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We consider the possibility that the massive graviton is a viable candidate for dark matter in the context
of bimetric gravity. We first derive the energy-momentum tensor of the massive graviton and show that it
indeed behaves as that of dark matter fluid. We then discuss a production mechanism and the present
abundance of massive gravitons as dark matter. Since the metric to which ordinary matter fields couple is a
linear combination of the two mass eigenstates of bigravity, production of massive gravitons, i.e., the dark
matter particles, is inevitably accompanied by generation of massless gravitons, i.e., the gravitational
waves. Therefore, in this scenario some information about dark matter in our Universe is encoded in
gravitational waves. For instance, if LIGO detects gravitational waves generated by the preheating after
inflation, then the massive graviton with the mass of ∼0.01 GeV is a candidate for dark matter.
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I. INTRODUCTION

The massive graviton has long received much attention
from both the theoretical and phenomenological perspec-
tives, ever since the linear theory of the massive graviton
was constructed by Fierz and Pauli in 1939 [1]. Although
generic nonlinear extensions of the Fierz-Pauli theory lead
to an unstable degree of freedom called a Boulware-Deser
ghost [2], the nonlinear ghost-free massive gravity was
constructed by de Rham et al. in 2010 [3,4]. Furthermore,
the nonlinear ghost-free massive gravity is generalized to
the bigravity theory [5] and the multigravity theory [6] (see
[7–9] for reviews). In this paper, we assume the bigravity
theory that contains a massive graviton as well as a
massless graviton.
If the massive graviton exists, the gravity would be

modified around the scales of the Compton wavelength of
the massive graviton. This modification of gravity yields
various phenomenological features depending on the grav-
iton mass (see [10–12] for experimental constraints on the
graviton mass). Many studies attempted to explain the
present accelerating expansion of the Universe by the tiny
graviton mass as m ∼ 10−33 eV [13–20]. Another possibil-
ity is to explain the origin of dark matter when the graviton
mass ism≳ 10−27 eV. When a matter field is introduced in
the “dark” sector, it acts as dark matter in the physical
sector through gravity interaction [20,21].
In the present paper, however, we focus on a particle

aspect of the massive graviton. In general relativity (GR),
while the graviton is the mediator of gravity, the graviton

itself is a source of the gravitational field, whose energy-
momentum tensor was derived by Isaacson [22]. Hence one
expects that the massive graviton is also a gravitational
source in the bigravity theory. In particular, if the massive
graviton behaves just like a massive field, the massive
graviton itself is a candidate for dark matter. Indeed, by
calculating the energy-momentum tensor of the massive
graviton, we propose that the massive graviton is a
gravitational source and that it acts as dark matter in the
bigravity theory.
Since bigravity contains both massless and massive

gravitons, when the massive graviton is generated, the
massless graviton is also generated. Massless gravitons
would then be observed as a gravitational wave back-
ground. Therefore, if the massive graviton in bigravity is
dark matter, the gravitational wave background can carry
information about dark matter. As an example, we assume
production of the massive graviton from the preheating.
The gravitational waves from the preheating have been
discussed in [23–31]. In bigravity, massive gravitons are
also generated from the preheating. We find that, if the
massive graviton is the dominant component of dark
matter, then the graviton mass can be estimated by
observations of the gravitational wave background. In
particular, if LIGO and Virgo detectors observe the
gravitational wave background that originated from the
preheating, the massive graviton with m ∼ 0.01 GeV is a
viable candidate for dark matter.
The paper is organized as follows. The nonlinear ghost-

free bigravity theory is introduced in Sec. II. In Sec. III, we
derive the energy-momentum tensor of the massive grav-
iton and confirm that the massive graviton can be dark
matter. We discuss the generation of the massive graviton
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from the preheating and observational implications of the
massive graviton dark matter in Sec. IV. We summarize our
results and give some remarks in Sec. V. In the Appendix,
we detail the definition and the derivation of the energy-
momentum tensor of the massive graviton.

