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In the spirit of Mueller-Navelet dijet production, we propose and study the inclusive production of a
forward J=ψ and a very backward jet at the LHC as an observable to reveal high-energy resummation
effects à la Balitsky, Fadin, Kuraev, Lipatov. We obtain several predictions, which are based on the various
mechanisms discussed in the literature to describe the production of the J=ψ , namely, nonrelativistic QCD
singlet and octet contributions, and the color evaporation model.
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I. INTRODUCTION

The understanding of the high energy behavior of QCD in
the perturbative Regge limit remains one of the most
important and longstanding theoretical questions in particle
physics. In the linear regimewhere gluonic saturation effects
are not expected to be essential,QCDdynamics are described
using the Balitsky, Fadin, Kuraev, Lipatov (BFKL) formal-
ism [1–4], in the kt-factorization [5–11] framework. In order
to reveal these resummation effects, first with leading
logarithmic (LL) precision, and more recently at next-to-
leading logarithmic (NLL) accuracy, many processes have
been proposed. One of the most promising ones is the
inclusive dijet production with a large rapidity separation, as
proposed byMueller and Navelet [12]. This idea led to many
studies, now at the level of NLL precision.

Recent kt-factorization studies of Mueller-Navelet jets
[13–20] were successful in describing such events at the
LHC [21], exhibiting the very first sign of BFKL resum-
mation effects at the LHC. To test the universality of such
effects, we propose to apply a similar formalism to study
the production of a forward J=ψ meson and a very
backward jet with a rapidity interval that is large enough
to probe the BFKL dynamics but small enough for both the
J=ψ and the jet to be in the detector acceptance at LHC
experiments such as ATLAS or CMS.1 Although J=ψ
mesons were first observed more than 40 years ago, the
theoretical mechanism for their production is still to be fully
understood and the validity of some models remains a
subject of discussions (for recent reviews see for example
Refs. [22–24]). In addition, most predictions for charmo-
nium production rely on collinear factorization, in which
one considers the interaction of two on-shell partons emitted
by the incoming hadrons, to produce a charmonium accom-
panied by a fixed number of partons. On the contrary, in this
work the J=ψ meson and the tagged jet are produced by the
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1For example, at CMS the CASTOR calorimeter allows one to
tag a jet down to Y2 ¼ −6.55 in rapidity while the J=ψ could be
reconstructed up to Y1 ¼ 2.4, thus with a maximum interval in
rapidity of almost 9, more than sufficient to see BFKL resum-
mation effects.

PHYSICAL REVIEW D 97, 014008 (2018)

2470-0010=2018=97(1)=014008(15) 014008-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.014008&domain=pdf&date_stamp=2018-01-19
https://doi.org/10.1103/PhysRevD.97.014008
https://doi.org/10.1103/PhysRevD.97.014008
https://doi.org/10.1103/PhysRevD.97.014008
https://doi.org/10.1103/PhysRevD.97.014008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


interaction of two collinear partons, but with the resumma-
tion of any number of accompanying unobserved partons, as
usual in the kt-factorization approach.
Here we will compare two different approaches for the

description of charmonium production. First wewill use the
nonrelativistic QCD (NRQCD) formalism [25], in which
the charmonium wave function is expanded as a series in
powers of the relative velocity of its constituents. Next we
will apply the color evaporation model (CEM), which relies
on the local-duality hypothesis [26,27]. Finallywewill show
numerical estimates of the cross sections and of the
azimuthal correlations between the J=ψ and the jet obtained
in both approaches. We will rely on the Brodsky-Lepage-
Mackenzie (BLM) procedure [28] to fix the renormalization
scale, as it was adapted to the resummed perturbation theory
à la BFKL in Refs. [29–32], which some of us applied to
Mueller-Navelet jets in Ref. [15]. Below, we will only
discuss in detail the new elements related to the various J=ψ
production mechanisms2 All details related to the BFKL
evolution at NLL can be found in Refs. [13,14], while the
details related to the application of the BLM scale fixing in
our study are presented in Ref. [15].

II. DETERMINATION OF THE J=ψ
MESON VERTEX

We start with the determination of a general meson M
production vertex (the fact that we will restrict ourselves to
J=ψ in the rest of this paper plays no role at this stage). For
the moment, we do not consider any specific model for its
production. We generically denote with an index M the
kinematical variables attached to the system made of the
meson and the possible accompanying unobserved par-
ticles, and use an index V for the kinematical variables
attached to the J=ψ meson itself.
The inclusive high-energy hadroproduction process of

such amesonM, via two gluon fusion, with a remnantX and
a jetwith a remnantY separated by a large rapidity difference
between the jet and the meson, in scattering of a hadron
Hðp1Þwith a hadronHðp2Þ, is illustrated in Fig. 1, where as
amatter of illustration, we consider the parton coming out of
the hadronHðp1Þ to be a gluon and the parton coming out of
the hadronHðp2Þ to be a quark. For the sake of illustration,
we suppose that the meson is produced in the fragmentation
region of the hadronHðp1Þ, named as forward, while the jet
is produced in the fragmentation region of the hadron
Hðp2Þ, named as backward. On one hand, the longitudinal
momentum fractions of the jet and of themeson are assumed
to be large enough so that the usual collinear factorization
applies (the hard scales are provided by the heavy meson
mass and by the transversemomentumof the jet), andwe can
neglect any transverse momentum, denoting the momentum

of the upper (resp. lower) parton as xp1 (resp. x0p2), their
distribution being given by usual parton distribution func-
tions (PDFs). On the other hand, the t-channel exchanged
momenta (e.g., k in the lhs of Fig. 1, or the various ones
involved in the rhs of Fig. 1) between the meson and the jet
cannot be neglected due to their large relative rapidity, and
we rely on kt-factorization.
According to this picture,3 the differential cross section

can be written as

dσ
dyVdjpV⊥jdϕVdyJdjpJ⊥jdϕJ

¼
X
a;b

Z
1

0

dx
Z

1

0

dx0faðxÞfbðx0Þ

×
dσ̂

dyVdjpV⊥jdϕVdyJdjpJ⊥jdϕJ
; ð2:1Þ

where fa;b are the standard parton distribution functions of
a parton aðbÞ in the according hadron.
In kt-factorization, the partonic cross section reads

dσ̂
dyVdjpV⊥jdϕVdyJdjpJ⊥jdϕJ

¼
Z

d2k⊥d2k0⊥VV;aðk⊥;xÞGð−k⊥;−k0⊥; ŝÞVJ;bð−k0⊥;x0Þ;

ð2:2Þ

FIG. 1. The high-energy hadroproduction of a meson M and a
jet (here originating from a quark) with a large rapidity between
them. Left: Born approximation. Right: inclusion of BFKL-like
resummation effects due to multiple emissions of gluons and of
higher order jet vertex corrections.

