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In the presence of massive bosonic degrees of freedom, rotational superradiance can trigger an instability
that spins down black holes. This leads to peculiar gravitational-wave signatures and distribution in the
spin-mass plane, which in turn can impose stringent constraints on ultralight fields. Here, we demonstrate
that there is an analogous spindown effect for conducting stars. We show that rotating stars amplify low-
frequency electromagnetic waves, and that this effect is largest when the time scale for conduction within
the star is of the order of a light crossing time. This has interesting consequences for dark photons, as
massive dark photons would cause stars to spin down due to superradiant instabilities. The time scale of the
spindown depends on the mass of the dark photon, and on the rotation rate, compactness, and conductivity
of the star. Existing measurements of the spindown rate of pulsars place direct constraints on models of
dark sectors. Our analysis suggests that dark photons of mass mV ∼ 10−12 eV are excluded by pulsar-
timing observations. These constraints also exclude superradiant instabilities triggered by dark photons as
an explanation for the spin limit of observed pulsars.
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I. INTRODUCTION

The nature of dark matter is one of the biggest open
questions in physics. Broadly speaking, there are two
approaches to explain the gravitational anomalies that
indicate the existence of dark matter. The first is to
change the way that gravity works on large scales while
preserving the short-distance behavior, e.g. modified
Newtonian dynamics [1]. However, theories of modified
gravity still require the addition of a dark matter particle
to explain large-scale structure [2,3]. The second
approach postulates that the gravitational anomalies
are due to dark matter. The most popular of these
explanations advocates the existence of new degrees of
freedom beyond the Standard Model (SM) that form a
dark sector.

A. Ultralight bosonic fields

Some popular candidates for dark sector matter are
ultralight bosonic fields. Indeed, bosonic fields are a
generic feature of many theories [4,5]. A well-motivated
scalar candidate is the QCD axion, a light bosonic degree of

freedom introduced in physics to explain the smallness of
the neutron electric dipole moment, years before the dark
matter problem was fully appreciated [6–8]. In addition, a
plethora of new light scalars was predicted to arise in the
string axiverse [4], making them important potential dark
matter candidates.
Vector candidates are equally well motivated.

Additional Uð1Þ gauge sectors arise in many string-
motivated extensions to the SM [5,9,10]. In these
scenarios, there can be extra degrees of freedom which
are charged under both the Uð1Þ hypercharge of the SM
and a “hidden” Uð1Þ0, known as dark photons. This has
motivated the study of kinetic mixing of the hidden
sector with the SM. Many of these searches have been
focused on eV–GeV scales using direct detection and
low-energy accelerator experiments (see e.g. Ref. [11] for
a summary of current efforts).

B. Superradiant instabilities and ultralight fields

However, ultralight (i.e., sub-eV) fields which are
weakly coupled to SM particles are difficult to probe
with traditional colliding beam, fixed-target, and direct
detection experiments. Instead, one can search for their
imprints through their gravitational effects. A promising
mechanism to probe bosonic fields is rotational super-
radiance [12–15]. Superradiance affects all known free,
bosonic fields and has been well studied for black holes.
In this context, low-frequency wave packets of bosonic

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW D 95, 124056 (2017)

2470-0010=2017=95(12)=124056(13) 124056-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevD.95.124056
https://doi.org/10.1103/PhysRevD.95.124056
https://doi.org/10.1103/PhysRevD.95.124056
https://doi.org/10.1103/PhysRevD.95.124056
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


fields are amplified upon scattering off rotating black
holes, when the frequency of the field wave satisfies
ω < mΩ, where m is the azimuthal number and Ω is the
angular velocity at the event horizon [15]. When the
bosonic field is massive, the effects of superradiance turn
the entire system unstable [16–23], and the instability
gives rise to a slowly spinning black hole surrounded by
a cloud of bosonic field (cf. Ref. [15] for an overview).
This cloud has a time-dependent quadrupole moment,
and slowly dissipates through gravitational waves pro-
ducing a monochromatic signal, which is a promising
channel and smoking gun for new physics [24–27].
Furthermore, because superradiance drives the spin down,
observations (either in the electromagnetic or gravita-
tional-wave spectrum) of the spin-mass diagram of black
holes may also bring convincing evidence for new
physics [28]. Finally, it is also possible that superradiant
effects are directly observable through enhanced scatter-
ing of electromagnetic or gravitational waves [29,30], or
even through instabilities triggered in interstellar plasma
environments surrounding black holes [31,32].

C. Superradiance in stars

However, superradiant effects are not limited to rotating
black holes and in fact can appear in any classical system
that is able to absorb radiation [12,14,15,22,33,34]. In this
work, we show that superradiance also occurs in the
presence of rotating and conducting spheres, and most
notably in (rotating) stars with nonzero conductivity.
This seemingly classical problem in electromagnetism
has never—to the best of our knowledge—been worked
out. We find that rotating stars amplify low-frequency
photons, whenever their frequency satisfies the usual
superradiant condition, ω < mΩ, where now Ω is the
rotational velocity of the fluid.
These superradiant effects may have interesting impli-

cations for theories of dark photons as well as more
complicated hidden sector theories. We find that massive
dark photons trigger an instability of rotating and
conducting stars, analogous to the black hole case.
Furthermore, the superradiant effects may be entirely
contained within the dark sector, but have observable
consequences that are worthy of further investigation.
The most direct signature of this scenario is the spin-
down of pulsars due to the superradiant instability. As
we discuss, existing pulsar-timing measurements of the
spindown rate of pulsars already constrain these models.
Because these pulsar-timing constraints are rather
stringent, they also exclude superradiant instabilities
triggered by dark photons as an alternative explanation
for the spin limit of observed pulsars (cf., e.g.,
Refs. [35–39] for a discussion on proposed limiting
mechanisms on the spin of pulsars). Throughout this
work, we use G ¼ c ¼ 1 units and unrationalized
Gaussian units for the charge.

II. SETUP

A. Maxwell and Proca theory in curved spacetime

To understand the effects of superradiance in stars, we
work with the theory involving one vector field Aμ with
mass mV ¼ μVℏ,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

4
FμνFμν −

μ2V
2
AνAν þ 4πjμAμ

�
þ Smatter; ð1Þ

where Fμν ≡∇μAν −∇νAμ is the field strength. The vector
Aμ can describe either Maxwell theory with the standard
massless photon, in which case μV ¼ 0, or a Proca theory in
which the vector field is massive. We will show below
that in both cases there are nontrivial superradiant effects
around rotating stars. The theory above is a toy model
designed to capture the main features of a general-
relativistic theory where a (possibly hidden) vector field
is minimally coupled to the geometry.
The resulting field equations are

∇νFμν þ μ2VA
μ ¼ 4πjμ; ð2Þ

Gμν ¼ 8πTμν
matter þ 16π

�
1

2
Fμ
αFνα −

1

8
FαβFαβgμν

−
1

4
μ2VAαAαgμν þ μ2V

2
AμAν − 4πjðμAνÞ

�
; ð3Þ

where Gμν is the Einstein tensor and Tμν
matter is the standard

stress-energy tensor of matter fields, the latter being
collectively described by Sm in the action (1).

