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We present a consistent embedding of the matter and gauge content of the Standard Model into an
underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large
color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters with
the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the
theory apart from gauge couplings.
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I. INTRODUCTION

Recent work has demonstrated that a general class of
asymptotically safe gauge-Yukawa theories [1–6] supports
a form of radiative symmetry breaking reminiscent of that
in the minimal supersymmetric Standard Model (MSSM)
[7]. That is, even if Higgs mass-squareds are positive in the
ultraviolet (UV), they are driven negative radiatively in
the infrared (IR) by their Yukawa coupling to quarks. The
presence of “Higgs” scalars, in perturbation theory, that
couple to quarks is a necessity for the theory to have a UV
fixed point [1], so this form of radiative symmetry breaking
is intimately connected with the asymptotic safety of the
theory. In the framework of asymptotic safety, such theories
are technically natural in the sense that they are determined
simply by the choice of renormalization group (RG)
trajectory in the space of all relevant operators (including
mass-squareds).
An interesting outstanding question is then whether the

StandardModel (SM) can be embedded in a natural way into
such theories. This follow-up paper answers the question
in the affirmative; it is demonstrated that, while not exactly
trivial, a suitable embedding can be constructed in an
extremely straightforward fashion. The resulting UV com-
plete incarnation of the SM has no Landau poles for any
couplings—even hypercharge—and is genuinely asymptoti-
cally safe.1

The construction consists of an embedding of the SM
into an extended Pati-Salam–like theory, whose gauge
symmetry is spontaneously broken to the SM gauge group,

SUðNÞ×SUð2ÞL ×SUð2ÞR → SUð3Þc×SUð2ÞL ×Uð1ÞY .
The flow in such a theory takes a very generic form, as
displayed in Fig. 1, from UV fixed point A toward a
Gaussian fixed point B. The left panel shows the running in
the strong/electroweak coupling space, where the “strong”
couplings comprise the SUðNÞ gauge coupling g, the
Yukawa coupling y, plus the quartic scalar couplings,
and where the “weak” gauge couplings are referred to
generically as g0. Calculable asymptotic safety can be
achieved in the large color and large flavor limit.
The true UV fixed point A is related to the fixed point A0

when one turns off the weak gauge couplings. The latter
corresponds precisely to the behavior of the pure SUðNÞ
gauge-Yukawa theories of [1], which have large numbers of
colors N and flavors NF of fermionic “quarks” coupling to
an NF × NF scalar. By making a judicious “Veneziano
limit” choice of N and NF, fixed point A0 can be made
arbitrarily weakly coupled even though it is still interacting.
However, the SUðNÞ gauging also implies that the electro-
weak gauge couplings see many fundamental “flavors,”
so fixed point A is also related in an orthogonal direction to
the “many flavor” UV fixed point A00 of the SUð2ÞR ×
SUð2ÞR gauge group, corresponding to the behavior when
one turns off the strong SUðNÞ gauge coupling.
Naturally, there are two components to the spontaneous

symmetry breaking in such a scenario, one for the
Pati-Salam breaking and one for the electroweak breaking.
The former requires the addition of N − 3 colored scalars
to break SUðNÞ to the SUð3Þc of the SM via a “rank
condition.” It is highly nontrivial that there still exists a UV
fixed point when one adds order N colored scalars to the
theory of [1] so that, regardless of the size of the SUðNÞ
gauge group, such a breaking is always possible with only a
quantitative change in the UV fixed point. The spontaneous
breaking is driven by the addition of a relevant and negative
mass-squared operator for the scalars (which being a
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relevant operator is of course unable to disturb the
asymptotically safe fixed point).
The second part of the breaking relies on the observation

of [7] that if a positive mass-squared operator for the scalars
is added to the theory, it is driven negative in the IR,
resulting in radiative symmetry breaking, with the running
terminating at some point on its way toward fixed point B.
As mentioned, this mechanism is analogous to the radiative
symmetry breaking in the MSSM [8].
The flow is also shown in the right panel of the figure as

a function of RG scale. The “strong” couplings are actually
overtaken in the UV by the “weak” couplings, due to the
fact that their fixed point relies on the resummation
technique of [9,10]. Thus, although the coupling itself is
still weakly coupled in the UV, because of the proliferation
of electroweak fundamentals the ’t Hooft coupling of the
electroweak factor in the theory is order unity. Therefore a
crucial part of the discussion will be to show that the overall
picture is indeed as shown in Fig. 1, with the two kinds of
asymptotic behavior governing the overall flow, but not
interfering.

