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The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out
that in many simple models, 3 → 2 annihilations can play an important role in determining the relic density
over a broad range of model parameters. This occurs when the two-body annihilation is kinematically
forbidden, but the 3 → 2 process is allowed; we call this scenario not-forbidden dark matter. We illustrate
this mechanism for a vector-portal dark matter model, showing that for a dark matter mass of
mχ ∼MeV-10 GeV, 3 → 2 processes not only lead to the observed relic density, but also imply a self-
interaction cross section that can solve the cusp/core problem. This can be accomplished while remaining
consistent with stringent CMB constraints on light dark matter, and can potentially be discovered at future
direct detection experiments.
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I. INTRODUCTION

The particle physics nature of dark matter (DM) is still a
mystery despite undeniable evidence of its gravitational
interactions. The observed relic abundance of DM may
provide a clue to its nongravitational interactions, as in the
classic weakly interacting massive particle scenario, where
the freeze-out of 2 → 2 annihilation of DM particles to the
standard model (SM) particles sets the late-time abundance
of DM. Many variations on the standard thermal freezeout
scenario have recently been considered (e.g., [1–25]); in
this article, we point out that even for simple and weakly-
coupled dark sectors, 3 → 2 annihilations—as illustrated in
Fig. 1—can play a critical role.
For weakly-coupled DM, 3 → 2 processes are usually

considered to be subdominant to their 2 → 2 counterparts at
the time of freeze-out, but if the latter are kinematically
suppressed while 3 → 2 is unsuppressed, the situation is
more complex. This can occur when the DM couples to a
“mediator” particlewith amass somewhat larger than that of
the DM itself, as might arise in a hidden sector characterized
by a single scale.
Kinematic suppression of 2 → 2 annihilation, leading

to a novel cosmological history during freeze-out, was

previously invoked in the “Forbidden DM” [9] and
“Impeded DM” [25] scenarios; the new feature in our
study is the presence of a kinematically allowed dark-sector
3 → 2 annihilation channel. We refer to this scenario as
not-forbidden dark matter (NFDM). The 3 → 2 channel is
also important in the strongly interacting massive particle
(SIMP) scenario [3], but work on SIMPs has focused on
strongly coupled theories with scalar DM [4,26], whereas
NFDM is a more generic mechanism: it is potentially
important in any situation where 2 → 2 annihilations
within the dark sector are kinematically suppressed, and
has no obvious dependence on whether the DM is

FIG. 1. Schematic description of not-forbidden dark matter
(NFDM) paradigm. (I) effective operators for the 3 → 2 scatter-
ing processes; (II) explicit model described in the text: vector-
portal dark matter model.
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fermionic or bosonic or whether the dark sector coupling is
strong or weak. Hidden sector or multicomponent DM
models may have regions of parameter space where NFDM
is an important mechanism to consider.
We illustrate our paradigm with a Dirac fermion DM

charged under a hidden Uð1Þ symmetry, with dark gauge
boson A0. This mediator can provide a portal to the SM by
having a small coupling to the electromagnetic current JμEM
through a kinetic mixing term ðϵ=2ÞF0

μνFμν. In the mass
basis, the Lagrangian becomes

L ⊃ −
1

4
FμνFμν −

1

4
F0
μνF0μν þ 1

2
m2

A0A0
μA0μ

þ χ̄ði=D −mχÞχ þ eJμEMðAμ þ ϵA0
μÞ: ð1Þ

The gauge coupling is α0 ¼ g02=4π, and =D≡ =∂ − ig0=A0. It is
clear in this basis that there is no tree-level coupling
between χ and the SM photon. We can also consistently
assume that the dark Higgs boson giving mass to A0 is very
heavy and can be neglected in the effective description [27].
Depending upon the size of the kinetic mixing parameter ϵ,
there are two possible regimes of interest:
(1) ϵ is relatively large, such that the hidden sector and

the SM sector have the same temperature before DM
freeze-out, while ϵ is still small enough so that
3 → 2 and 2 → 2 reactions involving only hidden
sector particles dominate over annihilation of χ to
SM particles;

(2) For sufficiently small ϵ≲ 10−8, the hidden sector
will have its own temperature and in the limit ϵ → 0,
it becomes secluded: both χ and A0 contribute to the
ultimate DM density.

In Sec. II, we discuss the freeze-out history of the NFDM
model, and by solving the Boltzmann equations, we deter-
mine the dark sector parameter values fmχ ; mA0 ; ϵg that are
consistent with the observed relic density. In Sec. III we
incorporate constraints from a variety of astrophysical and
laboratory searches, showing that a significant parameter
region is allowed while realizing the NFDM mechanism.
Conclusions are given in Sec. IV. In the Appendix, we
present a more detailed account of how the order of freeze-
out of the various reactions determines the relic abundance;
the dependence of our results on the temperature of the dark
sector; how the constraints change with mA0=mχ , and cross
sections for the relevant scattering processes.

II. COSMOLOGY

Previous studies of the vector-portal DM model, shown
in Eq. (1), have divided the parameter space into two broad
regions: mχ < mA0 or mχ > mA0. In the latter case, the
dominant process at the epoch of thermal freeze-out is
χχ̄ → A0A0 followed by A0 decays to SM particles, whereas
whenmχ < mA0 , the s-channel annihilation χχ̄ → ff̄ to SM

particles f via off-shell A0 is dominant. This regime is ruled
out for mχ ∼ MeV-GeV by CMB constraints [28–32].
In the present work, however, we are interested in the

intermediate region mχ ≲mA0 , where it is possible for the
3 → 2 scatterings χχχ̄ → χA0 or χχ̄A0 → χχ̄ to have an
important effect on the dark matter abundance. The system
is governed by the coupled Boltzmann equations for the χ
and A0 densities. For mχ ≲mA0, the relevant terms in these
equations are