B. Background: Slowly rotating, conducting star

Because the star is assumed to be uncharged, fluctuations
in the vector Aμ affect the geometry only at the quadratic
order. Thus, to linear order, we can consider a standard
general relativity background as a fixed geometry, around
which the vector field evolves. We will always neglect
backreaction of the vector field on the geometry. This is a
reasonable approximation for all known astrophysical
setups.
We consider a slowly spinning star and neglect quadratic-

or higher-order corrections in the spin. To linear order in the
spin, the background line element is described by

ds2 ¼ −FðrÞdt2 þ dr2

BðrÞ − 2r2ζðrÞsin2ϑdtdφþ r2dΩ2;

ð4Þ

and the star’s four-velocity reads

uμ ¼ F−1=2f1; 0; 0;Ωg; ð5Þ
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where Ω is the rotational velocity of the fluid. The slow-
rotation approximation requires Ω ≪ ΩK , with

ΩK ≔
ffiffiffiffiffiffi
M
R3

r
ð6Þ

being themass-shedding frequency,whereasM andR are the
star’s mass and radius, respectively.
In the exterior, F ¼ B ¼ 1�2M=r and ζ ¼ 2J=r3,

where J is the angular momentum of the star. The
interior depends on the type of matter and it is described
by the classical Tolman-Oppenheimer-Volkoff equations
for a perfect fluid with Tμν

matter ¼ ðPþ ρÞuμuν þ Pgμν,
namely

Φ0 ¼ 2ðMþ 4πr3PÞ
rðr − 2MÞ ; M0 ¼ 4πr2ρ; ð7Þ

P0 ¼ −
ðPþ ρÞðMþ 4πr3PÞ

rðr − 2MÞ ; ð8Þ

ϖ00 ¼ 4πrðPþ ρÞðrϖ0 þ 4ϖÞ
r − 2M

−
4

r
ϖ0; ð9Þ

where we defined F ¼ e2Φ, B ¼ 1�2MðrÞ=r and
ϖ ≔ Ω − ζðrÞ. Assuming a barotropic equation of state
in the form P ¼ PðρÞ, these equations can be integrated
numerically with standard methods. For simplicity, we
will focus on backgrounds describing a constant density,
perfect-fluid star. In this case, the static part of the metric
has an exact solution,

M ¼ 4π

3
ρr3; P ¼ ρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mr2=R3

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=R

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=R

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mr2=R3

p �
;

eΦ ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=R

p
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mr2=R3

q
; ð10Þ

where ρ ¼ 3M=ð4πR3Þ. The equation for ϖ (and there-
fore for ζ) cannot be solved analytically for generic
values of the compactness, whereas the Newtonian limit
yields ζðrÞ ¼ 2J=R3 ¼ const in the interior, which
smoothly connects to ζðrÞ ¼ 2J=r3 in the exterior.
Finally, the vector Aμ is evolving in the vicinity of an

uncharged, rotating star made of material with conductivity
σ and proper charge density ρEM. We assume that the
coupling between the vector and the material is given by the
constitutive Ohm’s law, which in covariant form reads [14],

jα ¼ σFαβuβ þ ρEMuα; ð11Þ
where all quantities are computed in the frame of the
material whose four-velocity is uα. This relation should be
accurate for weak fields and represents the lowest-order
term in the family of possible couplings between the
material and the vector field.

C. Perturbations of a spinning, conducting star in
Maxwell and Proca theory

An uncharged star in electrovacuum (Aμ ¼ 0) is a
trivial solution to the previous equations. We now wish
to understand linearized fluctuations around this back-
ground. We start by expanding the vector field Aμ in
four-dimensional vector spherical harmonics,

Aμðt; r;ϑ;ϕÞ ¼ e−iωt
X
l;m

0
BBB@

2
6664

0

0
almðrÞ
sinϑ ∂ϕYlm

−almðrÞ sin ϑ∂ϑYlm

3
7775þ

2
6664

flmðrÞYlm

hlmðrÞYlm

klmðrÞ∂ϑYlm

klmðrÞ∂ϕYlm

3
7775
1
CCCA: ð12Þ

The first term on the right-hand side has parity ð−1Þlþ1

and the second term has parity ð−1Þl, m is an azimuthal
number and l is the angular number. Likewise, we
expand the charge density in scalar spherical harmon-
ics, ρEMðt; r;ϑ;ϕÞ ¼ e−iωtρ̂EMðrÞYlm.
Because the background is not spherically symmetric, the

above decomposition introduces couplings between polar
and axial modes and between perturbations with different
harmonic indices [40]. To linear order in the spin, the
coupling between polar and axial modes can be consistently
neglected and one is left with an “axial-led” and a “polar-
led” system of ordinary differential equations [19,20,41].
The decoupling procedure is given in Appendix B. Here,
we report only the final result for the axial-led system to
linear order in the spin,

d2a
dr2�

þ ðω2 − 2mωζðrÞ − VÞa ¼ 0; ð13Þ

V ¼ F

�
lðlþ 1Þ

r2
þ μ2V −

4iπσðω −mΩÞffiffiffiffi
F

p
�

ð14Þ

where dr=dr� ¼
ffiffiffiffiffiffiffi
BF

p
. Note that, within our slow-rotation

approximation, σ can be a generic radial function. For
simplicity, we take σ ¼ const.
The polar sector is more involved and we leave it for

future work. Here, we briefly mention that in the massless
case (μV ¼ 0) the polar sector can be reduced to a single
second-order differential equation by using some gauge
freedom, whereas in the Proca case the polar sector
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describes the propagation of two physical degrees of
freedom, and one is left with a system of two, coupled,
second-order, differential equations. In both cases, the
charge density ρ̂EMðrÞ is fixed in terms of σ and of the
perturbations of the electromagnetic field by the field
equations, similarly to the fluid density ρ which is fixed
by the Tolman-Oppenheimer-Volkoff equations in terms of
the pressure once an equation of state is given. This can also
be understood by the fact that an applied electric field will
modify the charge distribution, even when the object is
globally neutral.