We should stress that there is very little freedom in the
framework: the above description is simply what happens
when colored scalars are added to the theory in [7], and
an SUð2ÞL × SUð2ÞR subgroup of the global symmetry
gauged. In particular there are very few arbitrary param-
eters. In fact there are only two free parameters besides the
gauge couplings in the theory, which as usual correspond to
the relevant operators, namely the mass-squareds. In accord
with the most predictive asymptotic safety picture, the
asymptotically safe couplings are all fixed in terms of the
gauge coupling along the flow, because the theory has a
single trajectory between the two fixed points A and B.
Meanwhile every relevant operator represents a new degree
of freedom or, equivalently, a loss of predictivity. In the
present case there is a free parameter for each scale of
symmetry breaking. Because the other couplings are all
constrained, it is then nontrivial that the theory turns out to
be stable (that is there are no negative quartic couplings
along the flow). In addition portal couplings between the
colored scalars and the Higgses turn out to be IR-free.
Hence they cannot disrupt the flow but (like other irrelevant
operators) are precisely zero at the UV fixed point, in
accord with the standard asymptotic safety prescription.
The layout of the discussion is as follows: the next

section recaps the structure of the UV complete theories of
[1–6] which form the core of the UV fixed point theory,
and then indicates how the SM can be embedded into it, and
the additional states that must be added. Here the focus is
on the general structure which is as we have said broadly
speaking a many color/flavor extension of the Pati-Salam
model. We discuss the symmetry breaking pattern, where
the gauge groups and matter fields of the SM fit, and which
are the crucial operators. Section III then goes on to discuss
the RG flow and establishes that the symmetry breaking
does in fact occur in the desired way. In particular it
demonstrates that the additional colored scalars in the
theory do not destroy the UV fixed point, and that at least
one UV fixed point gives rise to a stable flow.
Finally we discuss the running of the electroweak

SUð2ÞL × SUð2ÞR groups of the SM. One has to establish
that this gauging also does not disrupt the original fixed
point, and that the electroweak gauge couplings run
independently to their own fixed points in the UV. This
part of the discussion utilizes a straightforward adapta-
tion of the “large number of flavors” limit of [9,10] (where
“flavors” in this case means fundamentals of the electro-
weak gauge group); but the important point is that this
ingredient can be added in an independent modular fashion
because, as we demonstrate, the electroweak running and
the running in the core SUðNÞ theory decouple in the
Veneziano limit.
We should stress that there are most likely many other

configurations within the general framework, and this paper
presents the most minimal realization of asymptotic safety
in the SM via radiative breaking. Moreover we view this

FIG. 1. The renormalization group flow of the couplings from
the UV fixed point and around the critical curve, toward the
Gaussian IR fixed point. The black line is fixed by matching the
desired electroweak couplings at the low scale.
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framework as just a first step toward an asymptotically safe
SM of this kind. A more complete treatment must address
for example flavor structure and fermion mass hierarchies,
which we do not treat in detail here.

II. EMBEDDING THE SM

We first focus on the structure of the SM embedding,
building up from the theories discussed in [1–7]. These are
SUðNÞ gauge theories withNF flavors of fermion pairsQi

L,
Qi

R ði ¼ 1;…; NFÞ in the fundamental representation, and
an NF × NF complex matrix scalar field H uncharged
under the SUðNÞ gauge group. The particle content is
shown in Table I.
We will throughout closely follow the original notation

in [1], using i; j; k;…, to label flavor, and a; b; c;…, to
label color. The Lagrangian is given by the sum of the
Yang-Mills term, the fermion and scalar kinetic terms, the
Yukawa interaction, and scalar self-interaction terms,

LUVFP ¼ LYM þ LKE þ
yffiffiffi
2

p Tr½ðQ†
LH ·QRÞ�

− u1Tr½H†H�2 − u2Tr½H†HH†H�; ð1Þ

where the decomposition Q ¼ QL þQR with QL=R ¼
1
2
ð1� γ5ÞQ is understood. The trace Tr indicates the trace

over flavor indices while the dot product refers to SUðNÞ
color. The authors of Ref. [1] discovered a number of UV
fixed points for this model in the Veneziano limit where
N ≫ 1 with

ϵ ¼ NF

N
−
11

2
≪ 1: ð2Þ

As we will later see, in this limit the ’t Hooft couplings are
all proportional to the parameter ϵ, which is therefore an
indicator of the perturbative reliability of the fixed point.
For the moment let us focus on the embedding of the

SM, which is shown in Table II. Our approach will be to
embed SUð3Þc of the SM into the SUðNÞ of this theory.
Therefore the first extra ingredient in the table is N − 3

scalar fundamentals of SUðNÞ, which we refer to as ~Q.
Note that this is just one possibility for a breaking pattern
which happens to be the simplest. We will somewhat
reluctantly refer to these objects as squarks. One can
indeed take some lessons from supersymmetry regarding
their possible properties, for example the fact that one can

add into the theory a positive mass-squared for them which
(since they do not have Yukawa couplings to fermions) will
remain positive throughout the flow. In order to arrive at the
SM, the squarks will acquire vacuum expectation values
(VEV)s in the IR, breaking SUðNÞ → SUð3Þc, and there-
fore one of the two necessary relevant operators that we add
into the theory is a negative mass-squared for them.
By making suitable color and flavor rotations they can be

written in the form

h ~Qi ¼

0
B@

0 0 0 1

..

. ..
. ..

. . .
.

