¼0

¼ ðp − p0Þ · y
Z

dβdαe−iβðp−p0Þ·y=2þiαðpþp0Þ·y=2

× Fqðβ; α;W2Þ

− ðpþ p0Þ · y
Z

dαeiαðpþp0Þ·y=2Dqðα;W2Þ: ð41Þ

Then, the GDAs can be expressed by the DDs as

Φhh̄
q ðz; ζ;W2Þ

¼ −2ð1 − 2ζÞ
Z

dβdα

× δð1 − 2z − ð1 − 2ζÞβ þ αÞFqð1 − 2z; α;W2Þ
− 2Dqðx=ξ;W2Þ; ð42Þ

which indicates that the GDAs are obtained by the Radon
transform along the different line 1 − 2z − ð1 − 2ζÞβ þ
α ¼ 0 as shown in Fig. 5.
We found that both GPDs and GDAs can be expressed

by the DDs. Therefore, experimental measurements of the
GDAs should be valuable also for the GPD studies through
the determination of the DDs and vice versa. In particular,
the GDAs correspond to specific kinematical regions
of the GPDs as explained in Sec. II D. These investigations
from the direction of the GDAs could be supplementary to
the direct GPD studies. Furthermore, it is the advantage of
the GDAs that exotic hadron GDAs can be measured in
future, whereas their GPDs cannot be studied experimen-
tally because there is no stable exotic-hadron target.
Considering these merits, we believe that our GDA project
should be important for future developments on hadron
tomography not only for ordinary hadrons such as the
nucleons and pions but also for exotic-hadron candidates.

F. Timelike form factors of energy-momentum
tensor and gravitational-interaction radii

The GPDs and GDAs are measured in the DVCS and
two-photon processes which are, of course, electromag-
netic interaction processes. However, their studies could
also probe an aspect of gravitational interactions with
quarks and gluons. In order to understand this fact, we
explain it by taking the quark GPD and GDA definitions.
As given in Eqs. (6) and (18), the GPDs and GDAs are
defined by the same nonlocal vector operator. For the
GDAs, its moments multiplied by the momentum factor
2ðPþ=2Þn are expressed by the derivatives as [1]

2ðPþ=2Þn
Z

1

0

dzð2z − 1Þn−1
Z

dy−

2π
eið2z−1ÞPþy−=2

× q̄ð−y=2Þγþqðy=2Þ
���
yþ¼y⃗⊥¼0

¼ q̄ð0Þγþði∂↔ þÞn−1qð0Þ:
ð43Þ

where the derivative ∂↔ is defined by f1∂
↔
f2¼ ½f1ð∂f2Þ−

ð∂f1Þf2�=2. For n ¼ 2, this operator is the energy-
momentum tensor of a quark, and it is a source of gravity,
whereas it is the vector-type electromagnetic current
for n ¼ 1.
As shown in Fig. 6, (a) the electromagnetic interaction is

described by the vector current q̄γμq, (b) the weak
interaction is characterized by the vector minus axial-vector
current γμð1 − γ5Þ, and (c) the gravitational one is by the
tensor interaction given by q̄γμ∂νq for a quark. In Eq. (43),
the GPDs and GDAs contain this factor as the energy-
momentum tensor of a quark. The charge radius of the
proton is measured by elastic electron scattering in the form
of the electric form factor through the photon exchange
process (a). In the similar way, the gravitational radius
should be measured by the graviton exchange process (c) in
principle. However, it is impossible to do an actual
scattering experiment directly at accelerator facilities for
the gravitational interaction due to the ultraweak interaction
nature. On the other hand, it is possible to access such
physics through the GPDs and GDAs. Therefore, the
gravitational radii of hadrons are measurable quantities,
although it may be somewhat surprising that a different
physics aspect can be investigated through the electromag-
netic processes.

FIG. 6. Electromagnetic, weak, and gravitational interactions
with a quark. The gravitational interactions (c) are probed by the
GPDs and GDAs.
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In this way, the following integral of the quark GDAs
over the variable z is related to a matrix element of the
quark energy-momentum tensors Tμν

q [23,24,28]:Z
1

0

dzð2z − 1ÞΦπ0π0
q ðz; ζ;W2Þ

¼ 2

ðPþÞ2 hπ
0ðpÞπ0ðp0ÞjTþþ

q ð0Þj0i; ð44Þ

and there is a similar equation on the gluon matrix element.
The quark energy-momentum tensor is given by

Tμν
q ðxÞ ¼ q̄ðxÞγðμiD↔ νÞqðxÞ; ð45Þ

where Dμ is the covariant derivative Dμ ¼ ∂μ − igλaAa;μ=2
defined by the QCD coupling constant g and the SU(3)
Gell-Mann matrix λa. The notation XðμνÞ is given by the
symmetric combination XðμνÞ ≡ ðXμν þ XνμÞ=2. Here, Tþþ

q

indicates the lightcone þþ components as expressed in
Eq. (43), so that it is specifically given by Tþþ

q ¼
ðT00

q þ T03
q þ T30

q þ T33
q Þ=2. These equations indicate that

the GDAs probe the energy-momentum tensors of quarks
and gluons, in the same way as the GPDs, in the timelike
process.
In an isolated system, the energy-momentum tensor is

conserved ∂μTμν ¼ 0. However, if there is an external force
and gravity, it satisfies [35]

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
TμνÞ ¼ Gν − Γν

μλT
μλ; ð46Þ

where Gν is the energy-force density, g is defined by the
metric tensor gμν as g ¼ detðgμνÞ, and Γν

μλ is the affine
connection tensor. The second term on the right-hand side
is the gravitational-force density. As the electromagnetic
interaction and weak interaction are characterized theoreti-
cally by the vector and vector minus axial-vector operators,
q̄γμq and q̄γμð1 − γ5Þq, respectively for quarks, the
gravitational interaction is characterized by the energy-
momentum tensor Tμν. Namely, the energy-momentum
tensors of quarks and gluons are sources of gravitational
interactions. Now, the 3D structure-function studies are
getting popular in hadron physics, and this tensor appears
in the 3D structure functions, in particularly in the GPDs
and GDAs as illustrated in Fig. 6. For example, the GDAs
probe the 3D structure of a hadron in the form of the
timelike form factors. The GDAs are related to the energy-
momentum tensor in Eq. (44), so that they probe the
gravitational interaction, for example, as the form factors of
energy momentum tensor. These form factors are explicitly
defined later in Eqs. (57) and (116).
The GPDs and GDAs contain information on spacelike

and timelike form factors, respectively. For example, the
simple parametrization of the GPDs is given in Eq. (11)
expressed as the longitudinal PDF multiplied by the two-

dimensional transverse form factor. In general, the two-
dimensional transverse charge density ρhTðr⊥Þ is given by
the Fourier transform of the spacelike electric form factor of
a hadron h as

ρhTðr⊥Þ ¼
Z

d2q⊥
ð2πÞ2 e

−iq⃗⊥ ·⃗r⊥Fh
Tðq⊥Þ

¼
Z

∞

0

dq⊥
2π

q⊥J0ðq⊥r⊥ÞFh
Tðq⊥Þ; ð47Þ

where J0 is the Bessel function. The two-dimensional
transverse root-mean-square (rms) radius is then given by

hr2⊥ih ≡
Z

d2r⊥r2⊥ρhTðr⊥Þ ¼ −4
dFh

Tðq⊥Þ
dq2⊥

����
q⊥→0

: ð48Þ

The transverse form factors of the energy-momentum
tensor are calculated by using a simple parametrization
for the GPDs of the proton, and the results indicate that they
could be different from charge form factor [36].
In the three-dimensional case, the charge density and the

form factor are related with each other by

ρhðrÞ ¼
Z

d3q
ð2πÞ3 e

−iq⃗·⃗rFhðqÞ

¼
Z

∞

0

dq
2π2

jq⃗j2j0ðqrÞFhðqÞ; ð49Þ

where j0 is the spherical Bessel function. The rms radius is
obtained by

hr2ih ≡
Z

d3rj⃗rj2ρhðrÞ ¼ −6
dFhðqÞ
djq⃗j2

����
jq⃗j→0

: ð50Þ

For timelike form factors probed by the eþe− or γ�γ
reactions, we can relate them to the spacial distributions by
using the dispersion relation. Considering that singularities
of the form factor FhðtÞ is in the positive real t axis from
4m2

h, we can express the t-channel form factor by the
dispersion integral over the real positive t (≡s) as [37,38]:

FhðtÞ ¼
Z

∞

4m2
h

ds
π

ImFhðsÞ
s − t − iε

: ð51Þ

Namely, the t-channel form factor FhðtÞ can be calculated
from the s-channel one FhðsÞ. Then, using Eqs. (47) and
(51) together with consideration on the constituent-
counting rule in the asymptotic region [4], we have [38]

ρhTðr⊥Þ ¼
Z

∞

4m2
h

ds
2π2

K0ð
ffiffiffi
s

p
r⊥ÞImFh

TðsÞ; ð52Þ

where K0 is the modified Bessel function of the second
kind. However, the imaginary part of the form factor,
namely its phase, is not available from the measurement of
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γ� → hh̄ because its cross section is proportional to jFhðtÞj2
and a theoretically model-dependent input is needed for
estimating the spacial charge distribution from the meas-
urement on the timelike form factor. In Ref. [38], the
Gounaris-Sakurai amplitude [39] is used for ImFπðtÞ to
obtain the transverse charge radius

ffiffiffiffiffiffiffiffiffiffiffiffi
hr2⊥iπch

p
¼ 0.53 fm,

which corresponds to the three-dimensional one hr2iπch ¼
1.5hr2⊥iπch ¼ 0.42 fm2. Here, “ch” indicates the electric
charge. This value is comparable to the πe scattering
measurement value hr2iπch ¼ 0.439� 0.008 fm2 [40] for
the charged pion. These results are for electric charge radii
probed by electromagnetic interactions, whereas we inves-
tigate gravitational radii for hadrons, particularly the pion
in this work, by using the GDAs in the two-photon process
γ�γ → hh.
The three-dimensional density is calculated by using

Eqs. (49) and (51) as

ρhðrÞ ¼
Z

∞

4m2
h

ds
4π2

e−
ffiffi
s

p
r

r
ImFhðsÞ: ð53Þ

The three-dimensional rms radius is also obtained by using
Eqs. (50) and (51) as

hr2ih ¼
6

Fhðt ¼ 0Þ
dFhðtÞ
dt

����
jtj→0

¼ 6

Fhðt ¼ 0Þ
Z

∞

4m2
π

ds
π

ImFhðsÞ
s2

: ð54Þ

Here, the normalization of the spacelike form factor is
explicitly taken into account by the replacement
FhðtÞ → FhðtÞ=Fhðt ¼ 0Þ, where Fhðt ¼ 0Þ is calculated
by Eq._(51).
The spacelike gravitational form factors Θ1ðtÞ and

Θ2ðtÞ are defined by the energy-momentum tensor Tμν

[28,31,32]. In the GPD and GDA studies [28], other
notations AðtÞ and BðtÞ are often used. Here, A and B
are used for expressing other quantities, so that we use the
notationsΘ1ðtÞ andΘ2ðtÞ for the gravitational form factors.
In the spacelike process, they are defined by

hπaðp0ÞjTμν
q ð0ÞjπbðpÞi

¼ δab

2
½ðtgμν − qμqνÞΘ1;qðtÞ þ PμPνΘ2;qðtÞ�; ð55Þ

for a quark q. Here, the momenta are defined by P ¼
pþ p0 and q ¼ p0 − p. We defined the form factors and the
energy-momentum tensor for one quark type (namely,
flavor-q quark and antiquark) in order to avoid confusions.
In Ref. [28], the form factors are expressed by A and B, and
they are related to Θ1ðtÞ and Θ2ðtÞ by

AqðtÞ ¼ Θ2;qðtÞ; BqðtÞ ¼ −
1

4
Θ1;qðtÞ: ð56Þ

As discussed above Eq. (31), the variables ðp; p0Þ (GPD)
in the t channel is changed for ð−p0; pÞ (GDA) in the s
channel by the s − t crossing. Then, using the momentum
notations P ¼ pþ p0 and Δ ¼ p0 − p, we obtain the
definition of the timelike form factors from Eq. (55) as

hπaðpÞπbðp0ÞjTμν
q ð0Þj0i

¼ δab

2
½ðsgμν − PμPνÞΘ1;qðsÞ þ ΔμΔνΘ2;qðsÞ�: ð57Þ

From Eq. (44) and this definition, we can evaluate the
gravitational form factors for the pion.