III. SUPERRADIANT SCATTERING FROM
SPINNING AND CONDUCTING STARS

We now consider a scattering experiment. We focus on
the axial sector, but the computation for the polar sector,
although more technically involved, follows similarly. In
the axial sector, the solutions to Eq. (13) behave asymp-
totically as

aðω; rÞ ∼ rlþ1; r → 0; ð15Þ

aðω; rÞ ∼ Aine−iωr þ Aouteþiωr; r → ∞: ð16Þ

We have selected the regular solution at the center of the
star. From our conventions for the time dependence of the
fields, it follows that this state is composed of a piece,
Aine−iωr, which is an ingoing wave and is scattered by the
star, giving rise to an outgoing component Aouteþiωr. It is
also easy to verify that the incoming and outgoing fluxes at
infinity are proportional to jAinj2 and jAoutj2, respectively
[13]. We thus define the superradiant factor

Z ≔
jAoutj2
jAinj2

− 1: ð17Þ

We have computed the superradiant factor Z numeri-
cally, by integrating Eq. (13) from the center of the star,
outwards to some finite but large value of the radial
coordinate r, where the numerical solution is matched
against a higher-order version of the expansion (16). The
numerical results are shown in Fig. 1. As expected, Z > 0
when the superradiant condition is satisfied, ω < mΩ. The
amplification factor grows with σ, until it saturates in the
large-σ limit, displaying a sharp maximum at ω≲mΩ.
Although not shown, the amplification grows with the
compactness and with the spin of the object.
We can also gain some analytical insight on the super-

radiant amplification. In the Newtonian limit, the external
solutions are linear combinations of Bessel functionsffiffiffi
r

p
Jlþ1=2ðωrÞ and

ffiffiffi
r

p
Ylþ1=2ðωrÞ. In the interior, and for

small conductivities, the only regular solution admissible
is

ffiffiffi
r

p
Jlþ1=2ð−ir

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4imπσΩ − 4iπσω − ω2

p
Þ. Matching the

functions and their derivatives at the surface of the star and
expanding for small frequencies, we find

Z ¼ −
21−2lπ2

Γ½lþ 3=2�Γ½lþ 5=2� σR
2ðω −mΩÞðωRÞ2lþ1: ð18Þ

The above expression agrees remarkably well with the
exact numerical result up to M=R ∼ 0.2 and for σM ≪ 1.
This relation is also interesting, as it extends an observation
made in Ref. [34]: one can try to naively compute the
superradiant amplification factors of Kerr black holes by
letting R ¼ 2M and 1=σ ¼ M, as this is now the only
possible time scale in the problem. With this substitution,
the above relation predicts that slowly rotating black
holes in general relativity amplify l ¼ 1 scalar fields with
Z ¼ 64π

45
MðΩ − ωÞð2MωÞ3. On the other hand, a matched-

asymptotic expansion calculation in full general relativity
yields the same result to within an order of magnitude
(the coefficient turns out to be 8=9 instead of 64π=45) [15].
As we show in Appendix A, one can improve on this
relation by using the membrane paradigm for describing
horizons [42]. In this framework, horizons are endowed
with a surface conductivity of 1=4π, and a simple
Newtonian analogue recovers exactly the general-relativistic
prediction.
For large conductivities, we have been unable to find

concise analytical expressions, but in the Newtonian limit
our results are well approximated by

Z ¼ kl
ðωRÞ2lþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σR2ðmΩ − ωÞ þ cl
p �

1þ 1

2σR2ðmΩ − ωÞ
�
−1
;

ð19Þ

in the superradiant regime, with k1 ∼ 0.78; k2 ∼ 0.09 and
c1 ∼ 2; c2 ∼ 25. The amplification factor is peaked at
ω −mΩ ∼ 1=ðσRÞ, and bounded. The analytical expression
above is not very accurate close to the peak of the
amplification factor, but we find numerically that, for
σM ≫ 1, the l ¼ m ¼ 1 peak is described by

FIG. 1. Amplification factor (17) for dipole modes l ¼ m ¼ 1
as a function of the frequency, for a moderately spinning star
(Ω ¼ 0.3ΩK) with compactness M=R ¼ 0.15 and for different
values of the conductivity.
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Zmax ∼ ð0.48 − 0.78M=RÞðΩRÞ3; ð20Þ

where, interestingly, the prefactor decreases at large
compactness.

IV. SUPERRADIANT INSTABILITIES OF
SPINNING AND CONDUCTING STARS

In analogy with the black hole case, we expect that the
mass term for the Proca field can lead to superradiant
instabilities in conducting stars. We show this explicitly by
solving the perturbation equations numerically as an
eigenvalue problem, and computing the quasinormal modes
of the system, ωlmn ¼ ωR þ iωI , where n is the overtone
number. In our notation, an instability corresponds to
ωI > 0, and τ≡ 1=ωI is the instability time scale. The
parameter space of the spectrum is large and complicated,
since—even for fixed “quantum” numbers ðl; m; nÞ—it still
depends on four dimensionless parameters, namely
(μVM;M=R;Ω=ΩK , σM).
In the axial case, our results for the l ¼ m ¼ 1 funda-

mental unstable mode are well approximated in the small
μVM limit and to linear order in Ω=ΩK by

ω2
R ∼ μ2V

�
1 −

μ2VM
2

8

�
; ð21Þ

ωI ∼ −
�
α1

σM

α2 þ ðσMÞ3=2
�
ðμVMÞ8ðμV −mΩÞ; ð22Þ

where αi are dimensionless constants that depend on the
compactness and also on Ω since the combination Ω=σ is
not necessarily small. Besides the prefactor in square
brackets in Eq. (22), the functional form of the super-
radiantly unstable modes is the same as that found for a
black hole [19–21,43]. The dependence of the prefactor in

Eq. (22) on σ and M=R is presented in Fig. 2, which
confirms the linear behavior in σ at small conductivities and
the ∼σ−1=2 behavior at large conductivities. Furthermore,
the dependence on the compactness is monotonic at small
conductivities, but it is more complicated at large con-
ductivities, in line with our findings for the amplification
factor of massless fields [see discussion around Eq. (19)].
Note that, because ωR ∼ μV , the small-rotation approxima-
tion together with the superradiant condition requires
μV ≲mΩ ≪ mΩK , which implies μVM ≪ 1. To keep the
factor ðμVMÞ8 in Eq. (22) from being exceedingly small,
we consider in Fig. 2 a large rotation rate, Ω ∼ 0.9ΩK ,
although we stress that our results are also valid for smaller
values of Ω.
In Appendix A, we discuss a simple model that shares

many features with our numerical results.