dnχ
dt

þ 3Hnχ ¼ −
1

4
hσv2i χχχ̄

→χA0

�
n3χ − n2χ;0nχ

nA0

nA0;0

�

þ hσviA0A0
→χ̄χ

�
n2A0 − n2A0;0

n2χ
n2χ;0

�
; ð2Þ

dnA0

dt
þ 3HnA0 ¼ 1

8
hσv2i χχχ̄

→χA0

�
n3χ − n2χ;0nχ

nA0

nA0;0

�

− hσviA0A0
→χ̄χ

�
n2A0 − n2A0;0

n2χ
n2χ;0

�

− ΓA0→ff̄ðnA0 − nA0;0Þ; ð3Þ

where nχðnχ;0Þ denotes the (equilibrium) density of χ þ χ̄,
and similarly nA0 ðnA0;0Þ for the dark photon. Throughout
this paper, we have assumed zero chemical potential for χ
and χ̄, and take the densities of χ and χ̄ to be equal. The 1=4
in the first term of Eq. (2) is the symmetry factor for Dirac
DM, taking into account the two identical particles in the
initial state and the fact that each annihilation process
removes a χχ̄ pair. The conjugate process χχ̄ χ̄ → χ̄A0 is
also accounted for in this factor. The relative numerical
factors between the two equations are consistent with the
way each process changes the number density of χ and A0;
for example, the factor of 1=4 and 1=8 in the first terms of
Eqs. (2) and (3) respectively are consistent with the fact that
the 3 → 2 process has a net effect of removing a χχ̄ pair and
producing a single A0. A detailed discussion of the
derivation of the Boltzmann equation for 3 → 2 processes
can be found in [33].
Other 3 → 2 processes such as χχ̄A0 → χχ̄, 3A0 → χχ̄

etc. are important only in the case ofmA0=mχ < 1 and ϵ ¼ 0

in Sec. II B. The complete Boltzmann equations containing
all of these processes are shown in Eq. (D1) and (D2) in
Appendix D. All numerical results in this paper across the
full range of mA0=mχ considered were obtained using the
complete equations. Expressions for the cross sections are
given in Appendix E.
We will focus on the two regimes where (1) the hidden

sector and the SM remain in thermal equilibrium, requiring
values of the kinetic mixing ϵ≳ 10−7 (but still small
enough to avoid dominance of the χχ̄ → eþe− process);
(2) the hidden sector is secluded from the SM, ϵ → 0.
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A. Kinetic equilibrium with the SM

For sufficiently large ϵ, the scattering process χe� → χe�
is fast enough to keep the dark and visible sectors in kinetic
equilibrium,Td ¼ TSM.By comparing the rate inferred from
the χe� → χe� cross section to the Hubble rate H at DM
freeze-out, we estimate the condition to be

ϵ≳ 10−8
�
0.1
α0

�
1=2

�
mχ

1 GeV

�
1=2

; ð4Þ

taking xf ∼ 20, the e� to be relativistic, andmA0 ≃mχ . This
leaves a significant range of ϵ≲ 10−8–10−4, depending
upon mχ , such that A0-mediated annihilations χχ̄ → eþe−

are out of equilibrium (a requirement of our scenario), aswill
be shown below.
We take the dark sector masses to be in the ranges mχ ≲

10 GeV and mχ ≲mA0 < 2mχ . The lower bound on mA0

makes χχ̄ → A0A0 kinematically inaccessible, while the
upper bound forbids the A0 → χχ̄ decay channel. If
mA0 > 2mχ , the number-changing process χχχ̄ → A0χ effec-
tively becomes number-conserving, χχχ̄ → χχχ̄. In terms of
the parameter r≡mA0=mχ, the relevant range is thus
1≲ r≲ 2.
It is enlightening to compare the equilibrium rates (per χ

particle) of the 3 → 2 and 2 → 2 reactions in Eqs. (2)–(3),
Γ χχχ̄

→χA0
∼ hσv2i χχχ̄

→χA0
n2χ;0 and ΓA0A0

→χ̄χ
∼ hσviA0A0

→χ̄χ
n2A0;0=nχ;0. From the

exponential dependences in the equilibrium number den-
sities, ni;0 ∼ expð−mi=TÞ, we find that if mA0 ≳ 3

2
mχ , the

3 → 2 reaction will be exponentially enhanced with respect
to the 2 → 2 reaction at low temperatures.

The Boltzmann equations are solved numerically, and
the results shown in Fig 2. As an example, Fig. 2(a)
illustrates the evolution of the χ and A0 abundances as a
function of x≡mχ=T withmχ ¼ 0.2 GeV, gauge coupling
α0 ¼ 1, kinetic mixing ϵ ¼ 10−6 and the ratio r ¼ 1.9. This
example has been chosen to emphasize the importance of
3 → 2 scatterings, but similar results are obtained for
r≳ 1.5. Here, in the case with only 2 → 2 annihilation,
the DM abundance would reach its relic value at xf ∼ 20; in
our NFDM case, in contrast, the 3 → 2 processes and decay
of the A0 control the freeze-out, and their interplay leads to
an extended freeze-out continuing to xf ∼ 60. If we neglect
the 3 → 2 process the resulting abundance is overestimated
by several orders of magnitude. It is noteworthy that YA0

departs from the equilibrium abundance at late times, even
though the rate for A0 → eþe− exceeds the Hubble rate,
because the 3 → 2 or 2 → 2 processes can also strongly
affect the evolution of nA0 .
In Fig. 2(b) we plot the contours in the mχ-r plane

matching the observed relic density [31], for several values
of α0 and ϵ. We consider values of α0 ≤ 4π, since every loop
integral introduced in a Feynman diagram typically intro-
duces an additional factor of α=4π, and so perturbativity is
naively maintained for this range of α0. nA0 ¼ nA0;0 corre-
sponds to large ϵ, where the rate for A0 → eþe− dominates
the rates for either of the two annihilation processes that
generate A0 s. The region r≲ 1.5 corresponds to the
forbidden DM regime, and Ref. [9] studied this regime
with the assumption of nA0 ¼ nA0;0: smaller values of ϵ
show increasing deviation from the relic density contours
obtained from this assumption, even for r < 1.5. For the
rest of the paper, we will focus on the NFDM region
1.5≲ r < 2, where the 3 → 2 process leads to a strong

(a) (b)

FIG. 2. Relic density in the NFDM scenario, assuming kinetic equilibrium of the dark sector with the SM. (a) The evolution of the
energy density of χ (red) and A0 (blue) for all processes (bold) and the corresponding energy density of χ excluding the 3 → 2 process
(red, dotted). The equilibrium distribution of χ (green) and A0 (orange) are also shown for reference; (b) contours of the observed
present-day relic density in the mχ-r plane for different values of the coupling constant α0.
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transition in the behavior of the relic density contour, with
the exact value of r for the transition depending on the
coupling constant α0.
Normally the DM relic density is set by the strongest

annihilation channel, which is also the last to freeze out,
since only a single Boltzmann equation for DM is consid-
ered. This applies when ϵ is large, forcing nA0 ≃ nA0;0
(dashed contours). These contours turn to the right as
r → 2 because the 3 → 2 cross section diverges, hσv2i χχχ̄

