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Hadron tomography can be investigated by three-dimensional structure functions such as generalized
parton distributions (GPDs), transverse-momentum-dependent parton distributions, and generalized
distribution amplitudes (GDAs). Here, we extract the GDAs, which are s-f crossed quantities of the
GPDs, from cross-section measurements of hadron-pair production process y*y — 7°z° at KEKB. This
work is the first attempt to obtain the GDAs from the actual experimental data. The GDAs are expressed
by a number of parameters and they are determined from the data of y*y — z%2° by including
intermediate scalar- and tensor-meson contributions to the cross section. Our results indicate that the
dependence of parton-momentum fraction z in the GDAs is close to the asymptotic one. The timelike
gravitational form factors ®; and ®, are obtained from our GDAs, and they are converted to the spacelike
ones by the dispersion relation. From the spacelike ®; and ®,, gravitational densities of the pion are
calculated. Then, we obtained the mass (energy) radius and the mechanical (pressure and shear force)

radius from ®, and @, respectively. They are calculated as \/(r?),.c = 0.32-0.39 fm, whereas the

mechanical radius is larger v/ (r?), .., = 0.82-0.88 fm. This is the first report on the gravitational radius
of a hadron from actual experimental measurements. It is interesting to find the possibility that the
gravitational mass and mechanical radii could be different from the experimental charge radius

(1’2)0}1‘dlrge = 0.672 £0.008 fm for the charged pion. For drawing a clear conclusion on the GDAs

of hadrons, accurate experimental data are needed, and it should be possible, for example, by future
measurements of super-KEKB and international linear collider. Accurate measurements will not only
provide important information on hadron tomography but also possibly shed light on gravitational
physics in the quark and gluon level.

DOI: 10.1103/PhysRevD.97.014020

I. INTRODUCTION

Internal structure of hadrons has been investigated in
terms of form factors and parton distribution functions
(PDFs). Now, the field of hadron tomography, namely
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hadron-structure studies by three-dimensional (3D) structure
functions [1-4], is one of fast developing areas in particle and
nuclear physics. The 3D structure functions contain informa-
tion on both the form factors and the PDFs, and they are
ultimate quantities for understanding the nature of hadrons
from low to high energies. Furthermore, it is essential to
investigate the 3D structure of the nucleon for understanding
the origin of nucleon spin because orbital angular momenta of
partons could play an important role. The 3D structure
functions could be also useful for clarifying internal quark-
gluon configurations of exotic-hadron candidates [4].
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Among the 3D structure functions, generalized parton
distributions (GPDs) [1,2] and transverse-momentum-
dependent parton distributions (TMDs) [3] have been
investigated extensively in recent years. We now have crude
idea on these distributions. There are also generalized
distribution amplitudes (GDAs) [1,4] as one of the 3D
structure functions, and it is rather an unexplored field in
comparison with the GPD and TMD studies. The GDAs can
be obtained theoretically by the s-f crossing of the GPDs.
Here, s and ¢ are Mandelstam variables. Therefore, the GDA
studies should also be valuable for the GPD understanding.
In particular, both GPDs and GDAs can be expressed by
common double distributions (DDs) with different Radon
transforms as discussed later in Sec. II E. Therefore, the
GDA studies are valuable also for understanding the GPDs
through the DDs and simply by the s-7 crossing.

The GDAs are key quantities for probing 3D structure of
hadrons by timelike processes. In addition, one of the other
important advantages of the GDAs is that 3D tomography is
possible in principle for exotic-hadron candidates [4]
because they can be produced in a pair in the final state,
whereas no stable exotic hadron exists as a fixed target for
measuring their GPDs and TMDs. The constituent counting
rule can be used for identifying the number of elementary
constituents in exotic hadron candidates at high energies. We
should be able to distinguish exotic multiquark states from
the ordinary gg and gqq ones by the counting rule [4,5].
Furthermore, form factors contained in the GDAs should
provide information whether exotic hadron candidates are
diffuse molecular states or compact multiquark ones [4].

Another advantage is that the GDAs and GPDs contain
information on form factors of the energy-momentum
tensor so that the gravitational-interaction radius can be
investigated. Although the root-mean-square charge radii
are well known for the nucleons, the gravitational radius
has never been measured experimentally. We try to extract
the gravitational-interaction sizes, namely mass and
mechanical radii, from existing experimental data in this
work. Of course, the gravitational interactions are too weak
to be measured directly for hadrons and elementary
particles, such as quarks and gluons, “usually” in accel-
erator experiments, and there is no reliable quantum theory
for the gravitational interactions at this stage. Nonetheless,
it is interesting that the hadron tomography studies can
access the gravitational information in hadrons through the
energy-momentum tensor.

Fortunately, the Belle collaboration recently reported the
cross sections for the pion-pair production in two-photon
process y*y — n°z° at KEKB with various kinematical
conditions [6,7]. It is our research purpose of this paper to
extract the pion GDAs from the Belle measurements. Our
studies should be the first attempt to extract any hadron
GDAs from actual experimental measurements. Now, other
hadron production processes y*y — hh are being analyzed
in the Belle collaboration, so that other GDAs can be

extracted in future. Furthermore, the KEKB accelerator has
just upgraded and accurate measurements are expected in
future for the two-photon processes. The two-photon
processes have been used for investigating existence and
properties of new hadrons in electron-positron annihilation
reactions [8]. The same two-photon processes should be
possible at the future international linear collider [9], and the
GDAs will be investigated in the PANDA project [10]. This
work is merely the first step for determining the GDAs;
however, much progress is expected in the near future.

In this article, the generalized TMD (GTMD) or the
Wigner distribution is explained first as a generating
function for the 3D structure functions in Sec. II. Then,
the GPDs and GDA s are introduced, and the form factors of
energy-momentum tensor in the GDAs are explained in
connection with the gravitational radii. Next, our theoreti-
cal formalism is developed for the y*y — 7°7° cross section
and the pion GDAs in Sec. III. The cross section of y*y —
7%7° is expressed in terms of the GDAs. For extracting the
GDAs from the experimental data, we introduce a para-
metrization of the GDAs, which are then determined by the
analysis of the Belle measurement. Our analysis method is
described in Sec. III, results are shown in Sec. IV. Finally,
our studies are summarized in Sec. V.

II. THREE-DIMENSIONAL STRUCTURE
FUNCTIONS OF HADRONS

The 3D structure of hadrons becomes one of hot topics in
hadron physics, and it can be investigated by the GPDs,
TMDs, and GDAs. First, we explain the Wigner phase-
space distribution and the GTMD in Sec. Il A as generating
functions for form factors, PDFs, and the 3D structure
functions. Then, we discuss the details of the GPDs and
GDAs which are relevant to our studies including their
relations in Secs. II B, II C, and II D. Both GPDs and GDAs
are expressed by double distributions through Radon
transforms as explained in Sec. Il E. The GDAs are related
to the timelike form factors of the energy-momentum
tensor, and then the spacelike gravitational form factors
and radii are explained in Sec. ITF.

A. Wigner distribution and three-dimensional
structure functions

The 3D structure functions originate from the generating
function, called the Wigner distribution, which is a phase

space distribution W (7, %) expressed by the space coordinate
7 and momentum k. In the classical limit of 2 — 0, it

becomes the & function (H (7, k) — E), which s the classical
trajectory in the phase space. Therefore, its delocalization
indicates quantum effects, and the Wigner function contains
full information for describing quantum systems.

For the nucleon, the Wigner distribution was originally
defined in Ref. [11] as the 6-dimensional phase-space
distribution W(x, k,7), where x is the Bjorken scaling
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FIG. 1. Wigner distribution, GTMD, and 3D structure functions.

variable and %T is the transverse momentum. However, it
was defined in a special Lorentz frame, so that a new
definition was proposed in the infinite momentum frame
[12] to express it by 5-dimensional phase-space distribution
W(x, %T, 7r). It is equal to the A™ = 0 (¢ = 0) limit of the
generalized transverse-momentum-dependent parton dis-
tribution (GTMD) [13].

In Fig. 1, relations of the GTMD and the Wigner
distribution to the form factor, PDF, and 3D structure
functions are shown [11-13] by integrating the GTMD by
various kinematical variables. The form factors and the
PDFs have been investigated until recently, and now the
nucleon-structure studies focus on 3D structure functions,
the GPDs and TMDs. However, there are few recent
research activities on the GDAs which have a close
connection to the GPDs by the s- crossing.

B. Generalized parton distributions

The GPDs have been investigated by deeply virtual
Compton scattering (DVCS) process as shown in Fig. 2 and
also by meson and lepton-pair production processes
[14,15]. In addition, there are possibilities to study them
at hadron-beam facilities, for example, by N + N — N +
7 + B where N and B are the nucleon and baryon [16] and
by an exclusive Drell-Yan process 7~ + p — uTu~ +n
[15,17,18]. Here, we explain the definition of the GPDs by
using the DVCS process (y* + h — y + h) because its s-t
crossing is the two-photon process (y* + y — h + h) which
is analyzed in this work in terms of the GDAs.

We define kinematical variables for expressing the GPDs
of the nucleon. The initial and final momenta of the nucleon

p=P—-7% pP=P+%

FIG. 2. Kinematics for GPDs in deeply virtual Compton
scattering process.

are p and p/, respectively, as shown in Fig. 2, and they are ¢
and ¢’ for the photon. Then, their average momenta and the
momentum transfer are given as [1,2,4,19]

5_PtP __q+q
P= S . A=p-p=q-4.
2 2
(1)
Expressing the momentum squared quantities as Q> = —¢?
and Q% = —3°, we define the Bjorken scaling variable x,

momentum-transfer-squared ¢, and the skewness parameter

£ as

Q2
2p-q

. =AY ==l (2)

X =

If the kinematical condition Q%> |t| is satisfied, the
skewness parameter is expressed by the lightcone-
coordinate expression as

2
MR x AT s )

éZZ—x—i—xt/Qz_Z—x_ 2Pt

The lightcone notation is given by a = (a*,a™,d ) with
a* = (a" + a*)/+/2 and the transverse vector @,. Then,
the momenta are expressed as

p=(pt.0.0,). p =(p".00,).

Q> & Q-
= - +7—’0 ) ! = 0,—,0 5 4
q (xp 2yt O q oy O 4)

by using the relation (p™)2, Q%> M?,|t|. The scaling
variable x is the lightcone momentum fraction carried by
a quark in the nucleon, whereas the skewness parameter &
or the momentum A indicates the momentum transfer from
the initial nucleon to the final one or the momentum
transfer between the initial and final quarks. The cross
section of the DVCS y*h — yh can be factorized into the
hard part of quark interactions and the soft one expressed
by the GPDs as shown in Fig. 2 if the kinematical condition

0% > |1, AéCD’ (5)

is satisfied. Here, Agcp is the QCD scale parameter.

The GPDs for the nucleon are defined by off-forward
matrix elements of quark and gluon operators with a
lightcone separation, and quark GPDs are defined by

/ D by (N(P)a(=y/2)r q(y/2)IN(p))

4r yr=y, =0
1 ict?A,
zzﬁﬁu(p’) [Hq(x,é, t)y++Eq(x,§, 1) M :|Lt(p).

(6)
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Here, ¢(y/2) is the quark field, M is the nucleon mass, and
o is given by o = (i/2)[y* y’]. The functions
H,(x,&,t) and E,(x,&,t) are the unpolarized GPDs of
the nucleon, and there are also gluon GPDs H ,(x, £, t) and
E,(x,¢&,t) defined in a similar way [2]. To be precise, the
link operator needs to be introduced in the left-hand side of
Eq. (6) to satisfy the color gauge invariance. In this article,
it is simply ignored.

The advantages of the GPDs are that they contain both
longitudinal momentum distributions for partons and trans-
verse form factors. In fact, the GPDs H ,(x,&, ) become
unpolarized PDFs for the nucleon in the forward limit
(A E,t— 0):

H,(x.0,0) = 6(x)q(x) — 0(—x)4(—x). (7)

where 6(x) is the step function, 6(x) =1 for x > 0 and
0(x) = 0 for x < 0. Their first moments become Dirac and
Pauli form factors F(¢) and F,(t), respectively:

1 1
/ dxH, (x.&.1) = F, (1), / AxE, (x.&.1) = s (1).

-1 -1
(8)

Another important feature, actually the most important for
high-energy spin physicists, of the GPDs is that a second
moment indicates a quark orbital-angular-momentum con-
tribution (L) to the nucleon spin:

Jy :%/dxx[Hq(x,é,t: 0)+E,(x.&t=0)]

1
:iAqu +Lq, (9)

because we know the quark contribution Ag™ = Ag + Ag
from polarized charged-lepton DIS measurements.

The GPDs have been mainly investigated for the
nucleon. However, since the pion GDAs are investigated
in this work and they are related to the pion GPDs by the
s —t crossing, we also show the definition of the pion
GPDs in the same way with Eq. (6) for the nucleon [20]:

/ D b (o =y/ 27 a(y/2) 2(p))

4 yr=y,=0
— HE(x. 1), (10)

The pion is a scalar particle, so that the function E, (x,&,1)
does not exist.