2Note that in the context of pA collisions, the computation of a
similar vertex has been performed in Refs. [33,34], but based on a
different factorization approach suitable for saturation studies. 3We use the same notations as in Refs. [13,14].

BOUSSARIE, DUCLOUÉ, SZYMANOWSKI, and WALLON PHYS. REV. D 97, 014008 (2018)

014008-2



where G is the BFKL Green’s function depending on
ŝ ¼ xx0s, denoting as

ffiffiffi
s

p
the center-of-mass energy of the

two colliding hadrons.
At leading order (LO), the jet vertex reads [35,36]:

Vð0Þ
J;aðk⊥; xÞ ¼ hð0Þa ðk⊥ÞSð2Þ

J ðk⊥; xÞ; ð2:3Þ

hð0Þa ðk⊥Þ ¼
αsffiffiffi
2

p CA=F

k2⊥
;

Sð2Þ
J ðk⊥; xÞ ¼ δ

�
1 −

xJ
x

�
jpJ⊥jδð2Þðk⊥ − pJ⊥Þ: ð2:4Þ

In the definition of hð0Þa , CA ¼ Nc ¼ 3 is to be used for an
initial gluon and CF ¼ ðN2

c − 1Þ=ð2NcÞ ¼ 4=3 for an
initial quark. Following the notations of Refs. [35,36],
the dependence of V on the jet variables is implicit. At next-
to-leading order (NLO), the jet can be made of either a
single or two partons. The explicit form of these jet vertices
can be found in Ref. [13] as extracted from Refs. [35,36]
after correcting a few misprints of Ref. [35].
The explicit form of the BFKL Green’s function G, as

obtained at LL [1–4] and at NLL [37,38] accuracy, can be
found in Ref. [13], and will not be reproduced here.
In the rest of the present paper, we will only focus on the

case where the meson vertex is treated at lowest order,
while the Green’s function and the jet vertex will be treated
at NLL. The computation of the NLO J=ψ vertex, which is
a quite involved task, is left for further studies.
To properly fix the normalization, let us focus for a

moment on the Born approximation, see the left-hand side
(lhs) of Fig. 1. Then, each building block in the factorized
formula (2.2) is treated at lowest order. In this limit, our
normalizations are such that the Born Green’s function is

GBornðk⊥; k0⊥; ŝÞ ¼ δ2ðk⊥ − k0⊥Þ; ð2:5Þ
while the jet vertices are given by Eqs. (2.3), (2.4). As
explained above, the relevant components of the involved
momenta read

k ¼ βp2 þ k⊥; pJ ¼ x0p2 þ pJ⊥;
pM ¼ xp1 þ pM⊥; ð2:6Þ

where k is the t-channel exchanged momentum. In the
high-energy limit, the T Mq -matrix reads

T Mq ¼
1

i
2

s
ð−iÞ
p2
J⊥

hXjAa
μð0ÞjHðp1Þi

× gμν⊥Aab
ν ūðpJÞð−igp̂1tbÞhYjqð0ÞjHðp2Þi; ð2:7Þ

where a is the color index of a collinear gluon from the
hadron Hðp1Þ and b is the color index of the exchanged
t-channel gluon. Here Aab

ν denotes the S-matrix element
describing the gg → M transition. Its computation will be
discussed in detail in the following subsections. After
factorization, illustrated symbolically by Fig. 2, we get

X
Mq

T MqT �
Mq ¼

4

sðp2
J⊥Þ2

1

4NðN2 − 1Þ hHðp1ÞjAa0
μ0⊥ð0ÞjXigμ

0ν0
⊥ hXjAa0

ν0⊥ð0ÞjHðp1Þi

×
X
M

Aab
μ⊥g

μν
⊥ ðAab

ν⊥Þ�g2βJhHðp2Þjq̄cð0ÞjYihYjp̂1qcð0ÞjHðp2Þi: ð2:8Þ

The phase space measure reads4

FIG. 2. Left: square of the amplitude of the Born process.
Right: symbolic factorized form of this squared amplitude
involving, from top to bottom, the gluonic PDF, the impact
factor describing the gg → M transition, the t-channel exchange
of two off-shell gluons (in bold), the vertex describing the gq →
jet transition, and the quark PDF. The crosses symbolically
denote the appropriate Fierz structure in Lorentz space. Namely,
from top to bottom, g⊥ tensors for gluons, due to the collinear
factorization of the gluon out of the upper PDF, =p1 and =p2 arising
from the nonsense polarizations of the t-channel gluons in kt-
factorization, and finally =p2 and =p1 due to the collinear
factorization of the quark out of the down PDF. The black
fermions and curved gluon lines symbolize the trace over color
and Lorentz indices after the use of the Fierz identity in these two
spaces, while the blue (grey in printed black and white) gluons are
traces over color after the use of the Fierz identity in color space.

4This should be understood in an extended way, in particular due to the fact thatM might involve several particles, as it is the case for
the color singlet NRQCD contribution.
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dΦ ¼ ð2πÞ4δðp1 þ p2 − ½pX� − ½pY � − ½pM� − pJÞ ×
�

d3pX

ð2πÞ32EX

��
d3pY

ð2πÞ32EY

��
d3pM

ð2πÞ32EM

�
d3pJ

ð2πÞ32EJ
: ð2:9Þ

It can be written in a factorized form in terms of the rapidity yJ of the quark jet and its transverse momentum pJ⊥:

dΦ ¼ 2π

s

Z
d2k⊥δ2ð−½pM⊥� þ k⊥Þdxδðx − ½αM�Þδð1 − x − ½αX�Þ

�
d3pX

ð2πÞ32EX

��
d3pM

ð2πÞ32EM

�

× δ2ðk⊥ þ pJ⊥Þdx0δðx0 − βJÞδð1 − x0 − ½βY �Þ
�

d3pY

ð2πÞ32EY

�
dyJd2pJ⊥: ð2:10Þ

This kt-factorization formula involves an integration over the transverse momentum kt of the four-momentum transfer k in
the t-channel between both vertices. Using the expressions of the unpolarized quark PDF

