PHYSICAL REVIEW D 97, 014012 (2018)

Prompt photon-jet angular correlations at central
rapidities in p +A collisions

Sanjin Beni¢' and Adrian Dumitru®>

4

lPhysics Department, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
2Department of Natural Sciences, Baruch College, CUNY, 17 Lexington Avenue, New York 10010, USA
’The Graduate School and University Center, The City University of New York,
365 Fifth Avenue, New York 10016, USA
4Physics Department, Brookhaven National Lab, Upton, New York 11973, USA

® (Received 10 October 2017; published 24 January 2018)

Photon-jet azimuthal correlations in proton-nucleus collisions are a promising tool for gaining
information on the gluon distribution of the nucleus in the regime of nonlinear color fields. We compute
such correlations from the process g — ¢ggy in the rapidity regime where both the projectile and target light-
cone momentum fractions are small. By integrating over the phase space of the quark which emits the
photon, subject to the restriction that the photon picks up most of the transverse momentum (to pass an
isolation cut), we effectively obtain a g + A — gy process. For nearly back-to-back photon-jet configu-
rations we find that it dominates over the leading-order process ¢ + A — gy by two less powers of Q| /Qg,
where Q| and Qg denote the net photon-jet pair momentum and the saturation scale of the nucleus,
respectively. We determine the transverse-momentum-dependent gluon distributions involved in g + A —
qy and the scale where they are evaluated. Finally, we provide analytic expressions for (cos n¢) moments,

where ¢ is the angle between Q| and the average photon-jet transverse momentum P, , and first qualitative

estimates of their transverse momentum dependence.
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I. INTRODUCTION

Angular correlations between hadrons and prompt pho-
tons in high-energy collisions have been suggested to
provide insight into the gluon fields of hadrons or nuclei
in the small-x, nonlinear regime [1-6]. Prompt photons are
those originating from hard interactions among the initial
beam partons. Those studies have mostly focused on
photon or dilepton production through the leading-order
q — qy process (in the field of the target) which dominates
in the fragmentation region of the projectile at forward
rapidities. In the central region on the other hand particle
production is dominated by processes involving soft
partons from both projectile and target. In particular, it
has been pointed out in Ref. [7] that the production of a
photon can also occur via g — ¢gy. Although the ampli-
tude squared for this process is suppressed by one addi-
tional power of a as compared to ¢ — gy, on the other
hand the gluon density in the projectile at small x formally
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is of order 1/a, times the density of quarks and so these
contributions should be comparable.

Here we consider angular correlations between a photon
with transverse momentum k,, and a jet with transverse
momentum p ;. We obtain this final state by integrating
over the phase space of the quark from which the photon is
emitted subject to the restriction that the photon takes most
of the transverse momentum. The contribution from the
quark to photon fragmentation is explicitly taken into
account. Hence, our process becomes g — gy. We show
that in the back-to-back correlation limit where the photon-
jet transverse momentum imbalance Q, =p, +k,, is
much smaller than their average transverse momentum
P, = (p. —k,,)/2, and smaller than the saturation scale
Qg of the nucleus, the g — gy process in fact dominates
over ¢ — gy by two (fewer) powers of Q /Qg.

The g — gy process can be written in terms of a
convolution of hard factors with the dipole forward
scattering amplitude [1-4,6]. ¢ — gy, on the other hand,
in general involves the expectation value of a correlator of
four Wilson lines at small x (see below and Ref. [7]). In the
near back-to-back limit Qi / f’i < 1, however, this corre-
lator can be expressed in terms of transverse-momentum-
dependent gluon distributions [§—10]. Below, we determine
which gluon distributions appear in photon-jet production

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.014012&domain=pdf&date_stamp=2018-01-24
https://doi.org/10.1103/PhysRevD.97.014012
https://doi.org/10.1103/PhysRevD.97.014012
https://doi.org/10.1103/PhysRevD.97.014012
https://doi.org/10.1103/PhysRevD.97.014012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

SANJIN BENIC and ADRIAN DUMITRU

PHYS. REV. D 97, 014012 (2018)

through the g — gy process, and at which transverse
momentum scale they are evaluated. This turns out to be
given by the total transverse momentum in the final state;
thus the process can be used to obtain information about the
gluon distributions near the nonlinear “saturation” scale.
Our focus here is on proton-nucleus (p + A) collisions at
high energies where the saturation scale Qg of the heavy
ion is expected to be semihard, on the order of a few GeV.
We employ the “color glass condensate” formalism [11] to
describe the strong yet weakly coupled gluon fields of the
nucleus at small x. For completeness let us mention that
photon-jet production in proton-proton (p + p) collisions
has been analyzed in the ky-factorization approach with
transverse-momentum-dependent gluon distributions in
Refs. [12]. References [13,14] considered photon-jet pro-
duction in collinear factorization at NLO supplemented by
a parton shower generator. Lastly, such angular correlations
from gq — yg annihilation in pp collisions have been
discussed in Ref. [15]. Our main interest here is to show
how photon-jet azimuthal correlations at small x probe the
gluon fields of the heavy-ion target in the nonlinear regime.

From the cross section for g — gy we can compute
(cosngp) angular moments, where ¢ denotes the angle
between @, and P,. These are nonzero for all n but
increasingly suppressed as (Q,/ P 1)". The transverse
momentum dependence of these moments in proton-
nucleus collisions provides information about the gluon
distributions of the heavy-ion target. We also compute the
“azimuthal harmonics” (cosn®) (n = 1...3) which are
frequently studied in heavy-ion collisions, where now ®
is the angle between k,; and p, .

Photon-hadron (or jet) correlations have been studied
experimentally by the PHENIX [16] and STAR collabo-
rations [17] at the BNL-RHIC accelerator, and by CMS and
ATLAS at the CERN-LHC. Thus far the experiments at
RHIC have focused on p + p or nucleus-nucleus (A + A)
collisions. The latter provide insight mainly into final state
interactions of the jet with the hot and dense medium
produced in heavy-ion collisions. Photon-jet correlations in
p + p collisions have provided information on transverse-
momentum-dependent gluon distributions albeit not in the
weakly coupled, nonlinear regime of QCD since the
saturation momentum of a proton at RHIC energies (on
average over impact parameters) is well below 1 GeV [18].

The ATLAS Collaboration has measured photon-jet
correlations in p + p collisions at 7 TeV [19]. For pjf >
40 GeV and E"| > 45 GeV the correlations near ¢p = x can
be described reasonably well by established QCD
Monte Carlo generators. The CMS Collaboration, too,
has analyzed these correlations in p+p and A+ A
collisions but also obtained data for p 4+ Pb collisions at
5 TeV [20]. Interestingly, for p’;' > 30 GeV and 40 GeV <
k' <50 GeV the correlation strength near ¢ = = appears
to be overestimated by some Monte Carlo models; see also
Fig. 6 in Refs. [14]. This may potentially be related to high

gluon density effects of the kind considered here, especially
if confirmed by more symmetric configurations with
smaller O (say, by going to lower k| > 30 GeV).

