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We demonstrate that the leading and next-to-leading finite-volume effects in the evaluation of leptonic
decay widths of pseudoscalar mesons atOðαÞ are universal; i.e. they are independent of the structure of the
meson. This is analogous to a similar result for the spectrum but with some fundamental differences, most
notably the presence of infrared divergences in decay amplitudes. The leading nonuniversal, structure-
dependent terms are of Oð1=L2Þ [compared to the Oð1=L3Þ leading nonuniversal corrections in the
spectrum]. We calculate the universal finite-volume effects, which requires an extension of previously
developed techniques to include a dependence on an external three-momentum (in our case, the momentum
of the final-state lepton). The result can be included in the strategy proposed in Ref. [N. Carrasco et al.,
Phys. Rev. D 91, 074506 (2015).] for using lattice simulations to compute the decay widths at OðαÞ, with
the remaining finite-volume effects starting at order Oð1=L2Þ. The methods developed in this paper can be
generalized to other decay processes, most notably to semileptonic decays, and hence open the possibility
of a new era in precision flavor physics.
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I. INTRODUCTION

For many physical quantities relevant for studies of
flavor physics, recent improvements in lattice computations
have led to such a precision that electromagnetic effects
and isospin-breaking contributions cannot be neglected
anymore (see e.g. Ref. [1] and references therein). For
light-quark flavors, important examples include the calcu-
lations of the leptonic decay constants fK and fπ and of the
form factor fþð0Þ in semileptonic Kl3 decays. These are
used to determine the Cabibbo-Kobayashi-Maskawa (CKM)
matrix element jVusj and the ratio jVusj=jVudj at high
precision. For such quantities, which have been computed
with a precision at the subpercent level, the uncertainty due
to the explicit breaking of isospin symmetry [of the order of
ðmu −mdÞ=ΛQCD ∼ 0.01)] and to electromagnetic correc-
tions (of the order of α ∼ 0.007) is similar to, or even larger
than, the quoted QCD errors [1].
The question of how to include electromagnetic effects

in the hadron spectrum and in the determination of quark

masses in ab initio lattice calculations was addressed for
the first time in [2]. Indeed, using a variety of different
methods, several collaborations have recently obtained
remarkably accurate results for the hadron spectrum, for
example in the determination of the charged-neutral mass
splittings of light pseudoscalar mesons and baryons [3–13]
(see [14–16] for reviews on the subject).
In a recent paper, a new proposal to include electro-

magnetic and isospin-breaking effects in the nonperturba-
tive calculation of hadronic decays was presented [17]. As
an example of the new method, the procedure to compute
OðαÞ corrections to leptonic decays of pseudoscalar
mesons was described in detail. This can then be used
to determine the corresponding CKM matrix elements.
There is an important point that needs to be stressed here.

Whereas in the computation of the hadron spectrum there
are no infrared divergences, in the calculation of the
electromagnetic corrections to the hadronic amplitudes
infrared divergences are present and only cancel for
well-defined, measurable physical quantities. This requires
diagrams containing different numbers of real and virtual
photons to be combined [18]. The presence of infrared
divergences in intermediate steps of the calculation requires
the development of a strategy which is different, and more
complicated, than the usual approaches followed to compute
the electromagnetic corrections to the spectrum. We
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proposed such a strategy in Ref. [17]. There we envisaged
that at OðαÞ the physical observable is the inclusive decay
rate of the pseudoscalar meson into a final state consisting of
either l−ν̄l or l−ν̄lγ, with the energy of the emitted photon
in the rest frame of the pion smaller than an imposed cutoff
ΔE. Here l− is a charged lepton and νl the corresponding
neutrino. The cutoffΔE on the energy of the final-state (real)
photon should be sufficiently small that for photons with
such an energywe can neglect the structure of themeson and
treat it as an elementary pointlike particle, neglecting the
structure-dependent corrections ofOðαΔE=ΛQCDÞ. AtOðαÞ
the inclusive width can be written in the form

ΓðΔEÞ ¼ Γtree
0 þ α

4π
lim
L→∞

ðΓ0ðLÞ þ Γpt
1 ðΔE;LÞÞ; ð1Þ

where the suffix 0 or 1 indicates the number of photons in the
final state; Γtree

0 is the rate at Oðα0Þ given in Eq. (7) below;
the superscript “pt” on Γ1 denotes pointlike and we have
exhibited thedependenceonL, the spatial extent of thebox in
which the lattice calculation is to be performed (V ¼ L3).
It is now convenient to write

lim
L→∞

ðΓ0ðLÞ þ Γpt
1 ðΔE;LÞÞ ¼ lim

L→∞
ðΓ0ðLÞ − Γpt

0 ðLÞÞ
þ lim

L→∞
ðΓpt

0 ðLÞ þ Γpt
1 ðΔE;LÞÞ:

ð2Þ

The second term on the right-hand side of Eq. (2),

ΓptðΔEÞ ¼ lim
L→∞

ðΓpt
0 ðLÞ þ Γpt

1 ðΔE;LÞÞ; ð3Þ

can be evaluated in perturbation theory directly in infinite
volume and the result has been presented in Ref. [17].
ΓptðΔEÞ is infrared finite and independent of the scheme
used to regulate the divergences which are present separately
in Γpt

0 ðLÞ and Γpt
1 ðΔE;LÞ; its explicit expression is repro-

duced in Eq. (13) below.
Γ0ðLÞ is infrared divergent and depends on the infrared

regularization. Since all momentum modes of the virtual
photon contribute to Γ0, it depends on the structure of the
meson and is necessarily nonperturbative. It should there-
fore be computed in a lattice simulation. In Ref. [17] we
stressed that the infrared divergence cancels in the differ-
ence Γ0ðLÞ − Γpt

0 ðLÞ. In this paper we show that the 1=L
finite-volume (FV) corrections are also universal; that is,
they are independent of the structure of the pseudoscalar
meson and hence cancel in the difference Γ0ðLÞ − Γpt

0 ðLÞ.
We do this in the Appendix using the QED skeleton
expansion, in which the meson propagator and the vertices
to which the photon couples are defined in terms of QCD
correlation functions and then inserted into one-loop
diagrams. Combining the skeleton expansion with the
electromagnetic Ward identities of the full theory, we are

able to demonstrate explicitly that the leading and next-to-
leading FVeffects are universal. This allows us to calculate
Γpt
0 ðLÞ in perturbation theory with a pointlike pseudoscalar

meson up to and including the 1=L corrections and present
the result expanded in inverse powers of L

Γpt
0 ðLÞ¼C0ðrlÞþ ~C0ðrlÞlogðmPLÞþ

C1ðrlÞ
mPL

þ��� ; ð4Þ

where rl ¼ ml=mP and mP and ml are the masses of
the pseudoscalar meson and the lepton respectively.
Throughout this paper we will refer to the first two terms
on the right-hand side of Eq. (4) as the leading FV effects,
and the third term, C1=mPL, as the next-to-leading
correction. The explicit expression for Γpt

0 ðLÞ is given in
Eqs. (97) and (98) below. The coefficients C0ðrlÞ, ~C0ðrlÞ
and C1ðrlÞ are universal, although C0ðrlÞ and C1ðrlÞ
depend on the infrared regulator. ~C0ðrlÞ is universal and
does not depend on the regularization. C0ðrlÞ, ~C0ðrlÞ and
C1ðrlÞ cancel the corresponding terms contained in Γ0ðLÞ.
In this way Γ0ðLÞ − Γpt

0 ðLÞ is infrared finite and indepen-
dent of the infrared regularization up to terms of Oð1=L2Þ.
Higher order FV terms are not universal and thus cannot be
corrected with an analytic computation. We do not discuss
them further, beyond showing in Sec. V that they are indeed
nonuniversal.
The discussion in the previous paragraph has parallels

in the calculation of the FV corrections to the spectrum
[3,4,6,8,11,12,19]. In that case there are no infrared
divergences and the Oð1=LÞ and Oð1=L2Þ FV corrections
are universal, but the Oð1=L3Þ corrections are structure
dependent. For matrix elements the leading dependence
on the volume in Γpt

0 is an infrared divergence of the
form logðmPLÞ and the next-to-leading term is of Oð1=LÞ.
Both of these are universal.
Below we present the perturbative one-loop calculation

of Γpt
0 ðLÞ on a finite volume using QEDL [8] as the infrared

regulator. We will describe in detail the method developed
for the calculation of the perturbative corrections to decay
amplitudes in a finite volume; these calculations are more
difficult than the corresponding evaluation of the correc-
tions to hadron masses. In addition to the presence of
infrared divergences, even in the rest frame of the meson
there is a dependence on the three-momentum of the final-
state lepton from the diagram in which the photon is
emitted from the meson and absorbed by the lepton. When
evaluating the FV corrections, the summand in the sum-

mation over the spatial momentum modes of the photon, ~k,

depends not only on j~kj but also on ~pl · ~k, i.e. on the
direction of the final-state lepton’s momentum, ~pl, with
respect to the axes of the cubic lattice. This complicates
the calculation significantly and leads to results which
also depend on the direction of ~pl. We believe that the
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techniques developed in this paper, which extend those of
Ref. [20], have a wider applicability and will be useful for
many other processes.
Although our explicit discussion is limited to the

leptonic decay rates of pseudoscalar mesons, the method
is general and can be extended to many other processes
including, for example, semileptonic decays. We should
add however, that although the results presented in this
paper are valid in principle for both heavy and light
pseudoscalar mesons, there may be a practical limitation
in the case of the heavy D and B mesons. In that case it is
likely that in order to make experimental measurements
feasible, ΔE may have to be sufficiently large that the
structure dependence of the meson can no longer be
neglected and therefore that the emission of real “hard”
photons, with energies of Eγ ≥ ΛQCD, should be imple-
mented in the lattice simulation. We do not discuss the
prospects for this further in this paper.
The plan for the remainder of this paper is the following.

In the following section (Sec. II) we present the decay rate
without electromagnetic corrections and introduce some
basic notation used in the subsequent sections. Section III
contains a discussion of the regularization of the ultraviolet
divergences and the W-renormalization scheme. Since the
ultraviolet divergent terms are unaffected by FVeffects, we
simply sketch the renormalization procedure referring to
our previous paper for further details [17]. In Sec. IV we
review the method proposed in Ref. [17] for the cancella-
tion of infrared divergences and present an extended
discussion of the different proposals for their regulariza-
tion. The universality (or nonuniversality) of the infrared
divergences and FV corrections is explained in Sec. V. In
particular we sketch the demonstration that the leading and
next-to-leading FV effects are universal. The perturbative
calculation of the electromagnetic corrections to the lep-
tonic decay amplitude and meson mass on a FV, including
the Oð1=LÞ corrections, is presented in full detail in
Sec. VI. All the results are expressed in terms of a few
master integrals. The evaluation of the one-loop master
integrals is performed in Sec. VII. The calculations
described in this section are of general use and can be
applied to many other cases of phenomenological interest.
Finally, in Sec. VIII we present our final result, our
conclusions and the outlook for the implementation of
our method. There is a single appendix in which the
universality of the leading and next-to-leading FV effects
is proved using the skeleton expansion.