In comparison with PDF parametrizations, such studies
are still premature for the GPDs due to the lack of
experimental information. The simplest idea is to use the
factorized form into the longitudinal PDF ¢(x) and the
transverse form factor Fr(z, x) at x [21]. For example, it is
expressed as

Hy(x,& = 0.1) = q(x)Fy(t.), (1)

at £ = 0 for x > 0. Namely, the GPDs contain information
on both the PDFs and the form factors as already shown by
the sum rules in Egs. (7) and (8).

C. Generalized distribution amplitudes

If we exchange the s and ¢ channels in the Compton
scattering in Fig. 2, it becomes the two-photon process
y* +y — h+ h in Fig. 3. The GDAs describe the produc-
tion of the hadron pair hh from a gg or gluon pair. We
explain kinematical variables for describing the two-photon
process and the GDAs [1,22-26] as shown in Fig. 3. The
initial photon momenta are denoted as ¢ and ¢', the final
hadron momenta are p and p’, P is their total momentum
P=p+p, and k and k' are quark and antiquark
momenta. One of the photon is taken as a real one with
¢”? = 0, and another one should satisfy the condition

0% = —¢*> > Njep, W? (12)

so that the two-photon process is factorized into a hard part
and a soft one in terms of the GDAs as shown in Fig. 3 [27].
Here, W2 is one of the variables in the GDAs, and it is the
invariant-mass squared W2 of the final-hadron pair. It is
also equal to the center-of-mass (c.m.) energy squared s:

W2=(p+p)P=(q+q)=s. (13)
The second variable ¢ indicates the lightcone momentum

fraction for one of the final hadrons in the total momentum
P as shown in Fig. 3:

p-q’_p*zl—l-ﬁcosﬁ

14
P-4 P 2 (14)

Here, 0 is the scattering angle in the c.m. frame of the final
hadrons with the momentum assignments:

p+ — CP+

BT =(1—2)PT
Pt =1-¢P*

FIG. 3. Kinematics for GDAs in two-photon process
y* 4+ vy — h+ h. This process corresponds to the s — ¢ crossed
one of the Compton scattering process in Fig. 2.
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q=1(q ql) q' = (191,0,0,-[ql),
p=(p° ,|B|cos @),
p' = (p°, =[p|sin6,0,~[p|cos ), (15)

and f is the hadron velocity defined by

— 2 (16)

with the final-hadron mass m,,. The third variable z is the
lightcone momentum fraction for a quark in the total
hadron-pair momentum P, and it is defined by

kg kT
b P

(17)

The GDAs are expressed by these three variables, z, ¢,
and W? = s.

The quark GDAs are defined by the matrix element of
the same operators used in defining the GPDs in Eq. (6)
between the vacuum and the hadron pair:

I (z,¢, W?)
_ /@
- 2 ¢

< ()R la(-3/Dr q/20)] . (18)

i(2z=1)Pty=/2

We use the notation @} for one specific quark (¢) without
the summation over the quark flavor. Here, the kinematical
range of zis 0 < z < 1, whereas the variable 7/ = 2z — 1 is
often used with the same notation z (or x) in the range
—1 <7 <1 for the distribution amplitude as explained
in Ref. [18]. However, because many articles of the GDAs
use the notation z in the range 0 < z < 1, we follow this

— +
convention in this work. The expression e!(2:-DP"y7/2

(h(p)h(p")|wr(=y/2)y w(y/2)|0) is sometimes written
by the equivalent one as e Y (h(p)h(p")|w(y)y*
w(0)|0). Furthermore, the gauge link should be introduced
in the nonlocal operator to satisfy the color gauge invari-
ance; however, it is simply neglected in this paper.
There are sum rules for the quark GDAs of the isospin
I = 0 two-pseudoscalar-meson final states [23,24]:

/ dz®!"=0 (2. £, W?) =0,
0
[ oz = 10l g0 = —amy g1 -0, (19

where M' ’21<q) is the momentum fraction carried by flavor-¢

quarks and antiquarks in the hadron 4 (note: total quark
fraction Zqu(q)). As shown in Eq. (44), this integral is

expressed by the energy-momentum tensor of a quark, so

that the right-hand side of Eq. (19) should be described by
the form factors of the energy-momentum tensor at finite
W? [28]. There are recent theoretical studies on the energy-
momentum tensor for the nucleon [29] and on its lattice
QCD estimate [30]. In general, there are two energy-
momentum tensor form factors for the pion [31,32], and
they are explained in Secs. II F and III H.

Since the GDAs contain intermediate-meson contribu-
tions as explained in Sec. III E, the second sum of Eq. (19)
should be a complex value at finite W2. There are resonance
terms and the continuum one which contains a quark part of
the form factor F/:(W?) defined in Eq. (94). The explicit
expression is shown later in Egs. (124) and (125) for
analyzing actual experimental data. Therefore, our studies
can suggest the optimum form factor F(W?) of the energy-
momentum tensor for the continuum part of the hadron #,
and they are related to the size of gravitational interaction.
The gravitational radii of a hadron are discussed in more
details in Sec. Il F. The sum rule of Eq. (19) was derived for
the kinematical point of W? = 0 [23,24], and then it was
considered even at finite W? as the form of form factor of
the energy-momentum tensor [28]. However, since there
are two gravitational form factors for the pion in general, a
relation between the GDAs and the form factors is newly
derived in Sec. IIT H of this article.

The GDAs are defined for the hadron-antihadron system,
so that they satisfy the charge-conjugation invariance [2]:

(1 = 2,8, W?) = —CO (2, ¢, W?)
=-0'(z,1 ={,W?), (20

where C is the charge-conjugation operator. We may note

that the gluon GDA should satisfy the condition
(2,4, W?) = DI(1 — 2., W?)

= Oz, 1-¢. W?), (21)

due to the translational invariance in defining the gluon
GDA and C invariance. As shown in Fig. 4, the gluon
GDA contributes to the two-photon cross section as a next-
to-leading order term [24,25], so that it is neglected in our
current leading-order analysis.

1. Generalized distribution amplitudes for pions

The pion GDAs are investigated in this work, and there
are two notation types for them. One is the representation
based on the C-parity eigenstates, and the other is by the
isospin. In order to avoid confusion, we explain them here
in details.

First, we consider possible two-pion states. Denoting /
for the isospin, we have the I =1 zz state which is
antisymmetric under the exchange of the pions. On the
other hand, the / = 0 and I = 2 zx states are symmetric:
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p+ — CP+

A

g T Kt=01-z2)Pt
Pt =@1-¢pP*

FIG. 4. Contribution to the two-photon cross section from the
gluon GDA.

|00) = 0n?).

(nta+nat—x

-5 -
98]

[20) = — (z*7~ + 72t + 22°2°). (22)
V6

Since the C parity of y*y is even, the zz state needs to
satisfy C= (=1)!+5 = (=1)f = +1 with S = 0. Therefore,
L should be even. The Pauli principle indicates

(=DH=D(=1) =1, (23)

so that the isospin states should be I = 0 or 2. The GDAs
are defined in Eq. (18) by the matrix element of the vector-
type nonlocal operator. Since the isospin of gg is 0 or 1,
the only possible choice for the 7z isospin is / = 0. In this
way, only the 7z sates allowed in the y*y process should
have I = 0 with L = even numbers (0,2, ...).

For the actual pion GDAs which are investigated in this
work, we may express them as C-parity eigenstates [24]

T 1 VAl
O] (2. ¢ W) =5 [0 (2.0 W)

O (2,1 -, W3], (24)

where (+) indicates the C parity. Therefore, the z* 7~ GDAs
are given by ®7'" = @ 4 @) and the C-even
part satisfies @27 (z,¢, W?) = —@r" (1= 2,2, W2).
The 7°2° GDAs contain only the C-even function:

' (2,¢, W) = 5" (2,¢, W2). (25)

Then, the isospin invariance leads to the relations between

the u- and d-quark GDAs as o™ ) — <I>Z”(+) and *) =
_(I)Zﬂ(_)‘

On the other hand, the isospin decomposition of the
pion GDAs is discussed in Ref. [23] first by defining them

as the twist-2 chiral-even amplitudes by

qyr“ﬂb (Z, g’ WZ)

_ / D iy
2

x (2(p)a” (")l (=y/2)r* Ty (v/2)[0) )

e

where y is the quark field with « and d quark components
w = (%), T is the flavor matrix: T = 1/2 (T = 73/2) for the
isosinglet (isovector) GDA. The notation I is the identity

matrix. They are expressed by the isoscalar and isovector
GDAs as

(Dﬂ"zrh — 5abTr<i“) Prr(1=0)
1

+5Tr([, ) T) @ U=1), (27)

They satisfy the symmetry relations due to the charge
conjugation:

O 1=0) (2, ¢, W2) = @m0 (1 — 2, £, W?)
= @ U=0(z,1-¢, W?),
@11 (2, ¢, W2) = @I (1 - 2,6, W?)
= —@m=N (7 1 — ¢, W2). (28)

If the isospin-symmetry relations are satisfied for the pion
GDAs, the isosinglet and isovector GDAs are related to the
C even and odd GDAs as

’

Prr(I=0) — (I)Z”("") — (I)Z”H‘)
prr(l=1) — CDZ”(_) — _(I)Z”(_)' (29)

In this work of the z°z° production process, only the
following isoscalar or C-even GDAs are involved in the
cross section y*y — 7%z

D27 (2.0, W?) = @70 (7., W?)
= 0" (z.0. W), (30)

where ¢ indicates u# or d. This function is parametrized
and used for the analysis of 7°2° production data later by
using Eq. (65).

D. Relation between GPDs and GDAs

As obvious from the diagrams of the DVCS and two-
photon process in Figs. 2 and 3, respectively, the GPDs
and GDAs are related with each other by the s-f crossing as
long as the factorization conditions are satisfied. Namely,
the scale Q2 should be large enough for the factorization:
0% > W2, Ajcp iny*y = hh; Q% > ||, Ay iny*h — yh.
By the s- crossing, the final hadron /4 with the momentum
p’ becomes the initial hadron A with p, which indicates the

014020-6
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momentum changes from p and p’ in the GDAs to p’ and
—p in the GPDs. It means that both variables are related by
the relations [1,24].

1—x/&
>

1-1/¢

5 W2 <t (31)

7 <

(<

and then the GDAs are GPDs are related to each other by

q)giz (ZI, 4 WZ)
1-27 1
H' x = JE= = W?). 32
cn(i- R - w). @)

The physical regions of the kinematical variables are

0<z<1, [1-2¢] <1, W2 >0,

x| <1, &) <1, 1<0. (33)

However, the relation of Eq. (32) indicates that the physical
GDAs do not necessary correspond to the physical regions
in Eq. (33) of the GPDs:

t>0.
(34)

0 < |x| < o0, 0<|é] < o0, lx| < 1€,

Namely, the GDAs could lead to the unphysical kinemati-
cal regions, |x| > 1, || > 1, and ¢ > 0, of the GPDs.
Equation (32) also indicates the relation |£| > |x|, which
is called as the Efremov-Radyushkin-Brodsky-Lepage
(ERBL) region. The ERBL region of the GPDs can be
investigated, for example, by the hadronic reaction N +
N — N + 7 + B [16]. However, GDA studies will provide
another information on the ERBL GPDs although it is in
the unphysical region of ¢ > 0.

E. Radon transforms for GPDs and GDAs
by using double distributions

We explained definitions and basic properties of the
GPDs and GDAs. They are related with each other by the
s-t crossing. The studies of the GDAs should be valuable
for the GPD studies and vice versa. In fact, both GPDs and
GDAs are expressed by the common double distributions
(DDs) by different Radon transforms. The Radon transform
is defined in n dimensions for an arbitrary function f(x)
by [33]

ﬂnaz/wwww@—an, (35)

where x is the n-dimensional space coordinate
[x = (x1, %), ...,x,)] and & is the unit vector in n dimen-
sions [¢ = (£,&,, ..., &,)]. Because of the § function, the

o
4

+1

GDAs: @ (z,5,W?)
1-2z=(1-2)B-a
PDFs: g(x)

-1 & =ﬁ

x=B+&a
GPDs: H,(x,§,1)

FIG. 5. Kinematical support region of the double distributions
and integral paths for obtaining the GPDs, GDAs, and PDFs.

integral is over the n — 1-dimensional plane constrained
by p=¢-x

Using this Radon transform, we can express the GPDs
and GDAs in terms of double distributions (DDs),
F q(ﬂ, a,t) and Gq(ﬁ, a, t), defined by the matrix element
[1,20]

(h(p")la(=y/2)¥a(y/2)|h(p)),>—o

=2P.y / dpdae="PPyHieby2F (B a, 1)
—A-y / dpdae=PPyTeAY2G (B a,1),  (36)

for the scalar hadron # like the pion. The kinematical
support region is given by |f| + |a| < 1 for the DDs. Using
the Radon transform, we can express the GPDs in terms of
these DDs as

H,(x,é,1) = / dpdad(x — ff — a)
X [Fy(f.a.1) + 6Gy(poat). (37)

Namely, the GPDs are obtained by integrating the DDs over
the slight line x =  + £a as shown in Fig. 5.