V. PHENOMENOLOGICAL IMPLICATIONS

We now discuss some potential phenomenological
implications of the superradiant instability of stars. We
begin with a discussion of the standard (i.e., electromag-
netic) conductivity of a neutron star and then generalize the
discussion to the conductivity of a hidden sector. Finally,
we discuss the implications of the superradiant instability
of pulsars for models of dark photons.

A. Conductivity in Maxwell theory

The conductivity of a material can be estimated by a
simple Drude model,

σ ¼ nee2τft
me

; ð23Þ

where ne, e, andme are the number density, the charge, and
the mass of the charge carriers, and τft is the mean free time
between ionic collisions. The standard charge carriers are
electrons and the ionic collisions are between the electrons
and protons through electromagnetic interactions. The
interaction between electrons and neutrons is small as it
proceeds solely through the neutron magnetic moment.
More generally, the expression for τft will depend on all

possible interactions of the electron with protons within the
conducting material,

1

τft
¼ ℏ2k2F

48π

�
T
Tp

�
2
Z

2kF

0

dqq2jMj2; ð24Þ

where kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meEF

p
=ℏ ¼ ð3π2neÞ1=3 is the Fermi wave

number, Tp ¼ ℏ2k2F=ð2mpkBÞ is the proton Fermi temper-
ature, mp is the proton mass, ℏq is the momentum transfer
of the collision, and kB is the Boltzmann constant. jMj2 is
the proton-electron scattering matrix element, and in the
limit where the electron energies are much smaller than the
proton mass, it is given by the Mott formula

FIG. 2. The prefactor in square brackets of Eq. (22) as a
function of σM and for different values of the compactness at
fixed Ω=ΩK ¼ 0.9. A fit of the numerical data is consistent with
Eq. (22) with ðα1; α2Þ ∼ ð39; 0.13Þ, (429, 11) and (4.2, 0.48) for
M=R ¼ 0.1, 0.15, 0.2, respectively.
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jMj2 ¼
�

4πe2

ℏ2ðq2 þ k2FTÞ
�
2
�
1 −

q2

4k2F

�
; ð25Þ

where kFT is the Fermi-Thomas screening wave number for
the system. In a neutron star, the protons are much more
polarizable than electrons and so kFT corresponds to the
contribution of protons alone, i.e.

k2FT ¼ 4kFmpe2

πℏ2
¼ 4mpe2

πℏ2
ð3π2neÞ1=3: ð26Þ

We assume that the star is electrically neutral, ne ¼ np. To
first order in kFT=kF ≪ 1,

1

τft
∼ e4

π2

12ℏ2

�
T
Tp

�
2 k2F
kFT

: ð27Þ

Together with Eq. (23), this yields [44]

σEM ∼ 2

�
3

π

�
3=2 ℏ4ðmpneÞ3=2

em3
pk2BT

2
; ð28Þ

where we included the label “EM” to distinguish the above
electromagnetic conductivity from the hidden conductivity
discussed below.
For a typical neutron star with mass density mpne ≃

1013 g=cm3 and T ≃ 108 K, the above formula yields
σEM ≃ 6 × 1022 s−1, which in our units translates to
σEMM ≃ 1017 for a typical neutron star mass. In this
scenario, where σEMM ≫ 1, we obtain from Eq. (22) a
typical instability time scale

τ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σEMM

p
α1ðμVMÞ8ðμV −ΩÞM ≃ 106 yr; σEMM ≫ 1 ð29Þ

where in the last estimate we considered M ¼ 1.4 M⊙,
M=R ¼ 0.15, α1 ¼ 429, Ω ¼ 0.9ΩK , μVM ¼ 0.05, and
σEM ¼ 6 × 1022 s−1. Therefore, even when σEMM ∼ 1017,
the instability time scale can be smaller than a typical
accretion time scale, τSalpeter ≃ 4.5 × 107 yr. Note that the
above estimate was in the regime where the stellar angular
velocity is close to the mass-shedding limit, Ω ¼ 0.9ΩK ,
and the compactness corresponds to the strongest insta-
bility (cf. Fig. 2). In this case, the superradiant instability
time scale of neutron stars is actually shorter than that of
nearly extremal black holes [45]. As discussed below, the
measured spin of neutron stars is at least a factor of 2
smaller than the mass-shedding limit. Since the time scale
will increase for lower angular velocities and for other
values of the compactness, Eq. (29) can be taken as a
lower limit.

B. Conductivity in hidden sectors

We now extend the above discussion to include models
of a secluded Uð1Þ0 [9,46,47] with a massive vector boson
X. For this scenario, we will consider the low-energy
effective Lagrangian,

Leff ⊃ −
1

4
FμνFμν −

1

4
XμνXμν

þ ϵ

2
FμνXμν þm2

X

2
XμXμ þ jμAμ; ð30Þ

where Fμν is the field strength of the Maxwell vector Aμ,
Xμν is the field strength of the new Uð1Þ0 gauge boson Xμ,
mX is the mass of X, and ϵ is the kinetic mixing between the
two sectors. One can rotate away the kinetic mixing term by
working in the mass basis with Aμ → Aμ þ ϵXμ, but this
induces a new term ϵjμXμ in the Lagrangian. The physical
consequence is that particles with electric charge also carry
a hidden charge ϵe. Therefore, Eq. (11) is modified with
σFμνuν → σFμνuν þ σϵXμνuν, where σϵ ¼ ϵσEM to leading
order in ϵ. For sub-eV mX, the primary constraints on ϵ are
from stellar production of the vector [48,49], precision tests
of electromagnetism [50–52], and distortion of the cosmic
microwave background (CMB) due to conversion of γ → X
[53], which sets ϵ < Oð10−7–10−5Þ, depending onmX. One
can further limit ϵ < Oð10−12–10−8Þ by constraining the
cosmic abundance of X through CMB distortions due to the
conversion of X → γ [54,55], while proposed electromag-
netic resonator technologies can potentially probe even
smaller values of ϵ [56]. Thus, the effective conductivity in
these models can be much smaller than in Maxwell
theory, σϵ ≪ σEM.
In this context it is also relevant to estimate plasma

effects, since neutron stars will be surrounded by plasma in
various forms. In Maxwell theory, ordinary photons propa-
gating in a plasma acquire an effective mass given by [57]

