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Gravitational waves emitted by distorted black holes—such as those arising from the coalescence of two
neutron stars or black holes—carry not only information about the corresponding spacetime but also about
the underlying theory of gravity. Although general relativity remains the simplest, most elegant, and viable
theory of gravitation, there are generic and robust arguments indicating that it is not the ultimate description
of the gravitational universe. Here, we focus on a particularly appealing extension of general relativity,
which corrects Einstein’s theory through the addition of terms which are second order in curvature:
the topological Gauss-Bonnet invariant coupled to a dilaton. We study gravitational-wave emission from
black holes in this theory and (i) find strong evidence that black holes are linearly (mode) stable against
both axial and polar perturbations, (ii) discuss how the quasinormal modes of black holes can be excited
during collisions involving black holes, and finally (iii) show that future ringdown detections with a large
signal-to-noise ratio would improve current constraints on the coupling parameter of the theory.
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I. INTRODUCTION

The historical detection of gravitational waves (GWs) by
the LIGO/Virgo Collaboration has marked the beginning of
a new era in astrophysics and the birth of GW astronomy
[1]. The next generation of detectors will routinely observe
the coalescence of compact objects, such as black holes
(BHs) and neutron stars. These observations will probe, for
the first time, the highly dynamical regime of strong-field
gravity and may provide the answer to long-standing issues
[2–4]. Is cosmic censorship preserved in violent gravita-
tional interactions? Do GW observations carry incontro-
vertible evidence for the event horizon of BHs? Can we
pinpoint, in gravitational waveforms, the signature of the
light ring or of ergosurfaces?
Simultaneously, the entire coalescence process can be

used to constrain gravity theories in novel ways [4–6]. That
general relativity (GR) is not the ultimate theory of gravity is
a possibility that should be entertained in the light of several
observations (such as those related to the dark-matter and the
dark-energy problems) and of the difficulty to reconcile GR

with quantum field theory [5]. Although such an extension
of GR is unknown—and a robust spacetime parametrization
in strong-field gravity is lacking—GW observations will
help us to exclude or to strongly constrain wide classes of
alternative theories. The inspiral stage, for example,when the
two objects are far apart, can teach us about possible extra
radiation channels [4,6–8], while the final ringdown stage—
when the end product is relaxing to its final state—provides
for remarkable tests of GR, through the measurement of the
characteristic quasinormal modes (QNMs) [9]. In GR, as
well as in essentially any relativistic theory of gravity, BHs
are extremely simple objects described by only a handful of
parameters. Accordingly, their QNMs are completely char-
acterized by only a few parameters as well. For example,
Kerr BHs in GR are characterized by their mass and angular
momentum, and so are their QNMs. In a nutshell, measure-
ment of one single QNM (i.e., a ringing frequency and a
decay time scale [9,10]) allows for a determination of the
BH mass and angular momentum. The measurement of a
second QNM tests GR [10–13]. In the context of modified
theories of gravity, a second QNM can be used to measure
possible extra coupling parameters, as was shown recently
for a theory with an extra vector degree of freedom [8].
Some of the most viable and appealing modifications of

gravity are those obtained via the inclusion of extra scalar
fields—such as scalar-tensor theories of gravity—or of
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higher-curvature terms in the action, or both. Higher-order
gravity is generically motivated by UV corrections, which
also arise naturally in some low-energy truncations of string
theories. The paradigmatic case, and the one we focus on
here, is Einstein-dilaton-Gauss-Bonnet (EDGB) gravity,
described by the action [5,14]

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π

�
R −

1

2
∂aϕ∂aϕþ α

4
eϕR2

GB

�
þ Sm;

ð1Þ
where

R2
GB ¼ RabcdRabcd − 4RabRab þ R2 ð2Þ

is the Gauss-Bonnet topological term, Sm represents the
matter sector, and we use (throughout this work) units for
which the Newton’s constant and the speed of light are
unity, G ¼ c ¼ 1. Current best constraints on the coupling
constant α are

ffiffiffi
α

p
< 10 km [5,15].1

We will close two important gaps in the literature
concerning BHs in this theory: we first find strong evidence
that static EDGB BHs are linearly stable, and then we
compute gravitational waveforms from plunging particles,
which can be argued to be an indicator of how BH
collisions proceed in this theory. Finally, we discuss the
constraints on the coupling parameter α from current and
future ringdown observations.

II. FRAMEWORK

The equations of motion obtained by extremizing (1)
with respect to the metric and dilaton field are given by [14]

□ϕ ¼ α

4
eϕR2

GB; ð3Þ

Gab ¼
1

2
∂aϕ∂bϕ −

1

4
gabð∂cϕÞð∂cϕÞ − αKab þ 8πTab;

ð4Þ
where Gab ¼ Rab − 1

2
gabR is the Einstein tensor, Tab is the

matter stress-energy tensor, and

Kab ¼ ðgacgbd þ gadgbcÞϵidjk∇lð ~Rcl
jk∂ieϕÞ; ð5Þ

where ϵabcd is the contravariant Levi-Civita tensor,
~Rab

cd ¼ ϵabijRijcd.

A. BH solutions in EDGB gravity

BHs in EDGB gravity are scalar-vacuum solutions of the
above equations, which were first constructed analytically
in spherical symmetry, in the small-coupling regime [16],

ζ ≔
α

M2
≪ 1; ð6Þ

where M is the BH mass. In spherical symmetry, the line
element reads

ds2 ¼ −AðrÞdt2 þ BðrÞ−1dr2 þ r2dΩ2; ð7Þ

where dΩ2 is the standard unit 2-sphere line element. Both
functions AðrÞ and BðrÞ and the scalar field ϕ can be
expanded in powers of the coupling parameter ζ, and the
corresponding solutions can be found by solving the field
equations (3)–(4) perturbatively (see also Ref. [17]).
Further details are given in Appendix A.
Nonperturbative solutions were investigated numerically

in Ref. [14] for static geometries and in Ref. [18] for slowly
rotating BHs to first order in the spin. It was shown that
static BH solutions exist only up to a maximum value of ζ,
namely [18]

0 ≤ ζ ≲ 0.691: ð8Þ

Because ζ is strictly less than unity, higher-order perturba-
tive expansions [19] are accurate almost in the entire
parameter space.
Slowly rotating solutions were described numerically in

Ref. [18], and analytically in the small-coupling regime in
Refs. [20,21], and were recently extended to higher order
in the coupling and in the spin parameter [19]. In the latter
case, the line element (as well as the scalar field) can be
expanded in a complete basis of orthogonal functions
according to their symmetry properties [19].
Numerical solutions describing rotating BHs for arbi-

trary coupling and spin were found in Ref. [22] and have
been recently thoroughly discussed in Ref. [23].
The linearized mode stability of spherically symmetric

BHs against radial fluctuations was studied in Ref. [24],
whereas axial gravitational perturbations were studied in
Ref. [18]. In the polar sector, the linear stability of EDGB
BHs was analyzed in Ref. [25], focusing in the particular
regimes where perturbations are dominantly gravitational
or scalar, as well using a high-frequency analysis of the
perturbations. In addition, axial quasinormal modes of
neutron stars in EDGB theory were studied in Ref. [26].
Due to the cumbersome field equations, there is currently

no result concerning the stability of nonrotating EDGB
BHs for the most relevant gravitational polar sector, and
there is no stability analysis for rotating solutions. In this
work, we partly fill this gap by performing a full linear
(mode) stability analysis of static EDGB BHs.