The parton distribution functions (PDFs) are obtained as
a special case of this integral over the vertical line in Fig. 5
with the constraint of the forward limit (r = 0), and they are
expressed as

a(x) = /_ : daF ,(f.a.1 = 0). (38)

There are similar relations of the gluon DD to the gluon
GPDs and PDF [1].
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As just an example, we introduce a simple parametriza-
tion for the DDs F,(f,a), which are expressed by the
corresponding PDF ¢(f8) multiplied by a profile function

h, (B, a) as [34]

Fy(B.a) = hy(B.@)q(p). (39)
The profile function may be expressed as

r@eb+2)  [(1-18)* -’

W= e or - @0

if the GPDs become the £-independent ones H ,(x,&) =
0(x)g(x) — 8(—x)g(—x) in the limit b - oo.

The matrix element associated with the GDAs is also
expressed in the same way by the DDs as [1,20]

(h(p)h(p")|a(=y/2)¥a(v/2)|0),2—
=(p-p)-y / dpdae=Pr=p")y/2tia(p+p")y/2
x F,(p,a. W?)

~(p+p)-y / dae PP I2D, (0. WP). (41)
Then, the GDAs can be expressed by the DDs as

it (z, ¢, W?)

=-2(1-20) / dpda

x8(1=2z—=(1=-20)p+a)F,(1 —2z,a,W?)
— 2D, (x/& W?), (42)

which indicates that the GDAs are obtained by the Radon
transform along the different line 1 —2z— (1 -2¢)p +
a = 0 as shown in Fig. 5.

We found that both GPDs and GDAs can be expressed
by the DDs. Therefore, experimental measurements of the
GDA s should be valuable also for the GPD studies through
the determination of the DDs and vice versa. In particular,
the GDAs correspond to specific kinematical regions
of the GPDs as explained in Sec. II D. These investigations
from the direction of the GDAs could be supplementary to
the direct GPD studies. Furthermore, it is the advantage of
the GDAs that exotic hadron GDAs can be measured in
future, whereas their GPDs cannot be studied experimen-
tally because there is no stable exotic-hadron target.
Considering these merits, we believe that our GDA project
should be important for future developments on hadron
tomography not only for ordinary hadrons such as the
nucleons and pions but also for exotic-hadron candidates.

F. Timelike form factors of energy-momentum
tensor and gravitational-interaction radii

The GPDs and GDAs are measured in the DVCS and
two-photon processes which are, of course, electromag-
netic interaction processes. However, their studies could
also probe an aspect of gravitational interactions with
quarks and gluons. In order to understand this fact, we
explain it by taking the quark GPD and GDA definitions.
As given in Egs. (6) and (18), the GPDs and GDAs are
defined by the same nonlocal vector operator. For the
GDAs, its moments multiplied by the momentum factor
2(P*/2)" are expressed by the derivatives as [1]

2(P+/2)”/ldz(2z— 1)1 /%e
0 T
xal=y/2ra/2)| . =aOr i) q(0)

(43)

i(2z=1)P*y=/2

<~ <~
where the derivative 0 is defined by f,0f, = [f(0f>)—
(0f1)f2]/2. For n=2, this operator is the energy-
momentum tensor of a quark, and it is a source of gravity,
whereas it is the vector-type electromagnetic current
for n = 1.

As shown in Fig. 6, (a) the electromagnetic interaction is
described by the vector current gy*q, (b) the weak
interaction is characterized by the vector minus axial-vector
current y#(1 —ys), and (c) the gravitational one is by the
tensor interaction given by gy*0"q for a quark. In Eq. (43),
the GPDs and GDAs contain this factor as the energy-
momentum tensor of a quark. The charge radius of the
proton is measured by elastic electron scattering in the form
of the electric form factor through the photon exchange
process (a). In the similar way, the gravitational radius
should be measured by the graviton exchange process (c) in
principle. However, it is impossible to do an actual
scattering experiment directly at accelerator facilities for
the gravitational interaction due to the ultraweak interaction
nature. On the other hand, it is possible to access such
physics through the GPDs and GDAs. Therefore, the
gravitational radii of hadrons are measurable quantities,
although it may be somewhat surprising that a different
physics aspect can be investigated through the electromag-
netic processes.

w vect(_)r
vy vector — axial-vector

e -
e a7 (1—°)q

g9 tensor
a"ovq

(a) electromagnetic (b) weak (c) gravitational
FIG. 6. Electromagnetic, weak, and gravitational interactions
with a quark. The gravitational interactions (c) are probed by the

GPDs and GDAs.
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In this way, the following integral of the quark GDAs
over the variable z is related to a matrix element of the
quark energy-momentum tensors 7% [23,24,28]:

1
/ dz(2z = )L™ (2,¢, W?)
0
2 0 0( | T++
ZWM (p)="(p)IT37(0)[0), (44)
and there is a similar equation on the gluon matrix element.
The quark energy-momentum tensor is given by

T (x) = g(x)y#iD ") q(x), (45)

where D* is the covariant derivative D#* = OV — igA“A%+ /2
defined by the QCD coupling constant g and the SU(3)
Gell-Mann matrix A%. The notation X**) is given by the
symmetric combination X*) = (X" 4 X") /2. Here, T} *
indicates the lightcone ++ components as expressed in
Eq. (43), so that it is specifically given by T;* =
(T + TP + T3° + T3°)/2. These equations indicate that
the GDAs probe the energy-momentum tensors of quarks
and gluons, in the same way as the GPDs, in the timelike
process.

In an isolated system, the energy-momentum tensor is
conserved a,, T = 0. However, if there is an external force
and gravity, it satisfies [35]

1
\/—__gaﬂ(\/—_ng”“) =G" - F,”MT’”, (46)
where G* is the energy-force density, ¢ is defined by the
metric tensor g, as g = det(g,,), and I, is the affine
connection tensor. The second term on the right-hand side
is the gravitational-force density. As the electromagnetic
interaction and weak interaction are characterized theoreti-
cally by the vector and vector minus axial-vector operators,
gr'q and gy*(1 —ys)q, respectively for quarks, the
gravitational interaction is characterized by the energy-
momentum tensor 7#*. Namely, the energy-momentum
tensors of quarks and gluons are sources of gravitational
interactions. Now, the 3D structure-function studies are
getting popular in hadron physics, and this tensor appears
in the 3D structure functions, in particularly in the GPDs
and GDAs as illustrated in Fig. 6. For example, the GDAs
probe the 3D structure of a hadron in the form of the
timelike form factors. The GDAs are related to the energy-
momentum tensor in Eq. (44), so that they probe the
gravitational interaction, for example, as the form factors of
energy momentum tensor. These form factors are explicitly
defined later in Eqs. (57) and (116).

The GPDs and GDAs contain information on spacelike
and timelike form factors, respectively. For example, the
simple parametrization of the GPDs is given in Eq. (11)
expressed as the longitudinal PDF multiplied by the two-

dimensional transverse form factor. In general, the two-
dimensional transverse charge density p/(r,) is given by
the Fourier transform of the spacelike electric form factor of
a hadron 4 as

= [ ot i
ry) = e
PrryL (272')2 T\q1
©dg,
:/ TQLJO(QLVL)F]%(QL)’ (47)
0 T
where J, is the Bessel function. The two-dimensional
transverse root-mean-square (rms) radius is then given by

dFl(q,)
= [ @riiph) =41 g
QJ_ q,.—0

The transverse form factors of the energy-momentum
tensor are calculated by using a simple parametrization
for the GPDs of the proton, and the results indicate that they
could be different from charge form factor [36].

In the three-dimensional case, the charge density and the
form factor are related with each other by

3
P10 = [ e TP

- [T5katianr@. @)

where j is the spherical Bessel function. The rms radius is
obtained by

= [ @) =S so)

dlgl? 131~0

For timelike form factors probed by the eTe™ or y*y
reactions, we can relate them to the spacial distributions by
using the dispersion relation. Considering that singularities
of the form factor F"(¢) is in the positive real ¢ axis from
4m%l, we can express the 7-channel form factor by the
dispersion integral over the real positive ¢ (=s) as [37,38]:

o ds ImF" (s
pr) = [ L) (51)

m TSs—t—ie

Namely, the ¢-channel form factor F"*(¢) can be calculated
from the s-channel one F'(s). Then, using Eqgs. (47) and
(51) together with consideration on the constituent-
counting rule in the asymptotic region [4], we have [38]

ph(r) = / © D (Ve )ImEL(s).  (52)

2
m? 2w

where K is the modified Bessel function of the second
kind. However, the imaginary part of the form factor,
namely its phase, is not available from the measurement of
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y* — hh because its cross section is proportional to |F"(z)|?
and a theoretically model-dependent input is needed for
estimating the spacial charge distribution from the meas-
urement on the timelike form factor. In Ref. [38], the
Gounaris-Sakurai amplitude [39] is used for ImF"(¢) to
obtain the transverse charge radius +/(r{)% = 0.53 fm,
which corresponds to the three-dimensional one (r?)%, =
1.5(r3 )% = 0.42 fm?. Here, “ch” indicates the electric
charge. This value is comparable to the ze scattering
measurement value (r?)% = 0.439 £ 0.008 fm* [40] for
the charged pion. These results are for electric charge radii
probed by electromagnetic interactions, whereas we inves-
tigate gravitational radii for hadrons, particularly the pion
in this work, by using the GDAs in the two-photon process
vy = hh.

The three-dimensional density is calculated by using
Egs. (49) and (51) as

w ds e~V
Ph(r) = A ds tmFi(s). (53)

2
m? 47

The three-dimensional rms radius is also obtained by using
Egs. (50) and (51) as

6 dF'p)
CFMe=0) dr

6 /oodsIth(s)
_Fh([:O) 4 2 '

m2 7 s

<r2>h

(54)

Here, the normalization of the spacelike form factor is
explicitly taken into account by the replacement
F"(t) — F"(t)/F"(t = 0), where F"(t = 0) is calculated
by Eq._(51).

The spacelike gravitational form factors ©,(z) and
©,(t) are defined by the energy-momentum tensor 7+
[28,31,32]. In the GPD and GDA studies [28], other
notations A(7) and B(t) are often used. Here, A and B
are used for expressing other quantities, so that we use the
notations O (7) and ©,(t) for the gravitational form factors.
In the spacelike process, they are defined by

(m(p)ITq"(0)|="(p))
5ab

=5 119" = 4"q")01,4(1) + PP*@y(1)].  (55)
for a quark ¢. Here, the momenta are defined by P =
p+ p'and g = p' — p. We defined the form factors and the
energy-momentum tensor for one quark type (namely,
flavor-g quark and antiquark) in order to avoid confusions.
In Ref. [28], the form factors are expressed by A and B, and
they are related to ®,(¢) and ©,(¢) by

1

B, (1) ==-0,,(t). (56)

Ag(1) = @4 (1). ;

As discussed above Eq. (31), the variables (p, p’) (GPD)
in the ¢ channel is changed for (—p’, p) (GDA) in the s
channel by the s — 7 crossing. Then, using the momentum
notations P=p+ p’ and A =p’ — p, we obtain the
definition of the timelike form factors from Eq. (55) as

(n*(p)"(p")|T§(0)[0)

5(1/7
=159 = PUPOy (5) + MO, o (5)].  (57)
From Eq. (44) and this definition, we can evaluate the
gravitational form factors for the pion.

III. THEORETICAL FORMALISM

We explain the cross section for the two-photon process
v*y = n°2 to express it in terms of the GDAs in Sec. IIT A.
First, the situation of the pion distribution amplitude (DA),
instead of the GDAs, is explained in Sec. III B, and 0?
evolution of the DA and the GDAs are discussed in
Sec. III C. The ¢ dependence of the GDAs is introduced
in Sec. III D. Then, the parametrization of the GDAs is
introduced in Sec. IIIE to determine them from exper-
imental data. Contributions from f;, and f, resonances are
included in the analysis, and coupling constants for the
resonances are explained in Sec. IIIF, and the Q? scale
dependence of such resonance contributions is discussed in
Sec. III G. In Sec. III H, the relations between the gravi-
tational form factors and the GDAs are derived.

A. Cross section for the two-photon
process 7y — nz’

The pion-pair production process y*y — 7°2° is shown

in Fig. 7, and its cross section is written by the matrix
element M as [41]

1 = &*p &p'
61 — /\4 * 0.0\|2
T4 q';| 'y = =)l (27)2E, (27)2E,,
x 2n)**(q+4 - p-p'). (58)

where one of the initial photons is taken on mass shell
(¢"* = 0). The matrix element M (y*y — z°z°) is given by
the hadron tensor 7, as

uv

(g, A) 70 (p)

~(d's \) =°(p’)
FIG. 7. y*y = 2°z° process.

014020-10



HADRON TOMOGRAPHY BY GENERALIZED DISTRIBUTION ...