III. THEORETICAL FORMALISM

We explain the cross section for the two-photon process
γ�γ → π0π0 to express it in terms of the GDAs in Sec. III A.
First, the situation of the pion distribution amplitude (DA),
instead of the GDAs, is explained in Sec. III B, and Q2

evolution of the DA and the GDAs are discussed in
Sec. III C. The ζ dependence of the GDAs is introduced
in Sec. III D. Then, the parametrization of the GDAs is
introduced in Sec. III E to determine them from exper-
imental data. Contributions from f0 and f2 resonances are
included in the analysis, and coupling constants for the
resonances are explained in Sec. III F, and the Q2 scale
dependence of such resonance contributions is discussed in
Sec. III G. In Sec. III H, the relations between the gravi-
tational form factors and the GDAs are derived.

A. Cross section for the two-photon
process γ�γ → π0π0

The pion-pair production process γ�γ → π0π0 is shown
in Fig. 7, and its cross section is written by the matrix
element M as [41]

dσ ¼ 1

4q · q0
X̄
λ;λ0

jMðγ�γ → π0π0Þj2 d3p
ð2πÞ32Ep

d3p0

ð2πÞ32Ep0

× ð2πÞ4δ4ðqþ q0 − p − p0Þ; ð58Þ

where one of the initial photons is taken on mass shell
(q02 ¼ 0). The matrix element Mðγ�γ → π0π0Þ is given by
the hadron tensor T μν as

FIG. 7. γ�γ → π0π0 process.
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iMðγ�γ→π0π0Þ¼ ϵμðλÞϵνðλ0ÞT μν;

T μν¼ i
Z

d4ye−iq·yhπ0ðpÞπ0ðp0ÞjTJemμ ðyÞJemν ð0Þj0i; ð59Þ

by the photon polarization vector ϵμðλÞ and the electro-
magnetic current Jemμ ðyÞ. In obtaining the total cross
section, the cross section should be divided by two due
to two identical particles in the final state to avoid the
double counting. Alternatively, the cross section is inte-
grated over the half solid angle, in stead of the factor 1=2,
for calculating the total cross section. In any case, differ-
ential cross sections are discussed in this paper, so that such
a factor is not needed.
We define the helicity amplitudes Aij by

Aij ¼
1

e2
εðiÞμ ðqÞεðjÞν ðq0ÞT μν;

i ¼ −; 0;þ; j ¼ −;þ: ð60Þ

If the kinematical condition Q2 ≫ W2;Λ2 is satisfied, the
two-photon process can be factorized into the hard part
(γ�γ → qq̄) and the soft part (qq̄ → π0π0) as shown in
Fig. 3. In the Breit frame, q is taken along the z axis.
Introducing two timelike vectors n ¼ ð1; 0; 0; 1Þ= ffiffiffi

2
p

and
n0 ¼ ð1; 0; 0;−1Þ= ffiffiffi

2
p

, we express the photon and quark
momenta as q ¼ ðn − n0Þ

ffiffiffiffiffiffiffiffiffiffiffi
Q2=2

p
, q0 ¼ n0ðQ2 þW2Þ=ffiffiffiffiffiffiffiffiffi

2Q2
p

, k ¼ zn
ffiffiffiffiffiffiffiffiffiffiffi
Q2=2

p
, and k0 ¼ ð1 − zÞn

ffiffiffiffiffiffiffiffiffiffiffi
Q2=2

p
. At large

Q2, the hadron tensor can be expressed by the factorized
form as

T μν¼ i
Z

d4ye−iq·yhπ0ðpÞπ0ðp0ÞjTJemμ ðyÞJemν ð0Þj0i

¼
X
q

ð−e2e2qÞ
Z

d4k
ð2πÞ4

�
γμð=k−qÞγν
ðk−qÞ2þ iϵ

þ γνðq−=k0Þγμ
ðq−k0Þ2þ iϵ

�
ba

×
Z

d4ye−ik·yhπ0ðpÞπ0ðp0ÞjTq̄bðyÞqað0Þj0i: ð61Þ

The first part describes the process γ�γ → qq̄ of Fig. 3, and
the second one does the soft process qq̄ → π0π0. For the
term q̄bðyÞqað0Þ in this equation, we use the Fierz identity

4q̄bqa ¼ γλabq̄γλqþ ðγλγ5Þabq̄γλγ5q
þ Iλabq̄qþ ðγ5Þabq̄γ5qþ σαβabq̄σαβq; ð62Þ

where the first two terms and the last one are the leading
twist terms, while the third and fourth ones are twist-3
terms. Since the trace of an odd number of γλ is zero, only
the first two terms survive. However, the second term is the
axial-vector current, which cannot exist for π0π0 state due
to the party invariance. After all, only the first term
contributes to the hadron tensor.

In the leading order of the running coupling constant αs,
the gluon GDA contribution is neglected and the hadron
tensor can be expressed by the quark GDAs by calculating
the hard part of Eq. (61) as [4,23,24]

T μν ¼ −gμνT e2
X
q

e2q
2

Z
1

0

dz
2z − 1

zð1 − zÞΦ
π0π0
q ðz; ζ;W2Þ; ð63Þ

where gμνT is defined by

gμνT ¼ −1 for μ ¼ ν ¼ 1; 2;

¼ 0 for μ; ν ¼ others: ð64Þ

The hadron tensor T μν is generally written by the product
of the two electromagnetic currents in Eq. (59). In the
leading twist, it is expressed by the matrix element of the
vector current as given by the GDAs Φπ0π0

q in Eq. (26) [24].
The situation is the same as the one in the hadron tensor
Wμν in the charged-lepton deep inelastic scattering as
expressed in the twist expansion [42].
Since only the nonvanishing terms are εðþÞ

μ ðqÞεðþÞ
ν

ðq0ÞgμνT ¼ εð−Þμ ðqÞεð−Þν ðq0ÞgμνT ¼ −1, the cross section is
expressed by the helicity amplitude Aþþ as

dσ
dðcos θÞ ¼

πα2

4ðQ2 þ sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r
jAþþj2;

Aþþ ¼
X
q

e2q
2

Z
1

0

dz
2z − 1

zð1 − zÞΦ
π0π0
q ðz; ξ;W2Þ; ð65Þ

where the relation A−− ¼ Aþþ is used due to party
conservation. The gluon GDA contributes to the cross
section through the amplitudes Aþþ ¼ A−− and Aþ− ¼
A−þ in the next-to-leading order, so that these terms are
suppressed by the factor of αs. There are also contributions
from higher-twist amplitudes A0þ and A0−, which decrease
as at least 1=Q because of a helicity flip [24,25].
The γ�γ → π0π0 cross section is expressed by the GDAs

in Eq. (65). In order to determine the GDAs from
experimental data, we need to express the GDAs by a
number of parameters, which are then determined by a χ2

analysis of the data on dσ=dðcos θÞ. There a number of
studies on the pion distribution amplitudes; however, it is
the first attempt for the GDAs in comparison with actual
experimental data. Before discussing an appropriate func-
tional form of the GDAs, we explain the distribution
amplitude (DAs), which are related to the z-dependent
part of the GDAs. For example, the pion distribution
amplitude ΦπðzÞ is related to the GDAs by [23]
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ΦπðzÞ ¼ Φππð−Þðz; ζ ¼ 1;W2 ¼ 0Þ
¼ −Φππð−Þðz; ζ ¼ 0;W2 ¼ 0Þ;

ΦππðþÞðz; ζ ¼ 1;W2 ¼ 0Þ
¼ ΦππðþÞðz; ζ ¼ 0;W2 ¼ 0Þ ¼ 0: ð66Þ

In our analysis of γ�γ → π0π0, we obtain ΦππðþÞ.

B. Pion distribution amplitude

Before stepping into the details of the pion GDAs, we
explain the pion distribution amplitudes (DAs). The pion
DAs are defined by the matrix element of a bilocal quark
operator between the vacuum and the pion by taking the
pion momentum along the positive z-axis as [18,24,43]

hπaðpÞjψ̄ðyÞαψð0Þβj0i
���
yþ¼y⃗⊥¼0

¼ −
ifπ
4

Z
1

0

dzeizp
þy−ðγ5pÞβαΦπðz; μÞ þ � � � ; ð67Þ

wherea is the pion charge (a ¼ þ, 0,−), ψ̄ðyÞψð0Þ indicates
ūðyÞdð0Þ, ½ūðyÞuð0Þ− d̄ðyÞdð0Þ�= ffiffiffi

2
p

, or d̄ðyÞuð0Þ, for πþ,
π0, or π−, respectively, and the ellipses indicate higher-
twist terms.
The function Φπðz; μÞ is the leading-twist distribution

expressed by the longitudinal momentum fraction z of a
valence quark in the pion and the renormalization scale μ
of the bilocal operator. The μ dependence is described by
the ERBL evolution equations [44]. It is normalized asZ

1

0

dzΦπðz; μÞ ¼ 1; ð68Þ

and fπ is the pion decay constant defined by

hπaðpÞjψ̄ð0Þγμγ5ψð0Þj0i ¼ −ifπpμ: ð69Þ
In the asymptotic limit of μ → ∞, the pion distribution

amplitude becomes

ΦðasÞ
π ðzÞ ¼ 6zð1 − zÞ; ð70Þ

as it becomes obvious from the Q2-evolution solution of
Eqs. (78) and (81). At finite μ, it is generally expressed by
using the Gegenbauer polynomials as

Φπðz; μÞ ¼ 6zð1 − zÞ
X∞

n¼0;2;4;���
anðμÞC3=2

n ð2z − 1Þ; ð71Þ

where only the even terms contribute because the DA
should satisfy the condition Φπð1 − z; μÞ ¼ Φπðz; μÞ under
the exchange z ↔ 1 − z. It corresponds to the exchange of
q and q̄ in the pion, and the momentum distribution carried
by a quark or antiquark should be same under this exchange
because of positive C-parity of the axial current. The
Gegenbauer polynomials are Ca

0ðxÞ ¼ 1; Ca
1ðxÞ ¼ 2ax;