Hqðx0Þ ¼ 1

s

Z �
d3pY

ð2πÞ32EY

�
δð1 − x0 − ½βY �ÞhHðp2Þjq̄ð0ÞjYihYjp̂1qð0ÞjHðp2Þi; ð2:11Þ

and of the unpolarized gluon PDF,

gðxÞ
x

¼ −
Z �

d3pX

ð2πÞ32EX

�
δð1 − x − ½αX�ÞhHðp1ÞjAa0

μ0⊥ð0ÞjXigμ
0ν0

⊥ hXjAa0
ν0⊥ð0ÞjHðp1Þi; ð2:12Þ

we obtain an expression for the differential cross section

dσ
dyJdjpJ⊥jdϕJ

¼
Z

dxgðxÞdx0Hqðx0Þd2k⊥δðx − ½αM�Þδ2ðk⊥ − ½pM⊥�Þ
�

d3pM

ð2πÞ32EM

�

×
8

ffiffiffi
2

p
π2

s2ðN2 − 1Þ2xk2⊥
X
½M�

Aab
μ⊥g

μν
⊥ ðAab

ν⊥Þ�Vð0Þ
J;qð−k⊥; x0Þ; ð2:13Þ

in which we factorized out the vertex for quark jet production in the Born approximation,

Vð0Þ
J;qðk⊥; x0Þ ¼

g2

4π
ffiffiffi
2

p CF

jk⊥j
δ

�
1 −

xJ
x0

�
δ2ðk⊥ − pJ⊥Þ; ð2:14Þ

in accordance with Eqs. (2.3), (2.4).

A. Color-singlet NRQCD contribution

In the color-singlet contribution the system [M] is made of the produced J=ψ charmonium and of the unobserved
gluon produced simultaneously with the charmonium in gluon-gluon fusion due to the negative charge-parity of the
J=ψ . We parametrize the momentum pV of the J=ψ and the momentum l of the unobserved gluon in terms of Sudakov
variables, as

pV ¼ αVp1 þ
M2

J=ψ − p2
V⊥

αVs
p2 þ pV⊥; l ¼ αlp1 −

l2⊥
αls

p2 þ l⊥: ð2:15Þ

Thus the expression of

δðx − ½αM�Þδ2ðk⊥ − ½pM⊥�Þ
�

d3pM

ð2πÞ32EM

�
¼ δðx − αl − αVÞδ2ðk⊥ − l⊥ − pV⊥Þ

d3l
ð2πÞ32El

d3pV

ð2πÞ32EV

¼ 1

4ð2πÞ6 δðx − αl − αVÞδ2ðk⊥ − l⊥ − pV⊥Þ
dαlθðαlÞ

αl
d2l⊥dyVd2pV⊥ ð2:16Þ

permits, with the use of (2.13), to write the differential cross section in the form
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dσ
dyVdjpV⊥jdϕVdyJdjpJ⊥jdϕJ

¼
Z

dxgðxÞdyHqðyÞd2k⊥
jpV⊥j

ffiffiffi
2

p

25π4s2ðN2−1Þ2k2⊥x
θðx−αVÞ
x−αV

×
X
λV ;λl

Aab
μ⊥g

μν
⊥ ðAab

ν⊥Þ�Vð0Þ
q ð−k⊥;yÞ;

ð2:17Þ

from which we read off the J=ψ production vertex of the
color singlet NRQCD contribution as

Vð1Þ
J=ψ ¼ jpV⊥j

ffiffiffi
2

p

25π4s2ðN2 − 1Þ2k2⊥x
θðx − αVÞ
x − αV

X
λV ;λl

Aab
μ⊥g

μν
⊥ ðAab

ν⊥Þ�:

ð2:18Þ

One should note that the above expressions include an
integration over the phase space of the unobserved gluon
with momentum l. The vertex which allows to pass from
open qq̄ production to J=ψ production in color singlet
NRQCD reads [39,40]

½vðqÞūðqÞ�ijαβ →
δij

4N

�hO1iV
m

�
1=2

½ϵ̂�Vð2q̂þ 2mÞ�αβ;

ð2:19Þ

with the momentum q ¼ 1
2
pV , m being the mass of the

charm quark, MJ=ψ ¼ 2m. In the following we will use the
nonperturbative coefficient C1 defined as

C1 ≡
�hO1iV

m

�
1=2

: ð2:20Þ

The matrix element hO1iV in NRQCD is related to the
leptonic meson decay rate by [25]

Γ½V → lþl−� ¼ 2e2cπα2

3

hO1iV
m2

�
1 −

16αs
3π

�
: ð2:21Þ

Here α is the fine-structure constant and ec ¼ 2=3 is the
electric charge of the charm quark. Equation (2.21) in-
cludes the one-loop QCD correction [41–43] and αs is the
strong coupling constant. One can use the value of this
decay rate to fix hO1iV through this relation. Namely, using
the values Γeþe− ¼ 5.55 × 10−6 GeV [44], m ¼ 1.5 GeV
and a three-loop running coupling with Λ4 ¼ 0.305 GeV,
we obtain hO1iJ=ψ ¼ 0.444 GeV3. As quoted in Ref. [45],
recent phenomenological analyses [46–48] have used
slightly smaller values of either 0.387 or 0.440 GeV3, as
obtained in Refs. [49,50] respectively. In order not to
underestimate the uncertainty, in the following we will vary
hO1iJ=ψ between 0.387 and 0.444 GeV3.
The momentum transfer k in the t-channel entering the

charmonium vertex has the approximate form given by
Eq. (2.6). The momentum conservation in the charmonium
vertex xp1 þ k ¼ pV þ l leads to the following relations
between the Sudakov variables of momenta:

x ¼ αV þ αl; k⊥ ¼ pV⊥ þ l⊥;

β ¼ 4m2 − p2
V⊥

αVs
−

l2⊥
αls

: ð2:22Þ

The contribution to the hard part is given by the 6
diagrams shown in Fig. 3, which leads to the expressions