B. Perturbed BHs in EDGB

We are interested in understanding how BHs in EDGB
theory respond to small perturbations, as those induced by a
fluctuation of the metric or of the dilaton or by a small

1We note a typo in the review [5]. In the notation used in the
review, Eq. (2.26) should read

ffiffiffiffiffiffiffiffiffiffiffijαGBj
p ≲ 5 × 105 cm.
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external perturbing object. We focus our attention in both
dilaton fluctuations in vacuum and those induced by a small
pointlike particle plunging into the BH. The first case will
describe the late-time behavior of perturbed EDGB BHs,
which also dominates the ringdown signal from a distorted
BH formed in a coalescence. Pointlike particles, on the
other hand, are a good proxy for small BHs or neutron stars
falling into massive BHs, but are also known to provide
reasonably accurate estimates even for equal-mass BH
collisions [27–29].
Pointlike particles of mass μ ≪ M are modeled by

[30–32]

Sm ¼ μ

Z
dτ

ffiffiffiffiffiffi
−g

p
; ð9Þ

with dτ ¼ dλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gab _xa _xb

p
. We will consider pointlike

objects with a scalar charge which is entirely due to the
Gauss-Bonnet coupling. In other words, we will investigate
BH spacetimes of which the scalar charge arises purely
from the Gauss-Bonnet term. The theory we consider
contemplates no other couplings to matter, and therefore
pointlike particles follow geodesics. This need not be the
case generically, and nontrivial couplings to matter can be
envisioned [31,33]. These couplings will certainly influ-
ence the motion of particles and the radiation in collisions
but will not affect the intrinsic ringdown properties of the
spacetime.
We consider a spherically symmetric EDGB BH dis-

torted by either the pointlike particle or through some
fluctuation in the metric or scalar field. At the linearized
level, the full geometry is described by

gab ¼ gð0Þab þ εhab; ð10Þ
ϕ ¼ ϕ0ðrÞ þ εδϕ; ð11Þ

where ε ≪ 1 is a bookkeeping parameter, gð0Þab is described
by (7), and ϕ0ðrÞ is the corresponding background scalar.
As background solution, we consider both a perturbative
solution [19] up to Oðζ6Þ and a numerical solution for
arbitrary values of ζ.
The fluctuations hab and δϕ are functions of ðt; r; θ;φÞ.

Einstein’s equations can be further simplified by Fourier
transforming these quantities and by expanding them in
(tensor and scalar) spherical harmonics, e.g.,

δϕ ¼ 1ffiffiffiffiffiffi
2π

p
Z

dω
ϕ1ðω; rÞ

r
Ylme−iωt; ð12Þ

where Ylm are the standard spherical harmonics and ω is a
Fourier frequency.
The metric perturbations can be decomposed in terms of

tensorial spherical harmonics [30,34]. By using this decom-
position, perturbations naturally split into two sectors
according to their parity (either axial or polar). Axial

perturbations of EDGB BHs are simpler, because they
are decoupled from the scalar-field perturbations [18].
Here, we shall consider the two sectors of the perturbations.
In the Regge-Wheeler gauge [34], the polar sector of the

metric perturbations is given by

hab ¼

2
6664
AH0 H1 0 0

H1 H2=B 0 0

0 0 r2K 0

0 0 0 r2sin2θK

3
7775Ylm; ð13Þ

while the axial sector reads

hab ¼

2
6664

0 0 0 sin θh0∂θ

0 0 0 sin θh1∂θ

0 0 0 0

sin θh0∂θ sin θh1∂θ 0 0

3
7775Ylm: ð14Þ

In the above definitions, the metric perturbations
depend only on t and r. Note that we have already
specialized the spacetime to axial symmetry: for the cases
handled here, one can always rotate the coordinate axis
such that the spacetime is axially symmetric. We shall
Fourier-decompose these perturbation functions as, e.g.,
Xðt; rÞ ¼ ð2πÞ−1=2 R dωXðω; rÞe−iωt.
Likewise, the stress-energy tensor can be decomposed

into spherical harmonics [30,35]. In the radial plunging
case considered here, the particle only disturbs the space-
time in the polar sector, and its stress-energy tensor can be
written as

Tab ¼

2
666664

Að0Þ
lm

iffiffi
2

p Að1Þ
lm 0 0

iffiffi
2

p Að1Þ
lm Alm 0 0

0 0 0 0

0 0 0 0

3
777775
Ylm; ð15Þ

where the functions Að0Þ
lm , A

ð1Þ
lm , and Alm, like the dilaton and

metric perturbations, can be Fourier decomposed, such that
they depend only on r and ω. The explicit form of these
functions is given in Appendix B.
The linearized dynamics is governed by a coupled

system which can be obtained by expanding the field
equations (3)–(4) up to first order in the perturbation
functions hab and δϕ. The equations take the schematic
form (no sum on j)

d
dr

Ψj þ VjΨj ¼ Sj; ð16Þ

where j ¼ ðp; aÞ for the polar and axial sectors, respec-
tively, and Ψj is a column vector, the components of
which are Ψp ≡ ðH1; K;ϕ1;ϕ1

0Þ for the polar sector and
Ψa ≡ ðh1; h0Þ for the axial sector, respectively. The
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matrices Vj describe the coupling among the perturbations
and depend on the background fields. The vectors Sj
represent the source terms associated to the point-particle
stress-energy tensor. The explicit forms of Vj and Sj are
derived in Appendix B, where we also show that the
functions H2 and H0 can be completely determined in
terms of Ψp. For the axial sector, the source terms vanish
identically, and we can write the coupled first-order
equations into a second-order Schrödinger-like equation
with an effective potential.

C. Computation of the QNMs

The late-time gravitational signal from a perturbed BH is
dominated by a sum of exponentially damped sinusoids,
the QNMs, which correspond to the characteristic vibration
modes of the spacetime [9,36]. The QNMs are solutions of
the sourceless wave equations (16) (i.e., Sj ¼ 0), along
with proper boundary conditions—purely outgoing waves
at infinity and ingoing waves at the horizon. The latter
correspond to the following behavior of the wave function
at the boundaries

Ψj ∝
�
e−iωr� ; r ∼ rh;

eiωr� ; r → ∞;
ð17Þ

where rh is the horizon radius in these coordinates and the
“tortoise” coordinate r� is defined by

dr�
dr

¼ 1ffiffiffiffiffiffiffi
AB

p : ð18Þ

To compute the QNMs, we use a direct-integration
method. We construct a square matrix X (four and two
dimensional in the polar and axial case, respectively) of
which the columns are independent solutions of Eq. (16).
This matrix can be constructed by a certain combination of
the solution which is regular at the horizon and the one
which is regular at infinity (cf. Refs. [37,38] for details).
For the polar sector, we note that the boundary conditions
defining the QNM eigenvalue problem depend on two
parameters, related to the amplitudes of the scalar and
gravitational perturbations. Two of the columns of X can be
constructed by integrating the equations from the horizon
outward. Likewise, two other solutions can be constructed
by integrating the equations from infinity inward. In
general, the solutions integrated from the horizon are
linearly independent from the ones integrated from infinity,
unless ω is the QNM frequency. In other words, the QNM
frequencies are obtained by imposing

detðXÞjr¼rm ¼ 0; ð19Þ

where rm is an arbitrary matching point of the order of the
horizon radius. The same procedure can be done for the

axial modes, with the difference that the boundary con-
ditions apply only to the gravitational amplitude, and
therefore the problem is technically less involved.
We have computed the lowest QNMs of static BHs using

both the full numerical background and the perturbative
analytical solution given by Eqs. (A6)–(A8), up to N ¼ 4,
i.e., up to Oðζ6Þ. We checked the numerical stability of the
QNM frequencies against changes in the values of the
numerical horizon rh, numerical infinity, and the matching
radius rm (typically, we use rm ∼ 4rh). One of the advan-
tages of the above procedure is that it can be applied to both
the perturbative solution and the full numerical one.