Ca
2ðxÞ ¼ −aþ 2að1þ aÞx2; � � �. The current situation of

the pion DA is explained in Ref. [18]. Since the

Gegenbauer polynomials are rapidly oscillating functions
at large n and the coefficients anðμÞ are small for large μ,
the n ≥ 4 terms could be neglected at this stage. As for the
second coefficient a2, there are theoretical estimates by
lattice QCD [45] and QCD sum rules [46–51] One of the
well known functions was proposed by Chernyak and
Zhitnitsky (CZ) to take a2ðμ≃ 0.5 GeVÞ ¼ 2=3 as sug-
gested by the QCD sum rule [46]:

ΦðCZÞ
π ðz; μÞ ¼ 6zð1 − zÞ

�
1þ 2

3
C3=2
2 ð2z − 1Þ

�
¼ 30zð1 − zÞð2z − 1Þ2 at μ≃ 0.5 GeV;

ð72Þ

which is very different from the asymptotic form because it
has a minimum at z ¼ 0.5. There are also recent theoretical
suggestions on different a2 values [45,48–52] and also a4
and a6 values [53]. In principle, the different pion DAs can
be tested by experiments. The Belle measurements on the
γ → π form factor are close to the asymptotic DA form [6],
whereas the BABAR data have a different tendency in the
sense that it is consistent with a2ðμ ¼ 2 GeVÞ ¼ 0.22 [52].
Further measurements are needed to distinguish various
theoretical DAs.
We comment on a slightly different convention from ours

in defining the distribution amplitude because it may be
sometimes confusing in using the decay constant fπ or
fπ=

ffiffiffi
2

p
. In the Diehl’s article of 2003 [1], the π0 distribution

amplitude is defined for one quark flavor as hπ0ðpÞ
jq̄ðyÞαqð0Þβj0ijyþ¼y⃗⊥¼0 instead of the left-hand side of
Eq. (67). Therefore, the decay constant definition of
Eq. (69) becomes hπ0ðpÞjūð0Þγμγ5uð0Þj0i ¼ −hπ0ðpÞjd̄ð0Þ
γμγ5dð0Þj0i ¼ −ifπpμ=

ffiffiffi
2

p
. We should note that there is a

factor of
ffiffiffi
2

p
in this expression. However, this

ffiffiffi
2

p
is

absorbed into the definition of distribution amplitude in
his formalism so that the decay constant fπ stays the same
as ours.

C. Scale evolution of distribution amplitudes
and generalized distribution amplitudes

If the kinematical conditionQ2 ≫ W2;Λ2
QCD is satisfied,

the process γ�γ → π0π0 is factorized into the hard part Hq;g

and the soft one Sq;g as shown in Fig. 8. Here, the final state
X is π0 for the DAs or π0π0 for the GDAs. The hard part is
calculated in perturbative QCD and the soft one is
expressed by the DAs or the GDAs. The Q2 evolution
equations of the DAs and GDAs are described by calculat-
ing the hard part in perturbative QCD. Since both reactions
(γ�γ → π0 and γ�γ → π0π0) have the same hard processes,
the DAs and GDAs follow the same evolution equations,
and their z and scale-μ dependencies are represented by
the functions Φqðz; μÞ and Φgðz; μÞ in the following
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discussions of this subsection [Φq ¼ Φπ for the DAs,

Φq ¼ ΦππðþÞ
q and Φg ¼ Φππ

g for the GDAs].
In order to describe the Q2 evolution of the DAs and

GDAs, we introduce the auxiliary quark and gluon func-
tions fQ and fG defined by [1,24]

zð1 − zÞfQðz; μÞ ¼
X
q

Φqðz; μÞ;

z2ð1 − zÞ2fGðz; μÞ ¼ Φgðz; μÞ: ð73Þ

We introduce the variable τ defined by

τ ¼ 2

β0
ln

�
αsðμ20Þ
αsðμ2Þ

�
; ð74Þ

for describing the evolution from μ20 to μ
2 as usually used in

expressing the DGLAP evolution equations for the PDFs
[54]. Here, β0 ¼ 11 − 2nf=3 and αs is the running coupling
constant. Then, the evolution equations are expressed as

∂
∂τ

�
fQðz; τÞ
fGðz; τÞ

�
¼

Z
1

0

du

�
VQQðz; uÞ VQGðz; uÞ
VGQðz; uÞ VGGðz; uÞ

�

×

�
fQðu; τÞ
fGðu; τÞ

�
; ð75Þ

where the matrix V is the kernel calculated in perturbative
QCD. The one-loop contributions to this kernel is shown in
Fig. 9. The one-loop kernels have been obtained as [1,24]

VQQ ¼ CF

�
θðz − uÞ u

z

�
1þ 1

ðz − uÞþ

�
þ fu; z → ū; z̄g

�
;

VQG ¼ 2nfTF

�
θðz − uÞ u

z
ð2z − uÞ þ fu; z → ū; z̄g

�
;

VGQ ¼ CF

zz̄

�
θðz − uÞ u

z
ðz̄ − 2ūÞ þ fu; z ↔ ū; z̄g

�
;

VGG ¼ CA

zz̄

�
θðz − uÞ

�
uȳ

ðz − uÞþ
− uū −

u
2z

fð2z − 1Þ2

þ ð2u − 1Þ2g
�
þfu; z ↔ ū; z̄g

�
−
2

3
nfTFδðu − zÞ;

ð76Þ
where ū and z̄ are defined by ū ¼ 1 − u and z̄ ¼ 1 − z, and
CF, TF, and CA are given by CF ¼ ðN2

c − 1Þ=ð2NcÞ,
TF ¼ 1=2, and CA ¼ Nc with the number of colors
Nc ¼ 3. These equations are called ERBL evolution
equations.
The integro-differential equations can be solved in the

same way with solving the DGLAP (Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi) evolution equations [54] by using
the anomalous dimensions (γQQ

n , γQG
n , γGQn , γGGn ) obtained

from the kernel matrix V. From these anomalous dimen-
sions, we define

γ�n ¼ 1

2

�
γQQ
n þ γGGn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγQQ

n − γGGn Þ2 þ 4γQG
n γGQn

q �
: ð77Þ

Then, the solution is written in terms of the Gegenbauer
polynomials Ca

n and the anomalous dimensions as

Xnf
q

Φþ
q ðz; μÞ ¼ zð1 − zÞ

X
oddn

AnðμÞC3=2
n ð2z − 1Þ;

Φgðz; μÞ ¼ z2ð1 − zÞ2
X
oddn

A0
nðμÞC5=2

n−1ð2z − 1Þ; ð78Þ

where the coefficients are given by

AnðμÞ ¼ Aþ
n

�
αsðμ2Þ
αsðμ20Þ

�
2γþn =β0 þ A−

n

�
αsðμ2Þ
αsðμ20Þ

�
2γ−n =β0

;

A0
nðμÞ ¼ gþn Aþ

n

�
αsðμ2Þ
αsðμ20Þ

�
2γþn =β0

þ g−nA−
n

�
αsðμ2Þ
αsðμ20Þ

�
2γ−n =β0

;

ð79Þ

with the factor g�n ¼ ðγ�n − γQQ
n Þ=ð3γQG

n =nÞ. The summa-
tions of Eq. (78) are taken for odd n (n ¼ 1; 3; � � �) in the
C ¼ even case.
In the n ¼ odd summation, all the anomalous dimen-

sions are positive except for γ−1 ¼ 0, so that the only the
A−
1 terms survive in the scaling limit of μ2 → ∞. Using

the Gegenbauer polynomial Ca
1ðxÞ ¼ 2ax, we have the

C ¼ even (isoscalar) GPDs as

FIG. 8. Factorization of γ�γ → X, X ¼ π0 for DAs or π0π0 for
GDAs, into the hard part Hq;g and the soft one Sq;g. For the
isovector π, the right-hand-side process with the two-gluon
intermediate state does not exist for the single π0 production
(X ¼ π0).

FIG. 9. Leading contributions to the hard part Hq;g.
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Xnf
q

Φþ
q ðz; μ → ∞Þ ¼ 3A−

1 zð1 − zÞð2z − 1Þ;

Φgðz; μ → ∞Þ ¼ g−1A
−
1 z

2ð1 − zÞ2: ð80Þ

Therefore, the z-dependent functional forms are uniquely
given for the GDAs. This fact should be taken into account
for parametrizing the GDAs.
For the C ¼ odd (isovector) GDAs, the n summation of

Eq. (78) is for the even numbers (n ¼ 0; 2; � � �). In the
scaling limit, only the n ¼ 0 term survives and the GDAs
become

Xnf
q

Φ−
q ðz; μ → ∞Þ ¼ A0zð1 − zÞ; ð81Þ

by using Ca
0ðxÞ ¼ 1. The above isovector GDAs have z

dependence zð1 − zÞ which is the same as the ρ-meson
(pion [23]) isovector DA of Eq. (70) in the scaling limit.

D. ζ dependence of generalized
distribution amplitudes

The Q2 evolution of the GDAs are calculated in
perturbative QCD as shown in the previous subsection,
and the z dependence is given by the Gegenbauer poly-
nomials. The GDAs also depend on other two variables ζ
and W2. Here, we discuss the ζ dependence. As shown in
Fig. 3 and Eq. (14), the variable ζ indicates the momentum
fraction for a produced pion in the final state and it is
expressed by the polar angle (θ) of the pion. Therefore, we
may expand the coefficients An and A0

n in terms of
orthogonal polynomials, which could be taken as the
Legendre polynomials Pl:

Anðζ;W2Þ ¼ 6nf
Xnþ1

l¼even

BnlðW2ÞPlð2ζ − 1Þ; ð82Þ

where n is odd (l is even) forC ¼ þ, and n is even (l is odd)
for C ¼ −. Here, the factor 6 comes in the similar way to
the normalization of the pion DA as shown in Eqs. (68) and
(70), the flavor number nf appears because of the flavor
summation in Eq. (78), and l is the angular momentum of
the final pion pair. In addition, the same equation exists for
A0
nðζ;W2Þ in terms of B0

nlðW2Þ. The C invariance relations
of the GDAs are given in Eqs. (20) and (21), so that the
odd-l terms do not contribute to the C ¼ þ GDAs.
From the scale-dependence relations of Eq. (79), the

coefficients Bnl should follow the same relations:

BnlðW2; μÞ ¼ Bþ
nlðW2Þ

�
αsðμ2Þ
αsðμ20Þ

�
2γþn =β0

þ B−
nlðW2Þ

�
αsðμ2Þ
αsðμ20Þ

�
2γ−n =β0

; ð83Þ

and a similar equation for B0
nlðW2; μÞ. In the scaling limit

μ → ∞, only the lowest terms survive in Anðζ;W2Þ and
A0
nðζ;W2Þ, and we obtain [1,24]

Xnf
q

ΦππðþÞ
q ðz;ζ;W2Þ ¼ 18nfzð1− zÞð2z− 1Þ

× ½B−
10ðW2ÞþB−

12ðW2ÞP2ð2ζ− 1Þ�;
Φππ

g ðz;ζ;W2Þ ¼ 48z2ð1− zÞ2½B−
10ðW2Þ

þB−
12ðW2ÞP2ð2ζ− 1Þ�; ð84Þ

where the Legendre polynomial P2ðxÞ is given by
P2ðxÞ ¼ ð3x2 − 1Þ=2. Since the Legendre polynomial term
is given by P2ð2ζ − 1Þ ¼ 1–6ζð1 − ζÞ, the sum rule of
Eq. (19) is satisfied if the coefficients satisfy the relation
B10ðW2 ¼ 0Þ ¼ −B12ðW2 ¼ 0Þ, which is considered in the
parametrization in the next subsection. This is the basic
functional forms for z and ζ dependencies in the scaling
limit. Next, we explain our actual parametrization for the
GDAs by following the essence of these basic functional
forms.