ωpℏ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2nplasma

me

s
≈ 3 × 10−11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nplasma

1 cm−3

r
eV; ð31Þ

where nplasma is the electron number density in the plasma.
In the millicharged cases, we should replace e → ϵe in the
above equation. In the context of superradiance [31,32],
plasma effects can be neglected as long as ωp ≪ μV . As
discussed below, the relevant range of dark-photon masses
is μVℏ ∼ 10−12 eV. Therefore, if ϵ < Oð10−12Þ plasma
effects are negligible whenever nplasma < 1021 cm−3. The
effect of the strong magnetic fields around the pulsar will
have an effect on the superradiant instabilities, but a
detailed analysis is beyond the scope of this work.
We can also consider a case of a more complicated

hidden sector in which the conductivity σ0 is set by the
interactions between particles of opposite Uð1Þ0 charge,
which we denote as hidden electrons and hidden protons,
with the hidden electrons serving as the charge carriers
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(cf., e.g., Refs. [58,59]). Here, jμ → j0μ ¼ σ0Xμνuν þ ρ0uμ,
which is entirely contained within the hidden sector.
The calculation of σ0 requires the replacement1 in
Eq. (28) of e by the hidden electric charge e0, me and
mn by the mass of hidden electrons me0 and nucleons mn0 ,
and ne by the number density of hidden electrons ne0 . This
manifests itself in Eq. (28) by the replacements e → e0,
mn → mn0 and ne → ne0 , giving

σ0

σEM
¼

�
ne0mp

nemp0

�
3=2 e

e0
: ð32Þ

Taking for instance e0 ¼ 0.01e [59,60], mp0 ¼ 100 TeV,
and assuming that the mass density of hidden protons
inside the star is 1% (0.1%) of the mass density of ordinary
protons, we estimate a conductivity for hidden electrons
σ0 ≃ 10−16σEMð3 × 10−18σEMÞ, i.e. σ0M ≃ 10 (0.3). In other
words, models of hidden Uð1Þ0 sectors above the TeV scale
can have dramatically smaller values of neutron-star con-
ductivity for the hidden electron than that of ordinary
electrons, and values σ0M ∼Oð1Þ are allowed. Thus, in
our estimates we will consider σ as a free parameter.

C. Instability time scale

As discussed in Refs. [19,20], the minimum instability
time scale τ≡ 1=ωI can be estimated by computing the
value of μV which corresponds to the maximum value of
ωI . From Eq. (22), dωI=dμ ¼ 0 yields μmin

V ¼ 8Ω=9, which
corresponds to

τmin ¼
387420489

16777216

�
α2 þ ðσMÞ3=2
α1σðmMΩÞ9

�
: ð33Þ

The minimum instability time scale is shown in Fig. 3 as a
function of the ratio σ=σEM where σEM is the typical
conductivity of ordinary electrons in a neutron star. As
expected, τmin diverges both when σ → 0 and when
σ → ∞, and it displays a minimum at σ ≃ 10−17σEM,
which corresponds to σM ≃ 1. Note also that τmin depends
strongly on Ω. In Fig. 3, we considered the extreme case
Ω ¼ 0.9ΩK, but τmin roughly scales with ðΩK=ΩÞ9. Thus,
the time scale forΩ ¼ 0.3ΩK will be roughly 5 × 104 times
longer than that shown in Fig. 3.

D. Pulsar-timing constraints on dark photons

Various arguments [15] suggest that the superradiant
instability extracts angular momentum from the central
object, spinning it down until the superradiant condition is
saturated, μV ∼ ωR ¼ mΩ (this was recently confirmed by

the first numerical simulations2 of massive vector fields
around a spinning black hole [63]). The superradiant
instability develops by extracting energy away from the
spinning object and depositing it on a bosonic condensate
(or a “cloud”) outside the object. This cloud has, in general,
a time-varying quadrupole moment and will slowly dis-
sipate through emission of gravitational waves. On very
long time scales, the end product is an object spinning so
slowly that the instability is no longer active.
Because angular-momentum extraction occurs on a time

scale τ ¼ 1=ωI , the observation of an isolated compact
object with spindown time scale τspindown excludes super-
radiant instabilities for that system, at least on time scales
τ < τspindown. Therefore, compact objects for which a
(possibly small) spindown rate can be measured accurately
are ideal candidates to constrain the mechanism and, in
turn, the dark-sector models discussed here.
Unfortunately, measurements of the spin derivative

of black holes are not available, so that constraints on
superradiant instabilities using black-hole mass and spin
measurements are only meaningful in a statistical sense
[24,25,64]. On the other hand, both the spin and the
spindown rate of pulsars are known with astonishing
precision through pulsar timing (cf., e.g., Ref. [65]). For
several sources, the rotational frequency is moderately
high, fspin ¼ Ω=ð2πÞ≃ (500–700) Hz, and the spindown
time scale can be extremely long, τspindown ¼ Ω=ð _ΩÞ≃
1010 yr. As an example, the ATNF Pulsar Catalogue

FIG. 3. Minimum time scale for the superradiant instability of a
neutron star against hidden vectors in the axial sector as a
function of the ratio σ=σEM where σEM is the typical conductivity
of ordinary electrons in a neutron star. We considered a typical
neutron star with M ¼ 1.4 M⊙, M=R ¼ 0.15, and rotating
near the mass-shedding limit, Ω ¼ 0.9ΩK . The minimum insta-
bility time scale corresponds to a dark photon with mass
mV ≃ 4 × 10−12 eV.

1In the context of superradiant mechanisms, the relevant
Compton wavelength of dark photons is much larger than the
mean free path of the hidden electrons in the stars. Thus, the mass
of the mediator has a negligible effect on the conductivity
calculation.

2A related result was shown to hold for charged scalar
perturbations of Reissner-Nordström black holes (which also
exhibit superradiance [15]) both perturbatively [15] and in full
nonlinear simulations [61,62].
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[66,67] contains 398 (40) pulsars for which τspindown >
2 × 109 yr (τspindown > 2 × 1010 yr).
In Fig. 4, we show the excluded regions in the con-

ductivity vs dark-photon mass plane obtained by imposing
τ < τspindown for three known sources, namely pulsars
J1938þ 2012 [68] and J1748 − 2446ad [69], and pulsar
binary B1957þ 20 [70]. The first one is representative of a
pulsar with an exceptionally long spindown time scale
(τspindown ≃ 1.1 × 1011 yr), but with a moderately large spin
(fspin ≃ 380 Hz, which corresponds to Ω=ΩK ≈ 0.28
assuming M ¼ 1.4 M⊙ and M=R ¼ 0.15). The second
one is the fastest pulsar known to date (fspin ≃ 716 Hz,
corresponding to Ω=ΩK ≈ 0.53 for M ¼ 1.4 M⊙ and
M=R ¼ 0.15), but only an upper bound on its spin derivative
is available, from which we infer τspindown > 7.6 × 107 yr.
The last one is representative of a pulsar with very large
spin (fspin ≃ 622 Hz, which corresponds to Ω=ΩK ≈ 0.46
again assuming M ¼ 1.4 M⊙ and M=R ¼ 0.15), but mod-
erately long spindown time scale (τspindown ≃ 3 × 109 yr).
Furthermore, because our fits for α1 and α2 appearing in
Eq. (22) are independent of Ω only for Ω=σ ≪ 1, in Fig. 4
we show only values of the conductivity which sat-
isfy σ ≫ Ω.