0 0 0 1

1
CA

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N

:

The breaking induced on the color side is

½SUðNÞ� × SUðN − 3Þ → ½SUð3Þc� × SUðN − 3ÞDiag; ð3Þ

where the square brackets indicate that the symmetry is
gauged, while the SUðN − 3ÞDiag symmetry is the squark
flavor symmetry. Ultimately an SUð2ÞR subgroup of this
symmetry is identified with the electroweak factor, so that
the ~Q VEV results in the standard Pati-Salam breaking.
Counting degrees of freedom, all N2 − 9 Goldstone modes
of the symmetry breaking are eaten by gauge bosons. There
are then 2NðN − 3Þ − ðN2 − 9Þ ¼ ðN − 3Þ2 real degrees of
freedom remaining from the ~Q, which are all “Higgses”
with masses of order the breaking scale.
Second, in Table II, we indicate the assignment of the

states and the embedding of the global symmetries. The
assignment of SM matter fermions inside QL=R is as three
generations of SUð2ÞL=R doublets in the first six flavor

TABLE I. Fields in the basic model of [1].

SUðNÞ SUðNFÞL SUðNFÞR
Qi

L;a □ ~□ 1
Qa

R;i ~□ 1 □

Hj
i

1 □ ~□

TABLE II. Fields in the extended model, where ~Q are scalars
and in the simplest case NS ¼ N − 3. The SUð2ÞL × SUð2ÞR
global flavor subgroups are then gauged, but note that three
generations of fermions (i.e. the first six entries in NF) transform
under them. There are correspondingly nine Higgs pairs: for the
generations, one could identify an SUð3ÞL × SUð3ÞR SM flavor
subgroup of the SUðNFÞL × SUðNFÞR symmetry, but to avoid
complication we take this as implicit. The first two flavors of ~Q
form a fundamental of SUð2ÞR so that the SUð4Þ × SUð2ÞL ×
SUð2ÞR Pati-Salam subgroup is broken down to the SM in the
usual manner [namely with the ~Q ⊃ ð4̄; 1; 2Þ being the canonical
Pati-Salam Higgs].

SUðNÞ
SUðNFÞL
⊃ SUð2ÞL

SUðNFÞR
⊃ SUð2ÞR

SUðNSÞ
⊃ SUð2ÞR

Qi
L;a □ ~□ 1 1

Qa
R;i ~□ 1 □ 1

Hj
i

1 □ ~□ 1
~Qj¼1���NS

~□ 1 1 □
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entries, as shown explicitly in (4). The horizontal dots
indicate states that are necessarily also charged under the
SUð2ÞL × SUð2ÞR symmetry [as each row forms a single
SUðNÞ × SUð2ÞL=R bifundamental]. As these entries are all
charged under the broken part of the SUðNÞ symmetry,
they cannot be produced in colliders at energy scales below
the SUðNÞ breaking scale. The lower rows are singlets of
SUð2ÞL × SUð2ÞR but are of course still charged under
color. However, this part of the theory is nonchiral, so for
consistent phenomenology one is free to add mQQ̄LQR

mass terms for all of these flavors (which would obviously
change the flow at energy scales below mQ). Note that the
leptons appear as the fourth color, so the theory is indeed
effectively an SUðNÞ × SUð2ÞL × SUð2ÞR extension of the
Pati-Salam model.
Given this assignment of matter fields, and the Yukawa

coupling in (1), the first 6 × 6 block of H must fall into
nine bifundamentals of SUð2ÞL × SUð2ÞR as shown
explicitly in (5). [Note that SUð2Þ contraction in the
Lagrangian is with ε ¼ iσ2 tensors.] These 18 Higgs
doublets would be the only possible source for generating
the flavor structure in the effective quark Yukawas, so
clearly in a fully phenomenologically viable model one
would want the VEVofH to be dominated byH66. For the
discussion in this paper we shall for simplicity maintain
flavor symmetry, so the VEV for H will be degenerate in

the diagonal entries. Of course the entire first six columns
(respectively rows) of H fall into SUð2ÞL [respectively
SUð2ÞR] doublets.
The scalar field, ~Q has only two flavors charged under

SUð2ÞR. In order to achieve the correct breaking down to
the SM it is of course the uncharged field ~νeR that gets a
VEValong with the other N − 4 fields along the top row of
~Q that are uncharged under the SM gauge group,

QL ¼

0
BBBBB@

q1 l1 � � �
q2 l2 � � �
q3 l3 � � �
..
. ..

. . .
.

1
CCCCCA;

QR ¼

0
BBBBBBBBBBBBB@

�
uR
dR

� �
νeR
eR

�
� � �

�
cR
sR

� �
νμR
μR

�
� � �

�
tR
bR

� �
ντR
τR

�
� � �

..

. ..
. . .

.

1
CCCCCCCCCCCCCA
; ð4Þ

H ¼

0
BBBBBBBBBBBBB@

�
h0d h−d
hþu h0u

�
11

�
h0d h−d
hþu h0u

�
12

�
h0d h−d
hþu h0u

�
13

� � �
�
h0d h−d
hþu h0u

�
21

�
h0d h−d
hþu h0u

�
22

�
h0d h−d
hþu h0u

�
23

� � �
�
h0d h−d
hþu h0u

�
31

�
h0d h−d
hþu h0u

�
32

�
h0d h−d
hþu h0u

�
33

� � �

..

. ..
. ..

. . .
.

1
CCCCCCCCCCCCCA
; ~Q ¼

0
BB@

�
~uR
~dR

� �
~νeR
~eR

�
� � �

..

. ..
. . .