E. Expression of generalized
distribution amplitudes

With the basic knowledge of the pion DA and GDAs,
we need to express the GDAs by a number of parameters.
In particular, the z dependence is given by Eqs. (80) and (81)
in the scaling limit. Considering these functional forms, we
express the GDAs with a number of parameters. First, we
neglect the higher-orderαs effects and higher-twist effects, so
that the gluon GDA does not appear. Since π0π0-production
data are analyzed in this work, only the C ¼ even GDAs
contribute to the cross section. The C ¼ even function of
Eq. (80) is zð1 − zÞð2z − 1Þ. Since the C ¼ even isoscalar
GDAs have − sign under the change z → 1 − z as given in
Eq. (28), the same parameter α is assigned for the powers
of z and 1 − z: Φπ0π0

q ðzÞ ∼ zαð1 − zÞαð2z − 1Þ. The 2z − 1

factor comes from the lowest Gegenbauer polynomial
C3=2
1 ð2z − 1Þ, which survives in the scaling limit.

However, the detailed z dependence is not determined from
the current data, so that we decide to take the lowest
Gegenbauer polynomial form of 2z − 1, supplementing by
the phenomenological parameter αwhichwill later appear to
be close to the asymptotical value 1.
We use the following function for explaining the

γ�γ → π0π0 data at a fixed Q2 value:

ΦππðþÞ
q ðz; ζ;W2Þ ¼ Nαzαð1 − zÞαð2z − 1Þ

× ½B10ðW2Þ þ B12ðW2ÞP2ð2ζ − 1Þ�;
ð85Þ

whereNα is the overall constant determined by the sum rule
(19) as
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Nα ¼
3ð2αþ 3Þ

5Bðαþ 1; αþ 1Þ ; ð86Þ

with the beta function Bða; bÞ. The quark-momentum
fraction factor Mπ

2ðqÞ and the W2-dependent form factor

Fπ
qðW2Þ are included in the coefficients BnlðW2Þ. The ζ

dependence can be reexpressed by the angle θ defined in
Eq. (15) as

B10ðW2Þ þ B12ðW2ÞP2ð2ζ − 1Þ
¼ ~B10ðW2Þ þ ~B12ðW2ÞP2ðcos θÞ; ð87Þ

where the invariant-mass dependent functions ~BnlðW2Þ and
BnlðW2Þ are related with each other by

~B10ðW2Þ ¼ B10ðW2Þ − 1 − β2

2
B12ðW2Þ;

~B12ðW2Þ ¼ β2B12ðW2Þ: ð88Þ

In the limit of W2 → 4m2
π ≃ 0, they are given by [23,24]

B12ð0Þ ¼
10

9
Mπ

2ðqÞ; ð89Þ

whereMπ
2ðqÞ is themomentum fraction carried by theq-flavor

quarks and antiquarks in the pion (
Pnf

q Mπ
2ðqÞ ≃ 0.5). This

equation is obtained by considering the forward limit of the
GPDs and then the s − t crossing to relate the GPDs and
GDAs, so that it should be a model-independent relation.
Then, the relation between B10ð0Þ and B12ð0Þ is studied in a
soft-pion theorem, and it was obtained as [23,24]

B10ð0Þ ¼ −B12ð0Þ: ð90Þ

Then, the W2 dependence of B10ðW2Þ and B20ðW2Þ was
studied at smallW2 as a possible constraint on the functional
form of W2 within a instanton model of QCD [28].
The gluon GDA does not contribute to the cross section

because the higher-order and higher-twist terms are
neglected in our analysis. However, as discussed in
Sec. III C, it affects the Q2 evolution. It will be shown in
Figs. 13 and 14 that current Belle data are not accurate
enough to probe the scaling violation. The quark GDAs are
provided at a fixedQ2 scale which is taken as the averageQ2

value (16.6 GeV2) of the Belle data. Then, theQ2 evolution
is not taken into account in our analysis within the Belle-data
range (8.92 ≤ Q2 ≤ 24.25 GeV2). Therefore, the gluon
GDA does not contribute in our analysis.
There are two terms, which correspond to the angular

momenta, l ¼ 0 and 2, of the pion pair. There are
intermediate meson contributions to the cross section for
γ�γ → π0π0, so that the invariant-mass dependent factors
~Bnl have imaginary parts expressed by the phase shifts
δlðWÞ:

~BnlðW2Þ ¼ B̄nlðW2ÞeiδlðWÞ: ð91Þ

Here, we use the ππ phase shifts by Bydzovsky, Kaminski,
Nazari, and Surovtsev [55]. There is also another study on
the phase shifts in Ref. [56]. The relation of Eq. (89)
indicates that the B̄nlðW2 ¼ 0Þ factors are given by

B̄10ð0Þ ¼ −
3 − β2

2
B12ð0Þ ¼ −

�
1þ 2m2

π

W2

�
B12ð0Þ;

B̄12ð0Þ ¼ β2B12ð0Þ ¼
�
1 −

4m2
π

W2

�
B12ð0Þ: ð92Þ

There are two types of contributions to ~BnlðWÞ. One is the
continuum and the other is from the intermediate reso-
nances expressed by

B̄nlðW2Þ ¼ B̄nlð0ÞFπ
qðW2Þ

þ
X
R

cRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

R −W2Þ2 þ Γ2
RM

2
R

p ; ð93Þ

whereMR is the resonance mass, ΓR is its width, and cR is a
constant.
The W2 dependence of the continuum part of the pion

GDAs is given by the form factor, which could be para-
metrized as [4]

Fπ
qðW2Þ ¼ 1

½1þ ðW2 − 4m2
πÞ=Λ2�n−1 : ð94Þ

Here, Λ is the cutoff parameter, which indicates the pion
size, n is the number of active constituents according to the
constituent-counting rule in perturbative QCD [57], and it
is normalized as FhðqÞð4m2

πÞ ¼ 1. It is the continuum part of
the timelike forms factor of the energy-momentum tensor.
Here, the pion size means the gravitational-interaction size
instead of the usual charge radius in electromagnetic
interactions as explained in Sec. II F. The high-energy
behavior of the form factor is given by the factor n, which is
supposed to be n ¼ 2 for the pion [4].

F. Resonance terms and their coupling constants

The resonance contributions are illustrated as the inter-
mediate states in Fig. 10. Above 1 GeV of the invariant
massW, the intermediate KK̄ and ηη channels contribute to
the process. However, their contributions may not be as
large as the pion ones, and they are not explicitly consid-
ered in this work. As seen in Fig. 10, we also need the kaon
GDAs in the formalism if the KK̄ were introduced in the
intermediate state. The constant cR in Eq. (93) is expressed
by the R → ππ coupling constant gRππ , the decay constant
fR, the massMR, and the width ΓR. As for the mesons with
IGðJPCÞ ¼ 0þð0þþÞ; 0þð2þþÞ, we consider
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0þð0þþÞ∶ f0ð500Þ; f0ð980Þ;
0þð2þþÞ∶ f2ð1270Þ; ð95Þ

which could make conspicuous contributions to the cross
section γ�γ → π0π0 in the invariant mass region of
W ≤ 2.05 GeV, in our analysis. In this energy region,
there are other possible resonances

0þð0þþÞ∶ f0ð1370Þ; f0ð1500Þ; f0ð1710Þ;
0þð2þþÞ∶ f2ð1525Þ; f02ð1950Þ; f2ð2010Þ; ð96Þ

in principle. However, these meson effects have minor
effects on the cross section, hence they are not included in
our analysis.
The GDAs are defined by the matrix element of the

nonlocal vector operator from the vacuum to the π0π0 state,
and it is expressed by three steps for describing the process
with the intermediate f0 meson [58]. First, the f0 meson is
produced from the vacuum, it propagates, and then it
decays into the pion pair:

hπ0ðpÞπ0ðp0Þjq̄ð−z=2Þγμqðz=2Þj0i
¼ hπ0ðpÞπ0ðp0Þjf0ðPÞi

×
1

m2
f0
− P2 − iΓMf0

hf0ðpÞjq̄ð−z=2Þγμqðz=2Þj0iþ � � � :

ð97Þ

In Sec. III B, the pion distribution amplitude is defined by
ψ̄γμγ5ψ instead of one quark flavor one q̄γμγ5q. The above
f0 distribution amplitude is related to the one defined by
ψ̄γμψ ¼ ðūγμuþ d̄γμdÞ=

ffiffiffi
2

p
as

hf0ðpÞjq̄ð−z=2Þγμqðz=2Þj0i

¼ 1ffiffiffi
2

p hf0ðpÞjψ̄ð−z=2Þγμψðz=2Þj0i; ð98Þ

where q ¼ u or d. The final 2π-decay part is simply the
coupling constant written as

hπ0ðpÞπ0ðp0Þjf0ðPÞi ¼ gf0π0π0 ; ð99Þ

and the first f0 production part is expressed by the
distribution amplitude for f0 as discussed in the later part
of this subsection. Then, the f0 contribution to ~B10ðWÞ is
written as

~B10ðWÞ ¼ 5gf0ππff0
3

ffiffiffi
2

p ½m2
f0
−W2 − iΓMf0 �

; ð100Þ

so that its absolute value is given by

B̄10ðWÞ ¼ 5gf0ππff0

3
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðM2

f0
−W2Þ2 þ Γ2

f0
M2

f0
�

q ; ð101Þ

where the factor 5=3 comes from the convention difference
in defining the distribution amplitude, namely the overall
factor could be 30 or 18. This difference becomes
30=18 ¼ 5=3. In the same way, the f2 contribution is
given by

B̄12ðWÞ ¼ 10gf2ππff2M
2
f2
β2

9
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

f2
−W2Þ2 þ Γ2

f2
M2

f2

q ; ð102Þ

where the different factor 10M2
f2
=9 comes from the tensor

nature of f2 in defining the coupling constant to 2π and also
the decay constant [58,59]. In Ref. [58], the β2 factor is
included in Eq. (A26) of this paper.
As for the resonance terms, we use theW dependence of

j ~BnlðW2Þj in Eqs. (101) and (102) [59], although the
resonance properties are also obtained by the Belle col-
laboration for the resonances f0ð980Þ and f2ð1270Þ [7].
In Refs. [59–61], the constants are ff2 ¼ 0.101 GeV at
Q2 ¼ 1 GeV2, Mf2 ¼ 1.275 GeV, and Γf2 ¼ 0.185 GeV
for f2ð1270Þ, and the decay constant gf2ππ is defined by

gf2ππ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þ24πΓðf2 → ππÞ=M3

f2

q
with Γðf2 → ππÞ ¼

0.85Γf2 . Here, the factor of 2 in 2=3 comes from the
identical particles of two π0’s, and the factor 1=3 does from
Γðf2 → π0π0Þ ¼ 1=3Γðf2 → ππÞ. As it will become clear
in comparison with the actual measurements, the Belle data
indicate a clear peak of f2ð1270Þ.
For the S-wave resonances of f0ð500Þ and f0ð980Þ, we

haveMf0ð500Þ ¼ 0.475 GeV and Γf0ð500Þ ¼ 0.55 GeV [62],

the decay constant gf0ππ is defined by gf0ππ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=3Þ16πΓðf0 → ππÞMf0

p
with Γðf0 → ππÞ ¼ Γf0 for

both f0ð500Þ and f0ð980Þ. The decay width of f0ð980Þ
is not well determined by experiments, and it is listed as
10–100 MeV. We use the middle values of the Particle Data
Group [62], namely Γσ ¼ 550 MeV between 400 MeVand
700 MeV. As for the decay constants ff0ð500Þ and ff0ð980Þ,
no experimental information is available. There are theo-
retical estimates on ff0ð980Þ by the QCD sum-rule method.
However, they assume the qq̄ configuration for f0ð980Þ