→χA0
∝

α03m−5
χ ðr−2Þ−7=2, and Yχ∼x2f=½mplm2

χhσv2i χχχ̄
→χA0

�1=2. Thus

obtaining the correct relic density as r → 2 requires a larger
value of mχ .
In contrast, for moderate values of ϵ, the NFDM

mechanism applies, where the two coupled Boltzmann
equations must be solved together. In general, we find that
typically the two strongest processes (either annihilations
or decays) keep the coupled system in equilibrium until the
rate for one process (per χ particle) becomes comparable to
the Hubble rate, and thus any weaker processes are not
relevant for determining the relic abundance. In this regime,
typically the decay of A0 → eþe− and either the 3 → 2 or
2 → 2 annihilation are the relevant processes. In particular,
for r≳ 1.5–1.8, the 3 → 2 scatterings are faster than 2 → 2,
and so they dominate the freeze-out, as shown in Fig. 2(a).
The combination of 3 → 2 scatterings and A0 decays can
lead to a nonequilibrium density for the A0 particles during
the freeze-out of the 3 → 2 process if ϵ is sufficiently small
(e.g., ϵ ∼ 10−6–10−7), resulting in a lengthy freeze-out and
an ϵ-dependent relic density. This behavior corresponds to
the divergence of the dashed and solid contours in Fig. 2(b)
at large r.

B. Secluded hidden sector

Next we consider the limit of ϵ → 0, so that the dark
photon is effectively stable, and the hidden sector is
secluded. This analysis can be easily applied to multi-
component DM models. Even though secluded hidden
sectors are in general difficult to probe due to the lack of
any interactionwith the SM, they are not entirely impossible
to study. Secluded hidden sectors can, for example, be
constrained by the number of relativistic degrees of freedom
during big bang nucleosynthesis (BBN). Furthermore, in the
U(1) theory considered here, the relic abundance is set by the
coupling strength α0, which in turn determines the self-
interaction cross section in the dark sector. This cross section
is a prediction of the model, and has observable conse-
quences for structure formation, which can in principle be
highly constraining.
Moreover, the secluded case is a useful limit that gives

insight into the region of parameter space where ϵ is small
but non-zero, so that kinetic equilibrium cannot be main-
tained with the SM. Despite the small couplings to the SM,
this regime can still be effectively probed by observations
of the cooling of SN1987a [34]. The secluded limit is also

highly instructive as an illustration of the rich behavior that
can occur in the Uð1Þ vector portal DM model when the
2 → 2 and 3 → 2 annihilations are the dominant processes
at freeze-out.
To avoid warm or hot dark matter [12], we assume that χ

couples additionally to some relativistic degree of freedomϕ
until freeze-out, strongly enough to maintain thermal
equilibrium in the dark sector so that the DM temperature
redshifts with the Hubble expansion in the conventional
manner, T ∼ 1=a. However, the coupling ofϕ to χ should be
sufficiently weak that annihilation of χχ̄ → ϕϕ is negligible
during freeze-out, to make the NFDM freeze-out mecha-
nism dominate over conventional 2 → 2 annihilation.
For a concrete model of how this can be achieved, we

take ϕ to be a light scalar charged under some additional
Uð1Þ symmetry, interacting with the dark sector through the
dimension-5 operator ð1=ΛÞχ̄χϕ�ϕ. The T ∼ 1=a depend-
ence is maintained by χϕ → χϕ scatterings, which has a rate
that scales as nϕhσviχϕ→χϕ, while the χχ̄ → ϕ�ϕ rate scales
as nχhσviχχ̄→ϕ�ϕ. To obtain a parametric estimate for a value
ofΛ that wouldmaintain bothT ∼ 1=a and subdominance to
the 2 → 2 and 3 → 2 processes considered in Eq. (2) and (3),
we take hσviχϕ→χϕ ∼ hσviχχ̄→ϕ�ϕ ∼ 1=Λ2, and look for
values of Λ which ensure that the χχ̄ → ϕ�ϕ annihilation
rate is subdominant up to the point of freeze-out of the two
main processes. This condition is most difficult to satisfy in
the case where r ¼ 2, and the 2 → 2 rate becomes highly
suppressed.Nevertheless, we find that in this limit, a suitable
range of Λ ism4=3

χ m2=3
pl ≲ Λ2 ≲mχmpl, which for GeV dark

matter corresponds to 106 ≲ Λ=GeV≲ 109.
More generally, the dark sector has its own temperature

Td which need not be the same as that of the visible sector,
TSM; it is determined by details of the thermal cosmological
history such as the efficiency of reheating into the dark
sector after inflation. The relic abundance in this case
depends upon the unknown parameter γ ≡ Td=TSM, but in a
simple way: Yχ ∝ γpðrÞ where pðrÞ ∼ 1.6–1.8 depends
upon the mass ratio r ¼ mA0=mχ . Here we illustrate the
case of γ ¼ 1.
The evolution of nχ and nA0 for the secluded dark sector

is shown in Fig. 3(a), taking mχ ¼ 35 MeV, α0 ¼ 1, r ¼
1.95 as an example to illustrate the important interplay
between the 2 → 2 and 3 → 2 interactions. Keeping only
the 3 → 2 reaction would predict that A0 becomes the
dominant DM component, whereas in reality it remains
highly subdominant. Again the freeze-out process is
prolonged, starting with the decoupling of 2 → 2 scatter-
ings at x ∼ 20, while the 3 → 2 reactions decouple at
x ∼ 150. Interestingly, nA0 temporarily grows between these
two times, allowing the 2 → 2 rate to come back above H
just before freeze-out completes.
In Fig. 3(b), we plot contours corresponding to the

observed thermal relic density in themχ-r plane for different
values of α0. In the following we give a brief explanation of
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the contour shapes in the regions r≲ 1, 1≲ r≲ 1.5 and
1.5≲ r≲ 2, which each show a distinct qualitative
behavior:
(1) r≲ 1. Being lighter than χ, A0 is the dominant DM

constituent. The fastest process in this mass range is
the 2 → 2 process χχ̄ → A0A0. Significantly below
r ¼ 1, the second fastest process is 3A0 → χχ̄, since
nA0;0 > nχ;0. Near the threshold, with nA0;0 ∼ nχ;0, all
of the other possible 3 → 2 processes (χχA0 → χχ,
χχ̄A0 → χχ̄, χχ̄A0 → A0A0, χA0A0 → χA0, as well as
χχχ̄ → χA0 plus any conjugate processes) become
important. The relic abundance curves in fig. 3 are
computed with all of these processes taken into
account in the complete Boltzmann equations shown
in eq. (D1) and (D2).