This paper is organized as follows. In Sec. II we recall
the leading-order (LO) cross section expressed in terms of
the transverse momentum imbalance @, and the average
photon-jet transverse momentum P . The NLO amplitude
is introduced in Sec. III, and expanded in powers of gluon
momenta in the follow-up Appendix A. In Sec. IV we
obtain the cross section for g — ¢gy, while in Appendix B
we compute the nuclear distribution functions appearing in
the next-to-leading-order (NLO) cross section. The g — gy
cross section and the angular moments a,, are obtained in
Sec. V B. Our results are summarized in Sec. VL

II. LEADING-ORDER PHOTON-JET
CROSS SECTION

The LO photon-jet cross section due to scattering of an
(anti)quark off the target is given by [2-5]

do
dzkyj_dnk},dzpj_dnp
2
aeq.f
- 320 / dxp[fq,p(xpv Q2) +ff1,p(xpv Q2>]
1 l-p 1 1
X — l+2 + p+2 |: + —
l+( ) (l'ky)(p-ky) p'k}, l'k},
X Np(xa, (pr 4k, )?)27)5(17 = p* = k), (1)

where k, and p are the photon and jet momenta, respec-
tively, while / is the momentum of the quark from the
proton; see Fig. 1. Here f,;) ,(x,. O*) denote the collinear
quark and the antiquark distribution functions of the proton
evaluated at some hard scale Q% and N p(x4, k%) is the
forward scattering amplitude of a fundamental dipole off
the nucleus. At x4 < 1 and in the large-N_. limit this is
obtained by solving the Balitsky-Kovchegov (BK) evolu-
tion equation [21].

We can rewrite the cross section in terms of the
light-cone momentum fraction of the outgoing quark
g = pT/I" and the transverse momentum imbalance

[ > p
%’l’\/\/‘k’y
k

FIG. 1. Example for a LO diagram for photon production in the
high-energy limit. The blob contains multiple (eikonal) scatter-
ings on the dense target with momentum exchange k. The
complete LO contribution includes photon emission before the
interaction with the nucleus (not shown).

014012-2



PROMPT PHOTON-JET ANGULAR CORRELATIONS AT ...

PHYS. REV. D 97, 014012 (2018)

0, and the average transverse momentum P, which are
defined via

1
0 =k, +p,. J_Ez(pj_—kﬂ_). (2)
In terms of these variables,
do
&P d*Q, dry dn,
2
A gy
= 1671']; / dxp[f%f(xp’ 2) +ft?.f(xp’ QZ)}
X 1+ Z%’ zq(1 - Zq)zQi
2 (301 -P)’[3-2)01L +P.]
< Np(xs. Q1) @m)p* (1" = p* = k7). (3)

We focus on photon-jet configurations that correspond to
P 1> Qg¢> Q) so that the transverse momenta of the
photon and the jet are almost back to back. In this limit, due
to nonlinear effects the dipole forward scattering amplitude
Nrp(x4, Q%) ~1/03%(xy) is proportional to the inverse
saturation scale squared of the nucleus. Hence, the leading
contribution to the LO cross section is of order (Q | /Qs)?,
times an overall 1/P*, and is independent of the angle ¢
between Q| and P . An angular dependence ~ cos ¢ arises
at next-to-leading power (Q, /Q5)?Q, - P, /P2. Below we
show that the cross section for g — gy generates an
isotropic contribution at order 1 (times the common
1/ P! ), a cos¢ angular dependence already at next-to-
leading power ~Q, /P, and so on.

III. NEXT-TO-LEADING-ORDER
PHOTON-JET AMPLITUDE

At the NLO order photons are produced via the g — ggy
process where either the incoming gluon or either of the
quarks may scatter off the field of the target; see Fig. 2. For
a photon-jet final state, one of the quarks will eventually be
integrated over.' The external momenta in the process are ¢,
p and k, for the quark, antiquark and the photon, respec-
tively. In the amplitude we also have the transverse gluon
momenta from the proton, k; |, and from the nucleus, k|
and k,; —k, (there are two, because of the two Wilson
lines). Here, k| =P, —k;, withP, =q, +p, +k,, is
the total final state transverse momentum.

The main formula for the amplitude is [see Eq. (47)
in [7]]

lSpecifically, we integrate over the phase space of the quark
which emits the photon. We restrict to the region of phase space
where the photon picks up most of the momentum of the parent
quark so that the configuration passes a photon isolation cut; see
Sec. V below.

ko

ﬁ%
Q000000 000;0\‘
SR

=
=

S

FIG. 2. Examples for NLO diagrams for photon production in
the high-energy limit. In the left diagram the gluon from the
proton emits a gg pair which then scatters on the dense nucleus.
In the right diagram the gluon scatters on the nucleus and then
produces a gg pair and a photon. The complete NLO contribution
includes diagrams where the photon is emitted from the antiquark
line, or from a virtual quark-antiquark state (not shown) in the
case of single-inclusive photon production.

M (p.q.k,)

N _qfeg ~/k¢ku X1y1
’4( HTy(ki)U (xl)bafb
Thak ki) U )U (1) o(p).- (4)

k )
/)p lJ_ lkarH(ku—kL)')u

Here U(x ) [U(x )] is the Wilson line in the fundamental
(adjoint) representation

~ 1
Ulx,)="P,exp [—igz/ dz " V—sz(zﬂxl)t“],

U(XJ_

~—

=P exp [—ig2 /oo dz+V—2/Jj§(Z+,xl)T”}, (5)
—co 1

with ¢ (T“) the SU(N,) generators in the fundamental
(adjoint) representation. gp%(x ) [gp4(x )] denotes the
random color charge density of the proton (nucleus) which
will be averaged over after squaring the amplitude. The
other factor of the coupling g in Eq. (4) arises from the
g— q — q Vertex.

We also introduce the following momentum labels,

w=q+k, v=p+k, g=q—-k, h=q—k—k,

u=gq+k, -k, l=q+k, —k—ki, (6)

where k™ =0, k; =0, kK = P*. We also define the
Lipatov vertex

k2
ok )= gF ——1L
CL(q’ u) q q‘+ie’
—ky )2
Ci(q.kyy) —(‘ILC]—+IL)—6I_,
Cri(q.ki)=q, -2k . (7)

We then have
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"= ZRﬁ, T —ZRﬁ, (8)
with
fo-T g Bt
R — O +m)y( +m)y” (] +m)y”
o Ni(w? —m?) ’
N =2p™M?(uy) + 2w M (1), (10)
w _ V(g Emy(f+m)y(—f + m)r*
Ry = Nq(vz—mz) ’
NqEZU+M2(gJ_)+2q+M2(hJ_), (11)
RY, = opt UM G )y (4 m)r”
N, S
M2(1
k-=w + 21(7f) , (12)
R, =2q+ rH(d+ m)r‘(?jerSM)y”(H m)y* ,
q
M2
k:qa-zgﬁ, (13)
with

S=4pTqTk; +2¢"M*(1,) +2pTM*(g,).