II. THE DECAY RATE WITHOUT
ELECTROMAGNETIC CORRECTIONS

At lowest order in electromagnetic perturbation theory
[i.e. at Oðα0Þ], the process q̄1q2 → l−ν̄l can be written in
terms of the amplitude of an effective four-fermion local
Hamiltonian,

HW ¼ GFffiffiffi
2

p V12ðq̄1γμð1 − γ5Þq2Þðl̄γμð1 − γ5ÞνlÞ; ð5Þ

where GF is the Fermi constant; the subscripts i ¼ 1, 2
on qi denote the flavor of the quarks; and V12 is the
corresponding element of the CKM matrix.
We illustrate the Feynman diagram for the leptonic decay

of a π− meson in pure QCD in Fig. 1. In the absence of
electromagnetism the nonperturbative amplitude for the
decay of a pseudoscalar meson P− is defined in terms of a
single number, the corresponding decay constant fP:

h0jq̄1γμγ5q2jP−ðpÞi ¼ ipμfP; ð6Þ
where P− is composed of the valence quarks q̄1 and q2, and
the axial current in (6) is composed of the corresponding
quark fields. From Eqs. (5) and (6) one readily derives the
tree level decay rate

Γtree
0 ¼ G2

F

8π
jV12j2f2PmPm2

l

�
1 −

m2
l

m2
P

�
2

: ð7Þ

Since we aim to determine the width up to and including
OðαÞ contributions, mP in Eq. (7) is the physical mass of
the meson.
The calculation of electromagnetic corrections leads to

an immediate difficulty: Γ0 contains infrared divergences
and by itself is therefore unphysical. The well-known
solution to this problem is to include the contributions
from real photons. The physical, infrared safe, experimen-
tally measurable observable is then the partial width given
in Eq. (1) in the Introduction. ΓðΔEÞ is free from infrared
divergences, and will be computed following the procedure
proposed in Ref. [17] and briefly reviewed in Sec. IV
below. We start, however, with a brief discussion of the
renormalization of the ultraviolet divergences which arise
from virtual photon exchanges.

III. ULTRAVIOLET DIVERGENCES AND
THE W-RENORMALIZATION SCHEME

The standard method used in weak leptonic and semi-
leptonic decays to renormalize the theory is to work in
the so-called W-renormalization scheme [21]. We refer the
reader to Ref. [17] for more details of the applications to
the present case.

FIG. 1. Feynman diagram for the leptonic decay of a pseudo-
scalar meson (the π− in this example) in pure QCD. The two
black filled circles represent the local current-current operator
ðūγμLdÞðl̄γLμ νlÞ; the circles are displaced for convenience and the
index L represents “left.”
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When including the OðαÞ corrections, the ultraviolet
divergences are removed by defining the Fermi constantGF
in the W-renormalization scheme. Its value is then given in
terms of the physical muon decay rate Γμ ¼ 1=τμ, where τμ
is the lifetime of the muon:

1

τμ
¼ G2

Fm
5
μ

192π3

�
1 −

8m2
e

m2
μ

��
1þ α

2π

�
25

4
− π2

��
: ð8Þ

In the same scheme the effective Hamiltonian of Eq. (5)
gets a finite correction,

Hα
W ¼ GFffiffiffi

2
p V12

�
1þ α

π
log

MZ

MW

�
ðq̄1γμð1 − γ5Þq2Þ

× ðl̄γμð1 − γ5ÞνlÞ; ð9Þ

where the four-fermion operator ðq̄1γμð1 − γ5Þq2Þðl̄γμð1 −
γ5ÞνlÞ is also renormalized in the same scheme.
The renormalization of the weak Hamiltonian requires

the evaluation of the diagrams in Fig. 2 (shown for the
case P− ¼ π−) with the photon propagator defined in the
W-regularization scheme

−igμν
�
1

k2
−

1

k2 −M2
W

�
: ð10Þ

Since we are not able to implement the W regularization
directly in present day lattice simulations in which the
inverse lattice spacing is much smaller than MW , the
relation between the operator in Eq. (9) in the lattice
and W regularizations can be computed in perturbation
theory. For lattice actions in which chiral symmetry is
broken by the Wilson term (or for related actions), this
relation takes the form

OW
1 ¼

�
1þ α

4π
ðγem loga2M2

W þC1Þ
�
Obare

1

þ α

4π
ðC2Obare

2 þC3Obare
3 þC4Obare

4 þC5Obare
5 Þ; ð11Þ

where α=4π×γem¼α=4π×2 is the one-loop, regularization-
independent electromagnetic anomalous dimension of the
four-fermion operator and

O1 ¼ ðq̄1γμð1 − γ5Þq2Þðl̄γμð1 − γ5ÞνlÞ
O2 ¼ ðq̄1γμð1þ γ5Þq2Þðl̄γμð1 − γ5ÞνlÞ
O3 ¼ ðq̄1ð1þ γ5Þq2Þðl̄ð1 − γ5ÞνlÞ
O4 ¼ ðq̄1ð1 − γ5Þq2Þðl̄ð1 − γ5ÞνlÞ
O5 ¼ ðq̄1σμνð1 − γ5Þq2Þðl̄σμνð1 − γ5ÞνlÞ: ð12Þ

The numerical values of the coefficientsC1…C5 correspond-
ing to theWilson action for both the quarks and gluons can be
found in Ref. [17]. This concludes the discussion of the
treatment of the ultraviolet divergences and of the definition
of a finite four-fermion operator in the W-renormalization
scheme.

IV. INFRARED DIVERGENCES AND
FINITE-VOLUME CORRECTIONS

Having performed the renormalization, all the expres-
sions for widths and amplitudes are explicitly free from
ultraviolet divergences. Moreover both terms appearing on
the right-hand side of Eq. (2) are separately infrared finite
and also independent of the infrared regularization. We will
demonstrate below that in the first term, Γ0ðLÞ − Γpt

0 ðLÞ is
independent of the regularization up to terms of Oð1=L2Þ.
The independence of the last term from the infrared
regularization can be readily demonstrated in perturbation
theory; ΓptðΔEÞ≡ Γpt

0 þ Γ1ðΔEÞ is a well-defined physical
quantity, corresponding to the decay rate of a pointlike
particle calculated at OðαÞ in infinite volume. It is given by
the following expression [17]:

FIG. 2. Virtual diagrams contributing at OðαÞ to the renormalization of the four-fermion operator Eq. (5). The same diagrams enter in
the evaluation of Γ0ðLÞ for the decay π− → l−ν̄l.
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Γtree
0 þ α

4π
ΓptðΔEÞ ¼ Γtree

0 ×

�
1þ α

4π

�
3 log

�
m2

P

M2
W

�
þ logðr2lÞ − 4 logðr2EÞ

þ 2 − 10r2l
1 − r2l

logðr2lÞ − 2
1þ r2l
1 − r2l

logðr2EÞ logðr2lÞ − 4
1þ r2l
1 − r2l

Li2ð1 − r2lÞ − 3

þ
�
3þ r2E − 6r2l þ 4rEð−1þ r2lÞ

ð1 − r2lÞ2
logð1 − rEÞ þ

rEð4 − rE − 4r2lÞ
ð1 − r2lÞ2

logðr2lÞ

−
rEð−22þ 3rE þ 28r2lÞ

2ð1 − r2lÞ2
− 4

1þ r2l
1 − r2l

Li2ðrEÞ
���

; ð13Þ

where rE ¼ 2ΔE=mP and 0 ≤ rE ≤ 1 − r2l. Note that the
terms in square brackets in Eq. (13) vanish when rE goes
to zero; in this limit ΓptðΔEÞ is given by its eikonal
approximation.
Since ΓptðΔEÞ is itself independent of the infrared

regulator, it can be computed with a different regularization
from the one used in computing the difference Γ0 − Γpt

0 .
This implies that, provided that we use the same infrared
regulator for Γ0 and Γ

pt
0 , the infrared divergences, which are

universal, cancel in the difference Γ0 − Γpt
0 , leaving an

OðαÞ finite term which is independent of the regulator.
We stress that the regulator-dependent finite terms also
cancel in the difference Γ0 − Γpt

0 .
We now discuss FV effects. Let V ¼ L3 be the spatial

volume and for simplicity we take the length L in each
direction to be the same. Whereas in QCD the FV
corrections are exponentially suppressed, for electromag-
netic corrections, because of the presence of a massless
photon, FV effects are particularly important since they
are only suppressed by inverse powers of the volume. The
1=k2 term in the photon propagator in Eq. (10) implies the
presence of a zero mode in the finite-volume summation
over momenta. Several suggestions have been proposed
in the literature for the treatment of the zero mode of
FV QED:
(1) In the first proposal the four-momentum zero mode

of the photon field is removed, i.e. Aμðk ¼ 0Þ ¼ 0.
This is denoted as QEDTL [2].

(2) The second proposal, denoted by QEDL, is to remove
the three-momentum zero modes of the photon field,

i.e. to set Aμðk0; ~k ¼ 0Þ ¼ 0 for all k0 [8].
(3) A traditional way to regulate infrared divergences

in QED is to give the photon a small mass. This is
denoted by QEDγ [9].

(4) Finally, the fourth proposal is to enforce C� boun-
dary conditions for all fields along the spatial
directions, i.e. to require that the fields are periodic
up to charge conjugation. In this theory, which
we refer to as QEDC, the zero modes of the gauge
field are absent by construction because AμðxÞ is
antiperiodic in space [19].

Although, at first sight, it may appear that regularizing
the theory by giving a mass to the photon is the safer
option, with presently available lattice volumes this
approach has several major drawbacks [16] and we prefer
to use the finite volume itself as the infrared regulator. For
the hadron spectrum, both the Oð1=LÞ and the Oð1=L2Þ
corrections are universal; that is, they are the same for
pointlike and composite hadrons [3,11,19] and can be
analytically computed (they do however depend on the
regulator). We have chosen to work in QEDL. In this
regularization one finds for the electromagnetic mass shift
for a pseudoscalar meson of charge q in a large, but finite,
volume [3]

mPðLÞ¼mP

�
1−q2α

�
κ

mPL

�
1þ 2

mPL

��
þO

�
1

ðmPLÞ3
��

;

ð14Þ

where κ ¼ 1.41865 is a universal constant. Equation (14) is
particularly useful in controlling the finite-volume effects
in the mass shift. The Oð1=LÞ and Oð1=L2Þ terms can be
subtracted explicitly and the remaining extrapolation of the
Oð1=L3Þ and smaller terms to the infinite volume limit
is substantially milder, resulting in smaller extrapolation
uncertainties. To show that the FV corrections are univer-
sal, the authors of Ref. [11] used an approach based on
nonrelativistic effective field theories, whereas in Ref. [3]
an independent demonstration of the universality of the
corrections, based on the electromagnetic Ward identities
of the theory, was used. We will discuss this in more detail
in the following.
Using similar approaches we can demonstrate (see

Sec. V and the Appendix below) that for the amplitude
with the virtual photon, the coefficients C0ðrlÞ; ~C0ðrlÞ and
C1ðrlÞ in Eq. (4) are universal so that the FV corrections
to the difference

ΔΓ0ðLÞ ¼ Γ0ðLÞ − Γpt
0 ðLÞ ð15Þ

are of Oð1=L2Þ. This should be compared to the Oð1=L3Þ
at which the structure-dependent FV corrections begin to
contribute in the spectrum; the difference, as explained in
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detail below, is due to the different behavior of the
integrands as the momentum of the photon goes to 0.
We note also that, since the sum of all the terms in Eq. (2)

is gauge invariant, as is the perturbative rate ΓptðΔEÞ, the
combination ΔΓ0ðLÞ is also gauge invariant, although each
of the two terms on the right-hand side of Eq. (15) in
general is not.
In the remainder of this paper, all the calculations are

performed using the QEDL prescription for handling the
zero mode.