(2) 1≲ r≲ 1.5. χ is the dominant DM component. The
fastest reaction is A0A0 ↔ χχ̄, and it enforces nA0 ¼
nA0;0nχ=nχ;0 during the freeze-out, and the second
fastest reaction is now χχχ̄ → χA0, which determines
the DM abundance. The 3 → 2 rate goes as n2χhσv2i,
which depends only weakly on r through the phase
space. Therefore there is no strong correlation
between the abundance and r in this region.

(3) 1.5≲ r≲ 2. χ is the dominant DM component, but
now its abundance is determined by the two freeze-
out events A0A0 → χχ̄ (whose rate becomes compa-
rable to Hubble at later times) followed by
χχχ̄ → χA0. At large r≲ 2, just before freeze-out
completes, both reactions are faster thanH, allowing
one to estimate the freeze-out times. Taking the2 → 2
and 3 → 2 rates∼H, and nA0 ≃ nA0;0nχ=nχ;0 enforced
by fast 3 → 2 scatterings, we can analytically derive
contours consistent with the numerical results.

III. CONSTRAINTS

The parameter space of NFDM is constrained by a
variety of experimental observations: (i) dark photon limits
coming from the cooling of SN1987a [34]; (ii) similar
bounds from beam dump experiments [35,36]; (iii) limits
on the thermally-averaged cross section of χχ̄ → eþe−
deduced from the CMB power spectrum measured by
Planck [31,32,37–39], and (iv) direct detection constraints
on the dark matter-nucleon scattering cross section from
PandaX-II [40], LUX [41], and CDMSLite [42]. Although
we have only assumed a coupling to electrons in much of
this analysis for simplicity, these direct detection limits are
relevant to the vector-portal DM model considered here.
Future direct detection experiments including

SuperCDMS SNOLAB [43], as well as electron scattering
off germanium [44–47] and graphene [48] are also shown
in the same plot. Other current limits from XENON10 [49],
indirect detection [50] and lower bounds on mχ from Neff
[51] are subdominant to the current constraints presented
here and are not shown.
Figure 4 summarizes these constraints in the mχ-ϵ plane

for the illustrative value of r ¼ 1.8, with α0 fixed to give the
correct present-day relic density, subject to the perturba-
tivity constraint α0 ≤ 4π. At a large ϵ and small mχ ,
conventional freeze-out from χχ̄ → eþe− annihilations
dominates over the NFDM mechanism, but this is ruled
out by the CMB constraint. The approximately horizontal
red dashed contour shows the minimum value of ϵ for
which the visible and dark sectors are in kinetic equilib-
rium, estimated in Eq. (4).
Self-interactions between dark matter particles with a

cross section σSI ∼ 0.1≲ σSI=mχ ≲ 1 cm2 g−1 can poten-
tially resolve the core-cusp and the too-big-to-fail problems

(a) (b)

FIG. 3. NFDM, secluded hidden sector: (a) The evolution of energy density of χ (red) and A0 (blue) with (solid) all relevant processes;
(dot-dashed) only 3 → 2 processes; (dashed) only 2 → 2 processes. The equilibrium distribution of χ (green) and A0 (orange) are
also shown for reference; (b) contours of the observed present-day relic density in the mχ − r parameter space for different coupling
constants α0.
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of small-structure formation with cold DM [52–54] while
remaining consistent with experimental constraints, which
set an upper bound of between 1–2 cm2 g−1 [55–57]. A
DM mass of mχ ∼ ð0.1–1Þ GeV with ϵ ∼ 10−7–10−6 in our
model leads to a velocity-independent self-interaction cross
section that lies within this range, and can provide a
possible solution to both puzzles (though recent analysis
of clusters indicates some preference for a velocity-depen-
dent cross section [58]). The preferred region is between
the purple dashed lines in Fig. 4, while the cosmologically
constrained region is shown in purple.

IV. SUMMARY AND OUTLOOK

We have demonstrated a novel scenario called not-
forbidden dark matter, where an allowed 3 → 2 annihila-
tion process compensates for its conventional 2 → 2

counterpart being kinematically forbidden during thermal
freeze-out. This mechanism can be potentially important in
a variety of hidden sector models, including vector-portal,
scalar-portal and composite DM. The DM mass and the
mediator (or second DM) mass are of the same order, which
would naturally arise in a hidden sector characterized by a
single scale.
Taking the vector-portal DM model as an example, we

found that in some parts of the NFDM parameter space, the
combined effect of 3 → 2, 2 → 2 and A0 decay channels is
to significantly prolong the period of freeze-out. The
commonly-neglected 3 → 2 annihilation channel can
change the predicted relic density by orders of magnitude.
Although this model is restricted by an abundance of
experimental constraints, viable examples remain in the
mass range ∼ð0.1–1Þ GeV, with a self-interaction cross
section that is coincidentally of the right order for solving
the small scale structure problems of ΛCDM cosmological
simulations. This is a well-motivated target for future direct
detection [43,45,46] and dark photon searches [59–63].
While we were completing this work, [64] appeared,

presenting a related idea. Their work focuses on keV-MeV
scalar DM and requires additional scalar “assister” particles.
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APPENDIX A: COUPLED BOLTZMANN
EQUATIONS AND PROLONGED FREEZE-OUT

As mentioned above, an essential difference between
NFDM and conventional DM freeze-out is the importance
of tracking the evolution of both the DM χ and the mediator
particle (in our model, A0), by solving the coupled
Boltzmann equations [Eqs. (2) and (3) for relevant terms
when r≳ 1, Eqs. (D1) and (D2) for the complete equations]
for their respective densities. The presence of two equations
implies that more than one scattering (or decay) process can
be important for determining the final abundance; hence
both the fastest and second fastest reactions are typically
relevant.
This is in contrast to conventional DM freeze-out based

upon a single Boltzmann equation, where the abundance
depends upon the strongest channel. In the large ϵ limit of
our model, A0 decay is the fastest process, and enforces
equilibrium of A0, nA0 ¼ nA0;0. Hence smaller values of ϵ are
necessary to realize the rich cosmology that comes from the
interplay of the coupled Boltzmann equations of χ and A0.