D. Plunging particles

To obtain the metric and dilaton perturbations due to a
particle plunging into a BH, we need to solve the
inhomogeneous system (16). Two common methods used
in the literature to solve this problem are a direct integration
and a Green’s function approach (see, e.g., Ref. [8]).
The Green’s function method relies on the fundamental

matrix X, as constructed by using the homogeneous
solutions as discussed in the previous section. The formal
solution of (16) can be written as [39]

Ψj ¼ Xβþ X
Z

drX−1S; ð20Þ

where β is a constant vector to be determined by imposing
the proper boundary conditions. Thus, once the fundamen-
tal matrix X of the homogeneous problem is computed, its
convolution with the source term S in (20) yields the
solution of the inhomogeneous problem. However, in many
problems, the source term might converge slowly at the
boundaries or even diverge, as in our case in which the
source term diverges at the event horizon. These problems
can be avoided by performing a suitable nontrivial trans-
formations of the perturbation functions [40,41], or with a
careful choice of Green’s function [42].
A different scheme which avoids this problem consists in

integrating directly the full inhomogeneous system, by
imposing the proper boundary conditions for the full
solution. First, we expand the perturbation functions near
the horizon as

Ψjðr → rhÞ ≈
XN
k¼0

ðr − rhÞkþpψ j;ke−iωr� þΨj;H; ð21Þ

where p is a constant chosen such that the above expansion
satisfies the inhomogeneous equations near the horizon and
Ψj;H is the (ingoing) solution of the homogeneous equa-
tion. The above expansion is solved iteratively near the
event horizon for the coefficients ψj;k up to k ¼ N, and
they generically depend on constants (say ψj;0) which
are related to the amplitude of the fields at the horizon.
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The amplitudes at the horizon are then used as shooting
parameters; i.e., we chose them such that the numerical
solution satisfies the proper boundary conditions also at
infinity. For arbitrary amplitudes at the horizon, the
numerical solution far from the BH is a combination of
ingoing and outgoing waves, i.e.,

Ψj ¼ Ψout
j þΨin

j ; ð22Þ

and the required solution is obtained by setting the
amplitude of the ingoing waves to zero. In the EDGB
case, the amplitudes are related to the gravitational and
dilaton perturbations, and therefore the problem is a two-
parameter shooting problem for the amplitudes at the
horizon. Note that for radial plunging, since the source
terms for the axial sector are zero, the particle only induces
perturbations in the polar sector.
With the numerical solution at hand, one can compute

the gravitational and scalar energy spectra at infinity. This
is achieved through the effective stress-energy tensor for
the gravitational perturbations (i.e., the Isaacson tensor)
and the stress-energy tensor of the dilaton field [43]. As
shown in Ref. [44], the Isaacson tensor is the same in GR
and in a class of theories including EDGB gravity. The
gravitational flux, for a given multipole l, can be written
as [30]

dEg

dω
¼ 1

32π

ðlþ 2Þ!
ðl − 2Þ! jKðr → ∞Þj2; ð23Þ

where KðrÞ is the polar perturbation given by Eq. (13).2

The dilaton flux reads

dEϕ

dω
¼ ω2

16π
jϕ1ðr → ∞Þj2; ð24Þ

where ϕ1ðrÞ is given by the dilaton perturbation in Eq. (12).
As shown in Appendix B, since the particle does not

have a direct coupling to the dilaton field, dilaton radiation
only exists due to the gravitational perturbations. In this
sense, the gravitational perturbations work as a “source" for
the dilaton radiation. Since in the dilaton equation they are
proportional either to the parameter ζ or the background
scalar field (and derivative), it is natural to expect that the
dilaton radiation scales with ζ2. Additionally, for l ¼ 0 and
l ¼ 1, the perturbations of EDGB BHs can be written as a
single second-order Ordinary Differential Equation (ODE),
which represents the dilaton perturbation (see Appendix B).

III. STABILITY AND QNMS
OF EDGB BLACK HOLES

As previously discussed, the QNMs govern the late-time
behavior of any small fluctuation away from axisymmetry
of the BH. Since the time dependence is of the form e−iωt,
the absence of a QNM frequency with the positive
imaginary part in the spectrum implies that all fluctuations
decay exponentially with time. Thus, a criterion for
linearized mode stability of the spacetime is that all its
QNM frequencies have a negative imaginary part [9]. In
addition, the late-time dynamics is controlled by the
fundamental QNM, i.e., the mode with the smallest
imaginary component (equivalently, with the longest decay
time).
The Schwarzschild spacetime is stable, and its funda-

mental QNM frequency, ωS ¼ MωS
R þ iMωS

I , for the l ¼ 2
mode reads [9,46,47]

MωS ≈ 0.3737 − i0.08896 gravitational ð25Þ

MωS ≈ 0.4836 − i0.09676 scalar ð26Þ

for the gravitational and scalar fundamental modes, respec-
tively, where M is the BH mass. In EDGB gravity, because
the coupling ζ is smaller than unity, we expect that the
fundamental QNM frequencies3 are only slightly different
from Eqs. (25) and (26). In other words, we expect EDGB
BHs to be stable for sufficiently small coupling. We will
now study if these BHs are stable throughout all values of ζ
and also quantify the deviation from the corresponding
Schwarzschild value.
We have computed the QNMs of EDGB BHs with two

independent codes, both in a small-ζ expansion and using
the full numerical background. In the small-coupling limit,
where the expressions can be expanded in powers of ζ (see
Appendix A), the real and imaginary parts of the QNM
frequencies can be written as

ωR

ωS
R
¼ 1þ

XN
j¼1

Rjζ
j;

ωI

ωS
I
¼ 1þ

XN
j¼1

Ijζj; ð27Þ

where ωS
R and ωS

I are, respectively, the real and imaginary
parts of the modes of Schwarzschild BH with the same
mass M. The coefficients Rj and Ij are obtained by fitting
the numerical data with the above expression and depend
on l and on the nature of the mode.

A. QNMs, light ring, and geodesic correspondence

Computing the QNMs of spacetimes known only
numerically can be challenging. For spherically symmetric

2Note that, formally, K is a gauge-dependent quantity, whereas
the use of gauge-independent quantities is obviously desired.
Moreover, at large distances, the Regge-Wheeler gauge is not
well defined. However, in this limit, the function K yields the so-
called Zerilli function ZðrÞ [30] (which is a gauge-invariant
quantity [45]) since Kðr → ∞Þ ¼ iωZðr → ∞Þ.