Here we defined the transverse mass function M(k,) =
VKL +m?

We assume that there is a certain combination of the
external momenta which is the largest scale in the process
(i.e. the average transverse momentum P of photon and
jet). This scale is also supposed to be much larger than the
saturation scale of the proton or that of the nucleus. The
transverse momenta of the gluon from the proton, k; |, and
of the gluons from the nucleus, k, and |k, — k|, are of
the order of the respective saturation scales, much smaller
than the hard scale.

With this assumption we perform an expansion of the
amplitude in k|, k,; —k, and k. To obtain the gluon
distributions we must expand to first order in these momenta.
The main point is that by Ward identities this expansion
necessarily involves terms proportional to ki | (k, — k; )/ or

ki K in the amplitude. Note that by conservation of
momentum this implies that the total transverse momentum
P, =q, +p, +k,, inthe final state is much smaller than

the average transverse momentum P, of the photon and jet.
We shall return to this point in Sec. V B. After some algebra
(the full details are given in Appendix A), we obtain the
following main result for the amplitude:

M (p.q.k,)
= —4qyreg / / p” ku oikLx +i(PL—k ~ki1 )y,
kiky Jxiy,
) iRy @u“ﬁ+m%wwb—m£%
x Ux )°U'(y ) }v(p). (14)

where we defined

2 5 8
WeYm. m=Yw. =R 9
=1 =3 $=6
with
R”isgy/‘ d—l—ky—l—m kz kll
PP (q4k)-mP PP
R”izikz =K +m K
2P (p+ ky)z -m?" ptp~’
RU = d+k+m v f—p+m ¥y
3 (q—f—ky)z—mzP_(kl—p)z—m2P+’
ui_ Vv d—k+m Ki—p+m K
Ri=_1 y 7L
) P™(q—ky)? =m*" (ki = p)*> —m®> P*~
i _ : - P m
Rii=_ 1 d-t+m K, —-r-k+ "
: P~ (q—ky)* - 2P+(p+k}/)2_m2 ’
Ui __ li_ % kl+m 7 _p_ky—’_m

"
6 P*(q ky)? —m2P- (p—l—k},)2—m2y’
ui K -k +m b—p+m y
= - H I
TP (g—k)?P=m* (ky—p)?—mP P
v d+k+m ¥ b-p+m ¢
(q+k)>=m* Pt (ky—p)> —m* P~

R’éi = (16)

Here Rﬁi, with f=3,...5(f =6, ...,8), correspond to the
three terms in the first (second) line of Eq. (A10), after using
the momentum definitions Eq. (6) and the collinear limit:

ky = (ki ki k) =
k2 = (k;,k;,k2l) =

(P*,0,0),
(0,P~,0). (17)

As an aside, it is useful to check the soft photon limit of the
amplitude in Eq. (14). We obtain

Mep.a k) =ae( L= ) g
sy Qf p-k q'k

/ / pp ku_ ek x +i(P L~k —ky 1)y,
kiky Jxiy,

i(q){kxR{U (x )b“th
+ kiR + (ky = k) RE)U (x )1 U (v.1) Yo (p).
(18)
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where R, = qu’,-, together with k; — k, and k, — k;, in the
L2 kli notation of Ref. [10].
v ="phpip
Rl = y_z Fo—p+m @ IV. NEXT-TO-LEADING-ORDER CROSS SECTION
TP (ky = p)?—m> Pt We can immediately derive the cross section by adapting
Ri = _m k—p+m y_’ (19) the calculation from Ref. [7]. With the replacements

RE T RV — k)R TH
Thus, Eq. (18) factorizes into the soft photon emission kaiRy = Ty, kiRg + (ky = k)iRG = Tgq. (20)

amplitude times the amplitude for ¢g production. The gg
production part exactly agrees with the result in Ref. [10]  the amplitude in Eq. (14) has the same structure as (4) [or
once the expressions in Egs. (25) an~d (26) of [10] are Eq. (47) in [7]]. Then, we can deduce the cross section from

compared with Eq. (19) throughR,; =T ;, R, ; = T;‘q.i and  Eq. (63) in [7]:
|

do a.5q}

— Ppp K1)
d’p, d*q, d’k,  dn,ydn,dn,  2567°N (N2 = 1)

2
le

X / / eillerx K, 'xﬁ_)+i(ku—kl)'.h—i(ku—kﬁ_)‘.)’ﬁ_gﬂﬂ/
x, X\ yy| Jky K,

< {trl(f + m)k5R i (m = p)"RoR' 1y ) Cxp 2 31 X))

/ (27)*6 D (P, —ky | —ky))
kykyy

gpi

+l(d + m)KRy i(m = p)y (KR, o+ (ke = K) R )7 1C(xa, 21, %1,y %))
+tr[(d + m)(kqu,m + (ko = k)qu,m')(m - ﬂ)?okgRlz,ﬂ/i/Vo]C(anxL,J’LxLxl)

+te(d + m) (KR, i + (ky = K)'Ry i) (m = p) " (KT R L+ (ky = KR L))

x C(xg, %1,y ,%) )} (21)

To follow more closely the notation in [10] we rewrote the nuclear gluon field correlators from Eqgs. (58)—(60) in Ref. [7] in
terms of the four Wilson line correlator

Cloax 1,y 1YL x)) = (U ) Uy ) O )UT (x)),,,- (22)

We used t*U(x ) = U(x, )1“U(x ). Also, we defined the unintegrated gluon distribution ¢, (x,,. k7, ) of the proton via

5abk2
(p ey )py (ki) = mfﬂp (xp. k) ). (23)
C

The proton and the nucleus light-cone momentum fractions, x, and x4, are related to the final state kinematics via

s
xp\/;:p++k;r+q+,

S
xA\/;—p‘+k;+q‘. (24)

By partial integration we can turn powers of k', (k, — k)’ and k% into gradients of the correlator of four Wilson lines (22).
For example,
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. I . . / . .
/ , /k . e’("L'xL—kaL)‘*"(ku_ki)'yi_’(kh_kl)'ylk’z(k2 _k/)”C(xA,xl,xL,y’l,x’l)
xLxLy_LyL Ls L

_ —ik' X' +iky x, —i(ko  —K') )Y, 1i ni' ’ /
_/ Ly l em it iKY g (ky — K') C(aq, 21,21,y X))
XXy, Jky

L

2 VA
= e~ ik ¥ tiky x| —i(ky =K' )Y, 9 C(xA’x%’x%/’yL’xl)
e, 250y’
Lk

iR

_ / AR |:82C(XA,xJ_.7xJ_';y/J_’x/J_):| ) (25)
oo, ox' oy X =y,

The cross section can be written as

do L aaq
d’p d’q d’k,  dnydn,dn, 2567°N (NZ - 1)

X / eiku'(xi—xﬁ_)gﬂﬂ
x, x|

sl + )Ryl = PR

7k2
/ (27)*6D (P — Ky, —ku)m
kijky) kli

!