FIG. 4. Constraints in the mχ-ϵ plane for the case of
mA0=mχ ¼ 1.8, with α0 chosen to produce the observed relic
density. The allowed region is shown in white. The upper-left
shaded region (red) indicates where freeze-out is dominated by
the conventional χχ̄ → eþe− annihilations. Limits are derived
from the CMB power spectrum [31] (green), beam dump
experiments [35,36] (pale orange), SN1987a cooling [34] (blue),
direct detection [40–42] (yellow) and perturbativity, α0 ≥ 4π
(gray). The projected reach of SuperCDMS [43] (orange dot-
dashed line), electron ionization of graphene [48] (magenta
dot-dashed line) and germanium in a low-threshold experiment
[44] (blue dot-dashed line) are also shown. The curve near
ϵ ∼ 10−7 indicates where kinetic equilibrium with SM is
established (red dashed line). The region of parameter space where
the self-interaction cross section exceeds current limits
(σ=mχ > 1 cm2=g) (purple), and the region where the self-inter-
action cross section can potentially solve the small-scale structure
problems (0.1 cm2=g < σ=mχ < 1 cm2=g) (purple dashed lines)
are displayed. The purple arrow points into the region allowed by
self-interaction bounds, above and to the right of the line. The A0
decay rate is faster than H at freeze-out above the lowest
(blue) curve.
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To simplify the subsequent discussion, we assume that these
ϵ-suppressed reactions are negligibly slow, i.e. we work in
the secluded dark sector regime of the NFDM model.
It is useful to define the net rate of 3 ↔ 2 or 2 ↔ 2

interactions per χ or A0 particle by considering the collision
terms in the Boltzmann equations, written in the form
Rχ ≡ d log nχ=dt ¼ −3H − Rχð3 ↔ 2Þ þ Rχð2 ↔ 2Þ and
RA0 ≡ d log nA0=dt ¼ −3H þ RA0 ð3 ↔ 2Þ − RA0 ð2 ↔ 2Þ,
where

Rχð3 ↔ 2Þ≡ 2
nA0

nχ
RA0 ð3 ↔ 2Þ

¼ 1

4
hσv2iχχχ̄→χA0

�
n2χ − n2χ;0

nA0

nA0;0

�
≡ Rχðχχχ̄ → χA0Þ − RχðχA0 → χχχ̄Þ; ðA1Þ

Rχð2 ↔ 2Þ≡ nA0

nχ
RA0 ð2 ↔ 2Þ

¼ hσviA0A0→χ̄χ

�
n2A0

nχ
−
n2A0;0nχ
n2χ;0

�

≡ RχðA0A0 → χ̄χÞ − Rχðχ̄χ → A0A0Þ: ðA2Þ

Likewise, we define 2ðnA0=nχÞRA0 ðχχχ̄ → χA0Þ≡
Rχðχχχ̄ → χA0Þ and so on for the unidirectional rates. In
this way, the signs for these definitions have been chosen so
that all of the rates of individual subprocesses are now
positive, although the overall rates Rχ and RA0 can have any
sign. When mA0 > mχ and T < mχ ; mA0 , the lower density
of A0 relative to χ implies that Rχð3 ↔ 2Þ (Rχð2 ↔ 2Þ) is

generally smaller in magnitude than RA0 ð3 ↔ 2Þ
(RA0 ð2 ↔ 2Þ). Thus the rates Rχ tend to fall below H
earlier than the corresponding rates RA0 . This separation
between freeze-out of χ and A0 is the origin of the
prolonged duration of the overall freeze-out process.
Suppose that only one channel, for example 2 → 2,

occurs fast enough such thatRχðA0A0 → χ̄χÞ ≫ H; then this
rate tends to be nearly equal to that of the reverse reaction,
Rχðχ̄χ → A0A0Þ, enforcing the condition n2A0 ≃ n2A0;0n

2
χ=n2χ;0

(though the cancellation is imperfect, so that the total rate
Rχð2 ↔ 2Þ is also typically greater thanH). This by itself is
not sufficient to force both the χ and A0 densities to track
their equilibrium values. For that, one generically needs
both Rχð3 ↔ 2Þ > H and Rχð2 ↔ 2Þ > H so that both
independent combinations nχ − nχ;0 and nA0 − nA0;0 are
driven to zero.1 This is always true at sufficiently early
times, allowing us to use equilibrium initial conditions for
the Boltzmann equations. The DM density nχ starts to
deviate from equilibrium when the rate of the weaker
annihilation channel becomes comparable to H; hence the
second-strongest channel initiates the freeze-out process.
To illustrate this behavior, we show some examples of

the evolution of the rates in Figs. 5(a), 5(b), and 6. Each
example has the same DM mass mχ ¼ 70 MeV, coupling
α0 ¼ 1, and kinetic mixing ϵ ¼ 0, but different values of
r ¼ 1.4, 1.7, 1.9. In these figures, the dot-dashed lines

(a) (b)

FIG. 5. Rates of different processes during freeze-out for mA0=mχ ¼ 1.4: (a) evolution of Rχð3 ↔ 2Þ (light blue), Rχð2 ↔ 2Þ (green)
and the A0 total rate RA0 (orange) as a function of x≡mχ=T. Rates for processes in one direction, Rχðχχχ̄ → A0χÞ (light blue, dashed)
and RχðA0A0 → χχ̄Þ (green, dashed) are also shown. The dark matter abundance Yχ (red, dot-dashed) is plotted, with the appropriate
(dimensionless) units given on the right-hand axis; (b) evolution of RA0 ð3 ↔ 2Þ (light blue), RA0 ð2 ↔ 2Þ (green) and the A0 total rate RA0

(orange) as a function of x. Rates for processes in one direction, RA0 ðχχχ̄ → A0χÞ (light blue, dashed) and RA0 ðA0A0 → χχ̄Þ (green,
dashed) are also shown. The evolution of the Hubble rate H (black, dotted) is shown in both plots for reference.