3In the ζ → 0 limit, the scalar sector is decoupled, and we
expect to recover the scalar QNMs of a Schwarzschild BH. This
is confirmed by the computation presented in this section.
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spacetimes, a Wentzel-Kramers-Brillouin-type analysis has
shown that, in the eikonal (l ≫ 1) limit, the QNMs can be
obtained using only properties of the light ring (which
defines the radius of the photon sphere of the BH). This
“null geodesic correspondence” [48–50] is useful as it
requires only manipulation of background quantities which
are easy to obtain and provides a clear physical insight into
the QNMs of BHs: they correspond to waves trapped near
the peak of the potential barrier for null particles (i.e.,
within the photon sphere), slowly leaking out on a time
scale given by the geodesic instability time scale.
The geodesic correspondence only works, formally, in

the l ≫ 1 regime but can be used even at low l using an
appropriate calibration. In fact, this approach has proven to
provide reliable results also for low-lmodes for a variety of
BH spacetimes [49], including Kerr-Newman BHs [8].
By extending the analysis of Refs. [48–50], Ref. [8]

recently showed that the complex QNMs of a stationary
and axisymmetric BH in the eikonal limit can be written as

ωR þ iωI ∼Ωl − iðnþ 1=2Þjλj; ð28Þ
where n is the overtone number,

Ω ¼
−g0tφ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0tφ2 − g0ttg0φφ

q
g0φφ

; ð29Þ

is the orbital frequency at the light ring on the orbital plane,
and

λ ¼ −
1

_t

ffiffiffiffiffiffi
V 00

2

r
; _t ¼ −

E2gφφ þ Lgtφ
g2tφ − gttgφφ

ð30Þ

is the Lyapunov coefficient evaluated at the light-ring
location on the equatorial plane. In the above expression,
a prime denotes a radial derivative, whereas E and L are the
(conserved) specific energy and angular momentum of the

geodesic, and V is the effective radial potential. The
expression (28) is valid for l ¼ m ≫ 1 modes. A more
involved result for the QNMs of a Kerr BH with generic
l ≫ 1 and jmj ≤ l is derived in Ref. [50].
The geodesic correspondence has been formally proven

for Kerr BHs and for a variety of spacetimes, but it has
never been checked for BH solutions in modified gravity.
This is particularly interesting in light of the breaking of the
isospectrality of the axial and polar QNMs of BHs in
EDGB theory, as we discuss in the next section. It is
important at this stage to point out that the geodesic
approximation must fail to capture some of the features
of the full problem. It is well adapted, in principle, to
describe the effects of rotation but cannot take into account
(at least not blindly) the presence of extra degrees of
freedom like scalars in EDGB. Thus, using this correspon-
dence to extract the QNMs of BHs in modified gravity
should be done carefully.
As previously discussed, the background solution and

the metric of a spinning BH in EDGB theory is known
analytically up to Oðχ5; ζ7Þ [19] and numerically for any
value of χ and ζ [22,23], where χ is the dimensionless
angular momentum parameter,

χ ¼ J=M2: ð31Þ
We will use this result in Sec. V to estimate the modes of
spinning EDGB BHs.

B. Axial modes

The axial sector of gravitational perturbations is
decoupled from the scalar-field perturbations, and hence
is simpler to study. Using the direct-integration procedure
described in Sec. II C, we have computed the axial QNMs
both in a small-ζ expansion and in the full numerical
background. Our results are summarized in Fig. 1 and in
Table I.

FIG. 1. Real (left) and imaginary (right) parts of the axial l ¼ 2 fundamental mode, normalized by the Schwarzschild (ζ ¼ 0) values.
We compare three different approaches: the geodesic (black dotted line), the small-coupling limit (red dashed line), and the finite ζ
regime (blue solid line). In the inset, we show that for small values of ζ the small-coupling limit (red squared) agrees well with the finite-
coupling result up to ζ ≈ 0.3.
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In Fig. 1, we show the behavior of the axial l ¼ 2
fundamental mode as a function of the coupling ζ,
normalized by the corresponding Schwarzschild quantity.
In most of the range of ζ, the behavior of the modes is
smooth and given by a corresponding small deformation of
the Schwarzschild QNMs. The only exception occurs close
to the critical value of the coupling constant ζ ≈ 0.691,
where the QNMs have a very sensitive dependence on ζ.
For small values of ζ, say for ζ ≲ 0.4, analytically
expanded backgrounds [up to Oðζ6Þ] yield QNMs which
are in very good agreement with the full numerical solution.
This provides a nontrivial check for both our (indepen-
dent) codes.
Figure 1 also shows the result of the geodesic algorithm

described in Sec. III A. For the axial modes, which are
decoupled from the scalar perturbations, the geodesic
predictions are in good agreement with the results of the
full numerical solution. Although not shown in Fig. 1, the
agreement is better for higher multipoles, as expected
(cf. Table I).

Finally, Table I shows the results of the polynomial fit
(27) to the axial QNM of EDGB BHs, which is specially
accurate for small ζ. By analyzing the perturbation equa-
tions, it is easy to show that R1 ¼ I1 ¼ 0 in the expansion
(27). The full numerical results are available online [47]. In
Table I, we also give the coefficients obtained by the
geodesic algorithm, which help to quantify the accuracy of
the geodesic approximation; for instance, at ζ ¼ 0.5, the
difference in percentage between the real and the imaginary
parts of the (not-normalized) frequency, relative to the
numerical result, is, respectively, less than 3% and less than
8% for l ¼ 2, and improves for l > 2. Similar deviations are
obtained in the GR limit, ζ ¼ 0.
As explained in Appendix B, similarly to what happens

in GR, there are no axial QNMs for l ¼ 0 and l ¼ 1.

C. Polar modes

Unlike the axial sector, the polar gravitational sector of
the metric perturbations couples to the scalar-field pertur-
bations. The system of ODEs is more complex, and finding
the QNM frequencies is therefore more challenging. Even
for arbitrarily small values of ζ, the QNMs contain two
families: (i) gravitational-led modes, which reduce to the
gravitational QNMs of Schwarzschild BHs in the ζ → 0
limit, and (ii) scalar-ledmodes, which reduce to the QNMs
of a test scalar field on a Schwarzschild metric when ζ → 0
(see Ref. [51] for a similar situation in another theory). The
extent to which each of these modes is excited in actual
physical setups is discussed in the next section.
Our results for the quadrupole modes (l ¼ 2) are

summarized in Fig. 2 and Table II, where we show the
fundamental gravitational-led and scalar-led QNMs. The
deviations from the GR case are larger than in the axial
case. This is probably due to the extra coupling between
gravitational and scalar degrees of freedom. From the fits
given in Table II, it is interesting to note that the leading-
order correction to the l ¼ 2 gravitational-led mode has an

TABLE I. Numerical value of the coefficients Rj and Ij for the
expansions in the small-coupling limit, cf. (27) for the axial
QNMs. The geodesic coefficients are computed from the exact
analytical solution for small ζ limit, while the QNM frequencies
coefficients are obtained through a polynomial fit with the data.

j l ¼ 2 l ¼ 3 Geodesic

Rj

1 0 0 0
2 1.002 × 10−3 1.173 × 10−2 1.257 × 10−2

3 1.906 × 10−3 5.035 × 10−3 6.872 × 10−3

4 1.131 × 10−3 1.353 × 10−2 5.537 × 10−3

Ij

1 0 0 0
2 −5.174 × 10−3 −4.774 × 10−3 −5.267 × 10−3

3 5.766 × 10−3 7.590 × 10−4 −7.184 × 10−3

4 −7.091 × 10−3 −3.282 × 10−3 −7.822 × 10−3
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FIG. 2. Real (left) and imaginary (right) parts of the polar quasinormal modes for l ¼ 2, for the gravitational- and scalar-led modes, as
functions of the coupling ζ, normalized by the Schwarzschild-limit quantities. The insets show a closeup in order to see the comparison
for small values of ζ.
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opposite sign compared to the axial mode. In particular,
since the geodesic correspondence predicts only one type
of modes and the latter are in good agreement with the axial
modes, we find that the behavior of the polar modes is not
captured by the geodesic correspondence; therefore, we do
not plot the geodesics results in the figure. This qualitative
difference is expected, because the axial potential resem-
bles the geodesic potential at large l, whereas in the polar
sector the coupling to scalar perturbations drastically
changes the dynamics of the perturbations. Likewise, there
is no reason to expect that the behavior of scalar-led
perturbations is well captured by the geodesic correspon-
dence, at least for small values of l.
Due to the coupling between the dilaton and gravita-

tional perturbations, there are also nontrivial l ¼ 0, 1
scalar-led modes for EDGB BHs. These reduce to their
respective scalar modes in the Schwarzschild spacetime
when ζ → 0. The results at finite coupling follow the trend
of higher multipoles.