II. BIGRAVITY THEORY

The nonlinear ghost-free bigravity action [5] is given by

S ¼ 1

2κ2g

Z
d4x

ffiffiffiffiffiffi
−g

p
RðgÞ þ 1

2κ2f

Z
d4x

ffiffiffiffiffiffi
−f

p
RðfÞ

þm2

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
Uðg; fÞ þ Sm; ð2:1Þ

where gμν and fμν are two dynamical metrics, and RðgÞ and
RðfÞ are their Ricci scalars. The parameters κ2g and κ2f are
the corresponding gravitational constants, while κ is
defined by κ2 ¼ κ2g þ κ2f. To admit the Minkowski space-
time as a vacuum solution, we restrict the potential U as the
form

U ¼ U2ðKÞ þ c3U3ðKÞ þ c4U4ðKÞ; ð2:2Þ

U2ðKÞ ¼ −
1

4
ϵμνρσϵ

αβρσKμ
αKν

β;

U3ðKÞ ¼ −
1

3!
ϵμνρσϵ

αβγσKμ
αKν

βKρ
γ;

U4ðKÞ ¼ −
1

4!
ϵμνρσϵ

αβγδKμ
αKν

βKρ
γKσ

δ; ð2:3Þ

with

Kμ
ν ¼ δμν −

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
μ

ν

; ð2:4Þ

where
� ffiffiffiffiffiffiffiffiffiffi

g−1f
p �

μ

ν
is defined by the relation

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
μ

ρ

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
ρ

ν

¼ fμρgρν: ð2:5Þ

Then gμν ¼ fμν ¼ ημν is a vacuum solution of bigravity,
and the parameter m describes the mass of the massive
graviton propagating on the Minkowski background.
We define perturbations of the two metrics as

δgμν ≔ gμν − ημν;

δfμν ≔ fμν − ημν: ð2:6Þ

Note that either δgμν or δfμν is not a mass eigenstate. At the
linear order of the perturbations, the mass eigenstates are
defined by

hμν ≔
κf
κgκ

δgμν þ
κg
κfκ

δfμν; ð2:7Þ

φμν ≔
1

κ
ðδgμν − δfμνÞ; ð2:8Þ

where hμν and φμν are the massless and massive eigenstates
with mass dimension one, respectively. A nonlinear exten-
sion of mass eigenstates was discussed in [32].
The matter action Sm can be divided into three types:

Sm ¼ Sgðg;ψgÞ þ Sfðf;ψfÞ þ Sdðg; f;ψdÞ; ð2:9Þ

where the first two types of matter fields couple to either gμν
or fμν, while the third type couples to both metrics. The
matter fields that couple to only one metric do not spoil the
structure of the gravitational part of the theory that
eliminates the (would-be) Boulware-Deser (BD) ghost.
On the other hand, matter fields that couple to both metrics
generically reintroduce the BD ghost [33–39]. This would
imply that the matter should couple to only one metric. One
way to avoid the difficulty of the double matter coupling
was recently proposed in the context of the partially
constrained vielbein formulation that breaks Lorentz invari-
ance at the cosmological scale [40], making it possible to
couple matter fields simultaneously to both metrics without
the BD ghost at all scales. However, in the present paper,
for simplicity we shall not consider the double matter
coupling. Furthermore, we simplify the system by restrict-
ing our considerations to the first type of matter fields only,
i.e., those that couple to gμν only. Even in this simplest
setup, since the mass eigenstates of the gravitons are
defined by (2.7) and (2.8), the matter couples to both
massless and massive gravitons, simultaneously.
In this paper, as already stated above, we assume that all

matter fields couple minimally to gμν.
1 The quadratic action

is expressed as

S2 ¼
Z

d4x

�
1

κ2g
LEH½δg� þ

1

κ2f
LEH½δf�þLFP½φ� þ

1

2
δgμνT

μν
m

�

¼
Z

d4x
�
LEH½h� þ

1

2Mpl
hμνT

μν
m

�

þ
Z

d4x

�
LEH½φ� þLFP½φ�þ

1

2MG
φμνT

μν
m

�
; ð2:10Þ

where Tμν
m is the matter energy-momentum tensor. The

quadratic Einstein-Hilbert Lagrangian and the Fierz-Pauli
mass term for a symmetric tensor field χμν are defined by

1If we introduce a matter field coupling to fμν, the matter can
act as a dark matter component in gμν [20,21]. However, in this
paper, we discuss whether the massive graviton itself can be a
candidate of dark matter or not; thus we do not consider such a
matter field.
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LEH½χ� ¼ −
1

4
χμνEμν;αβχ

αβ; ð2:11Þ

LFP½χ� ¼ −
m2

8
ðχμνχμν − χ2Þ; ð2:12Þ

where

Eμν;αβχ
αβ ¼ −

1

2
∂2χμν −

1

2
∂μ∂νχ þ ∂α∂ðνχαμÞ

þ 1

2
ημνð∂2χ − ∂α∂βχ

αβÞ; ð2:13Þ

with the notation χ ¼ χμμ. The gravitational coupling
constants are defined by

Mpl ≔
κ

κgκf
; MG ≔

κ

κ2g
¼ κf

κg
MPl: ð2:14Þ

Since the matter couples to gμν, the gravitational poten-
tial observed by the physical matter is defined by
Φ ≔ −δg00=2. Using the weak field approximation, one
can obtain