1The typical behavior is that the strongest process is such that
both the forward and backward rates exceed H, as well as their
difference. For the second-strongest, only one of these need be
greater than H.
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corresponding to the evolution of DM number density are
shown to highlight the time of DM freeze-out. For r ¼ 1.4,
the freeze-out period is relatively short; for r ¼ 1.7, freeze-
out is prolonged; and for r ¼ 1.9, the freeze-out is
prolonged further and may indeed be thought of as two
separated freeze-outs.
In Fig. 5(b), we show the two rates RA0 ð3 ↔ 2Þ and

RA0 ð2 ↔ 2Þ, which are much larger than H; these cancel
each other to order H. The behavior is similar for other
values of r. Since RA0 ð3 ↔ 2Þ≃ RAð2 ↔ 2Þ, Eqs. (A1),
(A2) imply that Rχð3 ↔ 2Þ≃ 2Rχð2 ↔ 2Þ. This relation is
demonstrated in Fig. 5(a) and 6.
Comparing these net rates however does not tell us

which process controls freeze-out. Instead, we should look
at the dashed lines, which indicate the unidirectional rates,
RχðA0A0 → χ̄χÞ and Rχðχχχ̄ → χA0Þ. Processes are out of
equilibrium when these dashed lines overlap with the solid
lines. From the unidirectional rates, we can identify the
weaker annihilation channel and thus which process
initiates the freeze-out. For r ¼ 1.4, the weaker process
is 3 → 2, and fig. 5a confirms that the freeze-out is indeed
triggered by 3 → 2. For r ¼ 1.7 and r ¼ 1.9, the dashed
line for RχðA0A0 → χ̄χÞ in fig. 6 merges with the solid line,
Rχð2 ↔ 2Þ, when the rate is about 3H. It is the weaker
channel 2 → 2 that initiates freeze-out.
One difference between r < 1.5 and r > 1.5 in figs. 5(a)

versus 6 is that r > 1.5 normally has a longer freeze-out. The
duration depends upon whether the rate of the weaker
annihilation channel is sensitive to nA0 . For r>1.5, the
weaker process 2 → 2 has the rate RχðA0A0 → χχÞ∼
hσviA0A0→χ̄χn

2
A0=nχ . Prior to the final freeze-out, the larger

3 → 2 rate imposes the constraint that nA0 ≃ nA0;0n2χ=n2χ;0∼
r3=2x3=2m−3 expðð2 − rÞxÞn2χ . Since nA0 increases with time,
this means that the 2 → 2 rate RχðA0A0 → χ̄χÞ can be kept at
the same order as H for a long period. For this reason, the

freeze-out is prolonged. For r < 1.5, the duration is relatively
short, because the rate of the weaker 3 → 2 process goes as
Rχðχχχ̄ → χA0Þ ∝ n2χ , where nχ is decreasing with time.
Armed with our insight that the second-strongest channel

matters critically for freeze-out, and having understood the
reason that the freeze-out process is longer for r≳ 1.5, we
can also explain the shape of the contours in Fig. 2(b) in the
main text. As discussed briefly in the main text, there are
several important regimes:
(1) For nA0 ¼ nA0;0, corresponding to large ϵ, the two

Boltzmann equations are reduced to one, and the
shape of the contours can be understood using the
usual parametrics of DM freeze-out. This behavior
occurs for the contours overlapping the dashed
contours in Fig. 2(b).

(2) For ϵ ¼ 0, we recover the secluded case discussed
above, where the interplay of the 3 ↔ 2 and 2 ↔ 2
processes controls the freeze-out. This behavior
also occurs in the region where r ∼ 1.5 and
α0 ¼ 10, because the 3 → 2 and 2 → 2 rates for
DM are significantly larger than RχðA0 → eþe−Þ≡
ΓðA0 → eþe−ÞnA0=nχ , so that ΓA0→eþe− can be ne-
glected.2

(3) For moderate ϵ, the rates of the three processes
should be compared in order to determine which is
weakest, and hence irrelevant to the DM freeze-out.
The relevant rates to compare are Rχðχχ̄χ → A0χÞ,
RχðA0A0 → χχ̄Þ and RχðA0 → eþe−Þ, evaluated at
the Hubble crossing time of the annihilation
processes. Consider the case where 2 → 2 has a

(a) (b)

FIG. 6. Same as Fig. 5(a), but with (a) mA0=mχ ¼ 1.7, and (b) mA0=mχ ¼ 1.9.

2We define the A0 decay rate RχðA0 → eþe−Þ with respect to
the DM density; even though this quantity does not appear in
Boltzmann equation of DM, the coupling to the A0 Boltzmann
equation will cause A0 → eþe− to play an important role in
determining the rate for DM processes in some cases.
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lower rate than 3 → 2, such that it falls below
H first. Whether the DM density freezes out or
not at this time depends on the relative sizes
of RχðA0 → eþe−Þ and RχðA0A0→χχ̄Þ. When
RχðA0A0 → χχ̄Þ<RχðA0 → eþe−Þ, the larger
RχðA0 → eþe−Þ rate in the coupled Boltzmann equa-
tions provides enough constraints to keep nχ and nA0

near their equilibrium values. An example of
this more complex case is shown in Fig. 2(a) of
the main text, where the freeze-out starts when
Rχð3 ↔ 2Þ ∼H. Using the Boltzmann equation
of A0, this rate is determined by the A0 decay,
Rχð3 ↔ 2Þ ∼ 2RχðA0 → eþe−Þ; freeze-out then ter-
minates when Rχðχχ̄χ → A0χÞ ∼H.
More broadly, this case is realized when ϵ ¼ 10−6,

and either r is close to 2, or α0 is large and r > 1.5.
Figure 2(b) shows that in this region the ϵ ¼ 10−6

contours (solid lines) do not overlap with the dashed
contours, for which the constraint nA0 ¼ nA0;0 is
imposed. In this regime the 3 → 2 rate is the largest,
and when RχðA0A0 → χχ̄Þ ∼H, RχðA0 → eþe−Þ >
RχðA0A0 → χχ̄Þ. The freeze-out is thus controlled
by 3 → 2 processes and the decay of A0. In this case
the A0 decay rate is not fast enough to keep the A0
abundance in equilibrium, and both nA0 and nχ
are increased during freeze-out relative to their
values when the A0 s remain in equilibrium. The χ
annihilation rate thus needs to be increased
to maintain the correct relic density, requiring
lower χ masses; this is the reason that the contours
in Fig. 2(b) bend toward lower masses as ϵ is
decreased, for large r.