D. Mode stability

From the above results, it is clear that the funda-
mental QNMs of an EDGB BH change at most by a few
percent relative to the Schwarzschild case. As a conse-
quence, these modes are stable for any value of ζ in the
domain of existence of static EDGB BHs. We have
investigated this issue also for higher multipoles (l ≥ 2),
and our numerical search has found no unstable modes
in the entire parameter space. This strongly indicates
that static EDGB BHs are linearly mode stable, just like
Schwarzschild BHs.

IV. RADIAL PLUNGE

In this section, by using the procedures depicted in
Sec. II D, we discuss the gravitational and dilaton radiation
emitted by a particle plunging radially into an EDGB BH.
For practical reasons, this computation was done within the
small-ζ approach for the background, and the equations are
expanded up to order Oðζ6Þ. As discussed in the previous
section, this higher-order perturbative approach gives
precise results even for relatively large values of ζ.
In Fig. 3, we show the gravitational flux, by considering

different initial boosts for the particle (see Appendix A).
The deviations from the GR case are very small, of order of
∼1%, at least for ζ ≲ 0.1. Moreover, we note that all
additional terms appearing in the metric perturbation
equations (see Appendix B)—sources included—are at
least of order ∼ζ2, and therefore the corrections to the
flux are proportional to ∼ζ2. Therefore, in the small-
coupling limit, the gravitational flux can be written as

dEg

dω
∼
dES

g

dω
½1þOðζ2Þ�; ð32Þ

where dES
g=dω is the corresponding Schwarzschild flux.

Although the overall gravitational corrections are small,
the dilaton perturbations can also be radiated by the
plunging particles, similarly to the case of a neutral particle
plunging into a charged BH [8,52,53]. This is due to the
coupling between the gravitational and dilaton perturba-
tions, cf. Eq. (B7). We show the dilaton flux for ζ ¼ 0.1 in
Fig. 4. Note that the flux displays a cutoff roughly at
ω ∼ ωϕ

R, whereω
ϕ
R is the scalar-led QNM. Also, in this case,

the dilaton flux scales dominantly as ζ2. Additionally,
because the source terms in the dilaton field are only due to
the gravitational perturbations, the dilaton radiation is also

0.2 0.3 0.4 0.5

1
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1.01

1.015

0.0 0.2 0.4 0.6 0.8
10–7

10–5

0.001

0.100

FIG. 3. Gravitational quadrupolar flux for radial plunges into an
EDGB BH with different boosts for ζ ¼ 0.1. For small couplings,
the changes in the gravitational fluxes are very small. In the inset,
we plot the ratio of the fluxes for ζ ¼ 0.1 and for the Schwarzs-
child spacetime. The vertical dotted lines in the inset are the
values of the gravitational- and scalar-led QNMs.

TABLE II. Numerical value of the coefficients Rj and Ij for the
polar gravitational-led and scalar-led modes.

j Polar, gravitational l ¼ 2 Polar, scalar l ¼ 2

Rj

1 0 −1.408 × 10−2

2 −3.135 × 10−2 1.127 × 10−1

3 −9.674 × 10−2 −1.462 × 10−1

4 2.375 × 10−1 5.334 × 10−1

Ij 1 0 5.580 × 10−2

2 4.371 × 10−2 −6.780 × 10−2

3 1.794 × 10−1 1.042 × 10−1

4 −2.947 × 10−1 −2.868 × 101

j Polar, gravitational l ¼ 3 Polar, scalar l ¼ 3

Rj

1 0 −6.361 × 10−3

2 −9.911 × 10−2 1.442 × 10−1

3 −4.907 × 10−2 1.168 × 10−1

4 9.286 × 10−2 −1.803 × 10−1

Ij

1 0 2.906 × 10−3

2 7.710 × 10−2 −5.670 × 10−2

3 1.399 × 10−1 −1.445 × 10−1

4 −3.450 × 10−1 2.105 × 10−1
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dominantly quadrupolar (see Ref. [52] for a similar setup
with perturbations in Reissner-Nordström BHs).
Although the total radiated energy due to the dilaton

radiation scales as ζ2, it can still be considerably high,
depending on the radiating source. For instance, for the
source GW150914, the luminosity due to the GWs was
dEg=dt ≈ 3.6 × 1056 erg=s [1]. Therefore, even if the scalar
radiation is small compared to the gravitational one, it can
still have a considerable value. The implication of a burst of
dilaton radiation depends on how the environment (plasma,
surrounding stars, etc.) interacts with the dilaton field.

V. CONSTRAINTS ON THE EDGB COUPLING
FROM RINGDOWN OBSERVATIONS

The results of the previous section show that plunges of
point particles do not excite considerably the scalar-led
QNMs. This suggests that such modes might be only
mildly excited during the coalescence of two BHs of equal

mass and that the main signature of EDGB theory would
be a shift of the ringdown frequencies, the latter being
governed by the fundamental gravitational-led modes.
Thus, the use of ringdown measurements in EDGB theory
to estimate the magnitude of the coupling ζ would rely only
on the deviation of the gravitational-led modes from their
GR counterpart. These deviations are parametrized in
terms of the fit (27) of which the coefficients are given
in Tables I and II for the l ¼ 2, 3 fundamental axial and
polar modes, respectively.
The results of the previous sections refer to nonspinning

BHs, whereas the end product of the coalescence is a
spinning compact object. Thus, ringdown tests require the
knowledge of the first dominant modes of a spinning BH as
a function of the spin χ and of the coupling constant of the
modified theory of gravity. Computing the QNMs of
generic spinning BHs in modified gravity is a very
challenging task,4 which has witnessed some developments
only recently (cf. Ref. [37] for an overview). Nonetheless,
most of the results are obtained within a perturbative
expansion valid for χ ≪ 1 and quickly become intractable
at the higher perturbative order. The latter is required to
extrapolate the perturbative result up to χ ≈ 0.7, which is
roughly the spin of the final BH measured in the two
coalescence events detected by aLIGO to date [1,54].
To overcome this limitation and estimate how rotation

affects the QNMs of an EDGB BH, we rely on the geodesic
correspondence and on our knowledge of the metric of a
spinning BH in EDGB theory. As previously mentioned,
the latter is known analytically up to Oðχ5; ζ7Þ [19] and
numerically for any value of χ and ζ [22,23]. In the
previous section, we have checked that the geodesic
correspondence works reasonably well for axial modes,
so in this section, we will focus on the latter. However, we
may argue that the order of magnitude of our estimates
should be correct also for the more relevant polar modes.
By using the geodesic correspondence for l ¼ m modes

described in Sec. III A, we obtain the following result,

ωR

ωRðχ ¼ 0Þ ¼ 1þ ð0.3849þ 0.0326ζ2Þχ þ ð0.2038þ 0.0264ζ2Þχ2 þ ð0.1283þ 0.0169ζ2Þχ3

þ ð0.0897þ 0.0105ζ2Þχ4 þ ð0.0671þ 0.0054ζ2Þχ5 þOðχ6; ζ3Þ; ð33Þ

ωI

ωIðχ ¼ 0Þ ¼ 1 − 0.0059ζ2χ − ð0.0741þ 0.0066ζ2Þχ2 − ð0.0713 − 0.0002ζ2Þχ3

− ð0.0604 − 0.0050ζ2Þχ4 − ð0.0504 − 0.0079ζ2Þχ5 þOðχ6; ζ3Þ; ð34Þ

where ωR;Iðχ ¼ 0Þ are the corresponding axial modes
for a nonspinning EDGB BH shown in Table I. The
above expressions are valid up to Oðχ5; ζ2Þ and for any
l ¼ m ≫ 1; the only difference enters in the normalization
factors on the left-hand side.
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FIG. 4. Dilaton quadrupolar flux for radial plunges into an
EDGB BH with different boosts for ζ ¼ 0.1. As expected, the
scalar flux starts to present an exponential suppression for
frequencies roughly larger than the dilaton mode. In the inset,
we plot the ratio between the fluxes for ζ ¼ 0.1 and ζ ¼ 0.05,
which confirms that the scalar flux scales dominantly with ζ2.