FIG. 10. γ�γ → π0π0 through the intermediate states MM̄.
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and their decay-constant values seem to be inconsistent
with the Belle data on the differential cross section as
shown in Sec. IVA. There is no theoretical estimate on
ff0ð500Þ as far as we searched, so it is simply terminated or it
is considered as one of the parameters in our analysis.
These numerical values are summarized in Table I.
Next, we define decay constants and distribution ampli-

tudes for the resonances f0ð500Þ, f0ð980Þ, and f2ð1270Þ.
In the reaction γ�γ → π0π0, the matrix elements of a vector
current between the vacuum and these meson states are
involved in its cross section. First, the matrix element for
the tensor meson f2ð1270Þ is expressed by the decay
constant ff2 and the distribution amplitude Φf2ðz; μÞ as
[58,61]

hf2ðpÞjψ̄ðyÞγμψð0Þj0i
���
yþ¼y⃗⊥¼0

¼ εðλÞ�αβ yαyβ

ðp · yÞ2 ff2m
2
f2
pμ

Z
1

0

dzeizp
þy−Φf2ðz; μÞ þ � � � ;

ð103Þ

where εðλÞαβ is the polarization vector of f2 meson [61], and
the higher-twist terms are not explicitly written. The
distribution amplitude for f2 is given by the summation
of odd Gegenbauer polynomials due to the C-parity as
explained in Eq. (78), and it is expressed as [58,61]

Φf2ðz; μÞ ¼ 6zð1 − zÞ
X∞

oddn¼1

BnðμÞC3=2
n ð2z − 1Þ

¼ B1ðμÞ18zð1 − zÞð2z − 1Þ þ � � � ; ð104Þ

whereas it is the even polynomials for the pion as shown
in Eq. (71).
In the same way, the matrix elements for the scalar

mesons f0ð500Þ and f0ð980Þ are given by

hf0ðpÞjψ̄ðyÞγμψð0Þj0i
���
yþ¼y⃗⊥¼0

¼ pμ

Z
1

0

dzeizp
þy−Φf0ðz; μÞ; ð105Þ

where the distribution amplitude is defined by including the
decay constant ff0 for a practical purpose, because the

combined quantity of ff0 and the amplitude becomes finite
even though ff0 itself vanishes. We define the decay
constants ff0 and f̄f0 by the matrix elements for the vector
and scalar operators as [63]

hf0ðpÞjψ̄ð0Þγμψð0Þj0i ¼ ff0pμ;

hf0ðpÞjψ̄ð0Þψð0Þj0i ¼ f̄f0mf0 : ð106Þ

Writing the above vector current at the position x as
JμðxÞ ¼ ψ̄ðxÞγμψðxÞ ¼ eip̂·xJμð0Þe−ip̂·x and using the
equation of motion, we relate the two decay constants as

ðmq̄ −mqÞf̄f0 ¼ mf0ff0 ; ð107Þ

where mq and mq̄ are quark and antiquark masses. In the
f0-meson case, the masses are equal (mq̄ −mq ¼ 0).
Because of the conservation of the vector current or

charge-conjugation invariance, the constant ff0 should
vanish ff0 ¼ 0. However, the nonlocal matrix element of
Eq. (105) does not vanish at finite Q2, whereas it vanishes
in the scaling limitQ2→∞ as we explain later in Sec. III G.
Comparing Eqs. (105) and (106), we obtain the relationZ

1

0

dzΦf0ðz; μÞ ¼ ff0 ¼ 0: ð108Þ

For the scalar mesons with mq ≠ mq̄, the relation (107) can
be used to relate the decay constants. Therefore, according
to Ref. [63], we may take that the f0 distribution amplitude
is expressed by f̄f0 and the Gegenbauer polynomials as

Φf0ðz; μÞ ¼ f̄f06zð1 − zÞ

×

�
B0ðμÞ þ

X∞
oddn¼1

BnðμÞC3=2
n ð2z − 1Þ

�
:

ð109Þ

Then, the normalization of Eq. (108) is satisfied if B0 is
taken as ðmq̄ −mqÞ=mf0 ≡ 1=μf0 . The integral of the first
term is ff0 and those of the subsequent summation terms
vanish identically. The first term f̄f0=μf0 ¼ ff0 vanishes
for the f0 meson, so that it is given by

Φf0ðz; μÞ ¼ f̄f06zð1 − zÞ
X∞

oddn¼1

BnðμÞC3=2
n ð2z − 1Þ

¼ f̄f0B1ðμÞ18zð1 − zÞð2z − 1Þ þ � � � ; ð110Þ

where C3=2
1 ðxÞ ¼ 3x is used.

G. Scale dependence of resonance contributions

There are finite contributions to the γ�γ → π0π0 cross
section from f2ð1270Þ, f0ð500Þ, and f0ð980Þ at small Q2.

TABLE I. Resonance constants in our analysis. The decay
constant ff2 is shown at Q2 ¼ 1 GeV2 in this table. In Table III,
the decay constants are listed at Q2 ¼ 16.6 GeV2, which is the
average scale of the used Belle data. The value ff2 ¼ 0.101 at
Q2 ¼ 1 GeV2 corresponds to ff2 ¼ 0.0754 at Q2 ¼ 16.6 GeV2.

Meson (h) M (GeV) Γ (GeV) ghππ fh (GeV)

f0ð500Þ 0.475 0.550 2.959 GeV …
f0ð980Þ 0.990 0.055 1.524 GeV …
f2ð1270Þ 1.275 0.185 0.157 GeV−1 0.101
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However, as the Q2 increases, they become smaller and
smaller, and they eventually vanish in the scaling limit
Q2 → ∞. The scale dependence of the distribution ampli-
tude is given by the anomalous dimensions γn and the
leading coefficient β0 ¼ ð11CA − 4TRnfÞ=3 of the β func-
tion with CA ¼ Nc and TR ¼ 1=2 as [58,61]

ffðQ2ÞBnðQ2Þ ¼ ffðQ2
0ÞBnðQ2

0Þ
�
αsðQ2Þ
αsðQ2

0Þ
�
γn=β0

;

γn ¼ CF

�
1 −

2

ðnþ 1Þðnþ 2Þ þ 4
Xnþ1

j¼2

1

j

�
;

ð111Þ

whereCF ¼ ðN2
c − 1Þ=ð2NcÞwith the number of colorsNc.

Here, the meson f indicates f0ð500Þ, f0ð980Þ, or f2ð1270Þ,
and the decay constantff is f̄f0ð500Þ, f̄f0ð980Þ, orff2ð1270Þ.One
could express the scale evolution separately for the decay
constant and the distribution amplitude as [61]

ffðQ2Þ ¼ ffðQ2
0Þ
�
αsðQ2Þ
αsðQ2

0Þ
�−4=β0

;

BnðQ2Þ ¼ BnðQ2
0Þ
�
αsðQ2Þ
αsðQ2

0Þ
�ðγnþ4Þ=β0

: ð112Þ

The leading Gegenbauer polynomial is taken in Eq. (110),
and its anomalous dimension is given by γ1 ¼ 2CF=3.
This finite anomalous dimension indicates that the dis-
tribution amplitudes decreasewith increasingQ2 as shown
in Eq. (111).
From Eq. (112), it is possible to describe the Q2

evolution separately for the decay constant and the dis-
tribution amplitude. However, the overall scale dependence
is given by Eq. (111) in any case. The scale dependence is
often attributed only to the decay constant [58,61], namely

ffðQ2Þ ¼ ffðQ2
0Þ
�
αsðQ2Þ
αsðQ2

0Þ
�
γn=β0

; ð113Þ

and the distribution amplitude may be normalized in the
scale-independent way as

Z
1

0

dzð2z − 1ÞΦfðzÞ ¼ 1; ð114Þ

so that it becomes

ΦfðzÞ ¼ 30zð1 − zÞð2z − 1Þ; ð115Þ

as the leading distribution. In Eqs. (104) and (110), the f2
and f0 distribution amplitudes are defined with the scale
dependence. However, the scale independent expression of
Eq. (115) is used in this work, which means to take the B1

factor as B1 ¼ 5=3 [61]. This is a consistent description
with Eq. (112). However, it may be somewhat confusing, so
that one should remember that the distribution amplitude
vanishes in the scaling limit Φfðz; μÞ ¼ 0 at μ → ∞,
although the scale-independent expression (114) is often
used practically.

H. Gravitational form factors for pion

As shown in Eq. (44), the GDAs probe the þþ
component of the energy momentum tensor, and it is
expressed by the form factors for π0 as [31,32]

hπ0ðpÞπ0ðp0ÞjTþþ
q ð0Þj0i

¼ 1

2
½ðsgþþ − PþPþÞΘ1;qðsÞ þ ΔþΔþΘ2;qðsÞ�: ð116Þ

Calculating the þ components by using the momentum
assignments in Eq. (15) and using its relation to the GDAs
in Eq. (44), we obtainZ

1

0

dzð2z − 1ÞΦπ0π0
q ðz; ζ;W2Þ

¼ −Θ1;qðsÞ þ
β2

3
Θ2;qðsÞ þ

2β2

3
Θ2;qðsÞP2ðcos θÞ: ð117Þ

On the other hand, from the GDA expression in terms of
~B10 and ~B20 in Eqs. (85) and (87) with the normalization of
Eq. (86), the integral of the GDA is given byZ

1

0

dzð2z − 1ÞΦπ0π0
q ðz; ζ;W2Þ

¼ 3

5
½ ~B10ðW2Þ þ ~B12ðW2ÞP2ðcos θÞ�: ð118Þ

From Eqs. (117) and (118), the gravitational form factor
are expressed by the S- and D-wave components of the
GDAs as

Θ1;qðsÞ ¼ −
3

5
~B10ðW2Þ þ 3

10
~B12ðW2Þ;

Θ2;qðsÞ ¼
9

10β2
~B12ðW2Þ: ð119Þ

Quark and antiquark contributions are added to obtain the
timelike gravitational form factors of the pion as

ΘnðsÞ ¼
X
i¼q

Θn;iðsÞ; n ¼ 1; 2: ð120Þ

In this way, if the GDAs are determined from experimental
measurements, the gravitational form factors, consequently
gravitational radii, are obtained for the pion.
Next, we discuss normalizations of the form factors.