Φ ¼ −
GM
r

ð1þ αe−r=λÞ; ð2:15Þ

where G ≔ 1=8πM2
pl, α ≔ 4

3
M2

pl=M
2
G, λ ¼ m−1. The exper-

imental constraints on the gravitational potential (2.15) are
summarized in Fig. 1 from [11]. Note that this constraint
does not include the effect of the Vainshtein mechanism
[41]. The linear approximation is no longer valid inside the
Vainshtein radius [42–44]. Hence, the constraints on the
large scales are subject to discussion.

III. MASSIVE GRAVITON AS DARK MATTER

In this section, we discuss whether the massive graviton
can be dark matter or not. We focus on scales well inside
the cosmological horizon but well outside the Vainshtein
radius. Hence we can analyze the system based on a
perturbative approach around the Minkowski background.
The energy-momentum tensor of the massive graviton is
evaluated in a way similar to the standard case of GR [22].
First we discuss the free propagating massless and

massive gravitational waves. In vacuum, the equations of
motion at linear order are given by

Eμν;αβhαβ ¼ 0; ð3:1Þ

Eμν;αβφ
αβ þm2

2
ðφμν − φημνÞ ¼ 0: ð3:2Þ

Since the massless graviton has a gauge symmetry, we can
chose the transverse-traceless gauge for the massless
eigenstate, i.e.,

∂μhμν ¼ 0; h ¼ 0; hμνuν ¼ 0; ð3:3Þ
where uμ is a timelike vector. Since the massive graviton
does not enjoy gauge symmetry, we cannot impose any
gauge condition for the massive graviton. However, in
vacuum, we can obtain the transverse-traceless condition
from the equation of motion:

∂μφ
μ
ν ¼ 0; φ ¼ 0: ð3:4Þ

As a result, the equations of motion are expressed as

∂2hμν ¼ 0; ð3:5Þ
ð∂2 −m2Þφμν ¼ 0: ð3:6Þ

The equations are the Klein-Gordon equations with and
without the mass term; thus we can easily find their
solutions. However, the explicit forms of the solutions
are not necessary to evaluate the energy-momentum tensor.
As is well known in GR, the division of the spacetime

geometry into a background and gravitational waves
requires a separation of scales for the two: the length
and/or time scale associated with the perturbation should be
sufficiently shorter than the scale associated with the
smooth background [22]. In this situation the energy-
momentum tensor of gravitational waves is defined by
the second-order part of the perturbed Einstein equation
averaged over a length and/or time scale between the two
scales. The same assumption and procedure can be
employed to define the energy-momentum tensor of the
massless graviton in the context of bigravity. Specifically,
the assumption of a large hierarchy of scales makes it
possible for us to perform integration by part, e.g., as

h∂ρhμνhαβi ≈ −hhμν∂ρhαβi; ð3:7Þ

FIG. 1. Experimental constraints on the gravitational potential
(2.15) adapted from Ref. [11]. The colored region is the excluded
area at 95% confidence level (see [11] and references therein for
details).
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similarly to the standard procedure in GR [22], where the
symbol h� � �i denotes an average over a spacetime region
with a size larger than the corresponding scale of the
perturbation but smaller than the scale of the background,
defined through an appropriate window function.
For the massless graviton with the transverse-traceless

gauge (3.4), in both GR and bigravity, the integration by
part can be applied to the time derivative as well as the
spatial derivatives even if the average is over a spatial
region, provided that the gravitational wave over the region
of integration can be considered as a wave propagating to
one direction. For example, in a region sufficiently far from
a finite-size source, a solution to the wave equation
propagating to, say, the z direction is written as
Fðt − zÞ. Thus ∂t applied to it can be replaced by −∂z
before performing the spatial integration by part, and then
∂z acting on another function of the form Gðt − zÞ can be
replaced by −∂t. On the other hand, this argument does not
apply to the massive graviton since the wave of a massive
field changes its shape as it propagates in one direction.
Moreover, even for the massless graviton, in either GR or
bigravity, this argument does not seem to be valid for
stochastic gravitational waves, which come from every
direction to every point. In the present paper, we thus
employ an average over a spacetime region to make it
possible to do integration by part.
In order to define the stress-energy tensor of the massive