4The task of computing the QNMs of a Kerr BH is enormously
simplified by the fact that the gravitational perturbation equations
are separable, due to special properties of the background Kerr
geometry which does not necessarily hold for other spinning BH
solutions.
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The detection of two ringdown modes is necessary to
estimate the mass, spin, and coupling ζ. Here, we adopt the
same Fisher-matrix technique presented in Ref. [8]. Let
us consider first the axial modes, which are, generically,
excited during themerger phase. Themeasurement of the two
most dominant modes (which we take to be l ¼ m ¼ 2, 3,
excited with a relative amplitude of 3∶1 [11]) gives us
sufficient information to extract the mass and spin of
the BH, as well as the coupling parameter of the theory. To
do this, we use the geodesic correspondence, Eq. (34).
Assuming that bothmodes are excited to detectable amplitude
(this can be quantified using themethods of Ref. [11]), then a
Fisher-matrix computation allows us to estimate the uncer-
tainties in the parameters determining the ringdown [8]:M, χ,
ζ. This then allows us to constrain the magnitude of the
coupling parameter ζ,

ζ ≲ 3.98 − 0.718χ þ 0.181χ2 − 0.045χ3ffiffiffi
ρ

p ; ð35Þ

where ρ is the signal-to-noise ratio in the ringdownwaveform
and theOðχ4Þ andOðχ5Þ terms are negligible. The numerator
in the expressionabove is a (mildly)decreasing functionof the
spin and ranges from ≈4 to ≈3.5 in the region 0 ≤ χ ≈ 0.8.
This analysis can be extended to polar modes. In fact,

one might even argue that corrections to polar modes are
higher, since the polar QNMs of nonrotating BHs are more
affected than the axial, cf. Tables I and II. However, there is
little evidence that they follow the geodesic correspon-
dence, but we expect that the order of magnitude change in
the modes remains the same. Therefore, it is reasonable to
believe that, even when polar modes are excited, a mode
analysis of the ringing signal can set constraints on ζ of the
order of those given by Eq. (35).
As a reference, the final BH spin of GW150914 was

χ ≈ 0.67 [1] and ρ ≈ 7.7 in the ringdown part [6]. This
[assuming, as a first approximation, that Eq. (35) also holds
for polar modes] yields roughly ζ ≲ 1.3, which is weaker
than the theoretical bound [18] for the finite-ζ solution,
ζ ≲ 0.691, and therefore meaningless. This constraint is
nevertheless comparable with that derived from the orbital
decay rate of low-mass x-ray binaries [15], and it is slightly
larger than the projected bound achievable in the near future
from the measurements of quasiperiodic oscillations in the
spectrum of accreting BHs [55], although the latter might be
affected by astrophysical systematics. Our estimate suggests
that ρ≳ 25 in the ringdown waveform is needed to obtain an
upper limitwhich ismore stringent than the theoretical bound
using GW ringdown detections. Of course, in order to set
these upper limits, an accurate computation of both polar and
axial modes of rotating EDGB BHs will be needed.

VI. DISCUSSION AND CONCLUSIONS

EDGB gravity is a simple and viable higher-curvature
correction to GR which predicts BH solutions with scalar

charge. Since strong-curvature corrections are suppressed
at large distance, it is natural to expect that the most
stringent constraints on this theory come from the strong-
curvature, highly dynamical regime as the one involved in a
BH coalescence. Furthermore, compact stars in this theory
possess only a very small scalar charge [56,57], and
therefore EDGB gravity evades the stringent constraints
on the dipole radiation coming from current binary-pulsar
systems [5].
The estimate (35) translates to the following upper bound

on the dimensionful EDGB coupling,5

α1=2 ≲ 11

�
50

ρ

�
1=4

�
M

10 M⊙

�
km; ð36Þ

where the prefactor changes by less than 10% depending
on the final BH spin. This result is in agreement with the
simple estimates derived in Ref. [58]. As a consequence,
our analysis also confirms that in most cases modified-
gravity effects can be distinguished from environmental
effects [58].
Future GW detectors will greatly increase the signal-to-

noise ratio, a large value of which is necessary to perform
ringdown tests of the Kerr metric [59]. The signal-to-noise
ratio of a ringdown waveform scales approximately (among
its dependence on other quantities not shown here) as
ρ ∼M3=2=SnðfÞ1=2 [10], whereM is the final BH mass and
SnðfÞ is the detector noise power spectral density at a given
frequency f. The best sensitivity of the future Voyager [60]
and Einstein Telescope [61] detectors will be, respectively,
roughly a factor of 10 and a factor of 100 better than
in the first aLIGO observing run at the same optimal
frequency f ∼ 102 Hz [59]. Thus, the Einstein Telescope
with an optimal design can achieve a signal-to-noise ratio
of roughly ρ ≈ 100 for the ringdown signal of a
GW150914-like event. From Eqs. (36) and (35), this would
translate into the bound α1=2 ≲ 8ð M

10 M⊙Þ km and ζ ≲ 0.4.

As expected, lighter BHs would provide a significantly
more stringent constraint on α, although their ringdown
frequency might not fall into the optimal frequency range
for ground-based detectors. Due to the small exponent of ρ
in Eq. (36), even an increase of ρ of 1 order of magnitude
will not provide a significantly more stringent constraint on
the EDGB coupling. A stronger constraint may be set if
future observations detect a light BH with a very large
signal-to-noise ratio.
Given this scenario, electromagnetic observations of

accreting BHs (like the one discussed in Ref. [55]) might

5Since one of the parameters of our Fisher-matrix analysis is
ζ ¼ α=M2, propagation of errors implies a relative uncertainty
δα=α ¼ δζ=ζ þ 2δM=M. However, in the large-ρ limit, the term
δM=M is negligible because it scales as 1=ρ, compared to the
1=

ffiffiffi
ρ

p
behavior of the error on ζ [cf. Eq. (35)]. Therefore, in this

limit, δα≲ δζM2.
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provide more stringent constraints in the future, although
the latter are affected by astrophysical systematics that are
absent in the ringdown case.
Our estimates in the case of spinning BHs rely on the

geodesic analogy forQNMs,whichweverified only for axial
modes in the static case and for Kerr BHswith any spin [8]. It
would be interesting to compute themodes of slowly rotating
EDGB BHs (e.g., by adapting the methods discussed in
Ref. [37]) and to check the geodesic approximation in the
spinning case. This computation will be required to place
precise constraints on the EDGB coupling through future
detections of BH ringing with high signal-to-noise ratio.
Another interesting extension of our work concerns the

scalar waves emitted during the coalescence. Although the
luminosity in scalar waves is significant, this radiation may
be possibly detected only if the dilaton is coupled to matter.
Such coupling is presumably small and would not give rise
to any effects in the detectors. Nonetheless, if the dilaton-
matter coupling is non-negligible, the scalar radiation
might be investigated through the same techniques devel-
oped to study the scalar emission in scalar-tensor theories,
e.g., by using a network of ground-based detectors [62].
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APPENDIX A: SPHERICALLY SYMMETRIC
BHS IN EDGB