APPENDIX B: DEPENDENCE ON Td

If the dark sector is secluded, its temperature Td may
differ from that of the visible sector, TSM. This difference
affects the evolution of the χ and A0 densities and ultimately
the DM relic abundance. In the Boltzmann equations
[Eqs. (2, 3) in the main text], taking Td ≠ TSM changes
the equilibrium densities, so that nχ;0 ∼ expð−mχ=TdÞ ¼
expð−x=γÞ, where we have defined γ ≡ Td=TSM, and x is
still given by x≡mχ=TSM. Likewise, nA0;0 ∼ expð−rx=γÞ.
Keeping in mind thatH is determined by TSM, we can solve
the Boltzmann equations for nχðxÞ and nA0 ðxÞ with the
γ-dependence coming from the equilibrium densities.
Fig. 7 shows the behavior of the ratio of relic abundances

ΩcðTdÞ=ΩcðTd ¼ TSMÞ as a function of Td for 0.1 ≤ γ ≤ 1.
Having Td < TSM leads to an earlier freeze-out, since the
exponential decrease in the equilibrium densities occurs
more rapidly. For values of r where the backward and
forward 3 → 2 processes fall out of equilibrium at freeze-
out, we expect that n2χ ∼H=hσv2iχχχ̄→χA0 ∼ 1=x2f, and
therefore that the relic abundance scales as Ωc ∼ x2f. For

1 < r≲ 1.5 where the 3 → 2 process determines the DM
abundance, the exponential dependence of nχ;0 with x=γ
results in Ωc ∼ γ2. On the other hand, in the case of r≲ 2,
the second freeze-out occurs at nχ ∝ n4χ;0=n

2
A0;0, and a

similar argument leads again to Ωc ∼ γ2. At intermediate
values of r, both the 3 → 2 and 2 → 2 processes freeze
out at similar times. For a 2 → 2 freeze-out, nχ ∼H=
hσviχ̄χ→A0A0 , and as a resultΩc ∼ γ. Qualitatively, we expect
the γ dependence to lie between these two regimes for
intermediate values of r.

APPENDIX C: CONSTRAINTS AT DIFFERENT r

Figure 8 shows the constraints in the mχ-ϵ plane for two
representative values of r, with α0 fixed to give the correct
present-day relic density. These have the same general
features as in Fig. 4 in the main text, but also exhibit several
distinct characteristics that we explain here.
At r ¼ 1.4, the transition from the secluded limit (ϵ → 0)

to the kinetic equilibrium limit occurs in the range
ϵ ∼ 10−9–10−6, which leads to a rapid decrease in α0
between these two phases at a fixed value of mχ . This
explains the rapid change in the behavior of the region with
suitable self-interaction for mχ ≲ 100 MeV.
At r ¼ 1.6, the most distinctive feature is the change in

behavior of the region where annihilations to eþe− domi-
nates at mχ ∼ 100 MeV. At masses smaller than this point,
the 2 → 2 process is freezes out last, while at larger masses,
it is the 3 → 2 process which does so. This difference
accounts for the change in the slope of the boundary. There
is no such transition for the other two cases, since at
r ¼ 1.8, the 3 → 2 process always freezes out last, while
for r ¼ 1.4 it is the 2 → 2 process instead.

FIG. 7. Ratio of the relic abundance when Td < TSM to the relic
abundance with Td ¼ TSM as a function of γ ≡ Td=TSM for r≡
mA0=mχ ¼ 1.4 (red), 1.65 (orange), 1.8 (green) and 1.95
(light blue).

ENABLING FORBIDDEN DARK MATTER PHYSICAL REVIEW D 96, 083521 (2017)

083521-9



For all values of r, a significant part of the mχ − ϵ
parameter space is still consistent with the present-day relic
density while evading experimental constraints, showing
that the NFDM scenario is robust against taking different
values of r≳ 1.5.

APPENDIX D: COMPLETE BOLTZMANN
EQUATIONS

The complete Boltzmann equations, including all rel-
evant 2 → 2 and 3 → 2 processes for the full range of r
considered is

dnχ
dt

þ 3Hnχ ¼ −
1

4
hσv2i χχχ̄

→χA0

�
n3χ − n2χ;0nχ

nA0

nA0;0

�
þ hσviA0A0

→χ̄χ

�
n2A0 − n2A0;0

n2χ
n2χ;0

�
−
1

2
hσv2i χχ̄A0

→A0A0

�
n2nA0 − n2χ;0

n2A0

nA0;0

�

þ 1

3
hσv2iA0A0A0

→χχ̄

�
n3A0 − n3A0;0

n2χ
n2χ;0

�
−
1

2
hσviχχ̄→eþe−ðn2χ − n2χ;0Þ; ðD1Þ

dnA0

dt
þ 3HnA0 ¼ 1

8
hσv2i χχχ̄

→χA0

�
n3χ − n2χ;0nχ

nA0

nA0;0

�
− hσviA0A0

→χ̄χ

�
n2A0 − n2A0;0

n2χ
n2χ;0

�
− ΓA0→ff̄ðnA0 − nA0;0Þ

−
1

4
ðhσv2iχχ̄A0

→χχ̄
þ hσv2iχχA0

→χχ
Þðn2χnA0 − n2χnA0;0Þ þ

1

4
hσv2i χχ̄A0

→A0A0

�
n2χnA0 − n2χ;0

n2A0

nA0;0

�

−
1

2
hσv2iχA0A0

→χA0
ðnχn2A0 − nχnA0nA0;0Þ −

1

2
hσv2iA0A0A0

→χχ̄

�
n3A0 − n3A0;0

n2χ
n2χ;0

�
: ðD2Þ

The symmetry factors preceding each term properly account for the number of identical particles in the initial state, the
net number of particles created or destroyed in each annihilation process, as well as conjugate processes. These equations
are used in all numerical calculations shown in the paper.