graviton in bigravity, we thus assume that the length and
time scales associated with the background are sufficiently
longer than the corresponding scales of the massive
graviton mode, at least in the spacetime region where
we are about to evaluate the stress-energy tensor. We are
then able to define the stress-energy tensor of the massive
graviton by averaging the contribution of the massive
graviton to the second-order part of the perturbed
Einstein equation over a spacetime region whose size is
greater than the Compton wavelength but shorter than the
scales of the background. In this case we are able to
perform integration by part, e.g., as

h∂ρφμνφαβi ≈ −hφμν∂ρφαβi; ð3:8Þ

where the symbol h� � �i denotes an average over a space-
time region. The explicit calculation of the stress-energy
tensors for the massless and massive gravitons in bigravity
is summarized in the Appendix.
We further demand that the length scale associated with

the smooth background be longer than the Compton
wavelength of the massive graviton mode. In this situation,
gravity is basically mediated by the massless graviton:
while matter fields propagate on the metric gμν and its
perturbation is a linear combination of the massless and
massive graviton modes, the latter mode is exponentially
suppressed at the length scale of the background. Hence,
only the Einstein equation of the massless graviton is

relevant. Including the energy-momentum tensors of mass-
less and massive gravitons, the equation of motion for the
massless graviton, after we average over a spacetime region
with a size larger than the scales of the perturbation but
smaller than the scales of the background, is given by

Eμν;αβhαβ ¼
1

Mpl
ðTμν

m þ Tμν
gw þ Tμν

G Þ; ð3:9Þ

where Tμν
gw is the usual energy-momentum tensor of the

massless graviton, while Tμν
G is the energy-momentum

tensor of the massive graviton. As shown in the
Appendix, they are given by

Tμν
gw ¼ 1

4
hhαβ;μhαβ ;νi; ð3:10Þ

Tμν
G ¼ 1

4
hφαβ;μφαβ

;νi; ð3:11Þ

where ;μ denotes a partial derivative.2 These energy-
momentum tensors are also obtained from Noether’s
theorem (see the Appendix).
When the massive graviton is nonrelativistic, the massive

graviton indeed behaves like dust as a source of the
massless graviton. At the rest frame of the massive
graviton, the energy-momentum tensor is indeed given by

Tμν
G ¼ m2

4
diag½hφαβφαβi; 0; 0; 0�: ð3:12Þ

If the massive graviton is dark matter, the massive
gravitons have to survive until today. However, since the
graviton couples universally to matter fields, the massive
graviton can decay to light particles. The total decay rate of
a massive graviton [45–47] is given by

ΓG ∼ 0.1
m3

M2
G
: ð3:13Þ

If the decay rate of a massive graviton is larger than the
present Hubble parameter, the massive graviton cannot be a
relic at present. By demanding that the decay rate be lower
than the present Hubble parameter, an upper bound on the
graviton mass is thus given by

m≲ 0.01

�
MG

Mpl

�
2=3

GeV: ð3:14Þ

On the other hand, the existence of dark matter in galaxies
gives a lower bound on the graviton mass. Since the
massive graviton should be confined in galaxies, the de
Broglie wavelength of the massive graviton 2π=ðmvÞ
should be smaller than the kpc scale. Using a typical
velocity v ∼ 10−3 in the halo, a lower bound of the graviton
mass is given by

2Rigorously speaking, Tμν
gw and Tμν

G must be called “pseudo-
tensors.” In the present paper, for simplicity we shall call them
tensors.
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m≳ 10−23 eV: ð3:15Þ
In summary, when the mass is in the range

10−23 eV≲m≲ 0.01

�
MG

Mpl

�
2=3

GeV; ð3:16Þ

the massive graviton can be a candidate for dark matter.

IV. PRESENT ABUNDANCE OF
MASSIVE GRAVITON

One of the simplest scenarios of the generation of the
massive graviton in the early Universe would be through
inflation as discussed in [48,49]. In this case, however, the
Hubble expansion rate during inflation must be larger than
the graviton mass to produce a sufficient amount of massive
gravitons for dark matter. In our present setup of bigravity,
this would imply that the Higuchi bound tends to
be violated and thus a ghost appears at the linear level
[50–55]. This would at least invalidate the perturbative
approach [56] and thus we shall not consider generation of
massive gravitons during inflation in the present paper.
Instead of the production by inflation, we thus consider

generation of massive gravitons through the preheating
after inflation. During preheating, the inflaton decays to
inhomogeneous modes of itself and/or some other fields
and then large inhomogeneities can be created. This kind of
field bubble is a classical source of gravitational waves. The
peak momentum k� ¼ jk�j and the energy density ρ�gw of
the generated massless gravitational wave are roughly
estimated as