2 )
8 C(xme_’YJ_’.VJ_,xJ_)
iy
0x'0x X =y, X =y,

_aZC(xA,xi,yLyl,xl)_

+te[(ff + m)R, i(m = p)y°R". .70

awi? 1| Dxioy' | ———
'82C(XA,xl,yl,y’ X))
L+ )Ry — R ]| SOOI
L Yy ox dx =y =y,
[0*C(x5,x,,y,.Y,,x})]
U+ )Ryl = R ) AL YL L)
- y oy dx, =y, ¥ =y

a2 / 7\
] 0 C('XA’xJ_’yJ_vxl»xL)
i1
Ox'Ox P

+ tr[(f + m)Ry i(m — ﬂ)yORI;,ﬂ’i’yo

ra2 / /7
0 C(XA9xL’yL7xJ_9xL)

+te[(ff + m)Ry i(m — p)y R 7"

st L 8yiax/i/ 4X1 =y
[0?C(xq,x %,y ,x))]
+ tr[(d + m)RWi(m - ﬁ)7ORIZ ,/i’yo] : i =
: i Ox'Ox Ix =y
[0?C(xp,x %1,y ,x))]
+te[(d + m)Ry il = P)P R "] Towoy
L dx) =y
[0?C(xp,x 1 ,x,,x,x))]
+ (g + m)Ryi(m = 2R 7] o | [ (26)

The gradients of C(x,.,y .,y x,) are parametrized in terms of six transverse-momentum-dependent gluon distribution
functions as follows [see Egs. (28)—(34) in [10]]:

2 ! /
/ koL (x =¥ [8 C(XAJL,VLJ’LJL)]
i/
XX Ox'Ox xl:yl'xlzyl
2 T
/ eikzr(xL—xl) |:a C(XA’xJT?yJ/_':yJ_,xJ_):|
1 L
x, X dy ay x =y, x|\ =y
i i’
ky ky, 1

=) 55”)1{1 (x4, 53,), (27)

L

1.,
55” F]()CA, k%J_) + <
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/ pikou(ri =) [GZC(XA7X+,}’L_,)’LJC1)
X, X 8xtaylz’

] x =y, X =y

I
—

/
xx'

| =

STy (x4, k3, ) + <

eikzy(n—xl) |:82C(XA’xL’yl’y/J—’xl)
ayiax/i’

kélkgj_ _ 1

K

:| x, =y, X =y,

3 )t 2., (28)

2 / / 2 / !
/ pikar-(x—x') P C(XA’xJ_vyJ_’xJ_7xJ_):| _/ eikar(x1=x)) [8 C(XA,be’varxﬁ]
XX} X =y XX X,1=y

Oxiox'"

ayiaxri’

2 ! ! 2 ! /
= / pikor-(x 1 —x') [8 C(xA’xl’xl’yJ-’xJ-)] = / eiko1-(x=x')) |:(9 C<XA’xJ—’xJ-’yJ_’xJ_):|
x,x X =y, x.x) X =y,

Oxiox'"

1

2 Oxiox'"

The cross section becomes

do - aeasq?f
d’p, d*q d’k,, dn,dn,dn, — 2567°N.(N? - 1)

X {(qu,ii’ + 754.ii") [

1
+ (2400 + Tq.) 5

:l/ pikor(x1—x)) [82C(xAva_va_vlevle)] _1
XX 2

/ (27)28D (P —kyy — k)
lekZL

8xiay/i’
i 2 kéj_kgj_ 1 i’ 2
o F3(xAvk2J_>+ 2 _55 H3(xA,k2l). (29)
21

@p(xp k1)
ki)

Ky kb1,
8" Fi(xa. k3,) + (M—Efsll)Hl(xA,k%ﬁ]

2
k2l

Koko1 .,
8T Fy(xp. k3,) + (M - 50" )HZ(XAJ‘%J_)]

K3, 2

+ (Tggit + Tagit + Toqit + Togaiv + 2Tggi7)

1., K kb1
X [55” Fy(xa, k5,) + (M——&’)Hﬂxmk%ﬂ] } (30)

where

Tabiil = gﬂﬂltr[(% + m)Ra,yi(m - p/)y()R/;ﬂ/i/},O]’
a,b=4q.,3.9. (31)

The F; and H; distributions, introduced in Eqgs. (27)—
(29), have known operator definitions; see e.g. [10] where a
direct relationship to the distributions in the conventional
transverse-momentum-dependent (TMD) formalism dis-
cussed in [8,9] was given. Reference [10] also established
a set of linear relationships to the various dipole and
Weizsicker-Williams gluon distributions [10]; see also
[22]. In addition, we provide explicit expressions in terms
of the BK two-point function of A" in Appendix B.

K, 2

V. JET-PHOTON CORRELATIONS IN THE
COLLINEAR APPROXIMATION

In the following we will pick up configurations where
both the photon k,; and the antiquark (we arbitrarily
choose this to be the jet in this process) momentum p |
are hard, while the leftover transverse momentum of the
quark is much smaller, ¢, <k, . The contributions where
the photon is emitted within a jet can be suppressed by
discarding events with a large transverse jet energy in a
cone around the photon [23]. The remaining configurations
are in fact dominated by collinear photon emissions from a
quark line after the interaction with the nuclei. For
simplicity, we will also take the collinear limit on the
proton side: k;; — 0. The cross section becomes
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do  aasdd
d’p  d*q d’k,, dn,dn,dn, 5122°N(N? - 1)

xpfg,p(xpv Pi)

PP’ 1

| .
x {(TEZI.IW + T??O(';l.ii’) [55” Fy(xs, P3) + < P2 _55” )Hl(anPZL):|
1

(et 15t [0 Fato, ) + (D= 30 ) e )
(gt Tagar T Tqir  Togar + Xggur)
X B 8" F3(xq, P3) + (P;? - %5“")H3 (x4, Pi)] } (32)
where
el = 94 37 wl(f + m)Ry i (m = p)I°R, i ?°), ab = 4.4,
ol = g'tel(d + m)Ry,(m = p) "R ), a=4.q,
w0l = g4 ul(d + m)Ry i (m = p)Y°R 7). a=4q.q,
ol = g 5trl(d + m)Ry,(m — p)r R 7). (33)

Here we have defined Rﬁi = k’1 Rﬁij ,a=gq,q, and RZi = k’i Rz; see Egs. (15) and (16). Also, we introduced the collinear
gluon distribution of the proton,

P2
Xpfgp(Xp, P1) = él . dki @, (x,. k7)) (34)
Note that although P is much smaller than the hard scale P | it is nevertheless on the order of the saturation scale of the
nucleus and so the collinear approximation on the proton side should be justified [24]. o '
The terms in the amplitude (14) containing the photon-quark collinear singularity are given by R/, R5' and R{'; see
Eq. (16). To correctly take into account this singularity the Dirac traces (33) must contain the diagonal parts corresponding
to the matrices R L Rg” and R’gi, as well as interferences with the remaining part of the amplitude, leading to