Using the Legendre polynomial expressed by ζ as
P2ðcos θÞ ¼ ½−12ζð1 − ζÞ þ 3 − β2�=ð2β2Þ, we obtain the
integral of Eq. (117) as
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Z
1

0

dzð2z − 1ÞΦπ0π0
q ðz; ζ;W2Þ

¼ −Θ1;qðsÞ þ Θ2;qðsÞ − 4ζð1 − ζÞΘ2;qðsÞ: ð121Þ

The right-hand side of this equation should be equal to the
sum −4Mπ

2ðqÞ given in Eq. (19) atW
2 ¼ 4m2

π , and it leads to

the relations

Θ1;qðs ¼ 4m2
πÞ ¼ Θ2;qðs ¼ 4m2

πÞ ¼ Mπ
2ðqÞ; ð122Þ

in the scaling limit. Quark and antiquark contributions
are added to obtain the form factors: Θnðs ¼ 4m2

πÞ ¼P
i¼qΘn;iðs ¼ 4m2

πÞ. Then, such sum of the right-hand
side of Eq. (122) is

P
qM

π
2ðqÞ. Therefore, the normalizations

of the form factors become the momentum fraction carried
by quarks and antiquarks in the pion:

Θ1ðs ¼ 4m2
πÞ ¼ Θ2ðs ¼ 4m2

πÞ ¼
X
q

Mπ
2ðqÞ; ð123Þ

in the scaling limit. The factor
P

qM
π
2ðqÞ is written as Rπ in

some articles. Here, the only the quark contributions are
discussed, so that the normalization becomes the quark
(and antiquark) momentum fraction. However, if the
gluon contribution is added, the relation should be
Θ1ðs ¼ 4m2

πÞ ¼ Θ2ðs ¼ 4m2
πÞ ¼ 1, which indicate Aðs ¼

4m2
πÞ ¼ 1 and Bðs ¼ 4m2

πÞ ¼ −1=4 from Eq. (56).
Therefore, our timelike form factors are consistent with
the works in Refs. [28,31,32]. We should note that these
normalizations are satisfied in the scaling limit. However,
the Belle measurements are at finite Q2 with some
resonance effects, so that the actual values contain their
effects. In fact, as we show later, they are Θ1ðs ¼ 4m2

πÞ ¼
Θ2ðs ¼ 4m2

πÞ ∼ 0.7, instead of
P

qM
π
2ðqÞ ¼ 0.5, in our

GDA analysis.

IV. RESULTS

From these theoretical preparations, we proceed to the
actual analysis of experimental data. Here, the Belle data
for γ�γ → π0π0 [7] are used for our study. The invariant-
mass dependent functions are parametrized with the res-
onance contributions from f0ð500Þ, f0ð980Þ and f2ð1270Þ,
and it is summarized as

ΦππðþÞ
q ðz; ζ;W2Þ ¼ Nαzαð1 − zÞαð2z − 1Þ

× ½ ~B10ðW2Þ þ ~B12ðW2ÞP2ðcos θÞ�;
ð124Þ

where the normalization constant Nα is given in Eq. (86).
The S and D wave terms are expressed by the contributions
from the continuum and the resonances as

~B10ðW2Þ ¼ −
��

1þ 2m2
π

W2

�
10

9
Mπ

2ðqÞF
π
qðW2Þ

þ
X
f0

5gf0ππf̄f0

3
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

f0
−W2Þ2 þ Γ2

f0
M2

f0

q �
eiδ0ðWÞ;

~B12ðW2Þ ¼
�
1 −

4m2
π

W2

�
10

9
½Mπ

2ðqÞF
π
qðW2Þ

þ gf2ππff2M
2
f2
β2ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2
f2
−W2Þ2 þ Γ2

f2
M2

f2

q �
eiδ2ðWÞ:

ð125Þ

The timelike form factor for the continuum is given
by the cutoff parameter Λ and the power of n − 1 in
Eq. (94). The factor n is suggested by the constituent
counting rule at high energies and it is n ¼ 2 for the pion.
Here, f0 indicates f0ð500Þ and f0ð980Þ. However, the
analyzed Belle data are not sensitive to f0ð980Þ, so that it is
not included in our analysis. The up and down quark GDAs
are considered in our analysis, and strange and charm quark
contributions are neglected. We assigned a parameter α for
the z-dependent functional form of the quark GDAs. This
z-dependent function enters into the amplitude Aþþ in
Eq. (65), and then the integral is given in the form of

R
1
0 dx

ð2z − 1Þ2zα−1ð1 − zÞα−1. This integral is expressed as the
beta function as Bðα; αÞ=ð2αþ 1Þ, and it plays a role of
overall constant to explain the γ�γ → π0π0 data.
Next, we explain the S- and D-wave phase shifts used in

our analysis. The phase shifts δ0 and δ2 in Ref. [24] seem to
work below W ¼ 1 GeV. The region of the center-of-mass
energy is 0.525 GeV ≤

ffiffiffi
s

p ¼ W ≤ 2.05 GeV in the Belle
data [7]. In order to analyze the Belle data, we use the
S-wave and D-wave ππ phase shifts obtained by
Bydzovsky, Kaminski, Nazari, and Surovtsev (BKNS)
[55]. Their phase shifts are shown in Fig. 11. They
proposed a parametrization of the S- and D-wave phase
shifts from analysis of the ππ scattering experimental data

FIG. 11. S-wave phase shift and D-wave phase shifts by
Bydzovsky, Kaminski, Nazari, and Surovtsev [55].
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in the isospin ¼ 0 channel. Since only the difference of
S- and D-wave phase shifts matters for explaining the
cross section in our analysis of Eqs. (124) and (125), the
difference is also shown by the dashed curve. Above
the KK̄ threshold at about 1 GeV, the phase difference
is, roughly speaking, a slowly varying function of W. We
note that the KK̄ channel opens at the threshold energy
2mKþ ¼ 0.987354 GeV, so that only the ππ phase shifts
may not be sufficient. To be precise, the KK̄ → ππ phase
shifts should be introduced together with the kaon GDAs.
We may investigate such details step by step. In our
GDA analysis, a simple case is considered by introducing
a phase ΔδðWÞ for the S wave above the KK̄ threshold,
δ0ðWÞ ¼ δ0ðWÞBKNS þ ΔδðWÞ, δ2ðWÞ ¼ δ2ðWÞBKNS with
expectation that such effects are included in the modified
part. In our analysis, we introduce phase parameters in the
S-wave as

δ0ðWÞ ¼ δ0ðWÞBKNS þ aδðW − 2mKÞbδ ; ð126Þ

at W > 2mK . The parameters aδ and bδ are determined by
the χ2 analysis.

A. f 0ð980Þ contribution
A possible complication or ambiguity is how to deter-

mine the decay constants f̄f0ð500Þ and f̄f0ð980Þ, whereas the
constant ff2 is relatively well evaluated [58,61]. It is
because the internal configurations of f0ð500Þ and
f0ð980Þ are not well known. The evaluation of f̄f0 is done
for f0ð980Þ only by assuming that f0 is a qq̄-type meson,
namely ðuūþ dd̄Þ= ffiffiffi

2
p

(≡nn̄), ss̄, or mixture of them [63].
On the other hand, it is known that f0ð980Þ is likely to
be a tetra-quark meson or KK̄ molecule so as to explain
the experimental measurements on f0ð980Þ → ππ,
f0ð980Þ → γγ, and ϕ → f0ð980Þγ [62,64,65]. The theo-
retical decay constant is not evaluated unfortunately, as far
as we are aware, for the tetraquark orKK̄ configurations for
the f0ð980Þ. Therefore, a realistic numerical estimate
would not be possible for f0ð980Þ in comparing with
experimental data on γ�γ → π0π0.
Of course, the f0ð980Þ may be viewed as a qq̄ state at

high energies, whereas it may be a qqq̄q̄ one at low
energies, because they could mix with each other. In fact,
there is an indication from the constituent-counting-rule
studies on Λð1405Þ in comparison with the experimental
data on γ þ p → Λð1405Þ þ Kþ that Λð1405Þ looks pen-
taquark state (qqqqq̄) at low energies, whereas it could be
an ordinary three-quark one (qqq) at high energies [5].
There is a possibility that the situation could be the same for
f0ð980Þ on the energy-dependent composition.
In any case, let us simply assume the decay constant

ff0ð980Þ by taking the qq̄-type estimate in the QCD sum
rule in order to illustrate the situation and the issue. As we
will show later, the optimum value for the parameter α is

roughly given by α ∼ 1. We find that it is difficult to
accommodate the f0ð980Þ resonance with this parameter
value. Obtained cross sections are compared with the
Belle data at Q2 ¼ 8.92 GeV2 and cos θ ¼ 0.1 by taking
α ¼ 0.5, 1.0, and 2.0 in Fig. 12. Here, the decay constant
f̄f0ð980ÞðQ2 ¼ 1 GeV2Þ ¼ 0.104 GeV was obtained in
Ref. [63] by considering the u and d quark contributions
to the GDAs with f̄n ¼ 0.35 GeV at Q2 ¼ 1 GeV2, the
mixing angle θf0 ¼ 32.5°, which is the middle of
25° < θf0 < 40°, between jnn̄i and jss̄i, B1 ¼ −0.92 by
the QCD sum rule [63], and the conversion factor 18=30 for
the distribution amplitude from Eqs. (110) to (115). TheQ2

evolution is also taken into account by using Eq. (113) from
Q2 ¼ 1 GeV2 to 8.92 GeV2 in order to compare with the
Belle data at Q2 ¼ 8.92 GeV2.
From the comparison with the Belle data in Fig. 12, we

find that the f0ð980Þ peak structure is not obvious from the
data and that they are not consistent with the theoretical
predictions as long as α < 2. Although the figure is one of
the kinematical point of the Belle measurements, the
comparisons with other data also indicate a similar ten-
dency. Here, we should note that the theoretical curves are
shown by assuming the qq̄ configuration of f0ð980Þ with
the QCD sum rule estimate for the decay constant. These
results should suggest that f0ð980Þ could not be understood
mainly by the qq̄ configuration. It is possibly a tetra-quark
(or KK̄ molecule) state as widely known in the hadron-
physics community. The decay constant could be very
small if it is a tetraquark (qqq̄q̄) type because the decay
width is proportional to the matrix element of a bilocal
operator. Since the data do not show an obvious f0ð980Þ
peak structure and a theoretical estimate is not available
for the decay width by the tetra-quark picture, we do not

FIG. 12. Expected f0ð980Þ contributions to the γ�γ →
π0π0 cross section by taking the decay constant
f̄f0ð980ÞðQ2 ¼ 1 GeV2Þ ¼ 0.104, which was obtained by assum-
ing a qq̄ configuration for f0ð980Þ in the QCD sum rule. The
cross sections are for the kinematics Q2 ¼ 8.92 GeV2 and
cos θ ¼ 0.1. The parameter α is taken as α ¼ 0.5, 1.0, and
2.0. The f̄f0ð980Þ is evolved to Q2 ¼ 8.92 GeV2.
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include f0ð980Þ in our numerical analysis in the analysis of
Sec. IV B. If the measurements become more accurate in
future, one may consider to include this contribution.
The f0ð980Þ effect is not conspicuous in the Belle data

on the differential cross section, for example, in Fig. 12.
However, it appears in the total cross section [7] and the
γ → f0ð980Þ transition form factor is investigated by using
the Belle data [66]. Such studies indicate that f0ð980Þ is
consistent with the qq̄ configuration, which is different
from our finding in Fig. 12. Because of these conflicting
results, the f0ð980Þ contribution and its internal configu-
ration are not well understood.