k� ∼ 1=R�; ρ�gw ∼ αðR�H�Þ2ρ�; ð4:1Þ
where R�,H�, and ρ� are the typical size of the field bubble,
the Hubble expansion rate, and the energy density at the
time of production, respectively, and we have included a
numerical factor α that varies from one model to another
(α≃ 0.1 for chaotic inflation, for example) [26,27,30]. The
typical size R� and the numerical factor α can be evaluated
when we assume a concrete preheating model. In the
present paper, however, we take a phenomenological
attitude and treat R� and α as a free parameter to discuss
a model-independent prediction. The present frequency and
the density parameter of the gravitational wave background
are then given by

f ∼
4 × 1010

R�ρ
1=4
�

Hz; h2Ωgw ∼ 10−5αðR�H�Þ2: ð4:2Þ

Note that in this model, the gravitational waves are
created at the subhorizon scale, which has remained the
subhorizon scale until today. We can assume the graviton
mass is larger than the Hubble expansion rate at the time of
production of gravitational waves so that the Higuchi
instability is avoided. Therefore, the cosmic history of

the amplitude of gravitational waves can be discussed by
using the linear theory until today.
In the subhorizon scale, we can ignore the effect of the

expansion of the Universe to discuss the generations of the
massless and massive gravitons. Hence we can use
the equations on the Minkowski background. For the
massless graviton, the equation of motion with a source
is expressed by

∂2hμν ¼ −
2

Mpl
Sμν; ð4:3Þ

where Sμν will be specified in (4.7) below and we have
chosen the harmonic gauge

∂μhμν ¼
1

2
∂νh: ð4:4Þ

On the other hand, the equation of motion for the massive
graviton is given by

ð∂2 −m2Þφμν ¼ −
2

MG
Jμν; ð4:5Þ

where the massive graviton must satisfy the constraint
equations

∂μφ
μν ¼ ∂νφ;

m2

2
φ ¼ −

1

3MG
Tm: ð4:6Þ

The source terms for massless and massive gravitons are
given by

Sμν ≔ Tμν
m −

1

2
ημνTm; ð4:7Þ

Jμν ≔ Tμν
m −

1

3

�
ημν −

∂μ∂ν

m2

�
Tm: ð4:8Þ

Using the retarded Green’s function

GRðx − y;pÞ

¼ θðx0 − y0Þ
Z

d3p
ð2πÞ3

−i
2p0

ðeipðx−yÞ − e−ipðx−yÞÞ; ð4:9Þ

the solutions of Eqs. (4.3) and (4.5) can be constructed. We
denote kμ as the four-momentum of the massless graviton
and pμ as the four-momentum of the massive graviton with
pμpμ ¼ −m2. We evaluate the solutions after the source
vanishes, i.e., after the preheating. Choosing the coordinate
uμ ¼ δμ0 in the transverse-traceless gauge, the solutions are
given by

h0μðxÞ ¼ 0;

hijðxÞ ¼
2

Mpl

Z
d3k
ð2πÞ3

i
2k0

OijlmðkÞT lm
m ðkÞeikx þ c:c:;

ð4:10Þ

MASSIVE GRAVITONS AS DARK MATTER AND … PHYSICAL REVIEW D 94, 024001 (2016)

024001-5



φμνðxÞ ¼
2

MG

Z
d3p
ð2πÞ3

i
2p0

J μνðpÞeipx þ c:c:; ð4:11Þ

where

Oijlm ¼ PlðiPjÞm −
1

2
PijPlm; Pij ¼ δij − kikj=k2;

ð4:12Þ

is the transverse-traceless projection operator that is intro-
duced to satisfy the transverse-traceless gauge. Note that
the source terms

T ij
mðkÞ ¼

Z
d4ye−ikyTij

mðyÞ; ð4:13Þ

J αβðpÞ ¼
Z

d4ye−ipyJαβðyÞ

¼ T αβ
m ðpÞ − 1

3

�
ηαβ þ pαpβ

m2

�
T mðpÞ; ð4:14Þ

are evaluated at only k2 ¼ 0 and p2 ¼ −m2, respectively.
The on-shell condition for the massive graviton leads to
pμJ μν ¼ 0, J μ