PHYS. REV. D 97, 014020 (2018)

iM(y'y -’z =e*(A)e (V)T

I

T, =i / dtye=io2 (2 (p)a® ()| TI ()T (0)[0). (59)

by the photon polarization vector ¢#(1) and the electro-
magnetic current J¢"(y). In obtaining the total cross
section, the cross section should be divided by two due
to two identical particles in the final state to avoid the
double counting. Alternatively, the cross section is inte-
grated over the half solid angle, in stead of the factor 1/2,
for calculating the total cross section. In any case, differ-
ential cross sections are discussed in this paper, so that such
a factor is not needed.
We define the helicity amplitudes A;; by

(Gt
Ay = e (@ ()T,

i:_707+7 J:_7+ (60)

If the kinematical condition Q% > W2, A? is satisfied, the
two-photon process can be factorized into the hard part
(v*'y = q@) and the soft part (gg — 7n°z°) as shown in
Fig. 3. In the Breit frame, ¢ is taken along the z axis.
Introducing two timelike vectors n = (1,0,0,1)/ V2 and
n' = (1,0,0,—1)/v/2, we express the photon and quark

momenta as g = (n—n')\/0*/2, ¢ =n'(Q*+ W?)/
V20% k = zn\/Q?/2,and k' = (1 — 7)n\/Q?/2. At large

Q?, the hadron tensor can be expressed by the factorized
form as

T, =i / e 9 (20 )2 () [T (3) 1< (0)]0)

2 2)/<d4k [Y"(k—éf)y" ra—§)r

=) (—e’e
(%) | G (=gl bie  (a=R) el

x / dye= % (1) () T25(¥)4a(0)]0).  (61)

The first part describes the process y*y — ¢q of Fig. 3, and
the second one does the soft process gg — 7°z°. For the
term g,(y)q,(0) in this equation, we use the Fierz identity

449, = 120a729 + (r'rs)ap@ra7sq
_ _ aff —
+ aq + (15)ap@rsq + 0ha0apq.  (62)

where the first two terms and the last one are the leading
twist terms, while the third and fourth ones are twist-3
terms. Since the trace of an odd number of y, is zero, only
the first two terms survive. However, the second term is the
axial-vector current, which cannot exist for z°7° state due
to the party invariance. After all, only the first term
contributes to the hadron tensor.

In the leading order of the running coupling constant a,
the gluon GDA contribution is neglected and the hadron
tensor can be expressed by the quark GDAs by calculating
the hard part of Eq. (61) as [4,23,24]

T — gy [ E g ) (63
—_ - Te Z? 0 ZZ(I—Z) q (Zﬂz:ﬂ )7 ( )
q

where ¢ is defined by

g = -1
=0 for u,v = others. (64)

foruy=v=1,2,

The hadron tensor 7#* is generally written by the product
of the two electromagnetic currents in Eq. (59). In the
leading twist, it is expressed by the matrix element of the
vector current as given by the GDAs d>’q”0”0 in Eq. (26) [24].
The situation is the same as the one in the hadron tensor
W,, in the charged-lepton deep inelastic scattering as
expressed in the twist expansion [42].

Since only the nonvanishing terms are e,<,+)(q)e,(,+)
(@ = 8;,_) (q)eﬁ_)(q’)g'}” = —1, the cross section is
expressed by the helicity amplitude A, as

do na? /1 4_m,2,|A
d(cos®)  4(Q* +s) s

e? 1 2z -1 0.0
A=) = o7 w2
. q ZA dzz<1_z) 77 (2.6 W), (65)

2

s

where the relation A__ =A,, is used due to party
conservation. The gluon GDA contributes to the cross
section through the amplitudes A, , =A__ and A,_ =
A_, in the next-to-leading order, so that these terms are
suppressed by the factor of ;. There are also contributions
from higher-twist amplitudes Ay, and A,_, which decrease
as at least 1/Q because of a helicity flip [24,25].

The y*y — 7°2° cross section is expressed by the GDAs
in Eq. (65). In order to determine the GDAs from
experimental data, we need to express the GDAs by a
number of parameters, which are then determined by a y?
analysis of the data on do/d(cos®). There a number of
studies on the pion distribution amplitudes; however, it is
the first attempt for the GDAs in comparison with actual
experimental data. Before discussing an appropriate func-
tional form of the GDAs, we explain the distribution
amplitude (DAs), which are related to the z-dependent
part of the GDAs. For example, the pion distribution
amplitude @, (z) is related to the GDAs by [23]
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D,(z) = @™ (2.0 = LW =0)
= —@7()(z,¢ = 0, W2 = 0),
o) (7, = 1,W? =0)
— o (, L =0, W =0)=0. (66)

In our analysis of y*y — 7z°7°, we obtain orr(+)

B. Pion distribution amplitude

Before stepping into the details of the pion GDAs, we
explain the pion distribution amplitudes (DAs). The pion
DAs are defined by the matrix element of a bilocal quark
operator between the vacuum and the pion by taking the
pion momentum along the positive z-axis as [18,24,43]

(2 ()W ()ay (0)410)|

_ifs

-4 / dze7 Y (159)u@y(zot) + - (67)

=3, =0

where a is the pion charge (a = +,0, =), % (y)w(0) indicates

a(y)d(0), [a(y)u(0) = d(y)d(0)]/v/2. or d(y)u(0), for z*,

7%, or 7~ respectively, and the ellipses indicate higher-
twist terms.

The function ®,(z, ) is the leading-twist distribution
expressed by the longitudinal momentum fraction z of a
valence quark in the pion and the renormalization scale u
of the bilocal operator. The u dependence is described by
the ERBL evolution equations [44]. It is normalized as

1
/ dz®@,(z,p) = 1, (68)
0
and f, is the pion decay constant defined by

(@ (p)lw (0)r*rsy(0)[0) = —if . p*. (69)

In the asymptotic limit of y — oo, the pion distribution
amplitude becomes

o (2) = 62(1 - 2), (70)

as it becomes obvious from the Q%-evolution solution of
Egs. (78) and (81). At finite y, it is generally expressed by
using the Gegenbauer polynomials as

D,(z,p4) = 62(1-2) Y anﬂ)ka—l) (71)
n=0,2,4,-

where only the even terms contribute because the DA
should satisfy the condition @, (1 — z, u) = ®,(z, #) under
the exchange z <> 1 — z. It corresponds to the exchange of
¢ and g in the pion, and the momentum distribution carried
by a quark or antiquark should be same under this exchange
because of positive C-parity of the axial current. The
Gegenbauer polynomials are C§(x) = 1, C{(x) = 2ax,
C$(x) = —a +2a(1 + a)x?,---. The current situation of
the pion DA is explained in Ref. [18]. Since the

Gegenbauer polynomials are rapidly oscillating functions
at large n and the coefficients a,(u) are small for large 4,
the n > 4 terms could be neglected at this stage. As for the
second coefficient a,, there are theoretical estimates by
lattice QCD [45] and QCD sum rules [46-51] One of the
well known functions was proposed by Chernyak and
Zhitnitsky (CZ) to take a,(u = 0.5 GeV) = 2/3 as sug-
gested by the QCD sum rule [46]:

2
O (2 ) = 62(1-2) |1+ G-

=30z(1 —z)(2z—1)> at u=0.5 GeV,

(72)

which is very different from the asymptotic form because it
has a minimum at z = 0.5. There are also recent theoretical
suggestions on different a, values [45,48-52] and also a4
and ag values [53]. In principle, the different pion DAs can
be tested by experiments. The Belle measurements on the
y — & form factor are close to the asymptotic DA form [6],
whereas the BABAR data have a different tendency in the
sense that it is consistent with a,(u = 2 GeV) = 0.22 [52].
Further measurements are needed to distinguish various
theoretical DAs.

We comment on a slightly different convention from ours
in defining the distribution amplitude because it may be
sometimes confusing in using the decay constant f, or
f./\/2.In the Diehl’s article of 2003 [1], the z° distribution
amplitude is defined for one quark flavor as (z°(p)
1(y),q(0) /,|0>| y+—y,—o instead of the left-hand side of
Eq. (67). Therefore, the decay constant definition of
Eq. (69) becomes (°(p)|#(0)y"ysu(0)|0) = —(z°(p)|d(0)
7"75d(0)|0) = —if ,p*/+/2. We should note that there is a
factor of v/2 in this expression. However, this V2 is
absorbed into the definition of distribution amplitude in
his formalism so that the decay constant f, stays the same
as ours.

C. Scale evolution of distribution amplitudes
and generalized distribution amplitudes

If the kinematical condition Q% 3> W2, Agp, is satisfied,
the process y*y — 7%2° is factorized into the hard part H, ,
and the soft one S 4.9 88 shown in Fig. 8. Here, the final state
X is 7° for the DAs or 7°7° for the GDAs. The hard part is
calculated in perturbative QCD and the soft one is
expressed by the DAs or the GDAs. The Q2 evolution
equations of the DAs and GDAs are described by calculat-
ing the hard part in perturbative QCD. Since both reactions
(y*y = n° and y*y — 7°2°) have the same hard processes,
the DAs and GDAs follow the same evolution equations,
and their z and scale-y dependencies are represented by
the functions ®,(z,u) and ®,(z,u) in the following
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Y (@A) 7 (a3, )

(s X)) v(d's\)

FIG. 8. Factorization of y*y — X, X = z° for DAs or z°2° for
GDAs, into the hard part H,, and the soft one S, . For the
isovector &, the right-hand-side process with the two-gluon
intermediate state does not exist for the single z° production
X = 2°).

discussions of this subsection [®, = ®, for the DAs,

®, = ®7""") and @, = ®** for the GDAs].
In order to describe the Q2 evolution of the DAs and

GDAs, we introduce the auxiliary quark and gluon func-
tions f, and f defined by [1,24]

Z‘D (2, 1),

g(z’ﬂ)' (73)

z2(1=2)fo(z, 1)
2(1=2)*f6lz.p) =

We introduce the variable 7z defined by

T = ﬁ%m {a (”‘2))] : (74)

for describing the evolution from y3 to y? as usually used in
expressing the DGLAP evolution equations for the PDFs
[54]. Here, fy = 11 — 2n;/3 and a; is the running coupling
constant. Then, the evolution equations are expressed as
VQG(Z7 M) )

7 G = oV v

<(n) )

where the matrix V is the kernel calculated in perturbative
QCD. The one-loop contributions to this kernel is shown in
Fig. 9. The one-loop kernels have been obtained as [1,24]

—p—(BO0000 BOO000+—p——
g A
—— Q0000 Q00000 ——
% ——— fGISGEZStgG?Sm
S A
Wl 1 el

FIG. 9. Leading contributions to the hard part H, .

EDOOOO

VQQ:CF{e(z—u)Z <1+ﬁ> +{u,z—>ﬁ,2}],

Voc =2n;T [H(Z - u)g(Zz —u) +{u,z - a, Z}],

VGQ:%[H(z—u) (z—=20) 4+ {u,z < @, Z}:|

:
(s
+ (2u - 1)2}>+{u,z < 12,2}] —%nfTFé(u -2),

(76)

VGG— |: —uﬁ—l{(ZZ—l)z
2z

where # and 7 are defined by # =1 —uandz = 1 — z, and
Cp, Tp, and C, are given by Cp= (N>2-1)/(2N,),
Tr=1/2, and C4 =N, with the number of colors
N, =3. These equations are called ERBL evolution
equations.

The integro-differential equations can be solved in the
same way with solving the DGLAP (Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi) evolution equations [54] by using
the anomalous dimensions (y22, y2¢, 59, y96) obtained
from the kernel matrix V. From these anomalous dimen-
sions, we define

I
ra =5 {%?Q 1759 £/ (/2 - 75972 + 4789452 (77)

Then, the solution is written in terms of the Gegenbauer
polynomials C4% and the anomalous dimensions as

Z®+Z” —z(l—z)ZA Ccl*(2z-1),
oddn
Dy (z.0) = 2(1 = 2)2)_A,(WC5(22—1),  (78)
oddn

where the coefficients are given by

aS(/ﬂ) 2 /Bo B as(/,ﬂ) 273 /Bo
) = [0 ,
as (#5) o (1)
AL(4) = gi AL |:(,¥S(‘[,42):| 27 /Bo —4- |:as(:“2):| 272//30’
as(ﬂ(z)) as(ﬂ(z))

(79)

2)/(3y2%/n). The summa-
-) in the

with the factor gF = (y= —y2
tions of Eq. (78) are taken for odd n (n = 1,3, - -
C = even case.

In the n = odd summation, all the anomalous dimen-
sions are positive except for y7 = 0, so that the only the
A7 terms survive in the scaling limit of y?> — co. Using
the Gegenbauer polynomial Cf{(x) = 2ax, we have the
C = even (isoscalar) GPDs as
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ny
DO (z.p = 00) = 3A7z(1 - 2)(22 - 1),
q

@ (2.4 — ) = gTATZA(1 — 2)%. (80)

Therefore, the z-dependent functional forms are uniquely
given for the GDAs. This fact should be taken into account
for parametrizing the GDAs.