TZ(();],lii’ = nguu + ngl.lii/ + Tﬁgl,lii/ + T%(s)uu + ngl.lii”
T(Z;Oz';l,ii’ = Tg(él,lii’ + T§(7ﬂ,lii’ + T%%I,lii’ + ngl,lii’ + Tg%l,lii”
T;%l,lii’ = ngl,lii’ + Tg(;l.lii’ + Tg(él,lii’ + Ti%l,lii' + Tg%l.lii”
T?}(;l,lii’ = ngl,lii’ + T%l,lii’ + T(S:gl,lii’ + Tg(é)ll,lii’ + ngl,lii”
Tf,Zl,liﬂ = Tigl,lii’ + Tﬁl,lii/ + T(I;(S)l,lii’ + T;gl,lii”
ngl,lii’ = Ti(él,lii’ + Tigl,lii’ + T(f(él,lt'i’ + Tg(él,lii”
TZ(_()]l,lii’ = Tg(fl,lii' + 751?1,11'1" + T(S:({l.lii’ + ngl,lii”
ch‘(g)zl,lii’ = Tg(l)l,lii’ + 750 + Téci(l)l,lii’ + nguu
T?Zﬂw = Ticl)l.lii' + Tigl,lii’ Tg({l.lii" (35)
Here we have defined
TZ(/)Jl.lii’ = glm/ﬁjj/tr[(ﬁ + m)Ra,ﬂij(m - p/)yOR/;.ﬂ'i/j/yo]’ a’ﬂ =3,....8,
el = g u[(f + m)Ryy(m = p)Y°R} uid"), a=1,2,=3,....8,
ol = g u[(f + m)Ryyir(m — P)Y°R, /%), a=3,....8,=12,
Z(/);l,lii/ = g/m/éii’tr[(q + m)Rrx,/t (m - ﬂ)YOR/;.’u/yO]’ a’ﬁ = 1’ 2’ (36)

014012-8



PROMPT PHOTON-JET ANGULAR CORRELATIONS AT ...

PHYS. REV. D 97, 014012 (2018)

where R = k{Ri/, a =3,....8, and R = kiRl a =1,
2; see Eq. (15).

A. Integration over the photon-quark
collinear singularity

We introduce the photon momentum fraction

ky

kS +q"

7= (37)

and separate out the collinear singularity in the Dirac traces:

Tcoll,reg (W )
TCOH- , (WJ_) ab,ii’ 1 ]
ab,ii [ZWJ_ _ kyj_]z

(38)

The integral over the transverse phase space ¢, is domi-
nated by the singularity w, =¢, +k,, =k, /z. The
|

I=F(k, /2p.) /

1 _ lF(kyL/LPL){ 1 [(ku +2p,)?
wo(awy =k, )*w +p1)? 27k, +2p1)*

integral is calculated by expanding the integrand around
this singularity and then integrating over it.
A generic integral is

] — / F(w,,p.)
g, (Wi =k, )’ (W, +p1)°
_ / Fw..p))
wo (2w =k, ) 2w +p )

(39)

where in the second line we shifted the integration
q. —>w,. Flw,,p,) is a function containing the hard
parts that potentially depend on w, and p, as well as the
distribution function that depends on P, =w, +p,. In
(39) we have separated out explicitly the perturbative tail
~1/P3 of the distribution functions. Expanding F(w ,p )
around the collinear singularity we obtain

~—+7s+log . %0(6)}, (40)

4rz*u

where in the second line we evaluated the integral in d dimensions and expanded around d = 2 — 2¢. Here y? is the
renormalization scale. Subtracting the 1/e divergence and defining y> = ,ulz\TSeVE /4x, we obtain the final formula for the

integral in the MS scheme:

1 F(k, /z.p1) (k, +2p1)? 41
MS 5k 2 2,2 : (41)
7wk, +2p1) P
Using (41) we calculate the ¢, integrals in the cross section as
coll i pi’
7990 (w1) [1 PP 1,
ab,ii P2 —5“F-(X ,P2)+( ——5”>H-(x ,P2>:|
/qL(wLﬂu)z ol PR P 2 i*a L
11 1 log [(PL + k}/J_/Z)2:|
272* (p1 + kyl/Z)2 1%/1_5
1.,
X TZ(;I,IE;eg(kyL/Z)(PL +k,. /2)? {5 STF (x4, (p1 +k,1/2)?)
(P'+K/2)(p" +K/2) 1
v

B. Cross section in the correlation limit

coll,reg

We calculate 7, boiil

(k, | /z) assuming that the total momentum of the final state in the correlation limit, p | +k, /z, is

small. This follows from the fact that the hard factors have been expanded around k; | ,k,; — O and from momentum

conservation. We introduce the new variables

0, =k, +p,,

PJ_ E%(I’J_ _kyJ_)' (43)

Below we will consider the limit where Q| <« P 1. Since this means that both Q| and |p, +k,, /z| are small, we are
considering events where the photon picks up most of the energy of its parent quark, so that z is close to unity.
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The explicit expressions for the hard factors are

il I,
Tadr - R/ 2) Ty /2) =

28021 -z2)(1+2)* 1 ((CZ + )6, _48z(¢ - z2)? i’j’g) 1+ (1-2)>

C+2* Pl C+2? P z
coll,re coll,re 8€2Z3(1 - Z)(l + 1)4(C - Z)2 Pipi’ 1+ (1 - Z)Z
Tqé,ii/g( ?i/z) + Taq.it g( VL/Z) - (C + Z)6 i’i z ’

coll re coll.re coll,re coll,re coll,re
Tyq.ii g( yi/ ) Tag.it g(kyL/Z) Toq.ii g( yL/Z) + Tag.it g(kyL/Z) + zrgg_ii/ g(kyi/z)
40P (1-2)(1+2)* 1 1+ (1-2)?

S (22N o (r , PiPy
- HL LD 2 (@ -2 -p ) (44

where we see explicitly the photon splitting function (1 + (1 —z)?)/z. We also introduced the abbreviation

&k gun, (45)

¢
Y pL

In terms of Q| and P | the transverse momentum in the nuclear gluon distributions is

11—z 1+Z
P, +

1
pL+-k, =- QJ_ (46)
Z

Next, we multiply the transverse projector in Eq. (42) with P,P; from (44):

(pL+ kyJ_/Z)Q 2

A (=P +lE0 P 2

1 (142202 (142 (Q.-P.)
_5_4(1—2)215_%4_4(1—1)2 IB‘iL ’ (47)

((p,. K/ 4K D) ] ) PPy (SFPL+55QL-PY

We took the correlation limit Q| <« P | in the last line but in the cross section below we will keep the full expression. The
full cross section, integrated over the quark momentum ¢ |, is

do B a.asq; o f <x <_1—z~ 1+ZQ >2>
PP dQ dndny dz 647N (NZ=1) 7P U7 2 .