V. UNIVERSALITY OF THE FINITE-VOLUME
CORRECTIONS TO MASSES
AND DECAY AMPLITUDES

Infrared singularities and FV effects which decrease
only as powers of the volume arise because the photon
is massless. Because of electromagnetic gauge symmetry,
however, the coefficients of the leading and next-to-leading
(NLO) power corrections are universal and can be com-
puted by treating the charged particles as pointlike objects.
In this section we discuss FVeffects and the universality of
the leading and next-to-leading FV corrections to masses
and amplitudes at first order in α. For the spectrum we
follow the procedure of Ref. [3] and then generalize the
arguments to the evaluation of FV corrections to operator
matrix elements. A detailed demonstration of universality,
presented in the framework of the skeleton expansion
and based on the electromagnetic Ward identities, is given
in the Appendix. Here we sketch the main points, referring
the reader to the Appendix where appropriate.
If the photon were massive so that

1

ðk2 þ iϵÞ →
1

ðk2 −m2
γ þ iϵÞ ; ð16Þ

then the FV corrections would be exponentially suppressed
in the mass of the photon. The power-law FV corrections
arise with a massless photon from the singularities of the
summand at k ¼ 0 in the sum over the momentum k of the
photon. The power of the corrections depends on the degree
of the singularity in k of the summand. Thus in order to
study the FV corrections we consider the soft region in
which k ≈ 0.
We start by introducing our notation and some basic

definitions. Let ξ0 be the difference between the finite- and
infinite-volume result of some one-loop expression

ξ0 ¼
Z

dk0
2π

�
1

L3

X
~k≠0

−
Z

d3k
ð2πÞ3

�
Iðp; k0; ~kÞ; ð17Þ

where k is the momentum of the photon, p represents
the external momentum or momenta and the prime on ξ0
indicates that the contribution from the spatial zero mode

(~k ¼ 0) is absent from the sum. Although Eq. (17) includes
both summations and integrations, in the following we will

refer to Iðp; k0; ~kÞ in expressions for ξ0 as the integrand. A
practical rule summarizing the relation between the power
of the finite-volume corrections and the leading singularity
of the integrand at k ¼ 0 is as follows:

ξ0 ¼
Z

dk0
2π

 
1

L3

X
~k≠0

−
Z

d3k
ð2πÞ3

!
1

ðk2Þn=2 ¼ O

�
1

L4−n

�
;

ð18Þ
or

~ξ0 ¼
 

1

L3

X
~k≠0

−
Z

d3k
ð2πÞ3

!
1

ð~k2Þβ=2
¼ O

�
1

L3−β

�
: ð19Þ

Thus for example, if the integrand I in Eq. (17) has a term
which behaves as Oð1=k3Þ as k → 0, then the correspond-
ing FV corrections are of Oð1=LÞ. In Sec. VII we will
demonstrate the scaling rules in Eqs. (18) and (19)
explicitly for the integrals which appear in the one-loop
graphs for the leptonic decays of pseudoscalar mesons.
This includes the extension of previous applications to
contributions which depend on external three-momenta
and in particular on their directions (in our case this is the
momentum of the final-state lepton in the rest frame of the
meson). Up to the next-to-leading order at which we work,
these scaling rules hold with k being the momentum of
the photon. At higher orders, other regions of phase space
may contribute to power corrections in the volume;
these are still given by Eq. (18), but k is no longer the
momentum of the photon. An example is the contribution
toOð1=L3Þ corrections to the spectrum found by the BMW
Collaboration [12], which arises from the region of small k

where the photon’s momentum is written as ðmP þ k0; ~kÞ.
It is convenient to discuss the different Feynman dia-

grams within the framework of the skeleton expansion and
in terms of hadronic vertices and propagators and these are
sketched in Fig. 3. The full propagators and vertices are
defined explicitly in terms of correlation functions in the
Appendix; for the purposes of this section we can view
them as one-particle irreducible subgraphs. The amplitude
itself is obtained from the lattice computation of correlation
functions in QCDþ QED as described above. We now
discuss the strategy for the evaluation of the leading and
next-to-leading FV corrections; the detailed evaluation is
performed in Secs. VI and VII. The key observation,
already mentioned in the previous paragraph, is that (up
to this order) these effects are determined by the behavior of
the integrands as k → 0, where k is the momentum of the
photon. In order to calculate these FV effects, we need the
vertices in Fig. 3 for small photon-momenta k.
In their studies of the FV corrections to the hadronic

spectrum, the authors of Refs. [6,11,12] used the following
nonrelativistic effective theory of a charged (pseudo)scalar
particle interacting with soft photons:
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Lϕ ¼ ϕ†
�
iD0 þ

j ~Dj2
2mP

þ ehr2i
6

~∇ · ~Eþ 2π ~αEj~Ej2

þ 2π ~βEj~Bj2 þ � � �
�
ϕ: ð20Þ

In Eq. (20) ϕ represents the field of the pseudoscalar meson
P using the nonrelativistic normalization, Dμ ¼ ∂μ − ieAμ

is the covariant derivative, hr2i is the mean squared charged
radius of P and ~αE and ~βB are related to the electric and
magnetic polarizabilities of P. The terms proportional to
hr2i, ~αE and ~βB depend on the structure of P and so
additional information about these parameters is required if
the corresponding effects are to be included. These terms
all include two derivatives on the photon field, and hence
two powers of k in momentum space, and therefore only
enter at next-to-next-to-leading order at small k and are
therefore suppressed by two powers of 1=L. In this paper
we do not attempt to evaluate these corrections analytically,
but can envisage fitting the behavior numerically if neces-
sary or appropriate. The key point to notice is that the first
two terms on the right-hand side of Eq. (20), which include
zero or one derivative on the photon field, are universal;

i.e. they do not depend on the structure of P and can be
evaluated in perturbation theory for a pointlike charged
particle. A more formal discussion of this universality,
based on the QEDWard identities rather than relying on the
effective theory, is presented in the Appendix.
At this point we should stress the limitations of the

effective theory at Oð1=L3Þ. Consider a generic contribu-
tion which is nonsingular in the infrared. From the Poisson
summation formula one would expect the corresponding
FV effects to be suppressed exponentially in the volume.
In QEDL, however, the contribution from the zero mode
is removed and this leads to a 1=L3 effect which is not
captured by simple power counting. Since in this study
we limit our interest in FV corrections to Oð1=L2Þ for the
spectrum and Oð1=LÞ for matrix elements we are not
affected by this limitation.
We now illustrate the implications of the discussion in

this section, starting with the self-energy diagrams in
Figs. 3(b) and 3(c). In the discussion of the universality
of the FV corrections which follows, and in the explicit
calculations with a pointlike pseudoscalar meson, we will
always work in the Feynman gauge, although the results
are valid in any gauge.

A. FV corrections for the self-energy diagram

In order to set the context for our calculation of the FV
corrections to the decay amplitudewe start with a discussion
of the electromagnetic effects in the mass mP given by the
diagrams in Figs. 3(b) and Fig. 3(c) using the Feynman rules
from the Lagrangian in Eq. (20). In order to determine the
leading and next-to-leading FV corrections, we need to
determine the corresponding behavior of the integrand as
k → 0 in ξ0 ofEq. (18).Using the effective theory ofEq. (20),
we note that as k → 0 the scalar-photon vertex is Oð1Þ and
the scalar propagator is Oð1=kÞ. Combining this with the
photon propagator which is Oð1=k2Þ we see that n ¼ 3 in
Eq. (18) so that the leading FV correction is of Oð1=LÞ.
Similarly the NLO terms, which are still calculable from the
universal terms inEq. (20) areOð1=k2Þ, leading to FVeffects
of Oð1=L2Þ. The structure-dependent terms in Eq. (18) are
suppressed by two powers of k at small photonmomenta and
hence lead to n ¼ 1 in Eq. (18); their effects therefore only
appear at Oð1=L3Þ. The leading, Oð1=LÞ, and next-to-
leading, Oð1=L2Þ, FV corrections can therefore be calcu-
lated explicitly and for a (pseudo)scalar meson of charge q
give the result in Eq. (14).
In the Appendix we show explicitly that the Ward

identities of scalar QED are sufficient to demonstrate the
universality of the leading and next-to-leading FV correc-
tions. Once it is established that the two leading terms as
k → 0 are universal and independent of the structure of the
meson, they can be computed in one-loop perturbation
theory with a pointlike meson using relativistic scalar QED
or with the nonrelativistic theory. For the remainder of this

FIG. 3. Skeleton diagrams contributing at OðαÞ to Γ0 for the
decay P− → l−ν̄l. The thick black line represents the pseudo-
scalar meson and the broken green line represents the leptons.
The photon is represented by the wavy line. The vertices marked
Γ and W represent the coupling of the photon(s) to the meson or
weak Hamiltonian respectively. Their definitions are given in the
Appendix. The diagrams (a)–(g) are discussed in detail in the text
and in the Appendix.

FINITE-VOLUME QED CORRECTIONS TO DECAY … PHYSICAL REVIEW D 95, 034504 (2017)

034504-7



paper we perform the calculations in scalar QED, restrict-
ing the results, of course, to the universal terms.
When evaluating the contribution to the decay amplitude

from the wave-function renormalization of the pseudosca-
lar meson P there is an additional consideration. At OðαÞ
this is obtained from the coefficient of p2 of the one-loop
diagram in Fig. 3(b) evaluated on shell, i.e. at p2 ¼ m2

P.
This requires differentiating the integrand

ð2pþ kÞ2
ðk2 þ iεÞððpþ kÞ2 −m2

P þ iϵÞ ;

with respect to p2, where p is the momentum of the
external pseudoscalar meson, and subsequently going on
shell. In this way we recover the well-known infrared
divergent behavior, i.e. the leading behavior as k → 0
corresponds to n ¼ 4 in Eq. (18). This behavior is
universal, as are the next-to-leading corrections ofOð1=LÞ.
The structure-dependent terms in the effective theory now
contribute at Oð1=L2Þ; this is a general feature in the
computation of decay amplitudes. The main result of this
paper is the evaluation of the universal corrections up to
and including the Oð1=LÞ terms. Once these are subtracted
from the computed amplitudes, the remaining FV effects
are of Oð1=L2Þ.
Note that within the framework of the skeleton expan-

sion and electromagnetic Ward identities discussed in the
Appendix, the cancellation of the terms proportional to z1
in Secs. A 3 a and Secs. A 3 b demonstrates the universality
described in this section.

B. Universality of the FV corrections
to the remaining diagrams

The additional feature when evaluating the FV effects in
the remaining diagrams of Fig. 3 is the presence of the
hadronic weak vertex and hence the necessity to identify
the possible operators which can contribute to the current in
the scalar QED effective theory. The answer is particularly
simple; up to and including the Oð1=LÞ corrections only
the operator DμΦP contributes. This can be deduced from
the observation in the Appendix that the terms proportional
to f1 cancel [see Eqs. (A27) and (A28)]. Alternatively, by
using the commutation relations of the covariant derivatives
and the equations of motion, it can be shown that other
operators which may contribute at OðαÞ all contain the
electromagnetic field-strength tensor Fμν; one such oper-
ator is FμνDνΦPðxÞ. By power counting such operators
can be shown not to contribute up to, and including, the
Oð1=LÞ corrections. Since the corresponding weak vertices
contain at least one photon, they can only contribute to
diagrams in Figs. 3(e)–3(g). But at small k, the photon
propagator ∼1=k2, the meson or lepton propagator ∼1=k
and there is a factor of k from the derivative in Fμν. Thus the
leading behavior of the integrand at small k is Oð1=k2Þ,

corresponding to Oð1=L2Þ corrections which are beyond
the order we are studying in this paper. By the same power
counting we see that the diagram in Fig. 3(g) does not
contribute up to NLO.
We now have all the ingredients necessary to calculate

Γpt
0 ðLÞ and hence to determine the coefficients C0ðrlÞ,
~C0ðrlÞ, and C1ðrlÞ of Eq. (4). We have shown that we need
to evaluate the diagrams of Fig. 3 using scalar QED for
the vertices Γ and the propagators and the effective
weak Hamiltonian given in Eq. (21) below for the weak
verticesW. In the next section we calculate these diagrams,
presenting the results in terms of master integrals which are
subsequently evaluated in Sec. VII.

VI. CALCULATION OF Γpt
0 ðLÞ

FOR THE DECAY P− → l−ν̄l

In this section we describe the calculation of the
second term on the right-hand side of Eq. (15), Γpt

0 ðLÞ,
at OðαÞ. We start however, by briefly recalling the
calculation of Γpt

0 at Oðα0Þ, i.e. without electromagnetism.
In the following p, pl and pνl are the momenta of
the meson P, the charged lepton l and the neutrino ν̄l
respectively.