For the C = odd (isovector) GDAs, the n summation of
Eq. (78) is for the even numbers (n = 0,2,---). In the
scaling limit, only the n = 0 term survives and the GDAs
become

ny

Zd);(z,pteoo) =Apz(1 -2), (81)

by using C§(x) = 1. The above isovector GDAs have z
dependence z(1 —z) which is the same as the p-meson
(pion [23]) isovector DA of Eq. (70) in the scaling limit.

D. ¢ dependence of generalized
distribution amplitudes

The Q? evolution of the GDAs are calculated in
perturbative QCD as shown in the previous subsection,
and the z dependence is given by the Gegenbauer poly-
nomials. The GDAs also depend on other two variables ¢
and W2. Here, we discuss the ¢ dependence. As shown in
Fig. 3 and Eq. (14), the variable { indicates the momentum
fraction for a produced pion in the final state and it is
expressed by the polar angle (6) of the pion. Therefore, we
may expand the coefficients A, and A), in terms of
orthogonal polynomials, which could be taken as the
Legendre polynomials P;:

n+1

Au(L W) =6n; > By(WHPI(26 - 1), (82)

I=even

where n is odd (/ is even) for C = +, and n is even (/ is odd)
for C = —. Here, the factor 6 comes in the similar way to
the normalization of the pion DA as shown in Egs. (68) and
(70), the flavor number n; appears because of the flavor
summation in Eq. (78), and [ is the angular momentum of
the final pion pair. In addition, the same equation exists for
A},(&, W?) in terms of B/, (W?). The C invariance relations
of the GDAs are given in Egs. (20) and (21), so that the
odd-/ terms do not contribute to the C = + GDAs.
From the scale-dependence relations of Eq. (79), the
coefficients B,; should follow the same relations:

B+ (WZ) |:as (/’tz):| 2]/1//30
" g (ug)
oy (qu):| 2y, /Po

ay(u3)

Bnl(W27 /’l) =

+B;z<w2>[ TS

and a similar equation for B/,(W?, x). In the scaling limit

u — oo, only the lowest terms survive in A, (¢, W?) and
Al (£, W?), and we obtain [1,24]

Zfégﬂ(+)(z,C, W2) =18n,z(1-2)(2z—1)
’ x [Bio(W2) + By (W?)Po (26— 1)),
77 (2,0, W?) = 482°(1 - 2)*[Byo(W?)
+ B (W?)Py(2¢ - 1)], (84)

where the Legendre polynomial P,(x) is given by
P,(x) = (3x*> — 1)/2. Since the Legendre polynomial term
is given by P,(2{ —1) =1-6{(1 —¢), the sum rule of
Eq. (19) is satisfied if the coefficients satisfy the relation
Bo(W? = 0) = —B,,(W? = 0), which is considered in the
parametrization in the next subsection. This is the basic
functional forms for z and ¢ dependencies in the scaling
limit. Next, we explain our actual parametrization for the
GDAs by following the essence of these basic functional
forms.

E. Expression of generalized
distribution amplitudes

With the basic knowledge of the pion DA and GDAs,
we need to express the GDAs by a number of parameters.
In particular, the z dependence is given by Egs. (80) and (81)
in the scaling limit. Considering these functional forms, we
express the GDAs with a number of parameters. First, we
neglect the higher-order a; effects and higher-twist effects, so
that the gluon GDA does not appear. Since 7°z-production
data are analyzed in this work, only the C = even GDAs
contribute to the cross section. The C = even function of
Eq. (80) is z(1 — z)(2z — 1). Since the C = even isoscalar
GDAs have — sign under the change z — 1 — z as given in
Eq. (28), the same parameter « is assigned for the powers
of zand 1 —z: @27 (z) ~ z%(1 — 2)*(2z — 1). The 2z — 1
factor comes from the lowest Gegenbauer polynomial
CT/ 2(ZZ —1), which survives in the scaling limit.
However, the detailed z dependence is not determined from
the current data, so that we decide to take the lowest
Gegenbauer polynomial form of 2z — 1, supplementing by
the phenomenological parameter a which will later appear to
be close to the asymptotical value 1.

We use the following function for explaining the
vy — n°7° data at a fixed Q? value:

O (2,6, W) = Noz®(1 = 2)*(22 = 1)
X [B1o(W?) + B1,(W?)P,(2¢ - 1)),
(85)

where N, is the overall constant determined by the sum rule
(19) as
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3(2a +3)

N, = ,
“ " 5Bla+la+1)

(86)

with the beta function B(a,b). The quark-momentum
fraction factor Mg(q) and the W?-dependent form factor

F%(W?) are included in the coefficients B,,(W?). The ¢
dependence can be reexpressed by the angle € defined in
Eq. (15) as

Bio(W?) + Bip(W?)P,(2( — 1)

= B1o(W?) + B1,(W?)Py(cos6), (87)

where the invariant-mass dependent functions E,,l(WZ) and
B,;(W?) are related with each other by

- 1-p?
Byo(W?) = B o(W?) - > B, (W?),

Bip(W?) = 2By (W?). (88)
In the limit of W? — 4m2 = 0, they are given by [23,24]

10
312(0) =—M’£

9 (89)

(9)°

where M7 @ is the momentum fraction carried by the g-flavor
quarks and antiquarks in the pion (sz M’zf(q) =(.5). This
equation is obtained by considering the forward limit of the
GPDs and then the s — 7 crossing to relate the GPDs and
GDAs, so that it should be a model-independent relation.

Then, the relation between B (0) and B ,(0) is studied in a
soft-pion theorem, and it was obtained as [23,24]

BlO(O) = —Blz(o)- (90)

Then, the W? dependence of Bjy(W?) and B,y(W?) was
studied at small W? as a possible constraint on the functional
form of W? within a instanton model of QCD [28].

The gluon GDA does not contribute to the cross section
because the higher-order and higher-twist terms are
neglected in our analysis. However, as discussed in
Sec. IIIC, it affects the Q? evolution. It will be shown in
Figs. 13 and 14 that current Belle data are not accurate
enough to probe the scaling violation. The quark GDAs are
provided at a fixed Q? scale which is taken as the average Q>
value (16.6 GeV?) of the Belle data. Then, the Q? evolution
is not taken into account in our analysis within the Belle-data
range (8.92 < Q% <24.25 GeV?). Therefore, the gluon
GDA does not contribute in our analysis.

There are two terms, which correspond to the angular
momenta, [ =0 and 2, of the pion pair. There are
intermediate meson contributions to the cross section for

y*y = n%2%, so that the invariant-mass dependent factors

B,,; have imaginary parts expressed by the phase shifts
&1(W):

B, (W?) = B,y (W?)e™ ™). o1

Here, we use the 7z phase shifts by Bydzovsky, Kaminski,
Nazari, and Surovtsev [55]. There is also another study on
the phase shifts in Ref. [56]. The relation of Eq. (89)

indicates that the B,,;(W? = 0) factors are given by

B1(0) = 3 _2ﬁ B»(0) = —<1 +2‘/szﬂ>312(0)7
B1(0) = p0(0) = (135 800). ©)

There are two types of contributions to B,;(W). One is the
continuum and the other is from the intermediate reso-
nances expressed by

B, (W?) = B, (0)Fz(W?)

CR
+ . (93)
XR: V(M = W?)? + TxMp

where M, is the resonance mass, Iy is its width, and cg is a
constant.

The W? dependence of the continuum part of the pion
GDAs is given by the form factor, which could be para-
metrized as [4]

1

W) = T = amy A

(94)

Here, A is the cutoff parameter, which indicates the pion
size, n is the number of active constituents according to the
constituent-counting rule in perturbative QCD [57], and it
is normalized as F' ;) (4m2) = 1.1tis the continuum part of
the timelike forms factor of the energy-momentum tensor.
Here, the pion size means the gravitational-interaction size
instead of the usual charge radius in electromagnetic
interactions as explained in Sec. IIF. The high-energy
behavior of the form factor is given by the factor n, which is
supposed to be n = 2 for the pion [4].

F. Resonance terms and their coupling constants

The resonance contributions are illustrated as the inter-
mediate states in Fig. 10. Above 1 GeV of the invariant
mass W, the intermediate K K and 75 channels contribute to
the process. However, their contributions may not be as
large as the pion ones, and they are not explicitly consid-
ered in this work. As seen in Fig. 10, we also need the kaon
GDAs in the formalism if the KK were introduced in the
intermediate state. The constant cp in Eq. (93) is expressed
by the R — zx coupling constant gg,,, the decay constant
fr, the mass Mg, and the width I';. As for the mesons with
I6(JPC) =07 (0F+), 07 (2*+), we consider
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(2, ) 7°(p)
M (k)
MK
Q(CEPY) = (p’)
FIG. 10. y*y — 7°2° through the intermediate states M.
07(077): f(500), f(980),
0F(2++): £,(1270), (95)

which could make conspicuous contributions to the cross
section y*y — 7°z° in the invariant mass region of
W <£2.05 GeV, in our analysis. In this energy region,

there are other possible resonances

0+(0+%): f,(1370
0+(2+%): f5(1525

) f0(1500), £o(1710),
),.f5(1950), £2(2010),  (96)

in principle. However, these meson effects have minor
effects on the cross section, hence they are not included in
our analysis.

The GDAs are defined by the matrix element of the
nonlocal vector operator from the vacuum to the z°z° state,
and it is expressed by three steps for describing the process
with the intermediate f, meson [58]. First, the f, meson is
produced from the vacuum, it propagates, and then it
decays into the pion pair:

(n°(p)="(p")1a(=2/2)ruq(2/2)|0)
= (2" (p)="(p")Ifo(P))
!

X

{(fo(P)la(=2/2)ruq(2/2)[0)+

(97)

2 -
my — — lFMfO

In Sec. III B, the pion distribution amplitude is defined by
wy,ysy instead of one quark flavor one gy,ysq. The above
fo distribution amplitude is related to the one defined by

Py = (y,u + dy,d)/V?2 as

(fo(p)la(=2/2)r,4(2/2)|0)
1

=7 (fo(p)lw(=2/2)ruw(2/2)]0). (98)

where ¢ = u or d. The final 2z-decay part is simply the
coupling constant written as

<7t0(p)77,'0(p/)|f0(P)> = Gfpaa (99)

and the first f; production part is expressed by the
distribution amplitude for f as discussed in the later part
of this subsection. Then, the f, contribution to B,o(W) is
written as

o ng mrff
Bo(W) = A f , 100
) 3V2[m} - W2 —iTM ] (100)

so that its absolute value is given by

_ 5
o(W) Ipun] 1 . (o)
2\2 2 A2
Y \/ — W22 4 T2 M2 ]

where the factor 5/3 comes from the convention difference
in defining the distribution amplitude, namely the overall
factor could be 30 or 18. This difference becomes
30/18 =5/3. In the same way, the f, contribution is
given by

1 ngzfmffz sz‘zﬁz

Bu(W) =
2 2\2 2 2
9\@\/(Mf2 — W22 4 T2 M2,

. (102)

where the different factor IOMJ%2 /9 comes from the tensor
nature of f, in defining the coupling constant to 2z and also
the decay constant [58,59]. In Ref. [58], the > factor is
included in Eq. (A26) of this paper.

As for the resonance terms, we use the W dependence of
|1~3n,(W2)| in Egs. (101) and (102) [59], although the
resonance properties are also obtained by the Belle col-
laboration for the resonances f,(980) and f,(1270) [7].
In Refs. [59-61], the constants are f; = 0.101 GeV at
0> =1GeV?, My =1.275 GeV, and 'y, = 0.185 GeV
for f,(1270), and the decay constant gy, ,, is defined by

\/ (2/3)24x(f — an) /M3, with T(f, — zr) =

Here, the factor of 2 in 2/3 comes from the
0>

gfzﬂﬂ' =
0.85I,.
identical particles of two z”’s, and the factor 1/3 does from
[(f, —» n°2°) = 1/30(f, — zx). As it will become clear
in comparison with the actual measurements, the Belle data
indicate a clear peak of f,(1270).

For the S-wave resonances of f(500) and f((980), we
have Mfo(SOO) = 0.475 GeV and Ffo(SOO) = 0.55 GeV [62],
the decay constant gf ., is defined by g . =
V/(2/3)16al(fo — zx)M;, with T'(fy — zx) =T, for
both f((500) and f,(980). The decay width of f,(980)
is not well determined by experiments, and it is listed as
10-100 MeV. We use the middle values of the Particle Data
Group [62], namely ', = 550 MeV between 400 MeV and
700 MeV. As for the decay constants f s s00) and f 'z, 950),
no experimental information is available. There are theo-
retical estimates on f's, 9g0) by the QCD sum-rule method.
However, they assume the gg configuration for f;(980)
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TABLE I. Resonance constants in our analysis. The decay
constant f, is shown at 9> = 1 GeV? in this table. In Table III,
the decay constants are listed at Q> = 16.6 GeV?, which is the
average scale of the used Belle data. The value f;, = 0.101 at
0? = 1 GeV? corresponds to Sr, =0.0754 at 0% = 16.6 GeV>.