.

1
CCA: ð5Þ

Finally we must extend the couplings in the theory to
incorporate the new scalars,

LUVFP ¼ LYM þ LKE þ yffiffiffi
2

p Tr½ðQ†
LH ·QRÞ�

− u1Tr½H†H�2 − u2Tr½H†HH†H�
− w1Tr½ ~Q† · ~Q�2 − w2Tr½ ~Q† · ~Q ~Q† · ~Q�; ð6Þ

where the dots indicate color contraction, and we reiterate
that SUð2Þ contractions are with SUð2Þ tensors. The u1, u2,
w1, w2 couplings provide stability. These should render an
overall positive quartic coupling, but as they are asymp-
totically safe (i.e. take a nonzero value at the fixed point)

this is out of our control: it will turn out to be a successful
prediction of the fixed point that this is the case.
Note that we do not consider the couplings

L ⊃ −v1Tr½H†H�Tr½ ~Q† · ~Q� − v2Tr½H†H ~Q† ~Q�: ð7Þ

Such “portal” couplings are in principle rather interesting as
they would generate a mass-squared term for the electroweak
Higgs from the Pati-Salam breaking. However, in the context
of asymptotic safety this is only a possibility if the couplings
turn out to be (marginally) relevant. If this were the case,
then one could set them to be on an RG trajectory where they
grow from zero in the UV to be significant in the IR. It turns
out that for the theory at hand this does not happen;
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whenever the overall quartic couplings are positive at the UV
fixed point, so that the theory is stable, these couplings turn
out to be marginally irrelevant. This means they grow in the
UV, and thus, as all other irrelevant couplings, must be set to
be precisely to zero at the fixed point, where they will remain
all along the flow. Again the signs of the beta functions of
v1;2 are beyond our control, which is another indication of
the predictivity of the framework. (There could of course
exist some other theory with nonzero portal couplings that
flows close to the UV fixed point of this one, but such a
theory would not be UV complete, so could not be
considered asymptotically safe.)
For this discussion we are maintaining the remaining

flavor symmetry for simplicity. Therefore we do not for
example add any flavor dependent couplings for the
squarks, but it would be straightforward to extend the
discussion to incorporate them. Note that the above set of
couplings is closed under renormalization.
The desired pattern of breaking will be driven by the

relevant mass-squared operators

L ¼ LUVFP −m2
~Q
Tr½ ~Q† · ~Q� −m2

0TrðHH†Þ

þ Δ2
XN2
F−1

a¼1

TrðHTaÞTrðH†TaÞ: ð8Þ

The mass-squared operators for H are the same as those
considered in [7], and as established in [7] such operators
can be driven negative radiatively, even if they are positive
in the UV. In particular the diagonal component of H,
i.e. TrH, gets a negative mass-squared dominated by the
nondegeneracy parameter, Δ2. The advantage of radiative
breaking for the electroweak sector is that it allows a
hierarchy between the Pati-Salam and weak scales, even if
the mass-squared operators are all similar in size.
By contrast m2

~Q
cannot get a large negative contribution

radiatively because it does not give mass to any fermions
through Yukawa couplings. Therefore it is chosen to be
negative all along the flow.
As per the rest of the theory we are maintaining an

½SUðNFÞL × SUðNFÞR�diag flavor symmetry in the mass-
squared operators that in a more comprehensive treatment
could easily be broken. We should add that of course the
gauging of SUð2ÞL × SUð2ÞR itself breaks the flavor
symmetry. For simplicity we will neglect this in the running
of the mass-squareds. One can confirm that it is a somewhat
smaller effect. The relevant criterion is the relative sizes of
the contributions to the Higgs anomalous dimensions from
the Yukawas and the SUð2ÞL × SUð2ÞR gauge couplings.
These are comparable to those in the SM itself so it is
equivalent to neglecting electroweak gauge couplings in
the SM and maintaining only the top Yukawa in the
running. A better quantitative treatment would include

them, but adding flavor dependence makes the discussion
very intricate.

III. THE PERTURBATIVE UV FIXED
POINT, A0, WITH ZERO ELECTROWEAK

GAUGE COUPLING

We shall in the next section establish the decoupling
of the strong and the electroweak fixed points in the large
color/flavor limit. Therefore it is useful to, in this section,
first establish the existence of a fixed point in the absence of
electroweak gauging, namely UV fixed point A0.
The UV fixed point may be made perturbative in a

particular (Banks-Zaks [11]) limit and can be determined in
much the same way as in the original model of [1–6]. The
theory without ~Q scalars had a UV fixed point in the limit
of large NF and N, with NF=N ¼ 22=4þ ϵ, where ϵ ≪ 1.
In this limit, the one-loop contribution to the beta function
is order ϵ, which allows it to be balanced against the two-
loop contribution while remaining arbitrarily perturbative.
(Indeed all the couplings are proportional to ϵ at the fixed
point, and as shown in [1] the radius of convergence
is ϵ ¼ 0.117.)
The fact that this leads to a UV rather than an IR fixed

point (which would correspond to the conventional Banks-
Zaks fixed point [11]) has to do with the sign of the two-
loop contribution to the gauge beta function, which receives
a negative contribution from the Yukawa coupling y. Thus
the scalar H plays a crucial role.
In the present context we can employ the same procedure

except now, of course, the NS scalars ~Q also contribute to
the gauge beta function. Let us describe the determination
of the fixed point in detail. We define

xF ¼ NF

N
; xS ¼

NS

N
¼ 22 − 4xF þ 4ϵ; ð9Þ

where again the one-loop gauge beta function is propor-
tional to ϵ. We will consider various possible values of NS.
It is also convenient to define the following rescaled
couplings:

αg ¼
Ng2

ð4πÞ2 ; αy ¼
Ng2

ð4πÞ2 ;

αu1 ¼
N2

Fu1
ð4πÞ2 ; αu2 ¼

NFu2
ð4πÞ2 ; ð10Þ

αv1 ¼
NFNv1
ð4πÞ2 ; αw1

¼ N2w1

ð4πÞ2 ; αw2
¼ Nw2

ð4πÞ2 ; ð11Þ

with the numerical scaling counting the multiplicity that the
traces provide to the coupling.
In the Veneziano limit, the running of the gauge coupling

is slower by a factor of ϵ than that of the other couplings.
Therefore the general picture is, as depicted in Fig. 1, one in
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which the theory if started at an arbitrary point in coupling
space (but with zero electroweak coupling) runs rapidly to
the red critical line, and then crawls toward the Gaussian
fixed point in the IR. In the context of asymptotic safety of
course the flow is always along the critical line, emanating
precisely from the UV fixed point. Therefore one can
determine the value of all the couplings in terms of αg not
just at the fixed point itself but along the critical line, with
the value of αg substituting for the RG scale.
Therefore to determine the fixed points, the RG equa-

tions are required to order α3 ≡ ϵα2 in βg and to order
α2 ≡ ϵα in the other couplings. (Note that to reduce clutter
we will throughout use the subscripts on the beta function
to refer to the rescaled coupling, i.e. βg ≡ dαg=dt.) Let us
begin with αg and αy. Their beta functions are

βg ¼ α2g

�
4

3
ϵþ ð36 − 2xFÞαg − x2Fαy

�
;

βy ¼ αyð−6αg þ ð1þ xFÞαyÞ: ð12Þ

It is useful to focus on two special limits of NS and NF,
namely xS → 0 and xF → 22=4, and alternatively xS → 1
and xF → 21=4. The former case is when there is a finite
constant number of scalars, where in the Veneziano limit
they will have negligible impact on the fixed point
behavior: it will provide a useful check against the previous
results in the model without scalars. The latter case is
when there are order N scalars in the Veneziano limit:
this is the case of interest in the present context given the
SM embedding of the previous section which requires
NS ¼ N − 3.
The exact trajectory in these two limits is along

αy ¼
6

1þ xF
αg →

(
12
13
αg ∶ xF → 22=4

24
25
αg ∶ xF → 21=4

: ð13Þ

The arrows indicate taking the Veneziano limit, so that
corrections of order ϵ should be understood. It is convenient
to define a parameter σ,

0 < σ ¼ 4x2F − 17xF − 18 →

� 19
2

∶xF → 22=4

3 ∶xF → 21=4
: ð14Þ

The fixed point in the gauge coupling is then found to be at

α�g ¼
2

3

ð1þ xFÞ
σ

ϵ →

(
26
57
ϵ ∶ xF → 22=4

25
18
ϵ ∶ xF → 21=4

: ð15Þ

The constraint σ > 0 comes from the requirement of

positive α�g, and it translates into xF > 17þ ffiffiffiffiffiffi
577

p
8

¼ 5.13
and hence xS < 1.49, which is of course compatible
with both xF→22=4þϵ with xS→0 and xF → 21=4þ ϵ
with xS → 1. (Note that a similar calculation in a

supersymmetric theory finds too many scalars in accord
with [4], so it is nontrivial that there are apparently order N
theories with fewer scalars that do have a solution.) We will
solve for αgðtÞ where t ¼ logðμ=μ0Þ at the end.
Next we turn to βu2 , βw2

as these RG equations involve
only the couplings themselves and αy and αg, respectively.
As for the y coupling, we need only keep terms up to α2,
and there is no suppression in the beta function, so the flow
is fast,

βu2 ¼ 8α2u2 þ 2αu2αy −
xF
2
α2y;

βw2
¼ 32ð6 − xFÞα2w2

− 6αw2
αg þ

3

16
α2g: ð16Þ

One can see that the critical line is attractive to these
couplings because both αg and αy flow to zero in the IR, and
in this limit the above beta functions are both positive
(provided xF < 6) regardless of the sign of αu2 , αw2

.
Solving for the beta functions being zero, the critical line
has

αu2 ¼
3

4ð1þ xFÞ
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4xF

p
− 1

�
αg

→

8<
:

3ð−1� ffiffiffiffi
23

p Þ
26

αg ∶xF → 22=4

3ð−1� ffiffiffiffi
22

p Þ
25

αg ∶xF → 21=4
;