A. Calculation of Γpt
0 at Oðα0Þ

The effective Hamiltonian for the leptonic decay of a
charged pointlike pseudoscalar meson composed of
valence quarks with flavors i, j has the form

HPlνl ¼ −i
GFfPffiffiffi

2
p Vij½ð∂μ − ieAμÞΦP�½ψ̄lγμð1 − γ5Þψνl �

þ Hermitian conjugate: ð21Þ

Here ΦP represents the field of the meson and Vij is the
corresponding element of the CKM matrix. For compact-
ness of notation we have dropped the labels i, j from both
Φij

P and the decay constant fPij .
Without electromagnetic corrections we need to

compute the Feynman diagram of Fig. 3 (a), which is a
standard calculation. Since the leptonic terms are
factorized from the hadronic ones, the amplitude is simply
given by

Atree
0 ¼ i

GFfPffiffiffi
2

p Vijh0j∂νΦPjP−ðpÞi

× ½ūlðplÞγνð1 − γ5ÞvνlðpνlÞ� ð22Þ

¼ −
GFfPffiffiffi

2
p Vijpν½ūlðplÞγνð1 − γ5ÞvνlðpνlÞ�

¼ −
GFfPffiffiffi

2
p Vijml½ūlðplÞð1 − γ5ÞvνlðpνlÞ�; ð23Þ
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obtained by using the equations of motion and neglecting
the mass of the neutrino, so that

pν½ūlðplÞγνð1−γ5ÞvνlðpνlÞ�¼½ūlðplÞplð1−γ5ÞvνlðpνlÞ�
¼ml½ūlðplÞð1−γ5ÞvνlðpνlÞ�:

The decay width is then readily obtained by squaring the
amplitude A0 and integrating over the phase space,
leading to the result in Eq. (7).

For later convenience we write

Atree
0 ≡ −i

GFfPffiffiffi
2

p Vij × X0 ð24Þ

where X0 ¼ −iml½ūlðplÞð1 − γ5ÞvνlðpνlÞ�.

B. Calculation of Γpt
0 at OðαÞ: The crossed diagram

We now consider the one-photon exchange contributions
to the decay P− → l−ν̄l starting from the crossed diagram
in Fig. 3(d). In infinite volume this takes the form
ð−iGFVij=

ffiffiffi
2

p ÞX1 where

X1 ¼ −e2fP
Z

d4k
ð2πÞ4

ūlðplÞ½2p − k�½pl − kþml�½p − k�ð1 − γ5ÞvνlðpνlÞ
ðk2 þ iϵÞððp − kÞ2 −m2

P þ iϵÞððpl − kÞ2 −m2
l þ iϵÞ : ð25Þ

Using the equations of motion, the numerator N1¼ ½ūlðplÞ½2p−k�½pl−kþml�½p−k�ð1− γ5ÞvνlðpνlÞ� can be simplified
to N1 ¼ N11 þ N12 where

N11 ¼ mlūlðplÞð1 − γ5ÞvνlðpνlÞ½2ðp − kÞ2 þ ðpl − kÞ2 þm2
l�

¼ mlūlðplÞð1 − γ5ÞvνlðpνlÞ½2ððp − kÞ2 −m2
PÞ þ ððpl − kÞ2 −m2

lÞ þ 2ðm2
P þm2

lÞ�
N12 ¼ −ūlðplÞkð1 − γ5ÞvνlðpνlÞ½ððpl − kÞ2 −m2

lÞ þ 2m2
l�: ð26Þ

In a finite volume the momentum integration is replaced by a summation over the momenta which are allowed by the
boundary conditions. We introduce an infrared cutoff λ which will be useful in the intermediate steps of the calculation. We
envisage that λ ≪ 1=L, but otherwise the specific choice of λ is immaterial since the final result in a finite volume is
independent of λ in the limit λ → 0. We then write

XFV
1

e2fP
¼ −1

L3

Z
dk0
ð2πÞ

X
~k≠0

N11 þ N12

ðk2 − λ2 þ iϵÞððp − kÞ2 −m2
P − λ2 þ iϵÞððpl − kÞ2 −m2

l − λ2 þ iϵÞ : ð27Þ

The contribution from N11, which we write as XFV
11 , can readily be written as a multiplicative correction to the lowest-order

amplitude,

XFV
11

e2fP
¼ −iðS1 þ 2S2 þ 2ð1þ r2lÞS3Þ × X0; ð28Þ

where rl ¼ ml=mP and we have introduced the master integrals

S1 ¼
1

L3

Z
dk0
ð2πÞ

X
~k≠0

1

ðk20 − ~k2 − λ2 þ iϵÞððmP − k0Þ2 − ~k2 −m2
P − λ2 þ iϵÞ

S2 ¼
1

L3

Z
dk0
ð2πÞ

X
~k≠0

1

ðk20 − ~k2 − λ2 þ iϵÞððEl − k0Þ2 − ð~pl − ~kÞ2 −m2
l − λ2 þ iϵÞ

S3 ¼
m2

P

L3

Z
dk0
ð2πÞ

X
~k≠0

1

ðk20 − ~k2 − λ2 þ iϵÞððmP − k0Þ2 − ~k2 −m2
P − λ2 þ iϵÞ

×
1

ððEl − k0Þ2 − ð~pl − ~kÞ2 −m2
l − λ2 þ iϵÞ

: ð29Þ

In Eq. (29) and in the following the master integrals are all dimensionless.
The contribution of N12 is more difficult to evaluate, but we do not need its explicit form when evaluating the rate.

Convoluting this term with the (complex conjugate) of the lowest-order contribution we obtain a contribution to the decay
rate which is proportional to
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iml

L3

Z
dk0
ð2πÞ

X
~k≠0

Tr½ūlðplÞkð1 − γ5ÞvνlðpνlÞv̄νlðpνlÞð1þ γ5ÞulðplÞ�½ððpl − kÞ2 −m2
lÞ þ 2m2

l�
ðk2 − λ2 þ iϵÞððp − kÞ2 −m2

P − λ2 þ iϵÞððpl − kÞ2 −m2
l − λ2 þ iϵÞ

¼
�

2ir2l
1 − r2l

½S1 − S2� þ
i

1 − r2l
S4

�
jX0j2; ð30Þ

where

S4 ¼
1

L3

1

m2
P

Z
dk0
ð2πÞ

X
~k≠0

2pνl · k

ðk20 − ~k2 − λ2 þ iϵÞððmP − k0Þ2 − ~k2 −m2
P − λ2 þ iϵÞ

: ð31Þ

By combining together the results in Eqs. (28) and (30)
we obtain the effective correction to the lowest-order
amplitude

XFV
1

e2fP
¼ −i

�
1 − 3r2l
1 − r2l

S1 þ
2

1 − r2l
S2 þ 2ð1þ r2lÞS3

−
1

1 − r2l
S4

�
× X0: ð32Þ

The calculation and the explicit expressions of the
integrals Si can be found in Sec. VII. We now discuss
the remaining Feynman diagrams.

C. The rainbow diagrams

In this subsection we evaluate the diagrams in Figs. 3(e)
and 3(f). The expression for the diagram in Fig. 3(f), in
which the photon is emitted by the pion and absorbed by
the weak Hamiltonian, is given by

X2 ¼ e2fP

Z
d4k
ð2πÞ4

N21 þ N22

ðk2 þ iϵÞððp − kÞ2 −m2
P þ iϵÞ ; ð33Þ

where

N21 ¼ 2ml½ūlðplÞð1 − γ5ÞvνlðpνlÞ� and

N22 ¼ −½ūlðplÞkð1 − γ5ÞvνlðpνlÞ�: ð34Þ

In this way one obtains

XFV
2

e2fP
¼ i

�
2S1 −

1

1 − r2l
S4

�
× X0: ð35Þ

We now consider the diagram of Fig. 3(e) in which the
photon is emitted from the weak Hamiltonian and absorbed
by the charged lepton l:

X3¼ e2fP

Z
d4k
ð2πÞ4

N31þN32

ðk2þ iϵÞððpl−kÞ2−m2
lþ iϵÞ ; ð36Þ

where

N31 ¼ 2ml½ūlðplÞð1 − γ5ÞvνlðpνlÞ� and

N32 ¼ 2½ūlðplÞkð1 − γ5ÞvνlðpνlÞ�: ð37Þ

One then readily obtains

XFV
3

e2fP
¼ i

�
2S2 þ

2

1 − r2l
S5

�
× X0; ð38Þ

where S5 is a new integral and sum defined by

S5 ¼
1

L3

1

m2
P

Z
dk0
ð2πÞ

X
~k≠0

2pνl · k

ðk20 − ~k2 − λ2 þ iϵÞððEl − k0Þ2 − ð~pl − ~kÞ2 −m2
l − λ2 þ iϵÞ

: ð39Þ

D. Wave-function renormalization of the pseudoscalar
meson and charged lepton

The wave-function renormalization constant of the
pseudoscalar meson, ZP, is determined from the diagram
in Fig. 3(b) which is given by the expression

XP ¼ e2
Z

d4k
ð2πÞ4

ð2p − kÞ2
ðk2 þ iϵÞððp − kÞ2 −m2

P þ iϵÞ : ð40Þ

The renormalization constant ZP is given by
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ZP ¼ 1þ δZP ¼ 1þ i
∂XP

∂p2

				
p2¼m2

P

: ð41Þ

After performing the integration over k0, the result is
particularly simple,

δZP ¼ e2

2L3

X
~k≠0

1

ð~k2 þ λ2Þ3=2
; ð42Þ

where for convenience we have introduced the infrared
cutoff λ as in the previous cases. Here, as in the evaluation
of the master integrals in general [see Eqs. (51) and (52)]
we organize the calculation as follows:

e2

2L3

X
~k≠0

1

ð~k2 þ λ2Þ32
¼ e2

2

Z
d3k
ð2πÞ3

1

ð~k2 þ λ2Þ32
−

e2

2L3λ3

þ e2

2

�
1

L3

X
~k

−
Z

d3k
ð2πÞ3

�
1

ð~k2 þ λ2Þ32
ð43Þ

≡δZIV
P − ΔZP þ ξP: ð44Þ

The infinite-volume result δZIV
P is ultraviolet divergent

and must be regularized in the W-scheme

XP → XW
P ¼ e2

Z
d4k
ð2πÞ4

�
1

ðk2 þ iϵÞ −
1

ðk2 −M2
W þ iϵÞ

�

×
ð2p − kÞ2

ððp − kÞ2 −m2
P þ iϵÞ : ð45Þ

The result of the integration over k is

δZIV
P ¼ α

4π

�
2 log

M2
W

λ2
−
3

2

�
: ð46Þ

ξP is defined as

ξP ¼ e2

2

�
1

L3

X
~k

1

ð~k2 þ λ2Þ32
−
Z

d3k
ð2πÞ3

1

ð~k2 þ λ2Þ32

�
: ð47Þ

Using the techniques of Ref. [20] we find

ξP ¼ e2

2L3λ3
þ α

4π
ð2 logðL2λ2Þ − KPÞ; ð48Þ

where the numerical value of KP is KP ¼ 4.90754. The
explicit integral expression for ξP is given in Sec. VII E.
Note that the spatial zero mode is included in the sum in ξP
whereas it is not included in the definition of δZP in
Eq. (42). We therefore subtract this contribution explicitly;
this is the term −ΔZP ¼ −e2=ð2L3λ3Þ on the right-hand
side of Eq. (43).

Collecting all the terms together we obtain

δZP ¼ α

4π

�
2 log ½M2

WL
2� − KP −

3

2

�
: ð49Þ

In spite of the title of this subsection we do not need
to evaluate the wave-function renormalization constant
of the charged lepton l. As explained in Ref. [17], its
contribution simply cancels in the difference between the
perturbative and nonperturbative contributions to the
decay rate in Eq. (15).