Meson (h) M (GeV) T (GeV) G fi (GeV)
£4(500) 0.475 0.550  2.959 GeV

£0(980) 0.990 0.055  1.524 GeV .
£2(1270) 1.275 0.185  0.157 Gev~!  0.101

and their decay-constant values seem to be inconsistent
with the Belle data on the differential cross section as
shown in Sec. IVA. There is no theoretical estimate on
Jf fo(500) s far as we searched, so it is simply terminated or it
is considered as one of the parameters in our analysis.
These numerical values are summarized in Table 1.

Next, we define decay constants and distribution ampli-
tudes for the resonances f;(500), f,(980), and f,(1270).
In the reaction y*y — #°z°, the matrix elements of a vector
current between the vacuum and these meson states are
involved in its cross section. First, the matrix element for
the tensor meson f,(1270) is expressed by the decay
constant f, and the distribution amplitude @, (z, ) as
[58,61]

FAPIFO)w0)[0)]

:Mf m% p /ldzeizp*y‘q) (zop) + -
(p-y) APy 9! 0 Sf2\%s ’

T=y,=0

(103)
where 6‘53}) is the polarization vector of f, meson [61], and
the higher-twist terms are not explicitly written. The
distribution amplitude for f, is given by the summation
of odd Gegenbauer polynomials due to the C-parity as
explained in Eq. (78), and it is expressed as [58,61]

[Se]

@ (z,4) =62(1-2) > By(w)Ci* (22— 1)
oddn=1

=Bi(u)18z(1 —2)(2z 1)+ ---, (104)
whereas it is the even polynomials for the pion as shown
in Eq. (71).

In the same way, the matrix elements for the scalar
mesons f,(500) and f,(980) are given by

(Fo(P)F(¥)ruw(0)[0)| |

yr=y,=0

L
—PﬂA dze™™? Y D (z, 1), (105)

where the distribution amplitude is defined by including the
decay constant f for a practical purpose, because the

combined quantity of f and the amplitude becomes finite
even though f,  itself vanishes. We define the decay
constants f, and ffo by the matrix elements for the vector
and scalar operators as [63]

(Fo(P)w(0)y,y(0)0) = fr, Py

(Fo(p) i (0)w(0)[0) = ff,my,. (106)

Writing the above vector current at the position x as
Ju(x) =@ (x)yp(x) = €?%J,(0)e””* and using the
equation of motion, we relate the two decay constants as
(m?}_mq)ffo :mfoffo’ (107)
where m, and m; are quark and antiquark masses. In the
fo-meson case, the masses are equal (mg; —m, = 0).
Because of the conservation of the vector current or
charge-conjugation invariance, the constant f should
vanish f; = 0. However, the nonlocal matrix element of
Eq. (105) does not vanish at finite Q?, whereas it vanishes
in the scaling limit Q? — oo as we explain later in Sec. II1 G.
Comparing Egs. (105) and (106), we obtain the relation

1

A 4z (zp) = f; = 0. (108)
For the scalar mesons with m, # mg, the relation (107) can
be used to relate the decay constants. Therefore, according
to Ref. [63], we may take that the f, distribution amplitude
is expressed by j_‘fo and the Gegenbauer polynomials as

O (z.p1) = ffo6z(1 -2)

Bl + > B2z 1),
oddn=1

(109)

Then, the normalization of Eq. (108) is satisfied if B is
taken as (mg —m,)/m; = 1/u; . The integral of the first
term is f; and those of the subsequent summation terms
vanish identically. The first term ].f'o /uys, = fy, vanishes
for the f, meson, so that it is given by

O (z.4) = Fr62(1-2) > B,(w)Ci/*(2z—1)
oddn=1
= F;,Bi(0)182(1 = 2)2z = 1) +---,  (110)
where C?/ ?(x) = 3x is used.

G. Scale dependence of resonance contributions

There are finite contributions to the y*y — z%2° cross

section from f,(1270), f,(500), and f,(980) at small Q.
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However, as the Q7 increases, they become smaller and
smaller, and they eventually vanish in the scaling limit
Q? — co. The scale dependence of the distribution ampli-
tude is given by the anomalous dimensions y, and the
leading coefficient fy = (11C4 — 4T gn;)/3 of the § func-
tion with C, = N, and T = 1/2 as [58,61]

as (QZ) Vn/ﬁ()
as(Q%)]

9

£1(0P)BA(Q%) = £1(Q3)B, (Q3) [

n+11
+4Z—}7

Vn:CF[l_m =7

(111)

where C = (N2 — 1)/(2N..) with the number of colors N ...
Here, the meson f indicates f,(500), f(980), or f,(1270),

and the decay constant f 4 is f', 500)»f f,(980)> OF f £, (1270)- One
could express the scale evolution separately for the decay
constant and the distribution amplitude as [61]

(@)
a,(03)

a. 2\ (rat+4)/Bo
B.(07) = B,(0) | 15

’

£1(0%) = £1(03) [

S

(112)

The leading Gegenbauer polynomial is taken in Eq. (110),
and its anomalous dimension is given by y; = 2Cp/3.
This finite anomalous dimension indicates that the dis-
tribution amplitudes decrease with increasing Q” as shown
in Eq. (111).

From Eq. (112), it is possible to describe the Q?
evolution separately for the decay constant and the dis-
tribution amplitude. However, the overall scale dependence
is given by Eq. (111) in any case. The scale dependence is
often attributed only to the decay constant [58,61], namely

aS(Q2>:| n/Po
a(Q3)]

£1(0%) = ff(Q%)[ (113)

and the distribution amplitude may be normalized in the
scale-independent way as

1
/ dz(2z—1)®(z) = 1, (114)
0
so that it becomes
®/(z) =30z(1 —z)(2z = 1), (115)

as the leading distribution. In Egs. (104) and (110), the f>
and f, distribution amplitudes are defined with the scale
dependence. However, the scale independent expression of
Eq. (115) is used in this work, which means to take the B

factor as By = 5/3 [61]. This is a consistent description
with Eq. (112). However, it may be somewhat confusing, so
that one should remember that the distribution amplitude
vanishes in the scaling limit ®/(z,u) =0 at u — oo,
although the scale-independent expression (114) is often
used practically.

H. Gravitational form factors for pion

As shown in Eq. (44), the GDAs probe the ++
component of the energy momentum tensor, and it is
expressed by the form factors for z° as [31,32]

(n°(p)=°(p")IT{*(0)[0)
1

==[(sg"" =P"PT)O; ,(s) + ATATO, ,(s)].

5 (116)

Calculating the + components by using the momentum
assignments in Eq. (15) and using its relation to the GDAs
in Eq. (44), we obtain

/1 dz(2z — 1)<I>§O”O(Z,C, w?)

0
2 2 2
= =0 ,(s) +ﬁ—®2,q(s) + ﬁ@2_(1(s)P2(cos 0).

. 3 (117)

On the other hand, from the GDA expression in terms of

B 10 and I~320 in Egs. (85) and (87) with the normalization of
Eq. (86), the integral of the GDA is given by

| ez nep? @ew

0

= % [B1o(W?) + By, (W?)Py(cos 0)].

(118)
From Eqs. (117) and (118), the gravitational form factor
are expressed by the S- and D-wave components of the
GDAs as

3. 3 -
O 4(s) = —§B1O(W2) +E312(W2),
9 .
©,,4(s) :WBM(WZ)- (119)

Quark and antiquark contributions are added to obtain the
timelike gravitational form factors of the pion as

0,(s) = Z@n,i(s), n=1,2. (120)

In this way, if the GDAs are determined from experimental
measurements, the gravitational form factors, consequently
gravitational radii, are obtained for the pion.

Next, we discuss normalizations of the form factors.
Using the Legendre polynomial expressed by ¢ as
P,(cos @) = [-12£(1 = &) + 3 — 2]/ (26%), we obtain the
integral of Eq. (117) as
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(DqOﬂo (z.¢. W?)

/01 dz(2z—1)

==01,4(5) + Oy4(s) —4L(1 = 0)Oy 4 (s).  (121)
The right-hand side of this equation should be equal to the

sum —4M”< ) given in Eq. (19) at W? = 4m2, and it leads to
the relations

O, ,(s =4mk) = 0, (s = 4m2) = M3

i (122)

in the scaling limit. Quark and antiquark contributions
are added to obtain the form factors: ©,(s = 4m2) =
>i—yOni(s = 4m3). Then, such sum of the right-hand
side of Eq. (122)is ) | qMIZE(q)' Therefore, the normalizations

of the form factors become the momentum fraction carried
by quarks and antiquarks in the pion:
O,(s = 4m2) =

O, (s = 4m2) (123)

=2 M3y

in the scaling limit. The factor ) M 5a)

some articles. Here, the only the quark contributions are
discussed, so that the normalization becomes the quark
(and antiquark) momentum fraction. However, if the
gluon contribution is added, the relation should be
0, (s = 4m2) = ©,(s = 4m2) = 1, which indicate A(s =
4m2) =1 and B(s =4m2) =—-1/4 from Eq. (56).
Therefore, our timelike form factors are consistent with
the works in Refs. [28,31,32]. We should note that these
normalizations are satisfied in the scaling limit. However,
the Belle measurements are at finite Q> with some
resonance effects, so that the actual values contain their
effects. In fact, as we show later, they are ©,(s = 4m2) =
©(s = 4m3) ~0.7, instead of 37 M3 = 0.5, in our
GDA analysis.

is written as R, in

IV. RESULTS

From these theoretical preparations, we proceed to the
actual analysis of experimental data. Here, the Belle data
for y*y — #°2° [7] are used for our study. The invariant-
mass dependent functions are parametrized with the res-
onance contributions from f,(500), f,(980) and f,(1270),
and it is summarized as

O (2,6, W2) = Nz(1 - 2)7(22 = 1)

X [B1o(W?) + B> (W?)Py(cos 0)],
(124)
where the normalization constant N,, is given in Eq. (86).

The S and D wave terms are expressed by the contributions
from the continuum and the resonances as

By(W?) = — Kl + Fr(W?)

i Z ngozm.}_(fg
2 2\2 2 2
77 3V (M3, - W2 T3 M5,

2m2\ 10 .
W) 9 M)

iog(W
el 0( )’

Bi(W?) = (1 4oz >B[M” Fr(W?)

w2 ) 9 " 2q)
2 2
gfzszszfzﬂ
2 2\2 2 2
M7 —W?)* + T3 M7,

N Jes

(125)

The timelike form factor for the continuum is given
by the cutoff parameter A and the power of n—1 in
Eq. (94). The factor n is suggested by the constituent
counting rule at high energies and it is n = 2 for the pion.
Here, f, indicates f,(500) and f,(980). However, the
analyzed Belle data are not sensitive to f,(980), so that it is
not included in our analysis. The up and down quark GDAs
are considered in our analysis, and strange and charm quark
contributions are neglected. We assigned a parameter a for
the z-dependent functional form of the quark GDAs. This
z-dependent function enters into the amplitude A, in
Eq. (65), and then the integral is given in the form of [J dx
(2z = 1)2z%71(1 — z)*~!. This integral is expressed as the
beta function as B(a, a)/(2a+ 1), and it plays a role of
overall constant to explain the y*y — #°z° data.

Next, we explain the S- and D-wave phase shifts used in
our analysis. The phase shifts d, and &, in Ref. [24] seem to
work below W =1 GeV. The region of the center-of-mass
energy is 0.525 GeV < /s = W <2.05 GeV in the Belle
data [7]. In order to analyze the Belle data, we use the
S-wave and D-wave zz phase shifts obtained by
Bydzovsky, Kaminski, Nazari, and Surovtsev (BKNS)
[55]. Their phase shifts are shown in Fig. 11. They
proposed a parametrization of the S- and D-wave phase
shifts from analysis of the zz scattering experimental data

2my

n
>
<

IS

(=3

>
T

S0 wave
300

[
=3
=]

DO wave

Phase shifts (degrees)
s
>

I I

15
W (GeV)

FIG. 11. S-wave phase shift and D-wave phase shifts by
Bydzovsky, Kaminski, Nazari, and Surovtsev [55].
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in the isospin = 0 channel. Since only the difference of
S- and D-wave phase shifts matters for explaining the
cross section in our analysis of Egs. (124) and (125), the
difference is also shown by the dashed curve. Above
the KK threshold at about 1 GeV, the phase difference
is, roughly speaking, a slowly varying function of W. We
note that the KK channel opens at the threshold energy
2myg+ = 0.987354 GeV, so that only the zz phase shifts
may not be sufficient. To be precise, the KK — 7z phase
shifts should be introduced together with the kaon GDAs.
We may investigate such details step by step. In our
GDA analysis, a simple case is considered by introducing
a phase A5(W) for the S wave above the KK threshold,
8o(W) = 8o(W)pkns + A3(W), 8,(W) = 85(W)gkns With
expectation that such effects are included in the modified
part. In our analysis, we introduce phase parameters in the
S-wave as

8o(W) = 80(W)pkns + as(W —2my)",  (126)
at W > 2mpg. The parameters a5 and bs are determined by
the y? analysis.