B. Analysis results

The GDAs are expressed by a number of parameters,
which are obtained by a χ2 analysis of Belle experimental
measurements on γ�γ → π0π0. The resonance part is fixed
as much as possible by other experimental and theoretical
studies, and the used values are listed in Table I. The large
uncertainty comes from the values of the decay constants,
f̄f0ð500Þ, f̄f0ð980Þ, and ff2ð1270Þ, especially for the f0 mesons.
There are a number of reliable theoretical studies on
ff2ð1270Þ. In Sec. IVA, we explained that the current
QCD sum rule estimate for f̄f0ð980Þ is much different from
the Belle measurements if it is assumed as a qq̄ state. There
is no available estimate, as far as we are aware, for the
decay constant in the tetra-quark picture for f0ð980Þ. In any
case, the data do not show a clear signature of f0ð980Þ in
the W ∼ 1 GeV region, so that f0ð980Þ is not included in
the following analysis. Furthermore, there is no theoretical
estimate on the decay constant for f̄f0ð500Þ. We may simply
assume that it is same as the f0ð980Þ value; however, the
results are inconsistent with the Belle data in the same way
with the f0ð980Þ case. Therefore, we consider two options
in our studies:

(set 1) Analysis without f0ð500Þ and f0ð980Þ:
The GDAs are expressed by the parameters for only

the continuum and f2ð1270Þ, and they are determined
by the χ2 analysis.

(set 2) Analysis with f0ð500Þ and without f0ð980Þ:
The decay constant ff0ð500Þ is considered as an

additional parameter to be determined from the ex-
perimental data in addition to the parameters in the
set 1.

For the decay constants, the Q2 evolution is taken into
account by using Eq. (113) and taking the average scale of
the Belle experiment as hQ2i ¼ 16.6 GeV2, which is a
simple average of the minimum and maximum values, 8.92
and 24.25 GeV2, in the analyzed data in this work.
By considering the factorization condition of Eq. (12),

only the largeQ2 data withQ2 ≥ 8.92 GeV2 are used in our
analysis. Furthermore, the higher-order and higher-twist
terms Aþ− and A0þ do not contribute significantly at large
Q2. The Q2 values to satisfy this condition are Q2 ¼ 8.92,

10.93, 13.37, 17.23, and 24.25 GeV2 in the Belle mea-
surements. In eachQ2, the pion angles are cos θ ¼ 0.1, 0.3,
0.5, 0.7, and 0.9 as listed in Table II. In each bin of Q2 and
cos θ, there are 22 data points, so that the total number of
data is 550.
The GDAs are expressed by the three kinematical

variables, z, ζ, andW2 without the scale Q2 by considering
the scaling region. Actual experiments are done at finiteQ2,
so that the GDAs extracted from the measurements may
depend on Q2. In order to check the Q2 dependence of the
Belle data, we show the quantity ðQ2 þ sÞdσ=βdðcos θÞ in
Figs. 13 and 14 for cos θ ¼ 0.1 and cos θ ¼ 0.5, respec-
tively by choosing W ¼ 0.525, 0.975, and 1.550 GeV.
According to Eq. (65), there is no scale dependence for this
quantity in the scaling limit. As shown in these figures, the
Belle data are not very accurate at this stage to discuss
whether Q2 dependence exists. However, there are tend-
encies for the scaling within the errors. The Q2 variations
may be seen at Q2 < 6 GeV2 at W ¼ 1.55 GeV and
cos θ ¼ 0.5 in Fig. 14; however, such data are irrelevant
in our analysis because only the data withQ2 ≥ 8.92 GeV2

are used.
In the analysis 1, there are four parameters, α, Λ, aδ, and

bδ, and the others are fixed. For example, n ¼ 2 is taken by
the constituent-counting rule, and

P
qM

π
2ðqÞ ¼ 0.5 from

pion-structure function studies. The f0ð500Þ contribution is
terminated by taking f̄f0ð500Þ ¼ 0. The obtained parameter

TABLE II. Belle experimental data used in our analysis.

Q2 (GeV2) cos θ No. of data

8.92 0.1, 0.3, 0.5, 0.7, 0.9 22 × 5
10.93 0.1, 0.3, 0.5, 0.7, 0.9 22 × 5
13.37 0.1, 0.3, 0.5, 0.7, 0.9 22 × 5
17.23 0.1, 0.3, 0.5, 0.7, 0.9 22 × 5
24.25 0.1, 0.3, 0.5, 0.7, 0.9 22 × 5
total 550

FIG. 13. Q2-scale dependence of the Belle data at cos θ ¼ 0.1.
The ordinate corresponds to the term with the GDAs integrated
over z in Eq. (65).
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values are listed in Table III. A reasonable fit is obtained in
this analysis with χ2=d:o:f: ¼ 1.22. Assigning the decay
constant f̄f0ð500Þ as an additional parameter in the analysis
2, we obtained a better agreement with the data with
χ2=d:o:f: ¼ 1.09. In both cases, the parameter α is close to
the asymptotic value α ¼ 1. For the pion distribution
amplitude, a more concave functional form is suggested
at finite Q2 [45,53,67]. However, the pion distribution
amplitude is related to the C-odd GDAs as shown in
Eq. (66), and our current analysis is for the C-even GDAs,
so that there is no direct connection.
The cutoff parameter is in the range 1.6 < Λ < 2.0 GeV,

which is larger than the cutoff of the nucleon’s electro-
magnetic form factors. The set 2 provides a better descrip-
tion of the Belle data, as indicated by the χ2=d:o:f: value,
especially at small Wð<0.8 GeV). In both analyses, the
values of aδ and bδ stay at almost same values, aδ ≃ 3.8
and bδ ≃ 0.4. In order to explain the Belle data, the decay
constant of f0ð500Þ is f̄f0ð500Þ ¼ 0.0183 GeV at Q2 ¼
16.6 GeV2. It becomes f̄f0ð500Þ ¼ 0.0246 GeV at Q2 ¼
1 GeV2, and this value is much smaller than the one for
f̄f0ð980Þ with the qq̄ picture (f̄f0ð980Þ ¼ 0.104 GeV at
Q2 ¼ 1 GeV2) [63].

The actual comparisons with the Belle data sets are
shown in Figs. 15 and 16 for Q2 ¼ 8.92, 13.37, 17.23, and
24.25 GeV2 and cos θ ¼ 0.1 and 0.5. The dashed and solid
curves are our theoretical results for set 1 [without f0ð500Þ]
and set 2 [with f0ð500Þ]. There is a dip around
W ¼ 1 GeV, which is caused by cancellations between
the S- and D-wave terms. The f2ð1270Þ contribution is
obvious at cos θ ¼ 0.1 but it is relatively suppressed at
larger cos θ (¼ 0.5). As mentioned before, the f0ð980Þ
effects do not appear in the data. However, since the χ2

value is slightly smaller in the analysis set 2 in comparison
with the set-1 value, the f0ð500Þ could be needed for
interpreting the data in the small W range (W < 0.8 GeV).
The whole cross section decreases with increasing Q2 as

shown in Figs. 15 and 16. Especially, at reasonably large
cos θ, the f2 resonance effects becomes small. Due to the
scale dependence of the decay constants f̄f0 and ff2 , the
resonance contributions should become small in compari-
son with the continuum as Q2 becomes large. At high-
energy eþe− colliders such as the international linear
collider (ILC), large Q2 measurements should be done
and such experiments are suitable for probing the con-
tinuum part of the GDAs. They are valuable for the studies
of the GDAs as one of three dimensional structure functions
and their relations to the GPDs.
In order to see each term contribution to the γ�γ → π0π0

cross section, we show the cross section solely coming
from f0ð500Þ, GDA continuum, or f2ð1270Þ in Fig. 17 by
terminating other terms and the phase shifts in Eq. (124) for
the kinematics of Q2 ¼ 8.92 GeV2 and cos θ ¼ 0.1. In the
solid curves, the phase shifts are also terminated, whereas
the dashed curve indicates the GDA continuum with the
phase shifts. For example, the solid GDA continuum curve
is obtained by setting f̄f0ð500Þ ¼ ff2ð1270Þ ¼ 0 and δ0 ¼
δ2 ¼ 0. Here, the parameters of the set 2 are used for
drawing these curves. In comparison with the solid curve
in Fig. 15 for Q2 ¼ 8.92 GeV2 and cos θ ¼ 0.1, these
distributions seem to be very small. However, the con-
tinuum and f2 contribute to the cross section constructively
with almost the same magnitude, so that each contribution
is about 1=4 of the cross section of Fig. 15 if other terms are
terminated. As expected, f0ð500Þ contributes only in the
low-energy region ofW < 0.8 GeV, and it is much smaller
than the continuum according to the set-2 analysis.
However, it depends on the f0ð500Þ decay constant, which
is taken as one of the parameters in our analysis because
of the lack of theoretical information. The f2ð1270Þ
contributes especially in the W ¼ 1.27 GeV region, and
its magnitude is comparable to the continuum. The GDA
continuum is a slowly varying function of W and it is
distributed in the wide W range.

C. Gravitational form factors and radii for pion

Since the optimum GDAs are determined from the
Belle data, the timelike gravitational form factors

FIG. 14. Q2-scale dependence of the Belle data at cos θ ¼ 0.5.

TABLE III. Constants and parameters determined by the χ2

analysis. Here, the f̄f0ð500Þ and ff2ð1270Þ values are provided at
Q2 ¼ 16.6 GeV2, and they correspond to f̄f0ð500Þ ¼ 0.0246�
0.0045 and ff2ð1270Þ ¼ 0.101 at Q2 ¼ 1 GeV2.

Parameter set 1 set 2

α 0.801� 0.042 1.157� 0.132
Λ (GeV) 1.602� 0.109 1.928� 0.213
f̄f0ð500Þ (GeV) 0 (fixed) 0.0184� 0.0034
ff2ð1270Þ (GeV) 0.0754 (fixed) 0.0754 (fixed)
aδ 3.878� 0.165 3.800� 0.170
bδ 0.382� 0.040 0.407� 0.041
χ2=d:o:f: 1.22 1.09
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are calculated by Eqs. (119) and (120). Their absolute
values are shown in Fig. 18, and individual real and
imaginary parts are in Fig. 19. The form factor Θ2 comes
from the D-wave contribution and it is peaked at the
f2ð1270Þ position, whereas the function Θ1 has a dip due

to the interference between the S- and D-wave terms.
The imaginary part of Θ2 is peaked at the f2ð1270Þ
resonance and its real part changes the sign. The real and
imaginary parts of Θ1 have both features on the inter-
ference and the f2ð1270Þ resonance. As for the electric

FIG. 15. Comparison with the Belle cross sections measurements atQ2 ¼ 8.92 and 13.37 GeV2 with cos θ ¼ 0.1 and 0.5. The dashed
and solid curves indicate our analysis results for set 1 [without f0ð500Þ] and set 2 [with f0ð500Þ], respectively.