VII. MASTER INTEGRALS IN A FINITE VOLUME

In this section we discuss the calculation of the master
integrals introduced in Sec. VI, including the universal
Oð1=LÞ FV corrections. In the standard calculation of the
FV corrections to the mass for a particle at rest, the loop
diagrams are independent of any external momenta. For
decay amplitudes, however, the calculation is made tech-
nically more challenging by the fact that, even for the initial
hadron at rest, the integrand depends on the direction of the
outgoing particles with respect to the axes of the finite box.
This results in the 1=L corrections also depending on this
direction.
Before evaluating each integral in turn, we explain the

general treatment of the infrared divergent terms and of the
FV corrections. We have already anticipated this procedure
in the evaluation of the wave-function renormalization of
the meson P in Sec. VI D. Using the Poisson summation
formula

1

L3

X
~k

fi½k0; ~k� ¼
X
~n

Z
d3k
ð2πÞ3 fi½k0;

~k�eiL~n·~k; ð50Þ

which is valid if the integrand fi½k0; ~k� does not have
singularities in the limit L → ∞, we decompose the master
integrals as follows:

Si ¼
1

L3

Z
dk0
ð2πÞ

X
~k≠0

fi½k0; ~k� ¼ SIVi − ΔSi þ ξi ð51Þ

¼
Z

d4k
ð2πÞ4 fi½k0;

~k� − 1

L3

Z
dk0
ð2πÞ fi½k0;

~0�

þ
X
~n≠0

Z
dk0
ð2πÞ

d3k
ð2πÞ3 fi½k0;

~k�eiL~n·~k: ð52Þ

The three terms in Eq. (52) correspond to the three terms on
the right-hand side of Eq. (51). SIVi is the infinite-volume
result which may have logarithmic ultraviolet or infrared
divergences. The ultraviolet divergences are eliminated
by the W regularization, as explained above, whereas the
infrared divergences are regulated by the introduction of λ.
The difference ξ for a general integrand I is defined as a
simple modification of ξ0 defined in Eq. (17) to include the
contribution from the spatial zero mode:

FINITE-VOLUME QED CORRECTIONS TO DECAY … PHYSICAL REVIEW D 95, 034504 (2017)

034504-11



ξ ¼
Z

dk0
2π

�
1

L3

X
~k

−
Z

d3k
ð2πÞ3

�
I½p; k0; ~k�: ð53Þ

In this section we evaluate the ξi (i ¼ 1–5) corresponding to
the Si defined in Sec. VI. The termΔSi accounts for the fact
that the spatial zero mode ~k ¼ ~0 is included in the sum in the
Poisson summation formula (50) but not in Eq. (51). The
differences ξi contain power divergences of the form 1=λn,
where n is a positive integer, which cancel those in ΔSi,
whereas the logarithmic divergences of the form log λ cancel
between ξi and SIVi . Thus the final result does not depend
on λ in the limit λ → 0. The logarithmic infrared divergence
appears instead as a logarithm of the volume, namely as
logðmPLÞ. There remain of course finite termswhich depend
on the infrared regularization, i.e. on the definition of the
photon propagator in finite volume (e.g. whether we use
QEDTL, QEDL or some other definition). As was shown in
Sec. V however, these terms are universal, in that they are
the same in the pointlike perturbative calculation and in the
nonperturbative computation of the hadronic amplitude in a
numerical simulation of QCD. Thus the dependence on the
regularization cancels in the finite difference of Eq. (15) and
only remains in the power-suppressed, nonuniversal FV
terms which go to zero as 1=L2 or faster, as L → ∞.
We now discuss the evaluation of the master integrals in

QEDL, starting with the most complicated one, S3, which
has three different denominators.

A. Calculation of S3
We begin the discussion of the master integrals with S3,

defined in Eq. (29) of Sec. VI because it contains all the main
features and difficulties of the FV calculations. Since the
infinite-volume integrals are straightforward to evaluate, we
use thePoisson summation formula to evaluate the difference
between S3 and the corresponding integral; i.e. we evaluate

ξ3 ¼ m2
P

Z
dk0
ð2πÞ

�
1

L3

X
~k

−
Z

d3k
ð2πÞ3

�

×
1

ðk20 − ~k2 − λ2 þ iϵÞððp − kÞ2 −m2
P − λ2 þ iϵÞ

×
1

ððEl − k0Þ2 − ð~pl − ~kÞ2 −m2
l − λ2 þ iϵÞ

ð54Þ

¼ 2m2
P

X
~n≠0

Z
1

0

dα
Z

1−α

0

dβ
Z

d4k
ð2πÞ4

×
eiL~n·~k

½ðk − αp − βplÞ2 − ðαpþ βplÞ2 − λ2 þ iϵ�3 ;

ð55Þ

where α, β are Feynman parameters. Note that since we use
the Poisson formula, it is ξ3 and not ξ03 which we evaluate

here; later we will subtract the spatial zero mode separately.
Changing integration variables, k → kþ αpþ βpl, and
performing the k0 integration we obtain

ξ3 ¼
−3im2

P

8

X
~n≠0

Z
1

0

dα
Z

1−α

0

dβ
Z

d3k
ð2πÞ3

×
eiLðβ~plþ~kÞ·~n

ð~k2 þ ðαpþ βplÞ2 þ λ2Þ52
; ð56Þ

where we have taken the meson P to be at rest, ~p ¼ 0. The
summation in Eq. (56) is over vectors of integers ~n, with
~n ≠ 0. We now observe explicitly the technical complication
mentioned above, namely the dependence of ξ3 on ~pl.
We proceed by generalizing the techniques developed in
Ref. [20] to such a case, noting that for positive X

1

X
5
2

¼ 1

Γð5
2
Þ
Z

∞

0

dtt
3
2e−tX; ð57Þ

and writing

ξ3 ¼ −
im2

P

2
ffiffiffi
π

p
X
~n≠0

Z
1

0

dα
Z

1−α

0

dβ

×
Z

∞

0

dt t
3
2eiLβ~pl·~ne−t½ðαpþβplÞ2þλ2�

Z
d3k
ð2πÞ3 e

−t~k2þiL~k·~n:

ð58Þ
The integrand has been manipulated so that the integration

over ~k is Gaussian and can readily be performed to
obtain

ξ3 ¼ −
im2

P

16π2
X
~n≠0

Z
1

0

dα
Z

1−α

0

dβ

×
Z

∞

0

dt eiLβ~pl·~ne−t½ðαpþβplÞ2þλ2�e−L2~n2=ð4tÞ: ð59Þ

The next step is to recognize that the sum over ~n can be
written in terms of the Jacobi elliptic theta function θ3:

θ3ðz; qÞ ¼ 1þ 2
X∞
n¼1

qn
2

cosð2nzÞ; ð60Þ

althoughwe find itmore convenient to present the calculation
and results in terms of

θðz; tÞ≡ θ3ðz; e−tÞ: ð61Þ
In terms of this θ function, ξ3 is given by

ξ3 ¼ −
im2

P

16π2

Z
1

0

dα
Z

1−α

0

dβ
Z

∞

0

dt e−t½ðαpþβplÞ2þλ2�

×

�Y3
i¼1

θ

�
Lβpi

l

2
;
L2

4t

�
− 1

�
ð62Þ
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¼ −
im2

P

64π3
L2

Z
1

0

dα
Z

1−α

0

dβ
Z

∞

0

dτ e−
L2τ
4π ½ðαpþβplÞ2þλ2�

×

�Y3
i¼1

θ

�
Lβpi

l

2
;
π

τ

�
− 1

�
; ð63Þ

where pi
l is the ith component of ~pl (i ¼ 1, 2, 3) and in

the last line we have changed the integration variable to
τ ¼ 4πt=L2. We aim to extract the L and λ dependences and
to do this we consider three separate contributions to the
right-hand side of Eq. (63).

(i) We start by considering the region τ < 1,
which gives an infrared convergent contribution
ξ31 ¼ i=ð16π2Þ × K31 with

K31 ¼ −
m2

P

4π

Z
∞

0

ρdρ
Z

1

0

dβ
Z

1

0

dt e−
tρ2ðð1−βÞm2

P
þβm2

l
Þ

4π

×

�Y3
j¼1

θ

�
ρβpj

l

2
;
π

t

�
− 1

�
; ð64Þ

up to exponentially small corrections in the volume.
In Eq. (64) we have introduced the variable
ρ ¼ αþ β and then rescaled it by L to absorb the
factors ofL2 in Eq. (63) and finally setL → ∞.K31 is
a finite number, which can readily be evaluated
numerically. Note that it depends not only on the
masses mP and ml but also on the orientation of the
momentum ~pl with respect to the axes of the lattice.

(ii) The region τ > 1 is split further into two contribu-
tions, starting with

ξ32 ¼
im2

P

64π3
L2

Z
1

0

dα
Z

1−α

0

dβ

×
Z

∞

1

dτ e−
L2τ
4π ½ðαpþβplÞ2þλ2�; ð65Þ

where we have taken the −1 term from the square
brackets in Eq. (63). It is possible to evaluate ξ32
analytically and we obtain (up to terms which vanish
exponentially with the volume)

ξ32 ¼
i

16π2

�
−

1

2ð1 − r2lÞ
log

m2
P

m2
l

�
γ þ log

L2λ2

4π

��
;

ð66Þ
where γ ≃ 0.577216 is Euler’s constant and
rl ¼ ml=mP.

(iii) Finally we have to evaluate ξ33, where

ξ33 ¼ −
im2

P

64π3
L2

Z
1

0

dα
Z

1−α

0

dβ

×
Z

∞

1

dτ e−
L2τ
4π ½ðαpþβplÞ2þλ2�Y3

i¼1

θ

�
Lβpi

l

2
;
π

τ

�
:

ð67Þ

Exploiting the Poisson summation formula for the
θ-function

θðz; tÞ ¼
�
π

t

�1
2

e−z
2=t θ

�
−iπz
t

;
π2

t

�
; ð68Þ

and changing variables to t ¼ 1=τ, ξ33 can be
rewritten as

ξ33 ¼ −
im2

P

64π3
L2

Z
1

0

dα
Z

1−α

0

dβ

×
Z

1

0

dt t−
7
2e− L2

4πt½β2 ~p2
lþðαpþβplÞ2þλ2�

×

�
1þ

�Y3
i¼1

θ

�
−i

Lβpi
l

2t
;
π

t

�
− 1

��
: ð69Þ

In writing Eq. (69) we have subtracted and added 1
on the second line. We will see that it is the first term
which contains the expected 1=λ3 contribution from
the spatial zero mode, whereas the second term is
finite and can be evaluated numerically. The first
term is

ξ331 ≡ −
im2

P

64π3
L2

Z
1

0

dα
Z

1−α

0

dβ

×
Z

1

0

dt t−
7
2e−

L2
4πt½β2 ~p2

lþðαpþβplÞ2þλ2�

¼ −
im2

P

64π3
L2

Z
1

0

ρdρ
Z

1

0

d~β

×
Z

∞

1

dt t
3
2e−

L2λ2
4π te−ρ

2tL
2

4π ½ ~β2 ~p2
lþðð1−~βÞpþ~βplÞ2�;

ð70Þ
where we have changed integration variables from t
to 1=t and from α, β to ρ ¼ αþ β and ~β ¼ β=ρ.
The ρ integration can now be performed to give

ξ331 ¼ −
im2

P

32π2

Z
1

0

dβ
Z

∞

1

dt t
1
2e−

L2λ2
4π t

×
1 − e−

tL2
4π ½β2 ~p2

lþðð1−βÞpþβplÞ2�

½β2 ~p2
l þ ðð1 − βÞpþ βplÞ2�

; ð71Þ

where we have dropped the tilde on the integration
variable β. The second term in the numerator of
Eq. (71) gives a contribution which is exponentially
suppressed in the volume, so that

ξ331 ¼ −
im2

P

32π2

Z
1

0

dβ
Z

∞

1

dt t
1
2e−

L2λ2
4π t

×
1

½β2 ~p2
l þ ðð1 − βÞpþ βplÞ2�

: ð72Þ

The infrared cutoff λ is needed in Eq. (72) to regulate
the integration over twhich can be performed to give
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ξ331 ¼ −
im2

P

32π2

�
4π2

L3λ3
−
2

3

� Z
1

0

dβ

×
1

β2~p2
l þ ð1 − βÞm2

P þ βm2
l
; ð73Þ

where we have noted that ðp − plÞ2 ¼ p2
νl ¼ 0.