A. f,(980) contribution

A possible complication or ambiguity is how to deter-
mine the decay constants f 7,(500) and ]_Cfo (980)> Whereas the
constant f 1is relatively well evaluated [58,61]. It is
because the internal configurations of f,(500) and
f0(980) are not well known. The evaluation of f ,, is done
for £,(980) only by assuming that f is a gg-type meson,
namely (uit + dd)/\/2 (=nii), s5, or mixture of them [63].
On the other hand, it is known that f,(980) is likely to
be a tetra-quark meson or KK molecule so as to explain
the experimental measurements on f,(980) — zz,
f0(980) — 7y, and ¢ — f4(980)y [62,64,65]. The theo-
retical decay constant is not evaluated unfortunately, as far
as we are aware, for the tetraquark or KK configurations for
the f((980). Therefore, a realistic numerical estimate
would not be possible for f,(980) in comparing with
experimental data on y*y — 7°2°.

Of course, the f,(980) may be viewed as a gg state at
high energies, whereas it may be a gqgg one at low
energies, because they could mix with each other. In fact,
there is an indication from the constituent-counting-rule
studies on A(1405) in comparison with the experimental
data on y + p — A(1405) + K that A(1405) looks pen-
taquark state (gqqqq) at low energies, whereas it could be
an ordinary three-quark one (gqq) at high energies [5].
There is a possibility that the situation could be the same for
f0(980) on the energy-dependent composition.

In any case, let us simply assume the decay constant
S ro(980) by taking the gg-type estimate in the QCD sum
rule in order to illustrate the situation and the issue. As we
will show later, the optimum value for the parameter « is

do/dcos6 (nb)

15
1 a=05
: 02=8.92 GeV2

f0(980) : cosf6=0.1

d1la=10

10 HRE £,980): gq assumed
nla=20  Trosn=0-104GeV

04 06 08 1 12 14 16 18 2 22
W (GeV)

FIG. 12. Expected f((980) contributions to the y*y —
%2  cross section by taking the decay constant
]_‘fo(ggo)(Qz =1 GeV?) = 0.104, which was obtained by assum-
ing a gg configuration for f,(980) in the QCD sum rule. The
cross sections are for the kinematics Q2 = 8.92 GeV? and
cos@ = 0.1. The parameter « is taken as a = 0.5, 1.0, and
2.0. The f7,0s0) is evolved to Q% = 8.92 GeV?.

roughly given by a~ 1. We find that it is difficult to
accommodate the f(980) resonance with this parameter
value. Obtained cross sections are compared with the
Belle data at Q> = 8.92 GeV? and cosf = 0.1 by taking
a = 0.5, 1.0, and 2.0 in Fig. 12. Here, the decay constant
fo080)(Q* =1 GeV?) = 0.104 GeV was obtained in
Ref. [63] by considering the u# and d quark contributions
to the GDAs with f, = 0.35 GeV at Q> = 1 GeV?, the
mixing angle 6, = 32.5°, which is the middle of
25° < @5, < 40°, between |ni1) and |s5), B; = —0.92 by
the QCD sum rule [63], and the conversion factor 18 /30 for
the distribution amplitude from Egs. (110) to (115). The Q?
evolution is also taken into account by using Eq. (113) from
0% =1 GeV? to 8.92 GeV? in order to compare with the
Belle data at Q% = 8.92 GeV?2.

From the comparison with the Belle data in Fig. 12, we
find that the f((980) peak structure is not obvious from the
data and that they are not consistent with the theoretical
predictions as long as @ < 2. Although the figure is one of
the kinematical point of the Belle measurements, the
comparisons with other data also indicate a similar ten-
dency. Here, we should note that the theoretical curves are
shown by assuming the ¢g configuration of f,(980) with
the QCD sum rule estimate for the decay constant. These
results should suggest that f(980) could not be understood
mainly by the ¢g configuration. It is possibly a tetra-quark
(or KK molecule) state as widely known in the hadron-
physics community. The decay constant could be very
small if it is a tetraquark (¢qgg) type because the decay
width is proportional to the matrix element of a bilocal
operator. Since the data do not show an obvious f;(980)
peak structure and a theoretical estimate is not available
for the decay width by the tetra-quark picture, we do not
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include f,(980) in our numerical analysis in the analysis of
Sec. IV B. If the measurements become more accurate in
future, one may consider to include this contribution.

The f((980) effect is not conspicuous in the Belle data
on the differential cross section, for example, in Fig. 12.
However, it appears in the total cross section [7] and the
¥ = f0(980) transition form factor is investigated by using
the Belle data [66]. Such studies indicate that f,(980) is
consistent with the gg configuration, which is different
from our finding in Fig. 12. Because of these conflicting
results, the f((980) contribution and its internal configu-
ration are not well understood.

B. Analysis results

The GDAs are expressed by a number of parameters,
which are obtained by a y? analysis of Belle experimental
measurements on y*y — z°z°. The resonance part is fixed
as much as possible by other experimental and theoretical
studies, and the used values are listed in Table I. The large
uncertainty comes from the values of the decay constants,
S 1050005 f £4(980)> and f 7, (1270)» especially for the f(, mesons.
There are a number of reliable theoretical studies on
S 11270 In Sec. IVA, we explained that the current
QCD sum rule estimate for f f,(980) 18 much different from
the Belle measurements if it is assumed as a qq state. There
is no available estimate, as far as we are aware, for the
decay constant in the tetra-quark picture for £(980). In any
case, the data do not show a clear signature of f,(980) in
the W ~ 1 GeV region, so that f(980) is not included in
the following analysis. Furthermore, there is no theoretical
estimate on the decay constant for ]_CfU(SOO)- We may simply
assume that it is same as the f,(980) value; however, the
results are inconsistent with the Belle data in the same way
with the f,(980) case. Therefore, we consider two options
in our studies:

(set 1) Analysis without f(500) and f(980):

The GDA s are expressed by the parameters for only
the continuum and f,(1270), and they are determined
by the y? analysis.

(set 2) Analysis with f((500) and without f,(980):

The decay constant f (s00) is considered as an
additional parameter to be determined from the ex-
perimental data in addition to the parameters in the
set 1.

For the decay constants, the Q? evolution is taken into
account by using Eq. (113) and taking the average scale of
the Belle experiment as (Q?) = 16.6 GeV?, which is a
simple average of the minimum and maximum values, 8.92
and 24.25 GeV?, in the analyzed data in this work.

By considering the factorization condition of Eq. (12),
only the large Q? data with Q% > 8.92 GeV? are used in our
analysis. Furthermore, the higher-order and higher-twist
terms A, _ and Ag, do not contribute significantly at large
Q?. The Q7 values to satisfy this condition are Q% = 8.92,

TABLE II. Belle experimental data used in our analysis.

0? (GeV?) cos @ No. of data
8.92 0.1, 0.3, 0.5, 0.7, 0.9 22 x5
10.93 0.1, 0.3, 0.5, 0.7, 0.9 22 x5
13.37 0.1, 0.3, 0.5, 0.7, 0.9 22 x5
17.23 0.1, 0.3, 0.5, 0.7, 0.9 22 x5
24.25 0.1, 0.3, 0.5, 0.7, 0.9 22 x5
total 550

10.93, 13.37, 17.23, and 24.25 GeV? in the Belle mea-
surements. In each O, the pion angles are cos @ = 0.1, 0.3,
0.5, 0.7, and 0.9 as listed in Table II. In each bin of Q2 and
cos 0, there are 22 data points, so that the total number of
data is 550.

The GDAs are expressed by the three kinematical
variables, z, £, and W? without the scale Q2 by considering
the scaling region. Actual experiments are done at finite Q2,
so that the GDAs extracted from the measurements may
depend on Q2. In order to check the Q? dependence of the
Belle data, we show the quantity (Q? + s)do/Bd(cos 0) in
Figs. 13 and 14 for cos@ = 0.1 and cos# = 0.5, respec-
tively by choosing W = 0.525, 0.975, and 1.550 GeV.
According to Eq. (65), there is no scale dependence for this
quantity in the scaling limit. As shown in these figures, the
Belle data are not very accurate at this stage to discuss
whether Q2 dependence exists. However, there are tend-
encies for the scaling within the errors. The Q? variations
may be seen at Q% <6 GeV? at W = 1.55 GeV and
cos = 0.5 in Fig. 14; however, such data are irrelevant
in our analysis because only the data with Q? > 8.92 GeV?
are used.

In the analysis 1, there are four parameters, a, A, as, and
bs, and the others are fixed. For example, n = 2 is taken by
the constituent-counting rule, and > qM’zl(q) = 0.5 from

pion-structure function studies. The f;,(500) contribution is
terminated by taking ]_CfO(SOOJ = 0. The obtained parameter

0*+s do [10-5}

12 B dcosf ‘
& W=0525GeV cos6=0.1
104 # W=0975 GeV
¢ W=1.550 GeV
8
—_—
, used data
6 :
02=8:92 GeV?
4 :
2‘ %
‘ n
NI\ FARN I S
5 10 15 20 25 30
02 (GeV2)

FIG. 13. (Q?-scale dependence of the Belle data at cos @ = 0.1.
The ordinate corresponds to the term with the GDAs integrated
over z in Eq. (65).
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Q*+s do [10_5]

dcos6
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3 W=0525GeV c0s0=0.5
10 # W=0975GeV
& W=1550 GeV
8]
R
, used data
6 0?=8.92 GeV? '
4 :
p
2‘ E i |
RIS I TR S
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FIG. 14. (Q?-scale dependence of the Belle data at cos @ = 0.5.

values are listed in Table III. A reasonable fit is obtained in
this analysis with y?/d.o.f. = 1.22. Assigning the decay
constant ff‘o(soo) as an additional parameter in the analysis
2, we obtained a better agreement with the data with
y*/d.o.f. = 1.09. In both cases, the parameter « is close to
the asymptotic value @ = 1. For the pion distribution
amplitude, a more concave functional form is suggested
at finite Q* [45,53,67]. However, the pion distribution
amplitude is related to the C-odd GDAs as shown in
Eq. (66), and our current analysis is for the C-even GDAs,
so that there is no direct connection.

The cutoff parameter is in the range 1.6 < A < 2.0 GeV,
which is larger than the cutoff of the nucleon’s electro-
magnetic form factors. The set 2 provides a better descrip-
tion of the Belle data, as indicated by the y?/d.o.f. value,
especially at small W(<0.8 GeV). In both analyses, the
values of az and b; stay at almost same values, az = 3.8
and bs = 0.4. In order to explain the Belle data, the decay
constant of f,(500) is ]_CfO(SOO) =0.0183 GeV at Q% =
16.6 GeV?. It becomes [ (so0) = 0.0246 GeV at Q* =

1 GeV?, and this value is much smaller than the one for
froos0) With the gg picture (f 930y = 0.104 GeV at
0% =1 GeV?) [63].

TABLE III. Constants and parameters determined by the y?
analysis. Here, the ]_‘fo(SOO) and f,(1270) values are provided at
Q? = 16.6 GeV?, and they correspond to f, o) = 0.0246 &
0.0045 and f,(1270) = 0.101 at 0% =1 GeV>.

Parameter set 1 set 2

a 0.801 £ 0.042 1.157 £0.132
A (GeV) 1.602 + 0.109 1.928 +0.213
ffu<500> (GeV) 0 (fixed) 0.0184 + 0.0034
S 1270y (GeV) 0.0754 (fixed) 0.0754 (fixed)
as 3.878 = 0.165 3.800 + 0.170
bs 0.382 + 0.040 0.407 £ 0.041
y?/d.of. 1.22 1.09

The actual comparisons with the Belle data sets are
shown in Figs. 15 and 16 for Q> = 8.92, 13.37, 17.23, and
24.25 GeV? and cos @ = 0.1 and 0.5. The dashed and solid
curves are our theoretical results for set 1 [without f(500)]
and set 2 [with f((500)]. There is a dip around
W =1 GeV, which is caused by cancellations between
the S- and D-wave terms. The f,(1270) contribution is
obvious at cos® = 0.1 but it is relatively suppressed at
larger cos@ (= 0.5). As mentioned before, the f(980)
effects do not appear in the data. However, since the y?
value is slightly smaller in the analysis set 2 in comparison
with the set-1 value, the f,(500) could be needed for
interpreting the data in the small W range (W < 0.8 GeV).

The whole cross section decreases with increasing Q* as
shown in Figs. 15 and 16. Especially, at reasonably large
cos 0, the f, resonance effects becomes small. Due to the
scale dependence of the decay constants J_Cfo and f,, the
resonance contributions should become small in compari-
son with the continuum as Q? becomes large. At high-
energy ete” colliders such as the international linear
collider (ILC), large Q° measurements should be done
and such experiments are suitable for probing the con-
tinuum part of the GDAs. They are valuable for the studies
of the GDAs as one of three dimensional structure functions
and their relations to the GPDs.