αw2
¼ 1

32ð6 − xFÞ
�
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6xF − 27

p �
αg

→

(
3� ffiffi

6
p
16

αg ∶xF → 22=4

2� ffiffi
2

p
16

αg ∶xF → 21=4
: ð17Þ

The results of [7] are recovered when x ¼ 22=4 as
expected, and evidently the behavior is not qualitatively
altered by the presence of order N scalars. There are two
beta functions remaining,

βu1 ¼ 16α2u1 þ 16αu2αu1 þ 3α2u2 þ 2αu1αy;

βw1
¼ 16xSα2w1

þ 16ð2þ xSÞαw1
αw2

þ 24α2w2
− 6αgαw1

þ 3

16
α2g: ð18Þ

Solving for these beta functions being zero, we find that
there are only real solutions for αw1

and αu1 for the
branches,

αw2
¼ 2 −

ffiffiffi
2

p

16
αg; αu2 ¼

3ð ffiffiffiffiffi
22

p
− 1Þ

25
αg ð19Þ

(or the equivalent for xF ¼ 22=4). Inserting the appropriate
αw2

solution we find a fixed point at
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αu1 ¼
8<
:

−6
ffiffiffiffi
23

p �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ6

ffiffiffiffi
23

pp
104

αg ∶xF → 22=4

−6
ffiffiffiffi
22

p �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19þ6

ffiffiffiffi
22

pp
100

αg ∶xF → 21=4
;

αw1
¼

8<
:

17
ffiffi
6

p
−36

128
αg ∶xF → 22=4

3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4 ffiffi

2
p

−5ÞÞ
p

16
ffiffi
2

p αg ∶xF → 21=4
: ð20Þ

Note that for xF ¼ 22=4 there is only one solution for αw1

because the quadratic term in βw1
is proportional to xS.

The appropriate fixed point is then determined by
stability. The effective quadratic couplings are

λh0 ¼
96π2

N2
F
ðαu1 þ αu2Þ; λ ~Q ¼ 96π2

N2

�
αw1

þ N
NS

αw2

�
;

ð21Þ

where the corresponding quartic term in the potential of the
canonically normalized diagonal component of the field, ϕ,
is ∼λϕ2=4!. The quadratic term for ~Q is positive regardless
of which w1 branch is chosen, but imposing λh0 > 0 selects

the −6
ffiffiffiffiffi
22

p þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19 − 6

ffiffiffiffiffi
22

pp
branch for αu1 : it has negative

αu1 ¼ −0.08αg, but the overall quadratic term is still
positive. There are then two possible fixed points, one
for each branch of w1. Let us summarize by collecting the
values for the pair of consistent stable fixed points:
NS ¼ N − 3 implies NS=N → 1 in the Veneziano limit

(xF → 21=4):

αu2 ¼
3ð ffiffiffiffiffi

22
p

− 1Þ
25

αg; αw2
¼ 2 −

ffiffiffi
2

p

16
αg;

αu1 ¼
−6

ffiffiffiffiffi
22

p þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19þ 6

ffiffiffiffiffi
22

pp
100

αg;

αw1
¼

3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4 ffiffiffi

2
p

− 5Þ
q

Þ
16

ffiffiffi
2

p αg: ð22Þ

NS ¼ const implies NS=N → 1 in the Veneziano limit
(xF → 22=4):

αu2 ¼
3ð ffiffiffiffiffi

23
p

− 1Þ
26

αg: αw2
¼ 3 −

ffiffiffi
6

p

16
αg:

αu1 ¼
−6

ffiffiffiffiffi
23

p þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 6

ffiffiffiffiffi
23

pp
104

αg:

αw1
¼ 17

ffiffiffi
6

p
− 36

128
αg: ð23Þ

Finally one can solve for the coupling αgðtÞ itself. The
solution is most easily defined in terms of

ωðtÞ ¼ α�g
αgðtÞ

− 1: ð24Þ

One finds

ωðtÞ ¼ W½ωð0Þeωð0Þe−4
3
α�gϵt�; ð25Þ

where the LambertW function is given by z ¼ W½zez� (as is
evident from setting t ¼ 0).

IV. THE ELECTROWEAK SUð2ÞL × SUð2ÞR UV
FIXED POINT, A00, AND ITS DECOUPLING

IN THE BANKS-ZAKS LIMIT

We now turn to the gauging of the electroweak couplings
SUð2ÞL × SUð2ÞR. Consistency of the picture, namely that
there is an overall UV fixed point, requires that these
couplings join in with the fixed point behavior in the UV.
In this section we discuss the existence of fixed points for
these factors which are effectively SUð2Þ gauge theories
in a large “flavor” expansion (with order N flavors of
electroweak fundamental). We then establish that, crucially
in the Banks-Zaks limit we are considering, the flow to the
SUðNÞ fixed point, A0, and to the SUð2ÞL × SUð2ÞR fixed
point, A00, can be established independently of one another.
In other words, a large color and large flavor Banks-Zaks
UV fixed point can coexist and not interfere with a large
flavor fixed point of the kind established in [1,9,10]. In
terms of Fig. 1, this means that the profile of the trajectory
in the g, y plane is independent of g0, while the flow in the g0
direction as a function of t is independent of g, y. (Note that
a complementary approach would be to add additional
colored multiplets to achieve “large flavor” fixed points for
all the gauge groups [12].)
First let us address the existence of UV fixed points for

the SUð2Þ gauge couplings in the presence of a large
effective number of SUð2Þ flavors, Nf. By “effective” we
mean that, as we shall see, in the leading diagrams, scalar
and fermion bubbles contribute equivalently up to a factor,
so their contributions always appear in the same linear
combination. (Note that Nf for these fixed points is not to
be confused with the previous NF.) A 1=Nf expansion can
be organized in terms of