The exclusion plot shown in Fig. 4 is obtained as follows.
For a given measurement of the spin frequency of a pulsar,
fspin, we can estimate Ω and compute the instability time
scale as a function of σ and μV through Eq. (22). Further-
more, the measurement of a spindown time scale for a pulsar,
τspindown, implies that a faster spindown rate caused by the
superradiant instability would be incompatible with obser-
vations. Thus, imposing τ < τspindown yields an excluded
region in the σ-mV plane. Fast-spinning pulsars constrain the
rightmost part of the σ-mV diagram because the instability
requires μV ∼ ωR < mΩ. On the other hand, pulsars with
longer spindown time scale correspond to higher threshold
lines in the leftmost part of the σ-mV diagram.

E. Superradiantly induced maximum
spin frequency for pulsars

Accreting neutron stars in the weakly magnetic low-mass
x-ray binaries (LMXBs) are expected to be spun up near the
mass-shedding frequency in a spinup time scale

τspinup ∼ 108
�
109 M⊙ yr−1

_M

�
yr; ð34Þ

where _M is the mass-accretion rate. Since the above
time scale is much less than the age of a typical LMXB,
many accreting neutron stars in weakly magnetic LMXBs
should be observed rotating near the mass-shedding fre-
quency, ΩK=ð2πÞ≳ 1 kHz. The lack of observed systems
with fspin ≳ 700 Hz has motivated various limiting mech-
anisms for the maximum spin of a pulsar, many of them
involving gravitational-wave dissipation—either through
an accretion-induced mass quadrupole on the crust [71], a
large toroidal magnetic field [72], or through the excitation
[73–75] of the unstable r-modes [76]—and more recently
advocating the disk/magnetosphere interaction as the lead-
ing spindown mechanism [37].
One might wonder whether—besides placing direct con-

straints on models of dark photons—the superradiant insta-
bility of neutron stars could also provide an alternative
(albeit exotic) explanation for the spin limit of observed
pulsars. For fixed values of σ and μV , our model predicts that
an accreting pulsar in a LMXB (for which the superradiant
instability is initially effective) would reach a critical angular
velocity such that τðΩÞ ¼ τspinup in a small fraction of its
age. However, because τspinup ≪ τspindown for the observed
pulsars discussed in the previous sections, the threshold line
τ ¼ τspinup is already excluded by pulsar timing. In other
words, only models that are already excluded by Fig. 4
would produce a superradiant instability strong enough to
overcome accretion at a time scale given by Eq. (34).

VI. DISCUSSION AND FUTURE WORK

The scattering of light by rotating, conducting spheres is
a classical problem in electromagnetism, and can lead to

FIG. 4. Exclusion plots in the σ=σEM vs mV plane obtained
from the measurements of spin and spindown rate of pulsars
J1938þ 2012 (orange) [68] and J1748 − 2446ad (green) [69],
and of the pulsar binary B1957þ 20 (blue) [70]. In all cases we
assumed M ¼ 1.4 M⊙ and two values of the compactness,
namely M=R ¼ 0.15 (solid) and M=R ¼ 0.2 (dotted). The
shaded areas correspond to regions excluded by the superradiant
instability because τ < τspindown for a given pulsar (i.e., the pulsar
is observed to spin down at a much longer rate than that predicted
by the superradiant instability in that region of the parameter
space). The horizontal dashed line corresponds to where
σ ¼ σEM. We only display the region where σ ≫ Ω. In the
opposite limit, the instability time scale grows as τ ∼ 1=σ
[cf. Eq. (22)] and eventually τ > τspindown for sufficiently small
σ, cf. discussion in the main text. The shaded gray region is
excluded for σϵ from distortions of the CMB blackbody from
γ → X photon depletion [53].
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superradiant effects. Yet, to the best of our knowledge,
a thorough understanding of this problem has not been
framed within the context of superradiance. Superradiance in
stars may have interesting and important applications in
astrophysics and particle physics: stars are made of materials
with small but nonvanishing resistivity in the standard
Maxwell sector, leading to the amplification of low-energy
pulses. In the context of ultralight dark photon models, any
nonzero conductivity of stars in the dark sector will lead to
superradiant instabilities that drive the star to lower rotation
rates. In other words, the superradiant mechanism leads to
potentially observable consequences, which can be used to
constrain the dark sector.
We have shown that a direct signature of superradiant

instabilities in stars is the spindown of pulsars in the
presence of ultralight dark photons. As we discussed,
existing measurements of the spindown rate of pulsars
already place some stringent constraints on models of
dark photons and of the hidden Uð1Þ0 sectors. Although
superradiance is typically weaker for stars than for black
holes, the spindown rate of pulsars is measured with great
precision and it is typically very low (i.e., τspindown is very
long), leading to direct constraints which are much more
robust than those coming from mass-spin distributions
in the so-called black-hole Regge plane. For example,
our preliminary analysis suggests that ordinary models
(σ ≲ σEM) of dark photons with mass mV ∼ 10−12 eV are
excluded by pulsar-timing observations.
There are many interesting follow-up questions to the

effect of superradiance in stars. One of them concerns
the polar sector of vector perturbations. Previous studies of
black hole superradiance show that the vector sector
triggers instabilities with much shorter time scales [19–21].
If such a result generalizes to conducting stars, the
constraints on dark photons will certainly improve. We
hope that the promising results of our exploratory study
shown in Fig. 4 will stimulate further investigation of this
problem, including a complete analysis of the constraints
that can be placed on dark-photon models with pulsar
timing. From a theoretical perspective, another interesting
open issue concerns the functional dependence of the
amplification factor on the frequency. Previously, effec-
tive field theory approaches have investigated the fre-
quency dependence in the context of black holes [22]. It
would be interesting to extend such an approach to stars.
Furthermore, in this work we modeled the conductivity
with a simple Drude model, in which electrons only
scatter with protons. This gives us an order of magnitude
of the constraints that one can impose via superradiance,
and motivates a more complete calculation (e.g.
Refs. [77,78]).
In the scenario in which the dark photon couples to