D1 ¼
ð−igÞ3i2C1

4N
trcðtltatbÞTr

�
ϵ̂�Vð2q̂þ 2mÞϵ̂�ðlÞ q̂þ l̂þm

ðqþ lÞ2 −m2
γμ⊥

βp̂2 þ k̂⊥ − q̂þm
ðβp2 þ k⊥ − qÞ2 −m2

p̂2

�
; ð2:23Þ

D2 ¼
ð−igÞ3i2C1

4N
trcðtatltbÞTr

�
ϵ̂�Vð2q̂þ 2mÞγμ⊥

q̂ − xp̂1 þm
ðq − xp1Þ2 −m2

ϵ̂�ðlÞ βp̂2 þ k̂⊥ − q̂þm
ðβp2 þ k⊥ − qÞ2 −m2

p̂2

�
; ð2:24Þ

D3 ¼
ð−igÞ3i2C1

4N
trcðtatbtlÞTr

�
ϵ̂�Vð2q̂þ 2mÞγμ⊥

q̂ − xp̂1 þm
ðq − xp1Þ2 −m2

p̂2

−q̂ − l̂þm
ð−q − lÞ2 −m2

ϵ̂�ðlÞ
�
; ð2:25Þ

D4 ¼
ð−igÞ3i2C1

4N
trcðtltbtaÞTr

�
ϵ̂�Vð2q̂þ 2mÞϵ̂�ðlÞ q̂þ l̂þm

ðqþ lÞ2 −m2
p̂2

xp̂1 − q̂þm
ðxp1 − qÞ2 −m2

γμ⊥
�
; ð2:26Þ

D5 ¼
ð−igÞ3i2C1

4N
trcðtbtltaÞTr

�
ϵ̂�Vð2q̂þ 2mÞp̂2

q̂ − βp̂2 − k̂⊥ þm
ðq − βp2 − k⊥Þ2 −m2

ϵ̂�ðlÞ xp̂1 − q̂þm
ðxp1 − qÞ2 −m2

γμ⊥
�
; ð2:27Þ
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D6 ¼
ð−igÞ3i2C1

4N
trcðtbtatlÞTr

�
ϵ̂�Vð2q̂þ 2mÞp̂2

q̂ − βp̂2 − k̂⊥ þm
ðq − βp2 − k⊥Þ2 −m2

γμ⊥
−q̂ − l̂þm

ð−q − lÞ2 −m2
ϵ̂�ðlÞ

�
; ð2:28Þ

where trc and Tr denote respectively the color and the Dirac traces. Let us observe the following relations between the Dirac
traces TrDðiÞ of diagrams DðiÞ due to charge conjugation invariance:

TrDð1Þ ¼ TrDð6Þ; TrDð2Þ ¼ TrDð5Þ; TrDð3Þ ¼ TrDð4Þ: ð2:29Þ
Consider the color factor: the symmetry property (2.29) results in the appearance in the sum of all diagrams of the
symmetric structure constants dckl of the SUðNÞ color group only. Thus, we obtain

Aab
μ⊥ ¼

X6
i¼1

DðiÞ ¼ ð−igÞ3i2C1

4N
dabl

4

�
2TrDð1Þμ⊥

½ðqþ lÞ2 −m2�½ðβp2 þ k⊥ − qÞ2 −m2�

þ 2TrDð2Þμ⊥
½ðq − xp1Þ2 −m2�½ðβp2 þ k⊥ − qÞ2 −m2� þ

2TrDð3Þμ⊥
½ðq − xp1Þ2 −m2�½ðlþ qÞ2 −m2�

�

≡ ð−igÞ3i2C1

4N
dabl

4
Dνρ

μ⊥ϵ�Vρð2qÞϵ�νðlÞ; ð2:30Þ

where we introduced the shorthand notation Dνρ
μ⊥ϵ�Vρð2qÞϵ�νðlÞ for the sum of all six diagrams contributing to J=ψ

production within the color singlet mechanism. One can check that this sum vanishes in the limit k⊥ → 0, as it should be the
case for an impact factor in kt–factorization due to its gauge invariance. For the gluon gðlÞ, we choose the gauge5

p2 · ϵ�ðlÞ ¼ 0; ð2:31Þ
which is a natural choice for a meson emitted in the fragmentation region of the hadron of momentum p1. The three
different traces then read

Trμ⊥Dð1Þ ¼ 2mTr½m2ϵ̂�V ϵ̂
�ðlÞγμ⊥p̂2 þ ϵ̂�V ϵ̂

�ðlÞðq̂þ l̂Þγμ⊥ðk̂⊥ − q̂Þp̂2 þ ϵ̂�Vq̂ϵ̂
�ðlÞðq̂þ l̂Þγμ⊥p̂2 þ ϵ̂�Vq̂ϵ̂

�ðlÞγμ⊥ðk̂⊥ − q̂Þp̂2�
¼ 8m½kμ⊥ð2ϵ�ðlÞ · qϵ�V · p2 þ ϵ�V · ϵ�ðlÞp2 · lÞ − ϵ�μV⊥ðk⊥ · ϵ�ðlÞp2 · lþ 4p2 · qq · ϵ�ðlÞÞ
þ lμ⊥ðp2 · ϵ�Vk⊥ · ϵ�ðlÞ − 2p2 · qϵ�V · ϵ�ðlÞÞ þ ϵ�μ⊥ ðlÞð−k⊥ · l⊥p2 · ϵ�V þ k⊥ · ϵ�Vp2 · lþ 2p2 · qϵ�V · lÞ�; ð2:32Þ

Trμ⊥Dð2Þ ¼ 2mTr½m2γμ⊥ϵ̂�ðlÞp̂2ϵ̂
�
V þ ϵ̂�Vq̂γ

μ
⊥ϵ̂�ðlÞðk̂⊥ − q̂Þp̂2 þ ϵ̂�Vq̂γ

μ
⊥ðq̂ − xp̂1Þϵ̂�ðlÞp̂2 þ ϵ̂�Vγ

μ
⊥ðq̂ − xp̂1Þϵ̂�ðlÞðk̂⊥ − q̂Þp̂2�

¼ 2mf8qμ⊥ð−2p2 · qϵ�V · ϵ�ðlÞ þ ϵ�ðlÞ · k⊥p2 · ϵ�VÞ þ 8xp2 · qðϵ�μV⊥p1 · ϵ�ðlÞ − ϵ�μ⊥ ðlÞp1 · ϵ�VÞ
þ x½−2sϵ�μV⊥k⊥ · ϵ�ðlÞ − 2sϵ�μ⊥ ðlÞk⊥ · ϵ�V þ kμ⊥ð2sϵ�V · ϵ�ðlÞ − 4p2 · ϵ�Vp1 · ϵ�ðlÞÞ�g; ð2:33Þ