11+(1- Z>21og (-12P +520,)
2 z AZ_

4 —_7 ~
XM 1 {(C4+6C212+z )F1<xA,< IZZP in) >
1-

2 +2)°P
_2CZ(€_Z)2F2<XA7 (_lgzﬁL+l+le> ) 402z 2F3<XA’< P¢+1+ZQL>2>

(1-2)* %2 (1422 (@, P ) 1-2 D
N
(5P +520,) 2

(5 ) o (U )
w0 )

Here we have added the contribution to the cross section coming from the fragmentation photons proportional to the quark-
photon fragmentation function
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11+ (1-2) w
2\
Dyoy(e.p?) =5 ———log A ) (49)

That way, the cross section is independent of the arbitrary renormalization scale x>.
It follows from (B6) that the combination of linearly polarized gluon distributions that appears in the cross section
vanishes:

_Hl (XA, ki) — Hz(XA, ki) + H3(XA, ki) =0. (50)

. 2
We now expand the cross section in powers of Q| :

do a.sq; 1 (1=2)%,\ 1 1+ (1=2)? (1-2)2P1
= ] (l—z)x”fy"’<x"’—z2 P o log

PP Q. dnydn,dz ATN(N2 — 1)z ¢ P
S(1=z2)(1+2)* 1 - { . o { 0"F, }
et F 60222 4 ) [ L
O"F I"F O
e z{_ia] e 7B oo .
{z(¢ - 2) A0 ...00" 0,0 ¢z 90" ...00" 0,-0 Q Q (1)

In this expansion we have neglected the dependence of x,, and x4 on @ in the proton and the nuclear distributions. In both
cases the derivatives will bring energy denominators that suppress such contributions in the high-energy limit. In addition,
the derivative of the proton distribution over log 1/x, would be ag suppressed by virtue of the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) equation [25]. The nuclear distributions evolve according to the BK equation which leads to an even
stronger suppression for transverse momenta of order (or less than) the saturation scale of the nucleus.

Evaluating the derivatives of any of the F; we get

(1+2z)"
(22)"

AL
0,=0

90" ..00" (7R3) [L(QJ_ -x,)"exp (i

i)J_ ’xJ_) Fj(xAvle)’ (52)
where F;(x,,x%) is the Fourier transform of the distribution functions F;(x,, k% ). For n = 1, 2 we find

F ; . l+z z Q1 (-2
[GQiI]Q Q" = cos ¢—Z 1—ZPJ_F (A, p Pl), (53)

and

O°F; w1 +27 2 A eaf (=274 ea  (1-2)7;
{aQilaniz]QloQIQz:_ . T;[—Fj (xA, > Pi>+cosz¢Fj' (xA, = Pi)], (54)

where
F (5, 13) = (2R3)2a / xidx Jy(kox )ik )PF(32), (55)

and where cos¢p = Q| 'IN’l/(QLIBL) Note that F (xA, k%) = Fj(x4.k%). The cross section, expanded up to the order
2 /p2
1/P7, is

’In fact, the expansion is in powers of 1= iz )| /P, . Hence, for large z the expansions given below apply only for rather small values of
0,/ P . For larger O,/ P | one could compute the angular correlations numerically from Eq. (48).

014012-11



SANJIN BENIC and ADRIAN DUMITRU PHYS. REV. D 97, 014012 (2018)

d a,a5q7 1-22-,\ 1 1+ (1-z)? 1 —7)2P?
= z = 7 ng Xpfap <xp’( 2Z) Pi) +1-9 log {( 9 L}
JZPLdZQLdnpdnkde 647" N (N - 1) Z

xgééij : {(C4+662z2+z ){F (xA’(lgzZ)zPi) ‘E(HZPL&F

(o5

1-2z)? 1(1 2 2 1 —7)2
—202(f - 2)? [Fz(xA,%Wl) __MZ_Q_;FZ < n Z2Z> Pi)]
— 4072 [F3 <XA,(1 ;Z)Z Pi) _*# = %Fgo,z) (XA’ a ;Z)Z Pi)}

2
+cos¢ tzli QL [(C4+6C222+z) (11)<XA,( ZZ) )—2CZ(C 2)*F 11)

1-z2)2 1-2z)?
. (( = Pi) _Mzzngl,u(xA,(Ziz)Pi)}

+ %cos 2¢ (1:;;)2 a i2z)2 g_ji [(@ + 68272 + Z4)1:(12,2) (XA7 (1 Z)2 ) 207(¢ - )2F§2*2)
x (xA, ! ;Z)zPi) 422 (xA, ! ;Z)zPiﬂ + O(Qi/f’i)}- (56)
In the collinear approximation x, , become
Xp\/s =pre +zk, e,
Xu\/s =pre + %kyle_”"r. (57)

C. Angular correlations
We can define angular correlations via

2 d
0" 4P 55 g = cos(ng)
4y = (cos(n)) =

d _ do ’
0 ¢ d*P d*Q, dn,dny,dz

(58)

where ¢ is the angle between the photon and jet transverse momentum imbalance 0, and their average transverse

momentum P . In principle, all a,, can be nonzero but are increasingly suppressed like (Q / P 1)". From (56) we can obtain
a; and a, as follows:

1+2z QL (¢4 46022 + ) FM 2020 — 22F) — 42 2F |

— =L 3 /p3
“UTAU =B, (65 + 2)F) — 202 - 2)°F, — 422°F, O(QL/PL). (59)
_ (+2) Q2 (C“ +6022% + 2P = 202(0 = PPy — 402 FYY .
CTRO-PRT (e e ) = 20i(( = 2PF, — 40PF, O(Q1/P1). (60)

This is the main result of this paper. Recall that { = f}—a = % e~ is the ratio of photon and quark energies in the final
state, while z is the fractional energy picked up by the photon from its parent quark. Our result applies when 1 — z < 1.
Note that the gluon distributions in the expressions above are evaluated at the scale (1 — z)P, /z. Hence, these angular

moments provide insight into the transverse momentum dependence of the gluon distributions of the target which is due to
the fact that they involve another scale, i.e. the nonlinear (“saturation”) scale Qg.
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— Qs=1GeV e
0.4
0.3
3
0.2
0.1
0.0
0 5 10 5 20
P /Qs

FIG. 3. a, for g — gy to order Q2l / f’i for the MV model with

two different saturation scales. We take Q| /P, = 0.1, z = 3/4
and { = 1.

For the numerical results shown in Figs. 3 and 4 we have
used Q, /P, =0.1, z=13/4, { = 1. Also, for simplicity
we have computed the F; and F Sa’m gluon distributions in
the McLerran-Venugopalan (MV) model [26] with detailed
calculations in Appendix B, while leaving a numerical
study of evolution effects for the future. Both a;(P ) and
az(i’ 1) increase rapidly with transverse momentum and
reach their maximal values approximately when
(1-2)P,/z~5Qs. This maximum may disappear if
evolution effects are taken into account, similar to their
effect on the dipole scattering amplitude [27]. Also, we find
that a, is substantially smaller than a; due to the sup-
pression by one additional power of Q| /P .