~α ¼ Nfg02

ð4πÞ2 ; ð26Þ

with g0 standing for gSUð2ÞL or gSUð2ÞR. Typical terms
contributing to the beta function are shown in Fig. 2.
They can be resummed (see for example the review in
[10]), and one finds [9]

3

4

β ~α

~α2
¼ 1þHð ~αÞ

Nf
þOðN−2

f Þ; ð27Þ

where the additional terms, suppressed by at least a factor
of 1=N2

f, arise from diagrams such as the class shown on
the first line of Fig. 3. From Fig. 2 it is clear that
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contributions from scalar and quark loops are simply
additive in the resummation, with the number of
SUð2ÞL=R quark doublets being 3N=2, and scalar doublets
being 3NF=4 for SUð2ÞL and 3NF=4þ N=4 for SUð2ÞR, in
the SM embedding we are considering. Therefore setting
NF ≈ 21=4, SUð2ÞL has Nf ≈ 87N=16 while SUð2ÞR
has Nf ≈ 91N=16.
The important point about the function Hð ~αÞ is that it

has a negative logarithmic singularity at

~α0 ¼
3

2
: ð28Þ

Thus one can always find a solution to β ~αð ~αÞ ¼ 0 at ~α�
somewhat below this value. For values of Nf ≳ 5, ~α runs in
the UV rapidly to a value ~α� that is in fact exponentially
close to 3=2 [1,9]. Indeed the form of the singularity is

Hð ~αÞ ¼ 1

4
log j3 − 2~αj þ const; ð29Þ

so one has ~α� ¼ 3
2
− Ce−4Nf , for some constant C. For even

modest Nf (note that for N ¼ 10 one has Nf ∼ 50) the
exponential term is completely negligible.
The existence of such large Nf fixed points is well

established, modulo the somewhat trivial additional con-
tribution of scalars in the loops. However, let us now
consider the effect of the couplings that are being turned on
in the rest of the theory. In the presence of the SUðNÞ
gauging, the Yukawa couplings, and the scalar quartic
terms, there is the possibility of disturbing the electroweak
fixed point. However, by following the power counting
outlined in Figs. 2 and 3, one finds that such contributions
are suppressed by order ϵ with respect to the terms in the
resummation with the same powers of ~α. Thus as long as
the terms proportional to ϵ do not themselves have a pole at
smaller values of ~α, this induces a completely negligible
shift (in the exponential term) in the value of ~α�. That is,
near the pole the beta function is shifted as

3

4

β ~α

~α2
¼ 1þ cð ~αÞϵþHð ~αÞ

Nf
þ � � � ; ð30Þ

for some cð ~α0Þ of order unity. Solving for βð ~αÞ ¼ 0 one
finds that ~α� ¼ 3

2
− Ce−4Nfð1þcϵÞ; in other words the fixed

point is barely shifted, because the gauged color coupling
adds a subleading contribution to the beta function in the
Veneziano limit.
In this limit therefore the αSUð2ÞL=R couplings have the

same UV fixed points as the theory with an effective flavor
number Nf, without the SUðNÞ gauging, Yukawas, and
scalar quartics. Of course the running away from the fixed
point will be altered by the presence of the ϵ term, but here
the running is dominated by the leading one-loop term of
(30), and thus one expects the SUðNÞ gauging to cause a
(two-loop) shift in the RG trajectory of ~α that is suppressed
by a factor ~αϵ.
Remarkably the electroweak αSUð2ÞL=R gauging also

decouples from the UV fixed points of the gauge
Yukawa sector except leaving a residual possible shift in
the value of the fixed point. This is easier to treat because
first the fixed point can be determined by the leading
diagrams, and second only a finite number (i.e. six) of
flavors are gauged under the electroweak symmetry. As an
example we display the leading contributions to the beta

FIG. 3. Subleading bubbles in the renormalization of the
SUð2ÞL=R gauge couplings (where plain lines represent quarks
and/or scalars) are suppressed with respect to the terms in the
resummation in Fig. 2. The first diagrams exist also in the pure
SUð2ÞL=R theory and are suppressed by a factor of 1=Nf: this
admits the procedure of [10] that establishes a fixed point by
balancing the resummed pole of Fig. 2 against the one-loop
diagram. On the second row, the insertion of an SUðNÞ “gluon”
line on the quark loops, or a Higgs scalar via Yukawa

couplings, gives a factor g2

ð4πÞ2
P

AðTATAÞ ∼ g2N
ð4πÞ2 ∼ ϵ or a factor

y2NF
ð4πÞ2 ∼ ϵ, respectively, compared to diagrams with the same

power of ~α in Fig. 2, where the ϵ scalings apply when one is
near the fixed points of αg, αy, αu1 , αu2 couplings. Note that due
to the large number of SUð2Þ doublets, ϵ is of order 5=Nf. On
the third row, the introduction of a pair of scalars with quartic
interactions introduced terms suppressed even more, by factors
of order α2u2 ∼ ϵ2.