In order to see each term contribution to the y*y — 7°7°
cross section, we show the cross section solely coming
from f(500), GDA continuum, or f,(1270) in Fig. 17 by
terminating other terms and the phase shifts in Eq. (124) for
the kinematics of Q> = 8.92 GeV? and cos 6 = 0.1. In the
solid curves, the phase shifts are also terminated, whereas
the dashed curve indicates the GDA continuum with the
phase shifts. For example, the solid GDA continuum curve
is obtained by setting ]_Cfo(SOO) = fr,0270) =0 and &, =
0, = 0. Here, the parameters of the set 2 are used for
drawing these curves. In comparison with the solid curve
in Fig. 15 for Q% =8.92 GeV? and cos@ = 0.1, these
distributions seem to be very small. However, the con-
tinuum and f, contribute to the cross section constructively
with almost the same magnitude, so that each contribution
is about 1/4 of the cross section of Fig. 15 if other terms are
terminated. As expected, f(500) contributes only in the
low-energy region of W < 0.8 GeV, and it is much smaller
than the continuum according to the set-2 analysis.
However, it depends on the f,(500) decay constant, which
is taken as one of the parameters in our analysis because
of the lack of theoretical information. The f,(1270)
contributes especially in the W = 1.27 GeV region, and
its magnitude is comparable to the continuum. The GDA
continuum is a slowly varying function of W and it is
distributed in the wide W range.

C. Gravitational form factors and radii for pion

Since the optimum GDAs are determined from the
Belle data, the timelike gravitational form factors
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Comparison with the Belle cross sections measurements at Q> = 8.92 and 13.37 GeV? with cos @ = 0.1 and 0.5. The dashed

and solid curves indicate our analysis results for set 1 [without f,(500)] and set 2 [with f(500)], respectively.

do /dcos6 (nb)
k3
set2 [with  f,(500)]  (2=17.23 GeV2
2.5 = = = = set 1 [without £,(500)] cosf=0.1
2]

1.5
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0.5

02=17.23 GeV2
cos0=0.5

rn S

02=24.25 GeV2
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02=24.25 GeV2
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FIG. 16. Comparison with the Belle cross sections measurements at Q* = 17.23 and 24.25 GeV? with cos = 0.1 and 0.5.
The dashed and solid curves indicate our analysis results for set 1 [without f,(500)] and set 2 [with f(500)], respectively.

are calculated by Eqgs. (119) and (120). Their absolute
values are shown in Fig. 18, and individual real and
imaginary parts are in Fig. 19. The form factor ®, comes
from the D-wave contribution and it is peaked at the
f»(1270) position, whereas the function ®; has a dip due

to the interference between the S- and D-wave terms.
The imaginary part of ®, is peaked at the f,(1270)
resonance and its real part changes the sign. The real and
imaginary parts of ®; have both features on the inter-
ference and the f,(1270) resonance. As for the electric
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FIG. 17. Each contribution to the y*y — 7z%2° cross section is
shown for the kinematics Q> = 8.92 GeV? and cos @ = 0.1. The
solid curves indicate cross sections by terminating other con-
tributions and phase shifts. Three curves are for only f(980),
continuum, or f,(1270). The dashed curve shows the continuum
cross section by turning on the phase shifts. The parameter values
of the set-2 results are used here.
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FIG. 18. Absolute values of the timelike gravitational form
factors ©,(s) and ©,(s) of the pion.
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FIG. 19. Real and imaginary parts of the timelike gravitational
form factors @, (s) and ©,(s) of the pion.
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FIG. 20. Spacelike gravitational form factors normalized to
their values at 1 = 0.

form factor of the pion in the timelike region, there are
recent theoretical studies by the holographic QCD and
lattice QCD [68].

In order to find the space distributions and gravitational
radii, the timelike form factors should be transformed to the
spacelike one by using the dispersion relation of Eq. (51).
The obtained spacelike form factors are shown in Fig. 20.
They are slowly decreasing function of —¢ and the slope is
steeper for ®; than the one for ®, due to the additional
S-wave term in Eq. (119).

The substantial difference between the form factors
certainly contradicts to the soft-pion theorem [32,69] which
guarantees that Goldstone bosons in gravitational field are
insensitive to the scalar curvature [70]. As the gravity is
coupled to the conserved energy-momentum tensor includ-
ing the gluon contributions, it may be the signal that gluon
GDA, whose contribution to the considered two-photon
process is suppressed, is essential.

Then, the gravitational densities and their radii are
calculated by Egs. (53) and (54), respectively. The gravi-
tational densities p; (r) and p,(r), which are obtained from
©,(f) and O,(t), respectively, are shown for the pion in
Fig. 21. It is known that the spacelike electric form factor

47r2p,(r) (1/fm)
3

25 dmr2p,(r)

2]

1.5] 4rr2p,(r)

0.5 + T =

~< o

>

02 0.4 0.6 08 ]

FIG. 21. Gravitational densities p;(r) and p, (7).
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TABLE IV. Typical densities and form factors.

Hadrons p(r) F(q)
Quark = 8(r) 1
Pion 4/\7; e~ TR
Proton A e W
Light nuclei (%2)3/ 2N PRACHS!
Heavy nuclei #Q(R -7) 3/'1(](_131?)

of the proton is known as the dipole form F,(q) =
1/(1 + g*/A?%)?, which leads to the exponential charge
density p,(r) = (A*/(8z))e™" by the Fourier transform.
Typical functional forms of charge densities and form
factors are given in Table IV for hadrons and nuclei.
The charge form factors and densities of light nuclei are
typically given by the Gaussian functional forms, whereas
the densities become flat ones for large nuclei. The pion
form factor is roughly given by the monopole form
F.(q) = 1/(1+ g*/A?) as suggested by the constituent
counting rule, and its space distribution is given by the
Yukawa form p,(r) = (A?/(4nr))e™ . It is a divergent
function as r — 0, so that it is more appropriate to show the
density by 4zrp(r) rather than p(r) itself as usually done
for the nucleons and nuclei.

To understand the physics meaning of the energy-
momentum tensor and the gravitational form factors, the
static energy-momentum tensor is defined in the Breit
frame as [29]

d*q

T3 (7) = / mei‘?'?<ﬂ°(P/)ITZ”(0)Iﬂo(p)% (127)

where E = \/m2 + ¢*/4. The yv = 00 component satis-
fies the mass relation

/ BrTO(F) = m, 0, (0). (128)

Therefore, the ©, reflects the mass (energy) distribution in
the pion. The uv =1ij (i, j =1, 2, 3) components are
expressed by the pressure p(r) and shear force s(r) as

riry 1

TU(F) = py(r)oy + sq<r>(

2

Using the definition of the energy-momentum-tensor form
factors, we find that p(r) and s(r) are expressed by ©,.
Namely, the ®; is the mechanical form factor which
contains information on the pressure and shear force. The
conservation of the energy-momentum tensor 9,7*" = 0
indicates the stability condition for the pressure p(r) as
[29,71]

/oo drr*p(r) = 0. (130)

0

It is satisfied in our formalism due to the finite ®, (7 = 0),
as also noticed in Ref. [32], because of the 6 function in
the r integration.

According to the definition (127), the mass (energy)
density is given mainly by the form factor ®,(¢); however,
©,(t) also contributes at finite 7. On the other hand,
pressure and shear-force densities are given solely by the
form factor @, (z). Therefore, we may use the terminologies
“mass” (or energy) and “mechanical” (pressure and shear
force) for ©,(t) [p(r), (r?),] and O () [p(r), (r*),].

The gravitational densities 4zr2p, (r) and 4zr%p,(r) are
peaked at r = 0.1 ~ 0.2 fm region in Fig. 21. However, the
mechanical density p;(r) is distributed in larger-r region,
which is our interesting finding for studying the gravita-
tional physics of the pion. The mechanical density contains
the shear force, which could be dominant in the surface
region, so that the p; (r) may be distributed in the relatively
large-r region. From the densities p;(r) and p,(r) or the
spacelike form factors ©,(z) and ©,(t), the gravitational

radii can be calculated. We obtained the radii /(r?), =

\% <r2>mass and \/<I’2>1 = \/<r2>mech as

(r?) ass = 0.39 fm,

<r2>mech = 0.82 fm (SCtZ).

(131)

It is interesting that we found a mass radius which is much
<r2>charge =0.672+

0.008 fm; however, the mechanical radius is slightly larger
as indicated in the density 4zr%p,(r) of Fig. 21. It is
because that there is also the S-wave term Elo in addition to
the D-wave one B,g. In physics, the pressure and shear-
force distributions have different nature from the mass
distribution.

We should note that there is uncertainty in our analysis
in the sense that only the relative phase 8y(W) — 6,(W)
affects the cross section; however, their absolute phases
are not. It means that the phase A5(W) could be attributed to
5, instead of &, in Eq. (126). We repeated our y* analysis with
this extreme option and obtained the radius values as

V() mass = 0.32 fm and /(%) e, = 0.88 fm. There-

fore, it is fair to state at this stage that the evaluated
gravitational radii are in the ranges:

smaller than the charged one

<r2>mass =0.32-0.39 fl’Il,
(r?), o = 0.82-0.88 fm. (132)

It is encouraging that similar radii are obtained in totally
different analyses. The mass radius is much smaller than the
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chargeradius, and the mechanical radiusis slightly larger. Itis
interesting to find that thereis apossibility thatthe massradius
is different from the charge one as suggested in Ref. [36].

Lattice QCD calculations on the energy-momentum
tensor indicate similar tendency that the mechanical radius
is larger than the mass radius [72]. Here, we should note
the definition difference from our form factor, namely the
factor of —4 in B(t) and ©,(7) as explained below
Eq. (123). The actual radii are not shown in the lattice
calculations [72]; however, spacelike form factors and radii
have similar tendencies with our results. In addition, a
theoretical estimate of D-term, which corresponds to ©; in
our studies, also shows a similar result [73].

Because the pion GDAs were obtained in this work, it is
possible to study their relation to the pion GPDs as
explained in Secs. IID and IIE. In order to discuss the
pion GPDs, we need to find appropriate double distribu-
tions from the GDAs and then to calculate the GPDs. Since
it is a significant work, we leave it as our future project.
In addition, the Belle collaboration has been investigating
other hadron-pair production processes including p p. Once
such data become available, it is possible to determine
nucleonic GDAs in comparison with the GPDs obtained in
spacelike reactions.

This kind of studies has a bright prospect in the sense
that the Belle collaboration has been analyzing other meson
productions y*y — hh from the two photon. The exper-
imental errors of Figs. 15 and 16 are dominated by the
statistical errors. The KEKB was just upgraded to super-
KEKB, so that the errors should be much smaller in the
near future. Furthermore, if the ILC is realized, the two-
photon cross section y*y — hh should be obtained in a very
different kinematical region, namely at large Q?, and the
ILC measurement should be valuable for probing especially
the continuum part of the GDAs.

For along time, the GDAs had been considered as a purely
theoretical subject. We showed in this work that it becomes
possible to investigate the GDAs experimentally with the
appropriate theoretical formalism. This study is merely a
starting point. Interesting prospects are waiting for us for
investigating gravitational physics for hadrons in the quark-
gluon level. For example, the equivalence principle indicates
that the anomalous gravitomagnetic moment should vanish
in the nucleon [74]. Therefore, the equivalence principle
could be tested in the microscopic particle physics by
investigating the GPDs and GDAs for the nucleon.

V. SUMMARY

The GDAs are one of three-dimensional structure func-
tions, and they are related to the GPDs by the s — ¢ crossing
relation. We analyzed the Belle data of the two-photon
cross sections y*y — 779 for determining the pion GDAs.
This work is the first work to obtain the GDAs from the
actual experimental data, and our results should be valuable
for probing the three-dimensional structure of hadrons,

especially for future applications to unstable hadrons
including exotic-hadron candidates which cannot be used
in fixed-target experiments.

Including the f((500) and f,(1270) meson contribu-
tions to the cross section, we expressed the pion GDAs
by a number of parameters which were determined by
analyzing the data. The obtained z-dependence is close to
the scaling one (a = 1). If we include f;(980) contribu-
tion with constants estimated by assuming it as a ¢g state,
theoretical differential cross sections are much larger than
the Belle measurements. The f,(980) meson was not
included in our actual analysis. The GDAs contain the
timelike gravitational form factors ©;(s) and ©,(s)
of the energy-momentum tensor, and we calculated them
from the obtained GDAs. The function ©,(s) is deter-
mined only by the D-wave part, whereas both S- and
D-waves contribute to @, (s). Therefore, they have differ-
ent functional behaviors. This is the first time that the
gravitational form factors are obtained from actual exper-
imental measurements.

The timelike gravitational form factors are converted to
the spacelike ones by the dispersion relation. Then, the
gravitational mass and mechanical densities are shown,

and their radii are calculated. We obtained \/(r?) s =
0.32-0.39 fm and \/(r?*) e, = 0.82-0.88 fm from the

form factors ®, and ®;, respectively. They indicate that
the gravitational mass radius is much smaller than the

\/ (") charge = 0.672 % 0.008 fm and that the

mechanical radius is slightly larger. Future super-KEKB
measurements should improve this situation. We hope that
this work will open a new field of gravitational physics in
the quark-gluon level.

charge radius
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