In Fig. 5 we plot a; as a function of the photon isolation
cut (1 —z)/z, which is the energy fraction carried by the
final state quark collinear to the photon. The behavior of a,
is very similar. As before we used { = 1, QJ_/IN’J_ = 0.1,
P | = 150y, and we show curves for two different values
of the saturation scale. It is interesting to observe how
reducing (1 — z)/z increases the angular correlations.

0200 __ gg=1Gev T
0.15
§0.10
0.05
0.00
0 5 10 5 20
P/Qs

FIG. 4. a, for g — gy to order Q% /P?} for the MV model with

two different saturation scales. We take Q| /P, = 0.1, z = 3/4
and { = 1.

\, —— Qs=1GeV
0.5
0.4
)
0.3
0.2
0.4 0.6 0.8 1.0
(1-2)/z

FIG. 5. a; for g — gy to order Qf_ /ISZL as a function of the
photon isolation cut for the MV model with two different

saturation scales. We take QJ_/IBL =0.1, i’J_ =15Qgyand ¢ = 1.

We may also compute the “angular harmonics” given by

2 _ do
o do d*P d*Q, dn,dny,, dz cos(n®)

v2 = (cos(n®)) = , (61)

2 ¢ _ do
0 d*P, d*Q dn,dny, dz

where now @ is the angle between k,; and p, . Hence, we
evaluate these angular harmonics at fixed photon-jet trans-
verse momentum imbalance Q, and average transverse

momentum P | by averaging over their relative orientation.
Because of the requirement that Q| <« P the angle ® is
close to £z. Up to order (Q, /P )?> we have

cosq):—1+%<]%i>2(l—cos2¢), (62)
cos2® =1 — <&>2(1 —cos2¢), (63)
Py

cos3d = -1 +Z (Ql

Py

)2(1 —cos2¢). (64)

Since (cos2¢) = a, is itself of order (Q, /P, )* we have,
to this order, the following predictions:

1 <g>2 _ 14 k, . +p.

4 L |kyJ_ _PJ_|2 '
(65)
2 k 2
v = (cos2®) = 1 — <%> :1_4M, (66)
Py |kyJ_ —PL
2 k 2
D§E<cos3®>:—1+2<&> :—14_9%‘
4 PJ- |kyi _pL|
(67)
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These expressions provide the leading dependence of v,

v3, v on Q,/P,. These moments are insensitive to
the transverse momentum dependence of the gluon
distributions F;.

VI. SUMMARY AND DISCUSSION

In this paper we have computed the photon-jet cross
section corresponding to the process g — gy in the
small-x regime of p + A collisions. We focus on nearly
back to back configurations with a photon-jet transverse
momentum imbalance @, =k,; +p, of much smaller
magnitude than their average transverse momentum
P =@, —k,;)/2. In this limit the cross section for
the process can be expressed in terms of transverse-
momentum-dependent gluon distributions for the heavy-
ion target. We determine which gluon distributions
appear in this process and find, in particular, that the
linearly polarized distributions do not enter (similar to
q — qy). We also show that the contribution from the
leading-order g — gy process is suppressed by two
powers of Q,/Qg as compared to g— gy if Q| <
Qg is less than the saturation scale of the nucleus.

The calculation begins by considering scattering of a
gluon from the projectile proton off the strong color
field of the target ion, thereby producing a quark, an
antiquark, and a photon. The gy final state is obtained
by integrating over the quark from which the photon
was emitted (in the collinear approximation). We find
that the transverse momentum scale that appears in the
gluon distributions of the target is given by the leftover
transverse momentum 1 — z of the quark relative to that
of the photon, z, times the hard scale P . Hence,
configurations where the photon picks up most of the
momentum of the parent quark, 1 —z < 1, so that a
second hadronic jet collinear to the photon is not
observed (due to isolation cuts), do probe the gluon
distributions of the target in the nonlinear regime.

Finally, we provide analytic expressions and qualita-
tive numerical estimates for a; = (cos¢p) and a, =
(cos2¢) angular moments, where ¢ denotes the angle
between @, and P . We predict that a, < a; due to a
power suppression by a factor of Q J_/INJ . The P i
dependence of these angular correlations provides
insight into the transverse momentum dependence of
the gluon distributions of the target. In particular,
numerically large a; and a, are obtained for more
restrictive photon isolation cuts, and when the transverse
momentum scale in the gluon distributions is on the
order of a few times the saturation scale of the heavy-
ion target.

We have also derived analytic estimates for the “azimu-

thal angular harmonics” v2 = (cos n®) up to n =3 and

0(Q%/ P?), where now @ denotes the angle between the
transverse momentum k, | of the photon and that of the jet,

p .. However, up to order (Q /P )? these v, moments are
insensitive to the transverse momentum dependence of the
gluon distributions.

If photon-jet angular correlations in p + A collisions
can indeed be studied experimentally at high-energy
colliders then a more quantitative evaluation of the
angular distributions than presented in this initial study
would be warranted. Most importantly, small-x evolu-
tion effects on the transverse-momentum-dependent
gluon distributions should be incorporated. This could
be done by substituting the solution of the BK equation
for T, (x}) into the expressions for F;(x,, k%) given in
Appendix B.

One should also account for the Sudakov suppression
which arises due to the presence of the two scales Q|
and P 1 [6,28]. On the other hand, for P . only a few
times greater than Q, (to suppress power corrections
reasonably well) log P /Q is numerically not much
greater than 1 and we would not expect a very strong
effect on the angular distributions. In any case, the
results presented here for the g — gy process could be
used as a starting point for such improvements. Our
present analysis already suggests that photon-jet corre-
lations in p + A should provide valuable insight into
transverse-momentum-dependent gluon distributions in
the regime of nonlinear color fields.
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APPENDIX A: EXPANSION IN POWERS OF
GLUON MOMENTA

Here we perform an expansion of the amplitude for
g — qqy, given in (4), in powers of gluon momenta from
the proton and from the nucleus. We start by generalizing
the expressions for the matrices RZ from Egs. (9)—(13) as
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RMV = _Lyﬂ W—!—m 1/’
1 LA
I —f+m
a _
R =—pr o™
R — (—l) /wgkﬂbalaz kmxalaz = w +m a l’i +m j/v l+ m @
0 o 22 K w2 —m?+ie’ ur-mP+ie’ PP—m?+ie

g+m ” f+m  —f+m
F—m*+ie’ h*—m?+ie' v>—m?+ie
g+m  hpt+m [ +m
g2—m2+i€y 2_mtic! P—mlyie
d+m , f4+m ) |+ m “
, Al
P tiel W—m’tic B—m’+tic (A1)

R — (_) o dk” Rﬂmlaz ieﬂl/alaz — o
10 =7 g N0 0o =7
—Q0

14
7,

RHv@a — (_) o dk~ pHYa Q) ]}}W‘llaz —
11 =t o 11 =7
—Q0

R — (_ o dk~ Rﬂ”alaz Rﬂmlaz — 4
12 = (—i) o 12 12 =7
—00

and also
2 12
R;gw _ Z R//u/’ R;;galaz _ ZR:‘/;WI]OQ- (AZ)
p=1 =9

Performing the k™ integration in Rj;®, =9, ...,12, we can show that T%; = R.;"" and obviously T = R}C,.
Contracting R;;”++ for f=9,...,12 with k;, we get