FIG. 2. One-loop diagram and the leading resummed pole
contributions for the SUð2ÞL × SUð2ÞR fixed points, where
~α ¼ Nfg2SUð2Þ=16π

2. The plain lines represent both quarks and

scalars.
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function of αg in Fig. 4. The last diagram of this figure
shows a new contribution from the internal insertion of a
flavor gauge boson. Inserting parameters and noting that
ϵ≳ 1=N (with from our earlier discussion Nf ∼ 5N), with
~α ≈ 3=2, these new diagrams are suppressed by a factor of
order ϵ=25 with respect to the other two-loop contribution
in the beta function of αg. They result in a small shift in the
fixed point value that is comparable to that coming from the
three-loop diagrams that are already being neglected.

V. DISCUSSION: TOWARD REALISTIC
PHENOMENOLOGY

The dislocation of the electroweak and strong fixed points
in the Veneziano limit is an attractive feature of the present
setup. It implies that there is always a large enough number
of colors and flavor for which the fixed point is guaranteed to
exist. It is interesting nevertheless to insert finite values to
ascertain the phenomenological viability of the setup, in
particular, whether it allows a consistent set of coupling
values for reasonable values of colors and flavors. We shall
take N ¼ 10 as our representative example. Before contin-
uing we should warn the reader that we are not looking for an
exact reproduction of the SM values, because we have not
yet broken flavor degeneracy. There are still three Higgs
pairs that will be driven to acquire a degenerate VEV by a
negative m2

0, and as there is still unbroken flavor symmetry
one expects to find Goldstone scalars in the spectrum as well.
Ultimately one would like to break the remaining flavor
symmetry to induce hierarchies in the fermionmasses, and to
leave a single Higgs dominant in the electroweak symmetry
breaking. The purpose of the present discussion is to
demonstrate that the prospects for a full SM phenomenology
are encouraging, with these more detailed aspects being left
to future work.
First we should note that in the Veneziano limit both the

electroweak and the SUðNÞ coupling are weakly coupled in
the UV. By (15) the fixed point value of the strong gauge
coupling is α�g ¼ 25=18ϵ. An ϵ of order 0.075 (well inside
the domain of attraction of the fixed point [1]) can be
achieved with N ¼ 10, by taking NS ¼ N − 3 ¼ 7 and
NF ¼ 54. For this example the actual SUðNÞ coupling at
the fixed point is then

α�s ¼ 4πα�g=N ¼ 4π
25ϵ

18N
¼ 0.13:

Note that the renormalization of this coupling is weak, so a
remarkably consistent value is achievable even with rather
large numbers of colors. For the quartic couplings, taking a
Higgs mass of 125 GeV and a VEV h0 ¼ 246 GeV one
finds λh0 ≈ 0.02, not outlandish but roughly an order of
magnitude too low. However, as stressed above, the break-
ing of flavor degeneracy in the Higgs VEVs and a full
treatment of runnings and thresholds will almost certainly
disrupt the quartic parameters in the potential. Indeed the
diagonal component h0 must ultimately be replaced by a
single dominant component.
Next let us consider the electroweak couplings. In the

present example, withNf ≈ 56, we find that at the UV fixed
point they have a value α�EW ¼ 4π ~α=Nf ≈ 0.33. They are
required to be of order 1=30 at the electroweak scale, and
matching to this value fixes the appropriate trajectory in
Fig. 1. Indeed despite the large value of the ’t Hooft-like
coupling ~α, the corresponding electroweak coupling will
run to be less in the IR than the SUðNÞ coupling αg,
because the latter is in a Banks-Zaks–like regime and runs
exceedingly slowly, whereas the electroweak coupling runs
rather rapidly. One may simply solve for its leading order
running up from the value 1=30 near the (extended) Pati-
Salam breaking scale MPS (neglecting the contribution
between MPS and the weak scale) to the energy scale μ�
where the SUð2ÞL=R couplings saturate their fixed point
value. That is,

~αðMPSÞ−1 − ~αðμ�Þ−1 ≈
3

4
ðtPS − t�Þ: ð31Þ

We may use this to estimate the energy at which the
electroweak couplings saturate the fixed point values,

μ� ≈ e90π=NfMPS

≈ 150MPS: ð32Þ

Note that this ratio of scales is determined entirely by the
number of SUð2Þ flavors Nf. The scale MPS is then
determined by the choice of m2

~Q
independently of the

electroweak Higgs mass-squared parameter m2
0. Below this

scale the running of the entire theory reverts to that of the
usual SM.
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FIG. 4. Factors contributing to the beta functions of the SUðNÞ
gauge coupling to two-loops (which get multiplied by an overall
αg factor in βg). The leading term is of course canceled to order ϵ2

against the gauge loops in the Banks-Zaks limit by the choice of
colors and flavors. Noting that ϵ ≳ 1=N ≳ 5=Nf, the SUð2ÞL=R
gauging can be neglected in the Nf → ∞ limit. The plain lines
represent both quarks and scalars.
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