The β integration can also be performed,Z
1

0

dβ
1

β2 ~p2
l þ ð1 − βÞm2

P þ βm2
l
¼ 1

ElmP
; ð74Þ

where El is the energy of the charged lepton l, so
that finally

ξ331 ¼ −
imP

8El

1

L3λ3
þ imP

48π2El
: ð75Þ

We now return to Eq. (69) and evaluate the second term
in the braces,

ξ332 ¼ −
im2

P

64π3
L2

Z
1

0

dα
Z

1−α

0

dβ

×
Z

1

0

dt t−
7
2e−

L2
4πt½β2 ~p2

lþðαpþβplÞ2þλ2�

×

�Y3
i¼1

θ

�
−i

Lβpi
l

2t
;
π

t

�
− 1

�
ð76Þ

¼ −
im2

P

64π3
L2

Z
1

0

ρdρ
Z

1

0

dβ
Z

1

0

dt t−
7
2e−

ρ2L2

4πt ½β2 ~p2
lþð1−βÞm2

Pþβm2
l�

×

�Y3
i¼1

θ

�
−i

Lρβpi
l

2t
;
π

t

�
− 1

�
ð77Þ

¼ i
16π2

K32; ð78Þ

where

K32 ¼ −
m2

P

4π

Z
∞

0

ρdρ
Z

1

0

dβ
Z

1

0

dt t−
7
2e−

ρ2

4πt½β2 ~p2
lþð1−βÞm2

Pþβm2
l�

×

�Y3
i¼1

θ

�
−i

ρβpi
l

2t
;
π

t

�
− 1

�
: ð79Þ

The integral over t is infrared finite and so we have set
λ ¼ 0 in Eq. (77) and have also taken L → ∞ in Eq. (78).
K32 can be evaluated numerically and again depends on the
direction of the lepton’s momentum. This completes our
calculation of ξ33 ¼ ξ331 þ ξ332.
This also completes our calculation of ξ3. Collecting

the results from Eqs. (64), (66), (75) and (78) the
result is

ξ3 ¼ ξ31 þ ξ32 þ ξ331 þ ξ332

¼ −
imP

8El

1

L3λ3
þ i
16π2

�
mP

3El

−
1

2ð1 − r2lÞ
log

m2
P

m2
l

�
γ þ log

L2λ2

4π

�
þ K31 þ K32

�
;

ð80Þ
where the expressions for the L and λ independent con-
stants K31 and K32 can be found in Eqs. (64) and (79)
respectively.
In order to obtain S3, in addition to ξ3 we need to

determine SIV3 and ΔS3 [see Eq. (51)]. SIV3 is the corre-
sponding IV integral which can be evaluated using standard
perturbative techniques:

SIV3 ¼ m2
P

Z
d4k
ð2πÞ4

1

½k2 − λ2 þ iϵ�½ðp − kÞ2 −m2
P − λ2 þ iϵ�½ðpl − kÞ2 −m2

l − λ2 þ iϵ�

¼ i
16π2

�
1

4ð1 − r2lÞ
log

m2
P

m2
l

�
−2 log

m2
P

λ2
þ log

m2
P

m2
l

��
: ð81Þ

Since S3 has no ultraviolet divergences, the terms obtained
by subtracting the 1=ðk2 −M2

WÞ term in the W-regularized
photon propagator are suppressed by a factor of 1=M2

W and
can be neglected.
The contribution from the spatial zero mode only

requires an integration over k0 and is

ΔS3 ¼ −i
mP

8El

1

L3λ3
: ð82Þ

The sum S3 is then given by

S3 ¼ SIV3 − ΔS3 þ ξ3

¼ i
16π2

�
2

3ð1þ r2lÞ

þ 1

4ð1 − r2lÞ
log r2l

�
2γ þ 2 log

L2m2
P

4π
þ log r2l

�

þ K31 þ K32

�
; ð83Þ

where we have replaced El by mPð1þ r2lÞ=2. The depend-
ence on λ has disappeared as anticipated. The 1=λ3 term in
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ξ3 [see Eq. (80)] is simply the term from the spatial zero
mode and is indeed canceled by ΔS3, whereas the log λ2

terms cancel between ξ3 and SIV3 .

B. Calculation of S1
In the calculation of S1 defined in Eq. (29) we follow the

same steps as for S3 in Sec. VII A with the simplification
that in this case we only have two propagators instead
of three. On the other hand, this integral is ultraviolet
divergent and must be regularized:

SW1 ¼ 1

L3

Z
dk0
ð2πÞ

X
~k≠0

�
1

ðk2 − λ2 þ iϵÞ −
1

ðk2 −M2
W þ iϵÞ

�

×
1

ððp − kÞ2 −m2
P − λ2 þ iϵÞ : ð84Þ

We find

ΔS1 ¼
i

4mPλ
2L3

SW;IV
1 ¼ i

16π2

�
log

M2
W

m2
P
þ 1

�

ξ1 ¼
i

4mP

�
1

L3λ2
þ 1

4πL
ðK11 þ K12 − 3Þ

�
; ð85Þ

where K11 ≃ 0.0765331 and K12 ≃ 0.0861695 are
mass-independent dimensionless constants which are
defined in Eq. (92). Collecting these terms together
we obtain

S1 ¼
i

16π2

�
log

M2
W

m2
P
þ 1þ π

mPL
ðK11 þ K12 − 3Þ

�
:

ð86Þ

C. Calculation of S2
The calculation of S2, defined in Eq. (29), is similar to

that of S1. The integral is ultraviolet divergent and must be
regularized:

SW2 ¼ 1

L3

Z
dk0
ð2πÞ

X
~k≠0

�
1

ðk2 − λ2 þ iϵÞ −
1

ðk2 −M2
W þ iϵÞ

�

×
1

ððpl − kÞ2 −m2
l − λ2 þ iϵÞ : ð87Þ

We find

ΔS2 ¼
i

4Elλ
2L3

SW;IV
2 ¼ i

16π2

�
log

M2
W

m2
l
þ1

�

ξ2 ¼
i

4El

�
1

L3λ2
þ El

4π2mPL

�
K21þK22−

2π

rl
−

2π

1þ r2l

��
;

ð88Þ

where the constants K21 and K22, which are dimensionless,
are given in Eq. (92). Note that K21 and K22 depend on the
direction of the lepton’s momentum ~pl with respect to the
axes of the lattice. Collecting together the terms in Eq. (88)
we obtain

S2¼
i

16π2

�
log

M2
W

m2
l
þ1þ 1

mPL

�
K21þK22−

2π

rl
−

2π

1þr2l

��
:

ð89Þ

D. Calculation of S4 and S5
Finally we come to S4 and S5 defined in Eqs. (31)

and (39) respectively. The corresponding integrands
∼1=k2 as k → 0 and so by the rule in Eq. (18) we
deduce that the leading FV corrections are Oð1=L2Þ
which we neglect in this paper because there are
nonuniversal corrections of the same order. Thus S4
and S5 are simply given by the corresponding infinite-
volume integrals:

S4 ¼
1

m2
P

Z
d4k
ð2πÞ4

2pνl · k

ðk2 þ iϵÞððp − kÞ2 −m2
P þ iϵÞ

¼ ið1 − r2lÞ
16π2

�
1

2
log

M2
W

m2
P
−
1

4

�
ð90Þ

S5 ¼
1

m2
P

Z
d4k
ð2πÞ4

2pνl · k

ðk2 þ iϵÞððpl − kÞ2 −m2
l þ iϵÞ

¼ ið1 − r2lÞ
16π2

�
1

2
log

M2
W

m2
l
−
1

4

�
: ð91Þ

We note from Eqs. (32), (35) and (38) that S4 and S5
enter in the expressions for the diagrams with a factor
of 1=ð1− r2lÞ, canceling the corresponding factors in
Eqs. (90) and (91).

E. The auxiliary constants Kij

We present here the explicit expressions for the real
constants Kij appearing in the expressions of the master
integrals S1–S5 [the θ-function is defined in Eqs. (60)
and (61)]:
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K11 ¼
Z

1

0

dtt−
3
2

�
θ3
�
0;
π

t

�
− 1

�
≃ 0.0765331;

K12 ¼
Z

1

0

dtt−2
�
θ3
�
0;
π

t

�
− 1

�
≃ 0.0861695;

K21 ¼
Z

1

0

dt
t

Z
∞

0

dβe−
tβ2r2

l
4π

�Y3
j¼1

θ

�
βpl;j

2mP
;
π

t

�
− 1

�
;

K22 ¼
Z

1

0

dtt−
5
2

Z
∞

0

dβe
−

β2E2
l

4πm2
P
t

�Y3
j¼1

θ

�
−iβpl;j

2mPt
;
π

t

�
− 1

�
;

K31 ¼ −
m2

P

4π

Z
∞

0

ρdρ
Z

1

0

dβ
Z

1

0

dte−
tρ2ðð1−βÞm2

P
þβm2

l
Þ

4π

�Y3
j¼1

θ

�
ρβpj

l

2
;
π

t

�
− 1

�
;

K32 ¼ −
m2

P

4π

Z
∞

0

ρdρ
Z

1

0

dβ
Z

1

0

dtt−
7
2e−

ρ2

4πt½β2 ~p2
lþð1−βÞm2

Pþβm2
l�
�Y3

i¼1

θ

�
−i

ρβpi
l

2t
;
π

t

�
− 1

�
: ð92Þ

The separate appearance of Ki1 and Ki2 (i ¼ 1, 2, 3) is a
consequence of how we chose to organize the calculation;
for example in the evaluation of ξ3 we split the integration
over τ in Eq. (63) into contributions from τ < 1 and τ > 1
with K31 coming from the first region and K32 from the
second.
For illustration, and to enable further checks of our

conventions by the reader, in Table I we present the
values of the constants for mP ¼ mπ ¼ 139.57018 MeV,
ml ¼ mμ ¼ 105.65837 MeV so that j~plj ¼ 29.792 MeV.
We present the results for two different choices of the
direction of ~pμ. The first choice corresponds to the muon
moving parallel to one of the axes of the finite box,
~pμ ¼ pμð0; 0; 1Þ, and the second has it moving diagonally
across the box, ~pμ ¼ pμð 1ffiffi

3
p ; 1ffiffi

3
p ; 1ffiffi

3
p Þ.

For completeness we also give the expression for ξP
from Eq. (48):

ξP ¼ e2

8π2

�
α

�
3

2

�
− βð0Þ þ β

�
3

2

��
ð93Þ

where we are using the notation of Ref. [20],

αðsÞ ¼
Z

1

0

dτðτs−5
2 þ τ−s−1Þ

�
θ3
�
0;
π

t

�
− 1

�
and ð94Þ

βðsÞ ¼
Z

∞

1

dt ts−1e−
λ2L2
4π t: ð95Þ

VIII. FINAL RESULT, SUMMARY
AND CONCLUSIONS

We start this section by presenting our final result for
Γpt
0 ðLÞ in QEDL at OðαÞ. This requires the evaluation of

XFV
1 þ XFV

2 þ XFV
3 which, using Eqs. (32), (35) and (38),

we write in terms of the master integrals S1–S5 computed in
Sec. VII:

1

e2fP
fXFV

1 þ XFV
2 þ XFV

3 g ¼ i
1þ r2l
1 − r2l

S1 −
2ir2l
1 − r2l

S2

− 2ið1þ r2lÞS3 þ
2i

1 − r2l
S5:

ð96Þ
Writing the width in the pointlike theory up to OðαÞ and
including FV corrections as

Γpt
0 ðLÞ ¼ Γtree

0

�
1þ 2

α

4π
YðLÞ

�
; ð97Þ

inserting the expressions for the master integrals from
Sec. VII into the result for XFV

1 þ XFV
2 þ XFV

3 in Eq. (96)
and adding the contribution from the wave-function
renormalization of P in Eq. (49) we find