μ ¼ 0; thus the massive graviton automati-
cally satisfies the transverse-traceless condition after the
source vanishes. As a result, we find

hhαβ ;μhαβ;νi ¼
4

M2
pl

	Z
d3k
ð2πÞ3

Z
d3k0

ð2πÞ3
kμk0ν

2k0k00
T kl

mðkÞOij
klðkÞOijnmðk0ÞT �nm

m ðk0Þeiðk−k0Þx


; ð4:15Þ

hφαβ
;μφαβ;νi ¼ 4

M2
G

	Z
d3p
ð2πÞ3

Z
d3p0

ð2πÞ3
pμp0ν

2p0p00 J
αβðpÞJ �

αβðp0Þeiðp−p0Þx



≈
4

M2
G

	Z
d3p
ð2πÞ3

Z
d3p0

ð2πÞ3
pμp0ν

2p0p00

�
T αβ

m ðpÞT �
mαβðp0Þ − 1

3
T mðpÞT �

mðp0Þ
�
eiðp−p0Þx



; ð4:16Þ

where � denotes the complex conjugate and we have used
the on-shell condition p2 ¼ −m2. While the last term in
(4.8) would diverge in the limit m2 → 0, (4.16) is finite in
the same limit.
The result indicates that, if most of the produced massive

gravitons are relativistic, the amount of the gravitons is
simply evaluated by

hφαβ
;μφαβ;νi ∼M2

pl

M2
G
hhαβ ;μhαβ;νi: ð4:17Þ

On the other hand, if nonrelativistic massive gravitons are
generated, the amount of the massive gravitons strongly
depends on the Fourier space distribution of the source.

A. Nonrelativistic production

First we consider the case where the peak momentum k�
is smaller than the graviton mass, i.e., m > k� ∼ 1=R�,
where R� is the scale of the field bubble. In this case the
massive graviton is produced with nonrelativistic velocity
and continues to be nonrelativistic afterwards. Therefore,
the massive graviton behaves like cold dark matter.
In order to relate the abundance of massive gravitons as

dark matter to the amount of gravitational waves, we are
interested in the ratio of the stress-energy tensors for the
massive and massless gravitons. In the case under consid-
eration, i.e., for m > k� ∼ 1=R�, the ratio strongly depends
on the value of mR�. Since the bubbly stage of the
preheating is significantly non-Gaussian, the estimate of
the abundance of massive gravitons requires detailed

numerical simulations. We thus consider it beyond the
scope of the present paper to discuss further the case of
nonrelativistic production.

B. Relativistic production

Next we consider the case where the peak momentum of
the gravitational wave is higher than the graviton mass, i.e.,
m < k� ∼ 1=R�, where R� is the scale of the field bubble. In
this case the massive graviton is produced with relativistic
velocities. In order to realize the bottom-up scenario of the
structure formation, we thus need to make sure that the free
streaming scale due to the massive graviton is less than
about 0.1 Mpc [57]. The free streaming due to the
relativistic motion of massive gravitons continues until
the peak momentum is redshifted down tom. Therefore, the
free streaming scale is estimated as

Lfs ∼
a0

anrHnr
∼
anr
a�

a0
a�H�

∼
1

mR�

a0
a�H�

∼
2πf
m

107 Mpc; ð4:18Þ

where anr and Hnr are the scale factor and the Hubble
expansion rate, respectively, at the time when the massive
graviton becomes nonrelativistic and a0 is the scale factor
today. By requiring that Lfs be less than 0.1 Mpc, we thus
obtain the constraint

m
2πf

> 108: ð4:19Þ
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Therefore, in the case of relativistic production, if the
characteristic frequency of gravitational waves from pre-
heating is determined by observation, we can obtain a lower
bound on the graviton mass.
In this case, most of the generated massive gravitons are

relativistic with the momentum ∼k� > m; thus both mas-
sive and massless gravitons are created by the sources with
almost the same four-momenta. As shown in (4.17), the
energy densities are thus evaluated as

ρ�G
ρ�gw

∼
M2

pl

M2
G
; ð4:20Þ

where ρ�G and ρ�gw are the energy densities of the massive
graviton and the massless graviton at the production time.
When the massive graviton is relativistic, the energy
densities of both gravitons decrease as a−4, where a is
the scale factor of the Universe. As the Universe expands,
the massive graviton becomes nonrelativistic, and then the
energy density of the massive graviton decreases as a−3.
Hence the energy density of the massive graviton at the
present is