Maxwell vectors, superradiance could work in more
intricate ways. On the one hand both vectors are super-
radiantly amplified by the star’s material, potentially

leading to a stronger effect. On the other hand, Maxwell
fields are massless and could easily escape, not being
subject to the confinement necessary to create the insta-
bility. How exactly the mechanism proceeds depends on
this interplay and depends on more detailed calculations.
Furthermore, it would be interesting to explore the coupling
to plasma. Equation (31) shows that even ordinary photons
would acquire an effective mass ℏωp ∼ 10−12 eV when
propagating in a plasma with electron number density
nplasma ∼ 10−2 cm−3. This might give interesting super-
radiant effects for ordinary photons [31,32] or also alter
the instability for dark photons if the latter are coupled to
plasma sufficiently strongly.
Our analysis also shows that it is, in principle, possible to

generalize a number of results in the literature concerning
black hole superradiance [15]. For example, for complex,
massive vector fields there should exist new stationary
solutions describing a star surrounded by a Proca con-
densate. This would be a natural generalization of the hairy
black hole solutions found recently [79–81]. Likewise,
imprints of superradiance in the luminosity of pulsars or
black hole binaries [29,30] should also be present when the
companion is a star, instead of a black hole. Finally, the
development of the instability will certainly lead to non-
trivial gravitational-wave emission. In the black hole case,
the emitted signal can be used to impose interesting
constraints on the models [15,24–27]. On the other hand,
stars have typically lower masses than black holes, and it
remains to be understood if gravitational-wave emission is
relevant in this case.
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APPENDIX A: THIN-SHELL MODEL AND
MEMBRANE PARADIGM

In the membrane paradigm [42], a black hole can
be interpreted as a one-way membrane endowed with
various properties. In particular, the surface resistivity
reads RH ¼ 4π ≃ 377 ohm, so that the surface conductivity
is σ̂ ¼ 1=ð4πÞ.
Within our framework, a similar model can be inves-

tigated by considering a conducting thin shell in vacuum, so
that the (volume) conductivity reads σðrÞ ¼ σ̂δðR − rÞ. For
simplicity, we consider the Newtonian limit, in which
F ¼ B ¼ 1, and restrict ourselves to small frequencies,
so that ωζ in Eq. (13) is negligible. In these approxima-
tions, axial perturbations reduce to Bessel’s equation

d2a
dr2

þ
�
ω2 −

lðlþ 1Þ
r2

�
a ¼ 0; ðA1Þ

both in the interior and in the exterior. The delta function in
σðrÞ enters only in the junction conditions, which imply

½½da=dr�� ¼ −4πiσ̂ðω −mΩÞaðRÞ; ðA2Þ

where ½½…�� is the jump across the shell and, without loss of
generality, we assumed ½½a�� ¼ 0. We impose the junction
condition above on the solutions of Bessel’s equation with
correct boundary conditions as discussed in the main text.
For l ¼ 1, we obtain

Z ¼ −
16π

9
σ̂ðRωÞ3Rðω −mΩÞ; ðA3Þ

where m ¼ 1; 0;−1. In the nonrotating case, this result is
valid also beyond the small-frequency regime and, inter-
estingly, it agrees exactly with that obtained in black hole
perturbation theory [cf. Ref. [15], Eq. (3.103)] upon
identification of σ̂ ¼ 1=ð4πÞ and R ¼ 2M. Thus, a by-
product of our analysis is the proof that the black hole
membrane paradigm works also for linear electromagnetic
perturbations.
The shell toy model is also useful to understand the

results for the instability. Instead of a massive field, we
consider a spinning shell of radius R surrounded by a
nonspinning perfect conductor of radius R2. The character-
istic modes of the system can be found by imposing the
above junction condition and aðr ¼ R2Þ ¼ 0. For large
values of R2=R, the l ¼ 1 fundamental mode reads

ω ¼ γ0
R2

− 4πiγ0ðγ20 þ 1ÞR
4

R5
2

σ̂ϒ; ðA4Þ

where γ0 satisfies tan γ0 ¼ γ0 and

ϒ ¼ γ0ð9 − 16π2σ̂2Ω2R2Þ − ΩR2ð9þ 16π2R2σ̂2Ω2Þ
ð9þ 16π2σ̂2Ω2R2Þ2 :

ðA5Þ

Note that ϒ → ðγ0 −ΩR2Þ=9 when σ̂ΩR ≪ 1 (thus
recovering the superradiant condition, ωR < Ω), whereas
ϒ ∼ −1=ðσ̂2Ω2R2Þ when σ̂ΩR ≫ 1. At fixed rotation rate,
the peak of the instability occurs at σ̂ ∼ 3=ð4πΩRÞ.
Therefore—at least qualitatively—this simple model shows
the same features that we observe numerically, in particular
the fact that the instability decreases as σ̂ → 0 and at very
large σ̂, and it also informs us on theΩ dependence. Finally,
if we substitute R2 → 1=μ2V as discussed in Refs. [15,82],
we recover the mass dependence presented in the main text
for μV ≪ Ω.

APPENDIX B: VECTOR PERTURBATIONS OF A
SLOWLY SPINNING COMPACT OBJECT

In this appendix we follow the framework developed in
Refs. [19,20,41,83,84] (cf. Ref. [40] for a review) to derive
the Proca perturbations of a slowly rotating, conducting
star. The Proca equation (2), linearized in the perturbations
(12) on the background (4) can be written in the following
form3:

δΠI ≡ ðAðIÞ
l þ ~AðIÞ

l cosϑÞYl þ BðIÞ
l sinϑ∂ϑYl ¼ 0; ðB1Þ

δΠϑ ≡ αl∂ϑYl − imβl
Yl

sinϑ
þ ηl sin ϑYl ¼ 0; ðB2Þ

δΠφ

sinϑ
≡ βl∂ϑYl þ imαl

Yl

sinϑ
þ ζl sin ϑYl ¼ 0; ðB3Þ

where a sum over ðl; mÞ is implicit and I denotes either the t
component or the r component. The various radial coef-
ficients in Eqs. (B1)–(B3) are given in a supplemental
MATHEMATICA

® notebook [85]. Each of these coefficients
is a linear combination of perturbation functions with either
polar or axial parity. Therefore we can divide them into two
sets:

Polar∶ AðIÞ
l ; αl; ζl;

Axial∶ ~AðIÞ
l ; BðIÞ

l ; βl; ηl;

where I ¼ t, r.