APPENDIX E: CROSS SECTIONS AND DECAY RATES

The decay rate for A0 → eþe− is

ΓðA0→eþe−Þ¼ϵ2αem
3

mA0

�
1þ2

m2
e

m2
A0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4

m2
e

m2
A0

s
: ðE1Þ

(a) (b)

FIG. 8. Same as Fig. 4 in the main text, but with (a) mA0=mχ ¼ 1.4, and (b) mA0=mχ ¼ 1.6.
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For scattering cross sections, the thermally-averaged
2 → 2 cross section for the process 1þ 2 → 3þ 4 is
given by

hσvi12→34 ¼
1

Sf

1

n1n2

Z Y4
i¼1

gid3p⃗i

ð2πÞ32Ei

× ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þf1f2jMj2;
ðE2Þ

where gi is the number of degrees of freedom and fi is the
phase space distribution of species i. The averaged squared

matrix element jMj2 is averaged over both the initial and
final state degrees of freedom. Sf ¼

Q
ini! is a symmetry

factor, where ni is the number of identical particles of
species i in the final state. Initial state symmetry factors are
included explicitly in the Boltzmann equation, Eq. (2) and
(3). This convention may differ from other sources in the
literature.
Similarly, the thermally-averaged 3 → 2 cross section for

the process 1þ 2þ 3 → 4þ 5 is

hσv2i123→45¼
1

Sf

1

n1n2n3

Z Y5
i¼1

gid3pi

ð2πÞ32Ei

×ð2πÞ4δ4ðp1þp2þp3−p4−p5Þf1f2f3jMj2:
ðE3Þ

For simplicity and unless otherwise stated, we give cross
sections at the kinematic threshold of the respective
processes. In this limit, thermally averaged cross sections
are

hσvi12→34 ¼
g3g4

32πSfm1m2

λ1=2ðm1 þm2; m3; m4ÞjMj2;

ðE4Þ

and

hσv2i123→45 ¼
g4g5

64πSfm1m2m3

× λ1=2ðm1 þm2 þm3; m4; m5ÞjMj2; ðE5Þ

where λðx;y;zÞ≡ ð1− ðzþyÞ2=x2Þð1− ðz−yÞ2=x2Þ. This
expression agrees with the result for the specific process of
3χ → 2χ computed in [67].3

In Table I, we list all of the number changing processes
that are included in the Boltzmann equations Eq. (D1) and
(D2), the initial- and final-state averaged squared matrix
element jMj2 of each process as well as the phase space

factor P such that hσvi or hσv2i ¼ PjMj2. We define r≡
mA0=mχ throughout.
Two other processes that are important to our analysis are

χe� → χe� which maintains kinetic equilibrium between
the dark sector and the SM, and dark matter-dark matter
scattering.

(i) χe� → χe�: this cross section is important in de-
termining if the DM is in kinetic equilibrium with
the SM. In the limit where T < μeχ , where μeχ is the
electron-DM reduced mass, we have

TABLE I. List of initial- and final-state averaged squared matrix element jMj2 of each process, as well as the phase space factor P

such that hσvi or hσv2i ¼ PjMj2. All values are evaluated at the kinematic threshold. For the last two processes, we use the expression
for χχ̄ → A0A0 for r < 1 and A0A0 → χχ̄ for r > 1.

Process jMj2 Phase Space

A0A0A0 → χχ̄ g06ð153r6−47r4−60r2þ24Þ
9m2

χr8

ffiffiffiffiffiffiffiffiffi
9r2−4

p
48πm3

χr4

χA0A0 → χA0 2g06ð195r8þ1156r7þ4670r6þ9444r5þ12214r4þ11192r3þ6732r2þ2272rþ320Þ
9m2

χðrþ1Þ2ðrþ2Þ4ð2rþ1Þðr2−2r−2Þ2
3
ffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2þ8rþ4

p
32πm3

χrð2rþ1Þ2

χχA0 → χχ 2g06rðrþ4Þ
3m2

χðrþ1Þ2ðrþ2Þ2
ffiffiffiffiffiffiffiffiffiffi
rðrþ4Þ

p
32πm3

χrðrþ2Þ
χχ̄A0 → χχ̄ g06ðrþ4Þð9r6þ24r5þ4r4−40r3þ168r2−224rþ128Þ

6m2
χr3ðr−2Þ2ðrþ1Þ2ðrþ2Þ2

ffiffiffiffiffiffiffiffiffiffi
rðrþ4Þ

p
16πm3

χrðrþ2Þ
χχ̄A0 → A0A0 16g06ð21r6−4r5−17r4þ24r3þ216r2þ288rþ112Þ

27m2
χ ðr−2Þ4ðrþ1Þ4ðrþ2Þ2

9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3r2þ4rþ4

p
128πm3

χrðrþ2Þ
χχ̄χ → A0χ g06ðr−4Þðrþ4Þð−32r8þ167r6−534r4þ668r2−512Þ

36m2
χðr2−4Þ4ðr2þ2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4−20r2þ64

p
96πm3

χ

χχ̄ → A0A0 16g04ð1−r2Þ
9ðr2−2Þ2

9
ffiffiffiffiffiffiffi
1−r2

p
64πm2

χ

A0A0 → χχ̄ 32g04ðr4−1Þ
9r4

ffiffiffiffiffiffiffi
r2−1

p
8πm2

χr3

χχ̄ → eþe− 4e2ϵ2g02ð2þm2
e=m2

χÞ
ðr2−4Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2

e=m2
χ

p
8πm2

χ

3Note that different conventions are used between this paper
and [67].
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hσvi ¼ 2ðg0ϵeÞ2μ2eχ
πm4

A0

�
2T
πμeχ

�
1=2

: ðE6Þ

At high temperatures, it approaches the limit

hσvi → ðg0ϵeÞ2
4πm2

A0
: ðE7Þ

To get accurate results, however, we must use the
exact thermal average over the cross section for
χe� → χe�, which is given by:

σ ¼ ðg0ϵeÞ2
8π

�
1

s
þ 2

r2m2
χ
þ 8m2

e þ r4m2
χ

r2½hðmχ ; sÞ þ r2m2
χs�

−
2ðr2m2

χ þ sÞ
hðmχ ; sÞ

log

�
1þ hðmχ ; sÞ

r2m2
χs

��
; ðE8Þ

where hðmχ ;sÞ¼ ½s− ðmχ þmeÞ2�½s− ðmχ −meÞ2�.
The thermal average is then given by

hσvi ¼
Z

∞

M2

dsffiffiffi
s

p ·
hðmχ ; sÞK1ð

ffiffiffi
s

p
=TÞσ

8Tm2
χm2

eK2ðmχ=TÞK2ðme=TÞ
;

ðE9Þ

where M ¼ me þmχ .
(ii) χχ → χχ: the self-interaction cross section, averaged

over particle-particle and particle-antiparticle scat-
tering, is [9]

σSI
mχ

¼ 3g04

16πm3
χ

16 − 16r2 þ 5r4

r4ðr2 − 4Þ2 : ðE10Þ
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