ΩG ∼
M2

pl

M2
G

m
2πf

Ωgw; ð4:21Þ

where ΩG is the density parameter of the massive graviton.
Hence if the massive graviton is the dominant component

of dark matter, the combination ðMpl=MGÞ2 ×m can be
estimated by the gravitational wave background as shown
in Fig. 2.
Since the present abundance and the frequency of the

gravitational wave background can be evaluated by (4.2),
the present abundance and the free streaming scale of the
massive graviton can be estimated by using ρ� and R�. We
now focus on gravitational waves to be sensitive in the
LIGO range. For instance, the preheating of

ρ1=4� ∼ 108 GeV; R−1� ∼ 0.1 GeV; ð4:22Þ

predicts the gravitational wave background with

f ∼ 40 Hz; h2Ωgw ∼ α10−8: ð4:23Þ

Note that the graviton mass has been assumed to be
consistent with the Higuchi bound, i.e., m >

ffiffiffi
2

p
H�, to

avoid the Higuchi instability, while the relativistic produc-
tion is realized only whenm < R−1� . Hence, the consistency
of our assumptions leads to R−1� > m >

ffiffiffi
2

p
H�. A set of

consistent parameters is

m ∼ 0.01 GeV; MG ∼ 106Mpl; ð4:24Þ

in which the massive graviton can explain the observed
amount of dark matter. Since

ffiffiffi
2

p
H� ∼ 0.005 GeV, the

Higuchi bound is barely satisfied. The corresponding free

FIG. 2. The sensitivities of gravitational wave detectors and the expected gravitational wave spectra from the preheating (red, blue,
green, and gray curves at the right), adopted from [30]. The orange lines then represent expected frequency and amplitude of the
gravitational wave background corresponding to the massive graviton dark matter model for ðMpl=MGÞ2 ×m ¼ 10−14 GeV, 10−8 GeV,
and 10−2 GeV. The gravitational wave background thus determines the combination ðMpl=MGÞ2 ×m. In particular, some of the
gravitational wave spectra are detectable by LIGO, for which the massive graviton can be the dominant component of dark matter when
ðMpl=MGÞ2 ×m ∼ 10−14 GeV.
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streaming scale is about 10−7 pc, so the massive graviton
behaves like cold dark matter. Therefore if the gravitational
detectors observe the stochastic gravitational wave back-
ground with (4.23), the massive graviton with (4.24) is a
viable candidate of dark matter.

V. CONCLUDING REMARKS

We have proposed a scenario in which the massive
graviton in the context of the ghost-free bigravity theory is
the dark matter in our Universe. First, we derived the
energy-momentum tensor of the massive graviton from the
nonlinear bigravity theory and confirmed that the massive
graviton actuary behaves like dark matter. Then we dis-
cussed a generation mechanism and the present abundance
of the massive graviton. In this paper, we assumed that the
graviton mass is high enough so that the theory is free from
the Higuchi instability during and after the generation of
massive gravitons. Hence we can discuss the cosmological
evolution of gravitons by using the linear theory from the
generation of the massive gravitons all the way down to the
present epoch.
One implication of our scenario of massive graviton dark

matter is that gravitational waves can carry information
about dark matter. While bigravity theory remaining ghost
free in the simplest setup requires that matter fields should
couple to either gμν or fμν,

3 neither gμν nor fμν are mass
eigenstates. Instead, gμν and fμν are linear combinations of
mass eigenstates. For this reason both massless and massive
gravitons couple to the same matter fields. As a result, the
gravitational wave background and the massive graviton
are generated by the same origin. Hence the abundance of
dark matter is related to that of the gravitational wave
background. For example, a suitable value of the graviton
mass for dark matter can be estimated by gravitational wave
background observations. Furthermore, if the massive
graviton is observed directly by another experiment, it
gives a consistency relation of the massive graviton dark
matter, and then we can identify whether the massive
graviton is indeed dark matter.
Depending on the nature of the production process as

well as the value of the graviton mass, the massive graviton
may behave as a hot, warm, or cold dark matter. In the
present paper, we assumed generation of the massive
graviton from the preheating after inflation. If LIGO and
Virgo detectors observe the gravitational wave background
with f ∼ 40 Hz and Ωgw ∼ 10−8, the massive graviton with
m ∼ 0.01 GeV and MG ∼ 106Mpl is a viable candidate for
dark matter in this scenario. Since the free streaming scale
due to the massive graviton in this case is much shorter than
kpc, the massive graviton behaves like cold dark matter as
far as the structure formation is concerned.