YðLÞ ¼ ð1þ r2lÞ
�
2ðK31 þ K32Þ þ

ðγE þ log½L2m2
P

4π �Þ log½r2l�
ð1 − r2lÞ

þ log2½r2l�
2ð1 − r2lÞ

�

þ ð1 − 3r2lÞ log½r2l�
ð1 − r2lÞ

− log

�
M2

W

m2
P

�
þ log½m2

PL
2� − 1

2
KP þ 1

12

þ 1

mPL

�
2r2l

1 − r2l

�
K21 þ K22 − 2π

�
1

1þ r2l
þ 1

rl

��
−
πð1þ r2lÞ
ð1 − r2lÞ

ðK11 þ K12 − 3Þ
�
; ð98Þ
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which is the central analytic result of our paper. In writing
the expression in Eq. (98) we have replaced the energy El

by mPð1þ r2lÞ=2 (where rl ¼ ml=mP). Note that in this
expression we did not include the contribution of the lepton
wave-function renormalization which is also not computed
in Γ0ðLÞ since it cancels exactly in the difference
Γ0ðLÞ − Γpt

0 ðLÞ [17].
The strategy for the nonperturbative evaluation of decay

widths including OðαÞ electromagnetic corrections which
was proposed in Ref. [17], combined with the new result
for Γpt

0 ðLÞ in Eq. (98), can now be implemented to obtain
leptonic decay widths of pseudoscalar mesons in which the
leading FV corrections are of Oð1=L2Þ. (A demonstration
of the feasibility of the method in an exploratory numerical
simulation has recently been presented [22].) The terms
exhibited on the right-hand side of Eq. (4), i.e. those
proportional to logðmPLÞ, the finite terms (which depend
on the choice of QEDL as the regulator of the momentum
zero mode) and the Oð1=LÞ corrections, all cancel in the
difference Γ0ðLÞ − Γpt

0 ðLÞ in Eq. (2). The remaining,
nonuniversal, Oð1=L2Þ FV effects are milder and can be
determined by performing simulations on different volumes
and fitting the observed volume dependence.
In order to get to this conclusion we have had to

demonstrate that the volume-dependent finite and the
Oð1=LÞ contributions to Γpt

0 ðLÞ are universal and can
therefore be computed for a pointlike pseudoscalar meson
and with the effective weak Hamiltonian simply given by
Eq. (21). This demonstration was sketched in the context
of the effective theory in Sec. V and presented in detail
using the skeleton expansion in the Appendix.
Our work has close parallels to the studies of electro-

magnetic corrections to the spectrum [3,4,6,8,11,12,19]
where the leading [in that caseOð1=LÞ] and next-to-leading
[Oð1=L2Þ] FV corrections are universal. In our case it is the
coefficientsC0ðrlÞ; ~C0ðrlÞ, andC1ðrlÞ of Eq. (4) which are
universal and which are obtained from Eq. (98).
In addition to the electromagnetic corrections studied in

this paper, one also needs to account for comparable isospin-
breaking effects due to the difference in the up- and down-
quark masses. This is a technical complication, rather than a
conceptual issue and we have not discussed it in this paper.

Although the explicit expression presented in Eq. (98)
corresponds to the leptonic decay of pseudoscalar mesons,
the methods developed in Ref. [17] for the handling of
infrared divergences and extended in this paper to evaluate
the leading and next-to-leading FV corrections can be
generalized to other decay processes, most notably to
semileptonic decays. We envisage that this will lead to a
significant improvement in the precision of flavor physics.

ACKNOWLEDGMENTS

We are particularly grateful to Z. Davoudi, L. Del Debbio
and A. Patella for helpful discussions on finite-volume
corrections. Work was partially supported by the
European Research Council ERC-2010 DaMESyFla Grant
No. 267985, by theMinistero dell’Istruzione, dell’Università
e della Ricerca (Italy) under Contract No. PRIN10 and by
Science and Technology Facilities Council Grant No. ST/
L000296/1.

APPENDIX: UNIVERSALITY AND THE
SKELETON EXPANSION

In this appendix we demonstrate the universality of the
leading and next-to-leading FV effects through the use of
the skeleton expansion and the Ward identities of electro-
magnetism. The discussion will also clarify the precise
meaning of the diagrams of Fig. 3. The discussion in this
appendix is presented in Euclidean space; the translation
between the Minkowski and Euclidean results is standard
and straightforward.

1. Elements of the skeleton expansion

We now discuss each of the elements of the skeleton
expansion as illustrated in Fig. 3, starting with the propa-
gator of the meson P. We stress that all the correlation
functions discussed in this subsection are defined in QCD
and only have exponentially suppressed FV corrections. It
is from these correlation functions that the meson propa-
gator and the vertices in Fig. 3 are defined. The finite-
volume effects atOðαÞ are then obtained from the diagrams
in Fig. 3 (see Sec. A 3 below). These diagrams, of course,
do include a photon propagator coupled to the vertices.

a. The meson propagator

We define the two-point correlation function

CPPðpÞ≡
Z

d4xe−ip·xh0jTfϕPðxÞϕ†
Pð0Þgj0i; ðA1Þ

where ϕP is an interpolating operator for the mesonP and T
represents time ordering. The propagator is then defined by

ΔðpÞ ¼ CPPðpÞ
jh0jϕPð0ÞjPð~pÞij2

; ðA2Þ

TABLE I. Table of constants from Eq. (92) with mP ¼ mπ ¼
139.57018 MeV and ml ¼ mμ ¼ 105.65837 MeV. The magni-
tude of the muon’s momentum, pμ, is 29.792 MeV. The results
are given for two choices of the direction of ~pμ. All the constants
are dimensionless.

~pl ¼ ð0; 0; pμÞ ~pl ¼ ðpμffiffi
3

p ; pμffiffi
3

p ; pμffiffi
3

p Þ
K21 0.287604 0.284579
K22 0.386806 0.382743
K31 −0.0419072 −0.0416890
K32 −0.0674713 −0.0670583
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where jPð~pÞi is the state of the meson P with three-
momentum ~p. It is assumed thatP is the lightest state which
can be created by ϕ†

P. The denominator on the right-hand
side of Eq. (A2) is obtained in the standard way from the
two-point correlation function in Eq. (A1) without inte-
grating over the time and at sufficiently large times so that
only the ground-state P contributes.
Inserting a complete set of states jnð~pÞi between the two

operators in Eq. (A1) and performing the integration over x
we obtain the following expression for the propagator,

ΔðpÞ≡ ZðpÞ
p2 þm2

P

¼ 1

p2 þm2
P

�
1þ p2 þm2

P

jh0jϕPð0ÞjPð~pÞij2

×
X
n≠P

jh0jϕPð0Þjnð~pÞij2
p2 þ E2

nð0Þ
�
; ðA3Þ

where for the excited state we have used

E2
nð~pÞ ¼ E2

nð~0Þ þ ~p2. In Eq. (A3) mP is the mass of the
meson in QCD; its physical mass will be modified at OðαÞ
as explained in Sec. A 3 a below. The second term in the
braces in Eq. (A3) contains the effects of the excited states
and vanishes on shell, i.e. as p2 → −m2

P.

b. The meson-photon vertex

The coupling of the charged meson to a single photon,
denoted by Γ in diagrams (b), (d) and (f) of Fig. 3 is defined
in terms of the three-point correlation function

Cμðp;kÞ¼ i
Z

d4xd4ye−ip·y−ik·xh0jTfϕPðyÞjμðxÞϕ†
Pð0Þgj0i

ðA4Þ

as follows:

Γμðp; kÞ ¼ Δ−1ðpþ kÞ Cμðp; kÞ
jh0jϕPð0ÞjPð~pÞij2

Δ−1ðpÞ: ðA5Þ

In Eq. (A4) jμ is the electromagnetic current.
Of particular importance in the following will be the

electromagnetic Ward identities. Under the infinitesimal
gauge transformation qfðxÞ → eiqfλðxÞqfðxÞ, q̄fðxÞ →
q̄fðxÞe−iqfλðxÞ on the quark fields of flavor f, the operators
in Cμ in Eq. (A4) transform as follows:

ϕPðyÞ → f1þ iλðyÞgϕPðyÞ;
ϕ†
Pð0Þ → f1 − iλð0Þgϕ†

Pð0Þ and jμðxÞ → jμðxÞ; ðA6Þ

and the QCD action transforms as S → S−
i
R
d4x λðxÞð∂μjμðxÞÞ. From the generic nonanomalous

Ward identity for a multilocal operator O:

h0jT
�

δS
δλðxÞO

�
j0i ¼ h0jT

�
δO
δλðxÞ

�
j0i; ðA7Þ

we obtain

kμCμðp; kÞ ¼
Z

d4ye−ip·y−ik·xh0jTfϕPðyÞϕ†
Pð0Þgj0i

× fδðxÞ − δðx − yÞg
¼ CPPðpÞ − CPPðpþ kÞ: ðA8Þ

The result in Eq. (A8) is readily rewritten in terms of the
meson-photon vertex and propagators as

kμΓμðp; kÞ ¼ Δ−1ðpþ kÞ − Δ−1ðpÞ: ðA9Þ

c. The meson-two-photon vertex

At OðαÞ we also need to consider the meson-two-photon
vertex in diagram (c) in Fig. 3. This is defined from the
four-point correlation function

Cμνðp; k; qÞ ¼ −
Z

d4x d4y d4ze−ip·z−ik·x−iq·y

× h0jTfϕPðzÞjμðxÞjνðyÞϕ†
Pð0Þgj0i ðA10Þ

as follows:

Γμνðp; k; qÞ ¼ Δ−1ðpþ kþ qÞ Cμνðp; k; qÞ
jh0jϕPð0ÞjPð~pÞij2

Δ−1ðpÞ

− Γμðp; kÞΔðpþ kÞΓνðpþ k; qÞ
− Γμðp; qÞΔðpþ qÞΓνðpþ q; kÞ: ðA11Þ

The Ward identities for this vertex can be derived as in
Sec. 1 b and give

kμΓμνðp; k; qÞ ¼ Γνðp; qÞ − Γνðpþ k; qÞ
kμqνΓμνðp; k; qÞ ¼ Δ−1ðpþ kÞ þ Δ−1ðpþ qÞ

− Δ−1ðpþ kþ qÞ − Δ−1ðpÞ: ðA12Þ

d. The weak vertex

For the calculation of the decay amplitude at OðαÞ we
also need to consider the proper vertices of the weak quark
current with zero, one or two photons, denoted byW in the
diagrams of Fig. 3. We start here with the vertex with no
photons, which is obtained from the correlation function

Cρ
WðpÞ ¼

Z
d4xe−ip·xh0jTfJρWðxÞϕ†

Pð0Þgj0i; ðA13Þ

where the weak current JρW ¼ q̄1γρð1 − γ5Þq2 and q1;2 are
the fields of the valence quarks of the meson P. The weak
vertex WρðpÞ is then defined by

WρðpÞ ¼ Δ−1ðpÞ Cρ
WðpÞ

hPð~0Þjϕ†
Pð0Þj0i

: ðA14Þ
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It will be useful to define Fðp2Þ by WρðpÞ ¼ −pρFðp2Þ,
and the leptonic decay constant fP is defined in the
standard way by Fð−m2

PÞ ¼ fP. We now consider the
vertices with one or two photons and derive the corre-
sponding Ward identities.

e. The weak vertex with a single photon

The weak vertex with a single photon Wμρðp; kÞ, which
is an element in diagrams (e) and (f) of Fig. 3, is defined
from the three-point correlation function

Cμρ
W ðp;kÞ¼i

Z
d4xd4ye−ip·y−ik·xh0jTfJρWðyÞjμðxÞϕ†

Pð0Þgj0i

ðA15Þ

as follows:

Wμρðp; kÞ ¼ Δ−1ðpÞ Cμρ
W ðp; kÞ

hPð~0Þjϕ†
Pð0Þj0i

−Wρðpþ kÞΔðpþ kÞΓμðp; kÞ: ðA16Þ
It satisfies the Ward identity

kμWμρðp; kÞ ¼ WρðpÞ −Wρðpþ kÞ: ðA17Þ

f. The weak vertex with two photons

The final element which we require is the weak vertex
with two photons Wμνρðp; k; qÞ [see diagram (g) in Fig. 3]
which is obtained from the four-point function:

Cμνρ
W ðp; k; qÞ ¼ −

Z
d4x d4y d4ze−ip·z−ik·x−iq·y

× h0jTfJρWðzÞjμðxÞjνðyÞϕ†
Pð0Þgj0i:

ðA18Þ
The vertex Wμνρðp; k; qÞ is defined by

Wμνρðp;k;qÞ ¼Δ−1ðpÞ Cμνρ
W ðp;k;qÞ

hPð~0Þjϕ†
Pð0Þj0i

− 2Wρðpþ kþqÞΔðpþ kþqÞΛμνðp;k;qÞ
−Wμρðpþq;kÞΔðpþqÞΓνðp;qÞ
−Wνρðpþ k;qÞΔðpþ kÞΓνðp;kÞ; ðA19Þ

where

2Λμνðp;k;qÞ¼Γμνðp;k;qÞþΓμðp;kÞΔðpþkÞΓνðpþk;qÞ
þΓνðp;qÞΔðpþqÞΓμðpþq;kÞ: ðA20Þ

The corresponding Ward identities are now

kμWμνρðp; k; qÞ ¼ Wνρðp; qÞ −Wνρðpþ k; qÞ
kμqνWμνρðp; k; qÞ ¼ Wρðpþ kÞ þWρðpþ qÞ

−WρðpÞ −Wρðpþ kþ qÞ: ðA21Þ

This completes the discussion of the elements which enter
into the skeleton expansion and the corresponding Ward
identities.