++ (b +m)y" 2 pit
Ry == s = PRy
+
o YT AEm e
+ M +
o Ry = IR (A3)

Decomposing these expressions we can use k}LRZ;++ = P+R’;7;r+ to redefine T%. We can write the amplitude as

M”(p,q,ky) — _qfegz/ / weierr*‘i(ku—kﬁ'}u
kiki Jxiy, li_
- v a k i i r ar
x u(g){R"C,(P,ky )U(xy )" —P—LRZqHU(xL)f Uy} o), (A4)
with
- 2k, -(q, —k q. .k
Crlgd) =0, Clgky) =2 mki) e ) - 2k, (AS)

q" +ie (q" +ie)(g™ + ie)

Contracting RZW‘% for =09, ...,12 with k,, or with (k, — k), we get

W+ m ” /+m yo g h+m ” /+m
—m?+ie’ P—m?+ie w—m?+ie' P—m?+ie
fam o —fam
W2 —m? + e vE—m? +ie
. +m J+m
k Rﬂl/m(lz:_y ﬁ v az’
a1l 4 uz—m2+i€y P —m?+ie
ftm  J+m )

2, A6
2_mitic' P—mitie (A6)

o
7
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DUV Ty oy
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k R;luz/a]az _ _yy

a;
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~ +m o+ m
ks — k R _ W a v
(k2 = K)q, Ry V"W—m2tic’ B-mtie
- +m —f+m gd+m #+m
kb —k R;walaz — g v TR v M
(ko )(,2 10 14 g2—m2—|—i€y Uz_m2+i€7 /4 gz_mz_H-eV hz_m2+i€7
( k) RIIDGIGQ . yal g —"_ m J/ﬂ ﬂ + m y’
g7 —m?>+ie" u?—m?+ie
~ +m I+ m
k _ k Ryual(lz — g v //l‘ A7
( 2 )(12 12 4 92_m2+i€}, hz—m2+i€y ( )
Next, we use Eq. (A6) to combine R*'® with R{;™®,
R Suvis+ | i+ w+m o J+m
KR RIT) = ke (R R = (A8)
and we use (A7) to combine R{4™*™ with R{5"®,
— (Pt | Pty _ Suvtiy | pouvti g+m —f+m
(ks )R RE) = (k= R, (R4 R e ST ()

We first integrate these expressions over k. On the left-hand side we get Ry"™ + R} and R} ™" + R{5™, respectively.
Taking the limit k; |, k>, ,k; — O we find that in Eq. (A8) k= = P, Whlle in Eq. (A9) k™ = 0 Comblmng these results

together we get the following expression for R/ ”++,
RN LN T LI T SN S T S

w? — 2P u? m2 P_g2 m*’ ut—m P‘gz—m2 v? — m?

y%‘kau—lﬁ—?f‘Fm , ft+m J+m ¥ — K, W+m ] +ml K

Ho_ H —

h? - P~ 0?2 —m? R—-—m2" P—-m?> P wr—m?" P—m* P~

1 W+ 1 —75~|—m

M v s AlO

+P_7 2 +P_7 27 (A10)

where the first line comes from Eq. (A8) and so we should
understand k- = P~, while the second line comes from
Eq. (A9) and so k= = 0. The third line can be joined to RY”
[defined in Eq. (A2)] which leads us to the final expression
for the amplitude given in Eqgs. (14)—(16).

APPENDIX B: DISTRIBUTION FUNCTIONS

We can write more explicit expressions for the distribution
functions F; and H; by using the large N . expression for the
four Wilson line correlator C(x4,x,,y,.y.x/|) in a
Gaussian model [29,30],

2

— %S((xl —x')3)S(yL =y,
®1)

C(XA’xL7yl7y13xl)

where S(x2) = e "0%) is the S-matrix for a fundamental
dipole of size x | . Within the MV model [26] (without small-
x evolution) we have

red) = 02 / (Goy) — Goly, — 2L

Y1
40A72
z_g(Nc_l) 2
=——"u5, B2
s 4zN.. Ha (B2)

|

where 42 is the conventional MV model parameter, i.e. the
average valence color charge density squared per unit
transverse area; Q§ is the saturation scale; and Gy(x ) is
a solution of &2 Gy(x,) = 8% (x,). Regularizing the IR
divergence in the Fourier transform of Gy(x ) as Go(k|) =
(k3 + A*)~" we can find

95
2A?
where K (x) is the modified Bessel function of the second
kind. Expanding around x; A — 0 we find

F(le) = 1= (x MK (x A, (B3)

x% Q% 1
[(x2) =25 (1 -2y +log4 — log———
(x1) A ( v +log ngi ,2>

_¥05, 1 JO
8 o8 (xiA%R> ’ R ™ gel=2rs
However, Eq. (B1) is not restricted to the MV model.
One can include small-x evolution effects by solving the
BK equation [21] for I'(x? ) which now becomes also a
function of x,: I'(x}) — T, (x3). We proceed with this
more general formulation and express the distribution
functions in terms of I, (x}). We find

(B4)
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Fy (x4, K3,) = (nR3)4nN? / xydxy Jo(ky x TS (2) + 2 [T (2) = (T (62))2] e 2 D)

0 1 _ 2
Fy(xy, ki) = —(”R/Za)‘l”N%[) xldeJo(kuxl)xi(Fgm) (xi))ze 2o (),

Fs(x4,k3,) = (2R%)4nN> / xpdx Jo(kyy x )T (2) + 2 T8 (2) = 2(T8) (22))2}e 2D, (BS)

Hy(x4,K3,) = —(2R%)4nN> / Xy dx, o (ky 2 )3 [T (83) = (T4 (3))e 2 D),

Hy(xs,2,) = (zR2)4zN? A x L dx, J (kg )2 (T (12 )26 02),

Hs(x4,K3,) = —(xR3)4zN> A Xy dxy o (ky x )3 [TE) (33) = 2(T) (63))2]e 2 0D, (B6)

where T'\") (x1) =d"T,, (x})/d(x%)". In the MV model the F-functions become

Q3N?
Fi(xq.k3,) = (zR3) =3

« 1 2 2lao2 L
16 A deleO(knxL) <87[10gx2L[\12R—ﬂ'le510g m e

2.2
9%

log;
7 Y]
YIAR

022
TQIN? [ S ogy L
Fy(x4.k3,) = (zR3) g / xldxllo(kuxl)xiQélogzz—Aze ' i
0 AT AR
2 N 1 2o 5 | —@10 v
F3(XA?k2J_) = (TL'RA) g / XJ_dXJ_Jo(kZJ_XJ_) 4ﬂ10gW_HQSxJ_IOg W e LR, (B7)
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