1. Spherically symmetric BHs

The ansatz for the static EDGB BH is given in terms of
the functions AðrÞ and BðrÞ for the line element (7), in
addition to the function ϕ0ðrÞ for the dilaton field.
At spatial infinity r ¼ ∞, the dilaton vanishes, and we

recover the metric of a flat spacetime. Asymptotically, the
functions present the following behavior,

A ∼ 1 −
2M
r

þOðr−3Þ; ðA1Þ

B ∼ 1 −
2M
r

þ Q2

4r2
þOðr−3Þ; ðA2Þ

ϕ0 ∼ ϕ∞ þQ
r
þMQ

r2
þOðr−3Þ; ðA3Þ

whereM is the Arnowitt-Deser-Misner mass of the BH and
Q is the “charge” of the scalar field6 At the BH horizon
r ¼ rh, we find that the metric functions and the scalar field
behave as

A ∼
X∞
j

ajðr − rhÞjþ1; B ∼
X∞
j

bjðr − rhÞjþ1; ðA4Þ

ϕ0 ∼
X∞
j

ϕjðr − rhÞj: ðA5Þ

The coefficients aj, bj, and ϕj are constants, but they are
not free parameters. In fact, they depend only on the
coupling parameters of the theory and horizon radius of the
BH (related to the total massM) through some complicated
algebraic relations [14].
In order to study the quasinormal modes of the full

geometry, we build numerically the solutions of the back-
groundmetric.Wedo so by integrating the systemof ordinary
differential equations for AðrÞ, BðrÞ, and ϕ0ðrÞ, from
the horizon up to infinity. We perform this integration in a
compactified coordinate x ¼ 1 − rh=r, with x ∈ ½0; 1�. With
a suitable reparametrization of the functions, we can impose
asboundaryconditions thecorrect behaviorat infinity (x ¼ 1)
and at the horizon (x ¼ 0). The integration is performed
with the package COLSYS [63], and typically background
solutions are generated with 1000–10000 points and
required relativeprecisionsof the functions smaller than10−6.
Another approach, which allows us to obtain analytical

expressions for the backgroundmetric and dilaton field is the
small-coupling limit. In the small-coupling limit, in which
ζ≡ α=M2 ≪ 1, the equations can be greatly simplified,
and the background field can be computed analytically.
Considering the expansion for the background fields

A ¼ 1 −
rh
r
þ
XN
j¼0

ζjþ2Ac
j; ðA6Þ

B ¼ 1 −
rh
r
þ
XN
j¼0

ζjþ2Bc
j; ðA7Þ

ϕ0 ¼
XN
j¼0

ζjþ1ϕc
j ðA8Þ

and expanding the background equations in ζ, one has
that each order jþ 2 for the metric and jþ 1 for the

6Note, however, that this is not an independent parameter and
therefore should be considered as a secondary hair [14].
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scalar field can be solved consistently, imposing regu-
larity at the horizon r ¼ rh, and that the scalar field goes
to zero at infinity. Typically, we consider solutions up to
N ¼ 4, verifying that the results converge in the small-ζ
region.

APPENDIX B: PERTURBATIONS

1. Polar sector

For the polar sector, the nonvanishing components of the
modified Einstein’s equations are

K0 þ αðB − 1Þeϕ0

r2ðαBeϕ0ϕ0
0 − rÞϕ

0
1 þ

�
1

r
−

A0

2A

�
K − i

ðΛþ 1Þ
r2ω

H1 þ
ðαð3B − 1Þeϕ0ϕ0

0 − 2rÞ
2rðr − αBeϕ0ϕ0

0Þ
H2

þ ðαðB − 1Þeϕ0ðrA0 þ Að2 − 2rϕ0
0ÞÞ þ Ar3ϕ0

0Þ
2Ar3ðr − αBeϕ0ϕ0

0Þ
ϕ1 ¼

4
ffiffiffi
2

p
πrAð1Þ

lm

rω − αBωeϕ0ϕ0
0

; ðB1Þ

H0
1 þ

�
2ðB − 1ÞBðrA0 − 2AÞ

Ar
−
rðB2rϕ0

0
2 þ 2ðB − 1ÞB0Þ

r − αBeϕ0ϕ0
0

− 4B0
�

H1

4ðB − 1ÞBþ iω
B
H2

− irω

�
4B0

B
þ r2ϕ0

0
2

r − αBeϕ0ϕ0
0

�
K

4ðB − 1Þ −
iαωeϕ0B0

Br2 − αB2reϕ0ϕ0
0

ϕ1 ¼ 0; ðB2Þ

H0
0 þ

rðαBeϕ0A0ϕ0
0 − 2AÞ

2Aðr − αBeϕ0ϕ0
0Þ

K0 þ
�

2ðA − rA0Þ
r − αBeϕ0ϕ0

0

þ 3A0
�
H2

2A
þ αBeϕ0A0ðrϕ0

0 − 2Þ − Ar2ϕ0
0

Ar2ðr − αBeϕ0ϕ0
0Þ

ϕ1

þ αBeϕ0A0

Ar2 − αABreϕ0ϕ0
0

ϕ0
1 þ

�
A0

2A
−
1

r

�
H0 þ

iω
A
H1 ¼ 0; ðB3Þ

H2ð2A − 3αB2eϕ0A0ϕ0
0Þ − BrK0ðA0ðr − 3αBeϕ0ϕ0

0Þ þ 2AÞ þ KðαBeϕ0ϕ0
0ð2rω2 − ΛA0Þ þ 2AΛ − 2r2ω2Þ

þ ϕ1ðαeϕ0ðBð2rω2 − A0ðð1 − 3BÞrϕ0
0 þ 3Bþ 2Λþ 1ÞÞ − 2rω2Þ − ABr2ϕ0

0Þ
r2

þ ϕ0
1

�
αBð3B − 1Þeϕ0A0

r
þ ABrϕ0

0

�
−
2AH0ðΛþ 1Þðr − αBeϕ0ϕ0

0Þ
r

þ ABH0
0ð2r − αð3B − 1Þeϕ0ϕ0

0Þ

þ 2iBH1ωð2r − αð3B − 1Þeϕ0ϕ0
0Þ ¼ −16πABr2Alm; ðB4Þ

H2 −
AH0ð4B0ðr − αBeϕ0ϕ0

0Þ þ Br2ϕ0
0
2Þ

2ðB − 1ÞðαBeϕ0A0ϕ0
0 − 2AÞ þ αeϕ0ϕ1ðAA0B0 − BððA0Þ2 − 2AA00ÞÞ

ArðαBeϕ0A0ϕ0
0 − 2AÞ ¼ 0; ðB5Þ

H2ð4αBeϕ0ϕ0
0ððB − 1ÞðΛþ 1Þ − rB0Þ þ 4rðBðrB0 þ B − Λ − 3Þ þ Λþ 2Þ þ B2r3ϕ0

02Þ
4ðB − 1ÞBr2ðr − αBeϕ0ϕ0

0Þ

þ
K0ðrðB2ð−rÞϕ0

0
2−2ðB−1ÞB0Þ

r−αBeϕ0ϕ0
0

− 4B0 þ 8ðB−1ÞB
r Þ

4ðB − 1ÞB þ
ΛKð4B0

B þ r2ϕ0
0
2

r−αBeϕ0ϕ0
0

Þ
4ðB − 1Þr

þ ϕ0
1ðBr3ϕ0

0 − αeϕ0ðBð3rB0 þ 4ðB − 1Þrϕ0
0 − 4Bþ 4Þ − rB0ÞÞ

2Br3ðr − αBeϕ0ϕ0
0Þ

þ ϕ1ð2αeϕ0ðð2Λþ 1ÞrB0 þ Bð3rB0 þ 4ðB − 1Þrϕ0
0 − 4Bþ 4ÞÞ − r2ð4rB0 þ Bðrϕ0

0ðrϕ0
0 þ 2Þ þ 4Þ − 4ÞÞ

4Br4ðr − αBeϕ0ϕ0
0Þ

þH0
2ðαð3B − 1Þeϕ0ϕ0

0 − 2rÞ
2rðr − αBeϕ0ϕ0

0Þ
þ αðB − 1Þeϕ0ϕ00

1

r2ðαBeϕ0ϕ0
0 − rÞ þ K00 ¼ −

8πrAð0Þ
lm

ABr − αAB2eϕ0ϕ0
0

; ðB6Þ

where H0, H1, H2, K, and ϕ0 are the polar parity perturbation functions defined in Sec. II B.
In the above equations, we defined Λ ¼ ðlþ 2Þðl − 1Þ=2. Note that, due to the Bianchi identities, not all of the above