2. The Ward identities at small photon momenta

In this subsection we investigate the consequences of the
Ward identities in Eqs. (A9), (A12), (A17) and (A21) on
the structure of the vertices at low photon momenta. We
start however, with a discussion of the meson propagator
Δðpþ kÞ . In order to determine the wave-function
renormalization we need to perform a double expansion
of Δðpþ kÞ in ϵ2 ≡ p2 þm2

P and k, leading to

Δ−1ðpþ kÞ ¼ 2p · kþ k2 þ 4z1ðp · kÞ2
þ ϵ2f1þ 2z1ð2p · kþ k2Þ þ 6z2ðp · kÞ2g
þOðk3; ϵ4Þ ðA22Þ

where

zn ¼
dn

dðp2Þn Z
−1ðp2Þjp2¼−m2

P
ðA23Þ

and Zðp2Þ is given in Eq. (A3), or equivalently

Δðpþ kÞ ¼ 1 − 2z1p · k − ϵ2z1 þOðk2; ϵ4; ϵ2kÞ
ϵ2 þ 2p · kþ k2

: ðA24Þ

The terms which are not exhibited explicitly in Eq. (A24)
are not needed for the eventual evaluation of on-shell
matrix elements or for the calculation of the leading and
next-to-leading FV effects as explained in Sec. V.
The Ward identity in Eq. (A9) constrains the vertex

Γμðp; kÞ to take the following form at low photon
momenta k:

Γμðp; kÞ ¼ ð2pþ kÞμ þ 4z1pμp · kþ 4z1ϵ2pμ

þOðk2; ϵ4; ϵ2kÞ: ðA25Þ

Similarly in diagram (c) of Fig. 3 we need Γμνðp; k;−kÞ
which is constrained by the Ward identity in Eq. (A12) to
take the form

Γμνðp; k;−kÞ ¼ −2δμν − 8z1pμpν þOðk; ϵ2Þ: ðA26Þ

The weak vertices with one or two photons are similarly
constrained by the Ward identities in Eqs. (A17) and
Eqs. (A21) to take the form

Wμρðp; kÞ ¼ fPðδμρ þ 2f1pμpρÞ þOðk; ϵ2Þ
Wμνρðp; k;−kÞ ¼ Oðk0; ϵ2Þ; ðA27Þ

where the fn are the derivatives of Fðp2Þ (defined in
Sec. A 1 d)
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fn ≡ 1

fP

dn

dðp2Þn Fðp
2Þjp2¼−m2

P
: ðA28Þ

The terms in the vertices which are not exhibited explicitly
do not contribute to the leading or next-to-leading FV
corrections.

3. Universality of leading and next-to-leading FV effects

We now use the vertices above to demonstrate that the
leading and next-to-leading FVeffects are universal and can
be obtained from the calculation of one-loop scalar QED
diagrams with pointlike charged mesons. Eventually we
wish to evaluate the ξ0 of Eq. (17) corresponding to the
diagrams of Fig. 3. Even though the evaluation of the ξ0
involves both integrals and sums, for conciseness of the
terminology for the remainder of this section we will refer
simply to integrals and integrands.

a. FV effects in the meson mass

We start the discussion with the OðαÞ corrections to the
meson mass, i.e. the calculation of the diagrams (b) and
(c) in Fig. 3 at p2 ¼ −m2

P. The leading behavior as k → 0

of the integrand in diagram (b) is Oð1=k3Þ, corresponding
to an Oð 1

mPL
Þ FV correction. The integrand is

Γμðp; kÞΔðpþ kÞΓμðpþ k;−kÞΔγðk2Þ

¼ Δγðk2Þ
4ð−m2

P þ p · kÞ − 8z1m2
Pp · k

2p · kþ k2
þO

�
1

k

�

¼ Δγðk2Þ
�
4ð−m2

P þ p · kÞ
2p · kþ k2

− 4z1m2
P

�
þO

�
1

k

�
;

ðA29Þ

where Δγðk2Þ ¼ 1=k2 is the photon propagator in the
Feynman gauge. The first term in the braces in Eq. (A29)
is the one we would obtain in the pointlike theory.
We now determine the integrand in diagram (c). Taking

the vertex Γμν from Eq. (A26) this gives

Δγðk2Þð−4þ 4z1m2
PÞ: ðA30Þ

Adding the contributions from diagram (b) in Eq. (A29)
and from diagram (c) in Eq. (A30) we see that the terms
proportional to z1 cancel and the total is precisely that of the
pointlike theory so that the electromagnetic shift in the
mass is given by the integral over

δm2
P ¼ Δγðk2Þ

4m2
P þ 4p · kþOðk2Þ
2p · kþ k2

: ðA31Þ

b. FV effects in the wave-function renormalization

We combine the integrands of diagrams in Fig. 3(b)
and (c) to define

Σðp; kÞ ¼ Δγðk2Þ
�
Γμðp; kÞΔðpþ kÞΓμðpþ k;−kÞ

þ 1

2
Γμμðp; k;−kÞ

�
: ðA32Þ

When the meson is on shell, i.e. when p2 ¼ −m2
P,

Σðp; kÞ ¼ −δm2
P. and recalling that we take the external

meson to be at rest, we obtain

1

2p0

∂Σðp; kÞ
∂p0

				
p2¼−m2

P

¼ Δγðk2Þ
�
4m2

P þOðk2Þ
ð2p · kþ k2Þ2 −

8z1m2
P þOðkÞ

2p · kþ k2

�
: ðA33Þ

The first and second terms on the right-hand side of
Eq. (A33) behave as 1=k4 and 1=k3 respectively as
k → 0, corresponding to an infrared divergence and
Oð1=LÞ FV correction when the integral over k is
performed. The Oðk2Þ term in the first numerator and
OðkÞ term in the second correspond to Oð1=L2Þ FV
effects which we are neglecting. In contrast to the
evaluation of FV corrections to the mass which have con-
tributions from both the diagrams in Figs. 3(b) and 3(c),
it is only diagram (b) which contributes to the right-hand
side of Eq. (A33).
For a pointlike particle, the OðαÞ correction to the

square of the wave-function renormalization constant,
i.e. ð ffiffiffiffiffiffi

ZP
p Þ2, is simply given by Eq. (A33) with z1 ¼ 0.

In the presence of QCD on the other hand, in addition to
the second term on the right-hand side of Eq. (A33),
there is an effective contribution to ZP from the term
proportional to p2 þm2

P in the factor of Z present in
the two meson propagators which are external to the
loop in Fig. 3(b). Recalling that on shell Σðp; kÞ ¼
−δm2

P, this contribution to the amplitude is the integral
over k of

− Δγðk2Þ
4m2

P þ 4p · kþOðk2Þ
2p · kþ k2

× ð−2z1Þ

¼ Δγðk2Þ
8m2

Pz1 þOðkÞ
2p · kþ k2

; ðA34Þ

which cancels the z1-dependent term in Eq. (A33). Thus
evaluating the wave-function renormalization constant in
the pointlike theory reproduces the leading and next-to-
leading FV effects of full QCD.
There is an analogous contribution to that in Eq. (A34)

which arises from the expansion of Fðp2Þ at the weak
vertex. We postpone discussing this contribution until we
study diagram Fig. 3(f) in Sec. 3 d below.
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c. Finite-volume effects in diagrams 3(d) and 3(e)

We now turn to the diagrams 3(d) and 3(e) in which the
photon couples to the charged lepton. The coupling to the
lepton and the lepton propagator are common in the two
diagrams and so we focus on the remainder of the integrand
which is not common. The lepton propagator behaves as

Oð1=kÞ at small photon momentum k and the photon

propagator behaves as Oð1=k2Þ. Thus we require the

remaining terms up to and including Oðk0Þ in order to

obtain the leading and next-to-leading FV effects. In

Fig. 3(d) this is

Γμðp; kÞΔðpþ kÞðpþ kÞρFððpþ kÞ2Þ ¼ −fPðpþ kÞρ ½ð2pþ kÞμ þ 4z1pμp · k�½1 − 2z1p · k�½1þ 2z1f1p · k�
2p · kþ k2

¼ −fPðpþ kÞρ ð2pþ kÞμ
2p · kþ k2

− 2fPf1pμpρ þOðkÞ: ðA35Þ

The corresponding factor in diagram 3(e) is

Wμρðp; kÞ ¼ fPδμρ þ 2fPf1pμpρ þOðkÞ: ðA36Þ

Summing the results in Eqs. (A35) and (A36) we see that
the f1-dependent terms cancel and we obtain precisely the
expression of the pointlike theory.

d. Finite-volume effects in diagrams 3(f)

Consider now the diagram Fig. 3(f). The product of the
meson and photon propagators behave as 1=k3 as k → 0,
corresponding to Oð1=LÞ FV corrections and so we can
neglect terms proportional to k in the numerator of this
diagram since we neglect corrections of Oð1=L2Þ. This
diagram therefore gives the integrand

Δγðk2ÞΓðp; kÞΔðpþ kÞWμρðpþ k;−kÞ

¼ Δγðk2ÞfPpρ 2þ 4f1m2
P

2p · kþ k2
: ðA37Þ

It is natural to combine this with the partial contribution
from the diagram in Fig. 3(b) arising from the expansion of
the weak vertex to Oðp2 þm2

PÞ. This contribution was
mentioned at the end of Sec. 3 b and the corresponding
integrand is

ð−δm2
PÞ × fPf1pρ ¼ fPf1Δγðk2Þpρ 4m2

P

2p · kþ k2
: ðA38Þ

The result in Eq. (A38) cancels the f1-dependent term in
Eq. (A37), leaving precisely the integrand onewould obtain
in the pointlike theory.

4. Summary

In this appendix we have studied the implications of the
electromagnetic Ward identities on the contributions to the
integrands of the diagrams in Fig. 3 which behave as
Oð1=k4Þ or Oð1=k3Þ. These are the terms which lead to the
leading- and next-to-leading-order FV effects in the evalu-
ation of the decay amplitudes in a finite volume. The
relations between the vertices and the meson propagator
implied by the Ward identities allowed us to demonstrate
explicitly that the dependence on z1 and f1 cancels and that
up to and including the Oð1=LÞ corrections the results are
precisely those obtained in the pointlike theory. These are
calculated in the main body of this paper. The leading,
nonuniversal effects are of Oð1=L2Þ and cannot be evalu-
ated in this way.
For the FV effects in the spectrum, in Sec. 3 a we

reproduce the well-known result that the Oð1=LÞ and
Oð1=L2Þ corrections are universal and the leading nonuni-
versal effects enter at Oð1=L3Þ. The universal terms again
correspond to the leading and next-to-leading contributions
to the integrand as the photon momentum k → 0; for the
spectrum these are Oð1=k3Þ and Oð1=k2Þ respectively.
Note that diagram Fig. 3(c) contributes to the FV effects

in the mass but not the amplitude and diagram 3(g) does
not contribute to either.
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