FIG. 16. Comparison with the Belle cross sections measurements at Q2 ¼ 17.23 and 24.25 GeV2 with cos θ ¼ 0.1 and 0.5.
The dashed and solid curves indicate our analysis results for set 1 [without f0ð500Þ] and set 2 [with f0ð500Þ], respectively.
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form factor of the pion in the timelike region, there are
recent theoretical studies by the holographic QCD and
lattice QCD [68].
In order to find the space distributions and gravitational

radii, the timelike form factors should be transformed to the
spacelike one by using the dispersion relation of Eq. (51).
The obtained spacelike form factors are shown in Fig. 20.
They are slowly decreasing function of −t and the slope is
steeper for Θ1 than the one for Θ2 due to the additional
S-wave term in Eq. (119).
The substantial difference between the form factors

certainly contradicts to the soft-pion theorem [32,69] which
guarantees that Goldstone bosons in gravitational field are
insensitive to the scalar curvature [70]. As the gravity is
coupled to the conserved energy-momentum tensor includ-
ing the gluon contributions, it may be the signal that gluon
GDA, whose contribution to the considered two-photon
process is suppressed, is essential.
Then, the gravitational densities and their radii are

calculated by Eqs. (53) and (54), respectively. The gravi-
tational densities ρ1ðrÞ and ρ2ðrÞ, which are obtained from
Θ1ðtÞ and Θ2ðtÞ, respectively, are shown for the pion in
Fig. 21. It is known that the spacelike electric form factor

FIG. 17. Each contribution to the γ�γ → π0π0 cross section is
shown for the kinematics Q2 ¼ 8.92 GeV2 and cos θ ¼ 0.1. The
solid curves indicate cross sections by terminating other con-
tributions and phase shifts. Three curves are for only f0ð980Þ,
continuum, or f2ð1270Þ. The dashed curve shows the continuum
cross section by turning on the phase shifts. The parameter values
of the set-2 results are used here.

FIG. 18. Absolute values of the timelike gravitational form
factors Θ1ðsÞ and Θ2ðsÞ of the pion.

FIG. 19. Real and imaginary parts of the timelike gravitational
form factors Θ1ðsÞ and Θ2ðsÞ of the pion.

FIG. 20. Spacelike gravitational form factors normalized to
their values at t ¼ 0.

FIG. 21. Gravitational densities ρ1ðrÞ and ρ2ðrÞ.
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of the proton is known as the dipole form FpðqÞ ¼
1=ð1þ q⃗2=Λ2Þ2, which leads to the exponential charge
density ρpðrÞ ¼ ðΛ3=ð8πÞÞe−Λr by the Fourier transform.
Typical functional forms of charge densities and form
factors are given in Table IV for hadrons and nuclei.
The charge form factors and densities of light nuclei are
typically given by the Gaussian functional forms, whereas
the densities become flat ones for large nuclei. The pion
form factor is roughly given by the monopole form
FπðqÞ ¼ 1=ð1þ q⃗2=Λ2Þ as suggested by the constituent
counting rule, and its space distribution is given by the
Yukawa form ρπðrÞ ¼ ðΛ2=ð4πrÞÞe−Λr. It is a divergent
function as r → 0, so that it is more appropriate to show the
density by 4πr2ρðrÞ rather than ρðrÞ itself as usually done
for the nucleons and nuclei.
To understand the physics meaning of the energy-

momentum tensor and the gravitational form factors, the
static energy-momentum tensor is defined in the Breit
frame as [29]

Tμν
q ð⃗rÞ ¼

Z
d3q

ð2πÞ32Eeiq⃗·⃗rhπ0ðp0ÞjTμν
q ð0Þjπ0ðpÞi; ð127Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ q⃗2=4
p

. The μν ¼ 00 component satis-
fies the mass relationZ

d3rT00
q ð⃗rÞ ¼ mπΘ2;qð0Þ: ð128Þ

Therefore, the Θ2 reflects the mass (energy) distribution in
the pion. The μν ¼ ij (i, j ¼ 1, 2, 3) components are
expressed by the pressure pðrÞ and shear force sðrÞ as

Tij
q ð⃗rÞ ¼ pqðrÞδij þ sqðrÞ

�
rirj
r2

−
1

3
δij

�
: ð129Þ

Using the definition of the energy-momentum-tensor form
factors, we find that pðrÞ and sðrÞ are expressed by Θ1.
Namely, the Θ1 is the mechanical form factor which
contains information on the pressure and shear force. The
conservation of the energy-momentum tensor ∂μTμν ¼ 0

indicates the stability condition for the pressure pðrÞ as
[29,71]

Z
∞

0

drr2pðrÞ ¼ 0: ð130Þ

It is satisfied in our formalism due to the finite Θ1ðt ¼ 0Þ,
as also noticed in Ref. [32], because of the δ function in
the r integration.
According to the definition (127), the mass (energy)

density is given mainly by the form factor Θ2ðtÞ; however,
Θ1ðtÞ also contributes at finite t. On the other hand,
pressure and shear-force densities are given solely by the
form factor Θ1ðtÞ. Therefore, we may use the terminologies
“mass” (or energy) and “mechanical” (pressure and shear
force) for Θ2ðtÞ [ρ2ðrÞ, hr2i2] and Θ1ðtÞ [ρ1ðrÞ, hr2i1].
The gravitational densities 4πr2ρ1ðrÞ and 4πr2ρ2ðrÞ are

peaked at r ¼ 0.1 ∼ 0.2 fm region in Fig. 21. However, the
mechanical density ρ1ðrÞ is distributed in larger-r region,
which is our interesting finding for studying the gravita-
tional physics of the pion. The mechanical density contains
the shear force, which could be dominant in the surface
region, so that the ρ1ðrÞ may be distributed in the relatively
large-r region. From the densities ρ1ðrÞ and ρ2ðrÞ or the
spacelike form factors Θ1ðtÞ and Θ2ðtÞ, the gravitational
radii can be calculated. We obtained the radii

ffiffiffiffiffiffiffiffiffiffi
hr2i2

p ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imass

p
and

ffiffiffiffiffiffiffiffiffiffi
hr2i1

p ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imech

p
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imass

q
¼ 0.39 fm;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imech

q
¼ 0.82 fm ðset 2Þ:

ð131Þ

It is interesting that we found a mass radius which is much

smaller than the charged one
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2icharge

q
¼ 0.672�

0.008 fm; however, the mechanical radius is slightly larger
as indicated in the density 4πr2ρ1ðrÞ of Fig. 21. It is
because that there is also the S-wave term ~B10 in addition to
the D-wave one ~B20. In physics, the pressure and shear-
force distributions have different nature from the mass
distribution.
We should note that there is uncertainty in our analysis

in the sense that only the relative phase δ0ðWÞ − δ2ðWÞ
affects the cross section; however, their absolute phases
are not. It means that the phaseΔδðWÞ could be attributed to
δ2 instead of δ0 inEq. (126).We repeated our χ2 analysiswith
this extreme option and obtained the radius values asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imass

p
¼ 0.32 fm and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imech

p
¼ 0.88 fm. There-

fore, it is fair to state at this stage that the evaluated
gravitational radii are in the ranges:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imass

q
¼ 0.32–0.39 fm;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hr2imech

q
¼ 0.82–0.88 fm: ð132Þ

It is encouraging that similar radii are obtained in totally
different analyses. The mass radius is much smaller than the

TABLE IV. Typical densities and form factors.

Hadrons ρðrÞ FðqÞ
Quark 1

4πr2 δðrÞ 1

Pion Λ2

4πr e
−Λr 1

1þq⃗2=Λ2

Proton Λ3

8π e
−Λr 1

ð1þq⃗2=Λ2Þ2

Light nuclei ðΛ2

π Þ3=2e−Λ
2r2 e−q⃗

2=ð4Λ2Þ

Heavy nuclei 3
4πR3 θðR − rÞ 3j1ðqRÞ

qR
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charge radius,and themechanical radius is slightly larger. It is
interestingtofindthat there isapossibilitythat themassradius
is different from the charge one as suggested in Ref. [36].
Lattice QCD calculations on the energy-momentum

tensor indicate similar tendency that the mechanical radius
is larger than the mass radius [72]. Here, we should note
the definition difference from our form factor, namely the
factor of −4 in BðtÞ and Θ1ðtÞ as explained below
Eq. (123). The actual radii are not shown in the lattice
calculations [72]; however, spacelike form factors and radii
have similar tendencies with our results. In addition, a
theoretical estimate of D-term, which corresponds to Θ1 in
our studies, also shows a similar result [73].
Because the pion GDAs were obtained in this work, it is

possible to study their relation to the pion GPDs as
explained in Secs. II D and II E. In order to discuss the
pion GPDs, we need to find appropriate double distribu-
tions from the GDAs and then to calculate the GPDs. Since
it is a significant work, we leave it as our future project.
In addition, the Belle collaboration has been investigating
other hadron-pair production processes including pp̄. Once
such data become available, it is possible to determine
nucleonic GDAs in comparison with the GPDs obtained in
spacelike reactions.
This kind of studies has a bright prospect in the sense

that the Belle collaboration has been analyzing other meson
productions γ�γ → hh̄ from the two photon. The exper-
imental errors of Figs. 15 and 16 are dominated by the
statistical errors. The KEKB was just upgraded to super-
KEKB, so that the errors should be much smaller in the
near future. Furthermore, if the ILC is realized, the two-
photon cross section γ�γ → hh̄ should be obtained in a very
different kinematical region, namely at large Q2, and the
ILCmeasurement should be valuable for probing especially
the continuum part of the GDAs.
For a long time, theGDAs had been considered as a purely

theoretical subject. We showed in this work that it becomes
possible to investigate the GDAs experimentally with the
appropriate theoretical formalism. This study is merely a
starting point. Interesting prospects are waiting for us for
investigating gravitational physics for hadrons in the quark-
gluon level. For example, the equivalence principle indicates
that the anomalous gravitomagnetic moment should vanish
in the nucleon [74]. Therefore, the equivalence principle
could be tested in the microscopic particle physics by
investigating the GPDs and GDAs for the nucleon.

V. SUMMARY

The GDAs are one of three-dimensional structure func-
tions, and they are related to the GPDs by the s − t crossing
relation. We analyzed the Belle data of the two-photon
cross sections γ�γ → π0π0 for determining the pion GDAs.
This work is the first work to obtain the GDAs from the
actual experimental data, and our results should be valuable
for probing the three-dimensional structure of hadrons,

especially for future applications to unstable hadrons
including exotic-hadron candidates which cannot be used
in fixed-target experiments.
Including the f0ð500Þ and f2ð1270Þ meson contribu-

tions to the cross section, we expressed the pion GDAs
by a number of parameters which were determined by
analyzing the data. The obtained z-dependence is close to
the scaling one (α ¼ 1). If we include f0ð980Þ contribu-
tion with constants estimated by assuming it as a qq̄ state,
theoretical differential cross sections are much larger than
the Belle measurements. The f0ð980Þ meson was not
included in our actual analysis. The GDAs contain the
timelike gravitational form factors Θ1ðsÞ and Θ2ðsÞ
of the energy-momentum tensor, and we calculated them
from the obtained GDAs. The function Θ2ðsÞ is deter-
mined only by the D-wave part, whereas both S- and
D-waves contribute to Θ1ðsÞ. Therefore, they have differ-
ent functional behaviors. This is the first time that the
gravitational form factors are obtained from actual exper-
imental measurements.
The timelike gravitational form factors are converted to

the spacelike ones by the dispersion relation. Then, the
gravitational mass and mechanical densities are shown,
and their radii are calculated. We obtained

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imass

p
¼

0.32–0.39 fm and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imech

p
¼ 0.82–0.88 fm from the

form factors Θ2 and Θ1, respectively. They indicate that
the gravitational mass radius is much smaller than the

charge radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2icharge

q
¼ 0.672� 0.008 fm and that the

mechanical radius is slightly larger. Future super-KEKB
measurements should improve this situation. We hope that
this work will open a new field of gravitational physics in
the quark-gluon level.
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