3We will append the relevant multipolar index l to any
perturbation variable but we will omit the index m, because in
an axisymmetric background it is possible to decouple the
perturbation equations so that all quantities have the same value
of m.
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1. Separation of the angular dependence

In order to separate the angular variables in Eqs. (B1)–(B3)
we compute the following integrals:Z

δΠIY�ldΩ; ðI ¼ t; rÞ; ðB4aÞ
Z

δΠaY�l
b γ

abdΩ; ða; b ¼ ϑ;φÞ; ðB4bÞ
Z

δΠaS�l
b γ

abdΩ; ða; b ¼ ϑ;φÞ ðB4cÞ

wherewe set xμ ¼ ðt; r; xbÞwith xb ¼ ðϑ;φÞ, the two-sphere
γab ¼ diagð1; sin2 ϑÞ, and

Yl
b ¼ ð∂ϑYl; ∂φYlÞ;

Sl
b ¼

�
1

sinϑ
∂φYl;− sin ϑ∂ϑYl

�
: ðB5Þ

Wealsomake use of the orthogonality properties of scalar and
vector harmonics, namelyZ

YlY�l0dΩ ¼ δll
0
; ðB6Þ

Z
Yl

bY
�l0
b γabdΩ ¼

Z
Sl
bS

�l0
b γabdΩ ¼ lðlþ 1Þδll0 ;Z

Yl
bS

�l0
b γabdΩ ¼ 0; ðB7Þ

as well as of the identities

cosϑYl ¼ Qlþ1Ylþ1 þQlYl−1; ðB8Þ

sinϑ∂ϑYl ¼ Qlþ1lYlþ1 −Qlðlþ 1ÞYl−1; ðB9Þ

withQl ¼
ffiffiffiffiffiffiffiffiffi
l2−m2

4l2−1

q
. By using the above relation, we obtain the

following radial equations:

AðIÞ
l þQl½ ~AðIÞ

l−1 þ ðl − 1ÞBðIÞ
l−1�

þQlþ1½ ~AðIÞ
lþ1 − ðlþ 2ÞBðIÞ

lþ1� ¼ 0; ðB10Þ

lðlþ 1Þαl − imζl

−Qlðlþ 1Þηl−1 þQlþ1lηlþ1 ¼ 0; ðB11Þ

lðlþ 1Þβl þ imηl

−Qlðlþ 1Þζl−1 þQlþ1lζlþ1 ¼ 0: ðB12Þ

Note that Eqs. (B10)–(B12) can be written in the schematic
form

0 ¼ Al þ ϵamĀl þ ϵaðQl
~Pl−1 þQlþ1

~Plþ1Þ; ðB13Þ

0 ¼ Pl þ ϵamP̄l þ ϵaðQl
~Al−1 þQlþ1

~Alþ1Þ; ðB14Þ

where ϵa is a bookkeeping parameter for the expansion in the
angularmomentum, andAl, Āl are linear combinations of the
axial perturbations with multipolar index l; similarly, Pl, P̄l
are linear combinationsof thepolar perturbationswith index l.

2. Axial-led and polar-led perturbations

We expand the axial and polar perturbation functions
(schematically denoted as al and pl, respectively) that
appear in Eqs. (B13) and (B14) as

al ¼ að0Þl þ ϵaa
ð1Þ
l þOðϵ2aÞ;

pl ¼ pð0Þ
l þ ϵap

ð1Þ
l þOðϵ2aÞ: ðB15Þ

Since in the nonrotating limit axial and polar perturbations
are decoupled, a possible consistent set of solutions of the

system (B13)–(B14) has pð0Þ
L�1 ≡ 0, where l ¼ L is a

specific value of the harmonic index. This ansatz leads
to the so-called “axial-led” subset of Eqs. (B13)–(B14):8>><

>>:
AL þ ϵamĀL ¼ 0;

PLþ1 þ ϵaQLþ1
~AL ¼ 0;

PL−1 þ ϵaQL
~AL ¼ 0;

ðB16Þ

where the first equation is solved to first order in the spin,
whereas the second and the third equations do not contain
zeroth-order quantities in the spin, i.e. pL�1 ¼ OðϵaÞ. The
truncation above is consistent because in the axial equa-
tions for l ¼ L the polar source terms with l ¼ L� 1
appear multiplied by a factor ϵa, so they would enter at
second order in the rotation.
Similarly, another consistent set of solutions of the same

system has að0ÞL�1 ≡ 0. The corresponding “polar-led” sys-
tem reads 8>><

>>:
PL þ ϵamP̄L ¼ 0;

ALþ1 þ ϵaQLþ1
~PL ¼ 0;

AL−1 þ ϵaQL
~PL ¼ 0.

ðB17Þ

Interestingly, within this perturbative scheme a notion of
“conserved quantum number” L is still meaningful: even
though, for any given L, rotation couples terms with
opposite parity and different multipolar index, the sub-
systems (B16) and (B17) are closed, i.e. they contain a
finite number of equations which describe the dynamics to
first order in the spin.
Finally, note that the first set of equations in the axial-led

system (B16) and in the polar-led system (B17) do not
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involve couplings between axial and polar modes. Once the
first set of equations in the system (B16) [or in the system
(B17)] is solved, the remaining two equations can be solved
separately. Therefore, if one is interested in the linear spin
corrections to axial or polar perturbations with a given
harmonic index L, one can solve only the first set of
equations in the system (B16) or (B17), respectively.

a. Final equations for the axial-led system

By using the coefficients given in the Supplemental
Material [85], it is easy to show that the first equation of the
system (B16) reduces to Eq. (13) in the main text.

b. Final equations for the polar-led system

The polar-led system is more involved. In general, one of
the polar equations fixes the proper charge density ρ̂EM in
terms of the other perturbation functions, even when
σ ¼ const. In the Proca case, by using the coefficients in
the Supplemental Material [85], the system can be reduced

to three differential equations that can be schematically
written as

u001 ¼ f1ðu1; u01; u2Þ;
u02 ¼ f2ðu1; u01; u2; u3Þ;
u03 ¼ f3ðu01; u2; u3Þ;

where u1 ≡ flm, u2 ≡ hlm and u3 ¼ klm. Note that the first
equation above does not contain u3. Therefore, it is possible
to write a system of two second-order, radial equations for
u1 and u2 simply by solving the second equation above for
u3, differentiate it with respect to r, and then using the third
equation above to eliminate u3. The final result is not
shown explicitly and a detailed investigation is left for
future work. Note that in the Maxwell case (μV ¼ 0) the
usual gauge freedom can be used to eliminate one spurious
degree of freedom. Consequently, the Maxwell polar sector
propagates only one degree of freedom, described by a
second-order field equation.
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