and

Trμ⊥Dð3Þ ¼ 2mTr½m2ϵ̂�Vγ
μ
⊥p̂2ϵ̂

�ðlÞ− ϵ̂�Vγ
μ
⊥ðq̂−xp̂1Þp̂2ðq̂þ l̂Þϵ̂�ðlÞ− ϵ̂�Vq̂γ

μ
⊥p̂2ðq̂þ l̂Þϵ̂�ðlÞþ ϵ̂�Vq̂γ

μ
⊥ðq̂−xp̂1Þp̂2ϵ̂

�ðlÞ�
¼ 2mf8qμ⊥ð−2q · ϵ�ðlÞp2 · ϵ�V þ ϵ�V · lp2 · ϵ�ðlÞ−p2 · lϵ�V · ϵ

�ðlÞÞþx½4sϵ�μV⊥q · ϵ�ðlÞ
þ2sð−ϵ�μ⊥ ðlÞl · ϵ�V þ lμ⊥ϵ�ðlÞ ·ϵ�VÞ−4lμ⊥p1 · ϵ�ðlÞp2 · ϵ�V −4ϵ�μ⊥ ðlÞðp1 · ϵ�Vp2 · l−p1 · lp2 · ϵ�VÞþ4ϵ�μV⊥p2 · lp1 · ϵ�ðlÞ�g:

ð2:34Þ

The denominators appearing in the expression for Aab
μ⊥ are equal to

ðqþ lÞ2 −m2 ¼ 1

2

�
k2⊥ þ 4m2

�
x
αV

− 1

�
−

x
αV

p2
V⊥ −

x
αl
l2⊥
�
;

ðq − xp1Þ2 −m2 ¼ −
x

2αV
ð4m2 − p2

V⊥Þ; ðβp2 þ k⊥ − qÞ2 −m2 ¼ 1

2

�
k2⊥ − 4m2 þ x

αl
l2⊥
�
: ð2:35Þ

5Note that the sum of diagrams in this color singlet mechanism is gauge invariant, although the t–channel gluon is off-shell: indeed
due to the simple single color structure dabl which factorizes, they are QED like.
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The cross section is obtained by squaring the sum of
diagramsDðiÞ, i.e. by contracting this sum with its complex
conjugate through the polarization tensors for the J=ψ and

the gluon gðlÞ and the projection operator related to the
factorization of the gluonic PDF, namely

Dð1ÞðJ=ψÞ≡Dμνρg⊥μμ0

�
−gρρ0 þ

qρqρ0

m2

�

×

�
−gνν0 þ

p2νlν0 þ p2ν0lν
p2 · l

�
D�μ0ν0ρ0 : ð2:36Þ

Thus we obtain that

X
λVλl

Aab
μ⊥g

μν
⊥ ðAab

ν⊥Þ� ¼
g6C2

1

ð4NÞ2
dabldabl

42
Dð1ÞðJ=ψÞ; ð2:37Þ

which by taking into account Eq. (2.18) gives the J=ψ
production vertex in the form

Vð1Þ
J=ψ ¼ jpV⊥j

ffiffiffi
2

p
g6C2

1

s2π4213k2⊥
dabldabl

N2ðN2 − 1Þ2
θðx − αVÞ
xðx − αVÞ

Dð1ÞðJ=ψÞ;

ð2:38Þ

with αV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2−p2

V⊥
p ffiffi

s
p eyV and dabldabl ¼ ðN2−4ÞðN2−1Þ

N . The

final expression for Dð1ÞðJ=ψÞ reads

Dð1ÞðJ=ψÞ ¼ 29

ðm2 − q2⊥Þ2ð4xk⊥ · q⊥ þ k2⊥ðαV − 2xÞ þ 4m2ðx − αVÞ − 4xq2⊥Þ2

×
s2α2VðαV − xÞ2

ð4xðxq2⊥ − αVk⊥ · q⊥Þ þ k2⊥α2V − 4m2ðαV − xÞ2Þ2 f32m
4α2VðαV − xÞ2ðk⊥ · q⊥Þ2

þ ðk2⊥Þ3α2V ½m2ðα2V − 2xαV þ 2x2Þ − q2⊥ðαV − xÞ2�
þ 8m2k2⊥½−2αVk⊥ · q⊥ðm2ðαV − xÞ3 þ q2⊥ð2α3V þ 2x2αV − 3xα2V þ x3ÞÞ þ α2Vðα2V − 2xαV þ 3x2Þðk⊥ · q⊥Þ2
þ 2ðm2ðαV − xÞ2 − q2⊥ðα2V − xαV þ x2ÞÞ2� − 4ðk2⊥Þ2½αVk⊥ · q⊥ðm2ðα3V þ x2αV − xα2V þ x3Þ − xq2⊥ðαV − xÞ2Þ
þm4ðαV − xÞ4 þm2q2⊥ð−5α4V þ 6x3αV − 13x2α2V þ 12xα3V − 2x4Þ þ x2ðq2⊥Þ2ðαV − xÞ2�g: ð2:39Þ

B. Color-octet NRQCD contribution

In the color-octet contribution [M] denotes one meson
state, thus

δðx − ½αM�Þδ2ðk⊥ − ½pM⊥�Þ
�

d3pM

ð2πÞ32EM

�

¼ δðx − αVÞδ2ðk⊥ − pV⊥Þ
2ð2πÞ3 dyVd2pV⊥; ð2:40Þ

which leads to the differential cross section

dσ
dyVdjpV⊥jdϕVdyJdjpJ⊥jdϕJ

¼
Z

dxgðxÞdyHqðyÞd2k⊥
jpV⊥jδðx − αVÞδ2ðk⊥ − pV⊥Þffiffiffi

2
p

πs2ðN2 − 1Þ2k2⊥x
×
X
λV

Aab
μ⊥g

μν
⊥ ðAab

ν⊥Þ�Vð0Þ
q ð−k⊥; yÞ; ð2:41Þ

from which we read off the J=ψ production vertex of the
color octet NRQCD contribution:

Vð8Þ
J=ψ ðk⊥; xÞ ¼

jpV⊥jδðx − αVÞδ2ðk⊥ − pV⊥Þffiffiffi
2

p
πs2ðN2 − 1Þ2k2⊥x

×
X
λV

Aab
μ⊥g

μν
⊥ ðAab

ν⊥Þ�: ð2:42Þ

The vertex which allows to pass from open qq̄ production
to J=ψ production in color octet NRQCD is defined as

½vðqÞūðqÞ�ij→d
αβ → tdijd8

�hO8iV
m

�
1=2

½ϵ̂�Vð2q̂þ 2mÞ�αβ;

ð2:43Þ

where the value of the coefficient d8 is determined by
comparison with the result of Cho and Leibovich [51,52],

FIG. 3. The 6 diagrams contributing to the amplitude in color
singlet NRQCD. The blobs with a cross symbolize the Fierz
structure of Eq. (2.19).
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namely Eq. (A.1b) of Ref. [52], for the total squared

amplitude for creating a specific quarkonium state 3Sð8Þ1 .
Note that here we only consider the case where the quark-
antiquark pair has the same spin and orbital momentum as
the J=ψ meson. At large transverse momentum, which is
the case we will consider in the following, this contribution
is found to be dominant, see e.g., Ref. [53]. For N ¼ 3 the
coefficient d8 equals d8 ¼ 1

4
ffiffi
3

p . An early analysis [54] gave

for the nonperturbative coefficient

C8 ≡
�hO8iV

m

�
1=2

ð2:44Þ

values between 3.2 × 10−4 and 5 × 10−4 GeV3.More recent
analyses [46–48], as quoted in Ref. [45], obtained signifi-
cantly larger values which we will use here, namely we will
vary hO8iJ=ψ between 0.224 × 10−2 and 1.1 × 10−2 GeV3.
The hard part corresponds to the sum of the three

diagrams of Fig. 4, namely

Aabμ
⊥ ðAþBþCÞ¼ ð−igÞ2iūðqÞ

�
tatbγμ⊥

q̂−xp̂1þm
ðq−xp1Þ2−m2

p̂2

þ tbtap̂2

xp̂1− q̂þm
ðxp1−qÞ2−m2

γμ⊥

− ifabcð−2kμ⊥pρ
2þ4p2 ·qg

μρ
⊥ Þ t

cγρ
4q2

�
vðqÞ:

ð2:45Þ

After taking into account the projection (2.43) we obtain

Aabμ
⊥ ðAþBþC→J=ψÞ8
¼ð−igÞ2i2fabd1

2

�
8m

ðq−xp1Þ2−m2
½−2q ·p2ϵ

�μ
V⊥þkμ⊥p2 ·ϵ�V �

−
16m
4q2

½−kμ⊥p2 ·ϵ�⊥þ2p2 ·qϵ
�μ
V⊥�

�
d8C8; ð2:46Þ

in which the propagator ðq−xp1Þ2−m2¼−1
2
ð4m2−k2⊥Þ.

One can easily check that this sum vanishes in the limit
k⊥ → 0, as it should be the case for an impact factor in kt-
factorization. This is also true at the level of open quark
production, see Eq. (2.45). The result (2.46) together with
Eq. (2.42) leads to the J=ψ production vertex for N ¼ 3:

Vð8Þ
J=ψ ¼ −δðx − αVÞδ2ðk⊥ − pV⊥Þ

×
jpV⊥j

ffiffiffi
2

p
g4k2⊥x

128πm3ð4m2 − k2⊥Þ2
hO8iV: ð2:47Þ

C. Color evaporation model

In the color evaporation model [M] denotes an open
quark-antiquark produced state with an invariant mass
M. Moreover, the differential cross section in this model
involves an integration over the invariant mass M2 in
the interval ½4m2; 4M2

D�, as it is assumed that in this
interval below the D–meson mass threshold, a fixed
fraction of these cc̄ pairs (either produced in a singlet or
in an octet color state) will form J=ψ bound states. This
fraction is parametrized by the constant FJ=ψ , which is
assumed to be universal as one of the main assumptions
of the color evaporation model, and we will vary it
between 0.02 and 0.04 based on a recent analysis [55]
(see also Ref. [56]).
The J=ψ momentum in this model is the sum

kJ ¼ k1 þ k2. We parametrize the momentum k1 of the
produced quark and the momentum k2 of the produced
antiquark as follows:

k1 ¼ α1p1 þ β1p2 þ k1⊥

≡ xαp1 þ
m2 − ðαk⊥ þ l⊥Þ2

xαs
p2

þ αk⊥ þ l⊥; k21 ¼ m2; ð2:48Þ

k2 ¼ α2p1 þ β2p2 þ k2⊥

≡ xᾱp1 þ
m2 − ðᾱk⊥ − l⊥Þ2

xᾱs
p2

þ ᾱk⊥ − l⊥; k22 ¼ m2; ð2:49Þ

M2 ¼ ðk1 þ k2Þ2 ≡m2 − l2⊥
αᾱ

; ð2:50Þ

with ᾱ ¼ 1 − α. Thus,

δðx − ½αM�Þδ2ðk⊥ − ½pM⊥�Þ
�

d2pM

ð2πÞ32EM

�

¼ δðx − α1 − α2Þδ2ðk⊥ − k1⊥ − k2⊥Þ

×
d3k1

ð2πÞ32E1

d3k2
ð2πÞ32E2

¼ δðx − αVÞδ2ðk⊥ − kV⊥Þ
1

4ð2πÞ6
dαd2l⊥
αᾱ

dyVd2kV⊥;

ð2:51Þ

which leads, by taking into account (2.13), to the differ-
ential cross section in the color evaporation model having
the form

FIG. 4. The 3 diagrams contributing to the amplitude in color
octet NRQCD. The blobs with a cross symbolize the Fierz
structure of Eq. (2.43).
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dσ
dyVdjpV⊥jdϕVdyJdjpJ⊥jdϕJ

¼ FJ=ψ

Z
dxgðxÞdyHqðdyÞd2k⊥

Z
4M2

D

4m2

dM2δ

�
M2 −

m2 − l2⊥
αᾱ

�

×
jpV⊥j

ffiffiffi
2

p
δðx − αVÞδ2ðk⊥ − pV⊥Þ

25π4s2ðN2 − 1Þ2k2⊥x
dαd2l⊥
αᾱ

X
λk1λk2

Aab
i⊥g

ij
⊥ðAab

j⊥Þ�Vð0Þ
q ðk⊥; yÞ; ð2:52Þ

with yV ¼ ln ðαV=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−p2

V⊥
s

q
Þ, from which we read off the J=ψ production vertex in the color evaporation model:

VðCEMÞ
J=ψ ðk⊥; xÞ ¼ FJ=ψ

Z
4M2

D

4m2

dM2δ

�
M2 −

m2 − l2⊥
αᾱ

�
dαd2l⊥
αᾱ

X
λk1 λk2

Aab
i⊥g

ij
⊥ðAab

j⊥Þ� ×
jpV⊥j

ffiffiffi
2

p
δðx − αVÞδ2ðk⊥ − pV⊥Þ

25π4s2ðN2 − 1Þ2k2⊥x
:

ð2:53Þ

The contribution to the hard part of the vertex in the Born
approximation is given by three diagrams analogous to the
ones of the color octet NRQCD contribution, except for the
absence of any Fierz projection, since we simply deal with
open quark-antiquark production. These diagrams are
shown in Fig. 5. The hard part then reads

Aab
i⊥ ¼ ūðk1Þ

�
ð−igγi⊥taÞ

ið−xp̂1 þ k̂1 þmÞ
ð−xp1 þ k1Þ2 −m2

ð−igtbp̂2Þ

þ ð−igtbp̂2Þ
iðxp̂1 − k̂2 þmÞ
ðxp1 − k2Þ2 −m2

ð−igγi⊥taÞ

þ gfabcð−2pν
2ki⊥ þ gνi⊥xsÞ

ð−iÞ
M2

ð−igγνtcÞ
�
vðk2Þ:

ð2:54Þ

Thus its contribution to the J=ψ production vertex has
the form

X
λk1λk2

ðAab
i⊥Þ�gij⊥Aab

j⊥ ¼ g4

4
ðcaTra þ cbTrbÞ; ð2:55Þ

where the two color structures are given by

ca ¼
fabcfabc

2
¼ NðN2 − 1Þ

2
;

cb ¼
δabδab

N2
þ dabcdabc

2
¼ N2 − 1

N2

�
1þ NðN2 − 4Þ

2

�
;

ð2:56Þ

and the two corresponding coefficients read

Tra¼−4s
�
α2β1

�
−
1

β1
þ2xs
M2

�
2

þα1β2

�
−
1

β2
þ2xs
M2

�
2
�

−8m2

�
2xs
M2

−
1

β2

��
2xs
M2

−
1

β1

�
þ8

x

�
k1⊥
β1

þk2⊥
β2

−
2xs
M2

k⊥
�

·

�
α2

��
α1
x
−1

�
1

β1
þ2xs
M2

�
k1⊥

þα1

��
α2
x
−1

�
1

β2
þ2xs
M2

�
k2⊥−

2α1α2s
M2

k⊥
�

¼−4sx
�
ᾱβ1

�
−
1

β1
þ2xs
M2

�
2

þαβ2

�
−
1

β2
þ2xs
M2

�
2
�

−8m2

�
2xs
M2

−
1

β2

��
2xs
M2

−
1

β1

�
þ8

�
k1⊥
β1

þk2⊥
β2

−
2xs
M2

k⊥
�

·

�
ᾱ

�
−
ᾱ

β1
þ2xs
M2

�
k1⊥þα

�
−
α

β2
þ2xs
M2

�
k2⊥−αᾱ

2xs
M2

k⊥
�
;

ð2:57Þ

and

Trb¼−4s
�
α2
β1

þα1
β2

�

þ8

�
α2
x

�
α1
x
−1

�
k1⊥
β1

−
α1
x

�
α2
x
−1

�
k2⊥
β2

�
·

�
k1⊥
β1

−
k2⊥
β2

�

þ 8m2

β1β2

¼−4sx
�
ᾱ

β1
þ α

β2

�
−8

�
ᾱ2

k1⊥
β1

−α2
k2⊥
β2

�
·

�
k1⊥
β1

−
k2⊥
β2

�

þ 8m2

β1β2
: ð2:58Þ

Using the fact that
FIG. 5. The 3 diagrams contributing to the amplitude in the
color evaporation model.
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k1⊥ ∼
k⊥→0

l⊥; k2⊥ ∼
k⊥→0

− l⊥; β1 ∼
k⊥→0

m2 − l2⊥
xαs

;

β2 ∼
k⊥→0

m2 − l2⊥
xᾱs

; ð2:59Þ

as well as the kinematical relation (2.50), one can easily
check that, as expected, both Tra and Trb vanish in the
limit k⊥ → 0.

III. RESULTS

In this section we compare the cross sections and
azimuthal correlations between the J=ψ meson and the
jet obtained with the color singlet, color octet and color
evaporation hadronization mechanisms, for two different
values of the center of mass energy:

ffiffiffi
s

p ¼ 8 TeV andffiffiffi
s

p ¼ 13 TeV. We consider equal values of the transverse
momenta of the J=ψ and the jet, jpV⊥j ¼ jpJ⊥j ¼ p⊥, and
four different kinematical configurations:

(i) 0 < yV < 2.5;−6.5 < yJ < 5; p⊥ ¼ 10 GeV,
(ii) 0 < yV < 2.5;−4.5 < yJ < 0; p⊥ ¼ 10 GeV,
(iii) 0 < yV < 2.5;−4.5 < yJ < 0; p⊥ ¼ 20 GeV,
(iv) 0 < yV < 2.5;−4.5 < yJ < 0; p⊥ ¼ 30 GeV.