equations are independent. The dilaton field equation (3) at first order gives
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d2ϕ1

dr2�
þ
�
BrA0ðrϕ0

0 þ 1Þ þ AðrB0ðrϕ0
0 þ 1Þ þ 2Brðrϕ00

0 þ 2ϕ0
0Þ þ 4ðΛþ 1ÞÞ

2r2
− ω2

�
ϕ1 þ αB2eϕ0A0K00

−
αAðB − 1ÞBeϕ0H00

0

r
−
H0

0ðαeϕ0ð2ðB − 1ÞBA0 þ Að3B − 1ÞB0Þ þ ABr2ϕ0
0Þ

2r
−
BH0

2ðαð3B − 1Þeϕ0A0 þ Ar2ϕ0
0Þ

2r

þ αH2eϕ0ðB2rðA0Þ2 þ Að−Bð2BrA00 þ A0ð3rB0 þ 2Λþ 2Þ − 2rω2Þ − 2rω2ÞÞ þ αAH0ðΛþ 1Þeϕ0B0

r2

þ BK0ðαeϕ0ðAð2BrA00 þ A0ð3rB0 þ 4BÞÞ − BrðA0Þ2Þ þ 2A2r2ϕ0
0Þ

2Ar
− iH1

�
αð3B − 1Þωeϕ0B0

r
þ Brωϕ0

0

�

þ αKeϕ0ðAB0ð2rω2 − ΛA0Þ þ BΛððA0Þ2 − 2AA00ÞÞ
2Ar

−
2iαðB − 1ÞBωeϕ0H0

1

r
¼ 0: ðB7Þ

To obtain the system as (16), we do the following: we use
Eqs. (B3)–(B5) to eliminate H0,H0

0, andH2 in terms of K,
H1, ϕ1, and their first derivatives, as well as source terms,
substituting them in Eqs. (B1), (B2), and (B7). In this way,
we can write

0
BBB@

H0
1

K0

ϕ0
1

ϕ00
1

1
CCCAþ

0
BBB@

V11V12V13V14

V21V22V23V24

V31V32V33V34

V41V42V43V44

1
CCCA

0
BBB@

H1

K

ϕ1

ϕ0
1

1
CCCA ¼

0
BBB@

S1
S2
S3
S4

1
CCCA; ðB8Þ

which is the extended form of Eq. (16) for j ¼ p.
Obviously, V3k ¼ 0 for k ≠ 4, V34 ¼ −1, and S3 ¼ 0.
Due to the complexity of the components of Vp, we shall
not show them here, but they can be seen in the
Supplemental Material [47]. The boundary conditions for
the perturbations can be found with the aid of the
expansions of the background metric and dilaton field.
Note that, for QNMs, due to the natural divergence at
spatial infinity, one must consider a high-order expansion
of the perturbations at infinity.
For l ¼ 0, 1, simpler gauge choices can be chosen [30].

First, for l ¼ 1, we notice that we can pick a gauge in which
K vanishes identically. Therefore, we can use the first two
equations in (B8) to eliminate H1

0 and H1 in favor of ϕ1,
ϕ0
1. For l ¼ 0, we can choose a gauge in which both K and

H1 vanishes, and again the equations are reduced to a
second-order equation for the dilaton perturbation. Note
that this is possible because some harmonics in the
expansion are identically zero in the l ¼ 0 and l ¼ 1 cases.

2. Axial sector

The equations for the axial sector are much simpler. The
fundamental equations can be written as

h01 −
AA0B0 þ BðAð2A00 þ Aϕ02Þ − A02Þ

2ABð2A − αBeϕA0ϕ0Þ rh1

þ αeϕðB0ϕ0 þ 2Bðϕ00 þ ϕ02ÞÞ − 2

BðαBeϕA0ϕ0 − 2AÞ iωh0 ¼ 0; ðB9Þ

h00 þ
r2ω2 − αBeϕϕ0ðrω2 − ΛA0Þ − 2ΛA

rωðr − αBeϕϕ0Þ ih1 −
2

r
h0 ¼ 0;

ðB10Þ

h000 þ iωh01 þ
−2A00 − 2A0

r þ Að2B0þrBϕ02Þ
BðαBeϕϕ0−rÞ

2A0 h00

þ
iωð−2A00 þ 2A0

r þ Að2B0þrBϕ02Þ
BðαBeϕϕ0−rÞ Þ

2A0 h1

þ ½rABðr − αBeϕϕ0Þ�−1fBA0ðr − αBeϕϕ0Þ
þ A½αeϕðð3Bþ ΛÞB0ϕ0 þ 2BðBþ ΛÞðϕ00 þ ϕ02ÞÞ
−rB0 − 2B − 2Λ�gh0 ¼ 0: ðB11Þ

where h0, h1 are the axial parity perturbation functions
defined in Sec. II B.
The above differential equations are already in the form

of Eq. (16). As mentioned in the main text, the particle does
not induce perturbation in the axial sector, and hence there
are no source terms in the above equations.
For l ¼ 0, the tensorial harmonics multiplying the

functions h0 and h1 vanish identically, and therefore the
axial perturbation vanish identically.
For l ¼ 1, the analysis of the perturbations follows in a

very similar manner as the one in GR [30,35]. One of the
harmonics vanishes identically, and one is left with only
two equations, namely (B10) and (B11). We can exploit the
gauge freedom to set either h1 or h0 to zero. The remaining
equations, which are asymptotically GR, have a non-
radiative behavior at infinity and contribute only to give
an infinitesimal angular momentum to the BH.

3. Source terms

As mentioned in the main text, the particle stress-energy
tensor can be expanded in spherical harmonics. The
procedure to obtain the coefficients is outlined in
Refs. [30,35,64]. In the frequency domain, the source
functions for a particle falling radially into the BH are
given by
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Að0Þ
lm ¼

ffiffiffiffiffiffiffiffiffiffi
lþ 1

2

r
γ2eiωT

2πr2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − A

p ; ðB12Þ

Að1Þ
lm ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p iγeiωT

2π
ffiffiffiffi
A

p ffiffiffiffi
B

p
r2
; ðB13Þ

Alm ¼
ffiffiffiffiffiffiffiffiffiffi
lþ 1

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − A

p
eiωT

2πABr2
; ðB14Þ

where γð≥ 1Þ is the specific energy of the particle (boost
parameter) and T is the time trajectory of the particle, as a

function of the radial coordinate. The function T can be
obtained by solving the differential equation

T 0 ¼ −
γffiffiffiffiffiffiffi

AB
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − A
p : ðB15Þ

We can solve this equation together with the perturbed
equations, imposing that T ¼ 0 at the numerical horizon,
without loss of generality. We note that in the small-ζ
approximation for the metric Eq. (B15) can be solved
analytically, expanding the right-hand side in powers
of ζ.
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