The very backward jet in the first configuration could be
measured for example with the CASTOR detector at CMS.
An experimental study combining the CASTOR detector to
tag the jet and the CMS tracking system to measure the J=ψ
meson would therefore allow to probe rapidity separations
Y ≡ yV − yJ up to values as large as 9. For the other three
configurations we restrict the rapidity of the jet to yJ > −4.5
which corresponds to the typical values accessible by the
main detectors at ATLAS and CMS. In this case the
maximum rapidity separation is Y ¼ 7. Since a BFKL
calculation is valid only for a large rapidity separation,
we will only show results for Y > 4. We use the BLM
renormalization scale fixing procedure, see Ref. [15], which
modifies the “natural” initial scale μR;init¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijpV⊥j·jpJ⊥j
p

by

FIG. 6. Cross section at
ffiffiffi
s

p ¼ 8 TeV as a function of the relative rapidity Y between the J=ψ and the jet, in four different kinematical
configurations.
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μ2R;BLM ¼ jpV⊥j · jpJ⊥j exp
�
1

2
χ0ðn; γÞ −

5

3
þ 2

�
1þ 2

3
I

��
;

ð3:1Þ

where

χ0ðn; γÞ ¼ 2ψð1Þ − ψ

�
γ þ n

2

�
− ψ

�
1 − γ þ n

2

�
; ð3:2Þ

is the LL BFKL eigenvalue and I ¼ −2
R
1
0 dx lnðxÞ=

½x2 − xþ 1�≃ 2.3439. The uncertainty band is computed
in the same way as in Ref. [15] with the addition of the
variation of the nonperturbative constants related to J=ψ
hadronization in the ranges specified in the previous
sections. We fix the charm quark mass to m ¼ 1.5 GeV.
In Figs. 6 and 7 we show the differential cross section

dσ
djpV⊥jdjpJ⊥jdY as a function of the rapidity separation Y for

the four kinematical cuts described above, for
ffiffiffi
s

p ¼ 8 TeV
and

ffiffiffi
s

p ¼ 13 TeV respectively. We observe that in
NRQCD the color octet contribution dominates over the
color singlet one, especially at high p⊥. The color evapo-
ration model leads to similar results as the color octet
NRQCD contribution. Note, however, that the absolute
normalization of the cross section in the color evaporation
model is not very well determined. As expected, the cross
sections slightly increase when passing from

ffiffiffi
s

p ¼ 8 TeV
to

ffiffiffi
s

p ¼ 13 TeV, although this increase is much smaller
than the uncertainties.
In Figs. 8 and 9 we show, in the same kinematics, the

variation of hcosφi as a function of Y, where φ is defined as
φ ¼ jϕV − ϕJ − πj, for

ffiffiffi
s

p ¼ 8 TeV and
ffiffiffi
s

p ¼ 13 TeV
respectively. A value of φ ¼ 0 therefore corresponds to a
back-to-back configuration for the J=ψ and the jet and
values of hcosφi close to unity are equivalent to a strong
correlation. One can see from these figures that the values

FIG. 7. Cross section at
ffiffiffi
s

p ¼ 13 TeV as a function of the relative rapidity Y between the J=ψ and the jet, in four different kinematical
configurations.
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of hcosφi obtained with the three production mechanisms
are compatible with each other as well as with the results
obtained when the J=ψ vertex is replaced by the leading
order jet vertex shown for comparison. We note that
passing from

ffiffiffi
s

p ¼ 8 TeV to
ffiffiffi
s

p ¼ 13 TeV increases very
slightly the decorrelation effects.
One should note that these results could be significantly

altered when taking into account the NLO corrections to the
J=ψ production vertex, as it is the case when passing from
the LO to the NLO jet vertex, see Refs. [13,14]. The
derivation of the NLO J=ψ production vertex goes well
beyond the scope of this work and is left for further studies.

IV. CONCLUSIONS

The study of the present article was strongly motivated
by the possibility of a first measurement by either ATLAS
or CMS collaborations at the LHC going beyond the
conventional Mueller-Navelet dijet production. Up to

now Mueller-Navelet processes were considered as the
inclusive production of two very forward jets separated by a
large rapidity gap, and such processes are very promising
ways of experimentally discriminating BFKL and pure
collinear dynamics. Our study increases the number of
phenomenologically important processes to study this
discrimination, which is an outstanding issue in small-x
physics.
We have shown that the study of the inclusive production

of a forward J=ψ and a very backward jet at the LHC leads
to very promising cross sections, to be studied either at the
ATLAS or CMS experiments. The possibility of tagging a
high rapidity jet on one side, and a J=ψ charmonium on the
other side (although with a smaller absolute rapidity), can
give access to BFKL resummation effects, since the relative
rapidity up to roughly 7 (and even 9 for CASTOR) is
theoretically just in the appropriate kinematical range. We
have computed the required matrix elements, in the
NRQCD color singlet and color octet approaches, as well

FIG. 8. Variation of hcosφi at ffiffiffi
s

p ¼ 8 TeV as a function of the relative rapidity Y between the J=ψ and the jet, for the four kinematical
cuts described in the text. The grey band corresponds to the results obtained when the J=ψ production vertex is replaced by the leading
order jet production vertex.
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as in the color evaporation model. Our numerical results
show that in the NRQCD approach, the color octet
contribution dominates over the color singlet one, and
the color evaporation model gives a prediction similar to the
color octet NRQCD contribution. The study of the azimu-
thal correlations gives results which are very similar to the
ones obtained in the Mueller-Navelet case (using for
consistency one of the two jet vertices at LO, since the
J=ψ vertex is itself treated at LO).
Our predictions for the rapidity distributions and

azimuthal correlations of the meson and the jet shown in
Figs. 6–9 include contributions from the nearly back-to-
back kinematics. One should note that in all three models
considered in this article, Sudakov-type logarithms might
appear analogously to the case of Mueller Navelet dijets
in the almost back-to-back kinematics as discussed in
Ref. [57]. The importance of Sudakov resummation effects
for Mueller-Navelet jets is under investigation [58]. For the
case of charmonium production considered here, the study

of these Sudakov resummation effects, which goes beyond
the scope of the present paper, could be performed in
analogy with the works of Refs. [33,59].
The next stage, in order to get full NLLBFKL predictions

for this process,would require to use theNLOexpression for
the charmonium production vertex, which has not yet been
computed. This is left for future studies.
We did not include any double parton scattering con-

tribution, which through two decorrelated BFKL ladders
could lead to the same final state. In the case of Mueller-
Navelet jets, some of us have shown that this contribution is
rather small with respect to the single BFKL ladder
contribution [60], except potentially for large s and small
jet transverse momenta. For the present process, it would
thus be interesting to study this contribution in the
CASTOR kinematics.
Finally, a comparison between our predictions and

analogous predictions purely based on collinear dynamics
would be very interesting. This is left for future studies.

FIG. 9. Variation of hcosφi at
ffiffiffi
s

p ¼ 13 TeV as a function of the relative rapidity Y between the J=ψ and the jet, for the four
kinematical cuts described in the text. The grey band corresponds to the results obtained when the J=ψ production vertex is replaced by
the leading order jet production vertex.
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