Although we have focused on stochastic massive grav-
itons in the present paper, a condensed massive graviton
could be a candidate for dark matter as well. For instance,
the energy density of the anisotropy of the Bianchi-type
universe decreases as a dust fluid in the bigravity theory
although that in GR decreases as a stiff matter [17]. This
fact could be explained by the idea that the anisotropy is a
consequence of the condensation of massive gravitons with
some direction and the energy density of the nonrelativistic
massive gravitons decreases as a dust.
In the present paper, in order to avoid the Higuchi

instability we have assumed that the Hubble expansion rate
at the time of the massive graviton production is lower than
the graviton mass. Even with this restriction, we have found
that the production of massive gravitons from the preheat-
ing provides a viable scenario of dark matter in bigravity. If
we can relax the assumption of a large graviton mass, then
various other scenarios would become possible, such as the
production of massive gravitons during inflation. For
instance, if we can extend the recently proposed minimal
theory of massive gravity [58,59], which does not contain
scalar and vector degrees freedom in the gravity sector, to
the context of bigravity, then it would open up many
interesting possibilities. For example, we would find a
successful scenario of massive graviton dark matter origi-
nated from inflation, based on a bigravity version of the
minimal theory of massive gravity.
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APPENDIX: DERIVATION OF GRAVITON
ENERGY-MOMENTUM TENSOR

In this appendix, we summarize the derivation of energy-
momentum tensor of the massive graviton.
In the classical field theory, when the Lagrangian is

given, the canonical energy-momentum tensor can be
defined from the Noether’s theorem. However, since the
Lagrangian has a freedom to add a total divergence term,
the energy-momentum tensor cannot be defined uniquely.
To remove this ambiguity, we define the canonical energy-
momentum tensor by averaging over a spacetime region.
Hence we define the canonical energy-momentum tensor of
a symmetric tensor field χμ as

Θμν
χ ≔

	
−

δLχ

δð∂μχαβÞ
∂νχαβ þ ημνLχ



; ðA1Þ3However, see [40] for the ghost-free double matter coupling

in the partially constrained vielbein formulation.

KATSUKI AOKI and SHINJI MUKOHYAMA PHYSICAL REVIEW D 94, 024001 (2016)

024001-8



where the symbol h� � �i denotes the average over a
spacetime region which is assumed to be sufficiently larger
than the wave packet. For the massless graviton hμν, the
Lagrangian is given by (2.11). Assuming the transverse-
traceless gauge, the canonical energy-momentum tensor is
calculated by

Θμν
gw ¼

	
−

δLEH

δð∂μhαβÞ
∂νhαβ þ ημνLEH




¼ 1

4
h∂μhαβ∂νhαβi þ

1

8
ημνhhαβ∂2hαβi: ðA2Þ

The second term vanishes from the field equation (3.5), and
then the canonical energy-momentum tensor of the mass-
less graviton is given by

Θμν
gw ¼ 1

4
h∂μhαβ∂νhαβi: ðA3Þ

The canonical energy-momentum tensor of the massive
graviton can be obtained in a way similar to the case of the
massless graviton. By using the field equation (3.6) and the
transverse-traceless condition (3.4), the canonical energy-
momentum tensor is given by

Θμν
G ¼

	
−
δðLEH þ LFPÞ
δð∂μφαβÞ

∂νφαβ þ ημνðLEH þ LFPÞ



¼ 1

4
h∂μφαβ∂νφαβi: ðA4Þ

In general relativity, the energy-momentum tensor of the
graviton defined from Noether’s theorem is also obtained
from the nonlinear part of the Einstein equation. Here we
consider up to the second order of the perturbation. For a
transverse-traceless perturbation χμν ≔ Mplðgμν − ημνÞ, the
second-order part of the Ricci tensor is given by

M2
plδð2Þ

R

μν ¼
1

4
χαβ ;μχαβ;ν −

1

2
χμα;βχν

β;α þ 1

2
χμ

α;βχνα;β

þ 1

2
χαβðχαβ;μν − 2χαðμ;νÞβ þ χμν;αβÞ; ðA5Þ

where we have imposed the transverse-traceless gauge
condition and h� � �i represents an average over a spacetime
region. We define the energy-momentum tensor of the
graviton as

Tμν
χ ≔ −

�
ημαηνβ −

1

2
ημνηαβ

�
M2

plhδðRÞ
2

αβðχÞi: ðA6Þ

Integrating by part (under the high-frequency/momentum
approximation) and using the equation of motion
χαβ;γ

;γ ¼ 0, one can obtain

Tμν
χ ¼ 1

4
hχαβ;μχαβ ;νi; ðA7Þ

which is the same as the result from the Noether’s theorem.
Including the energy-momentum tensors of the graviton as
well as the matter, the Einstein equation is expressed as

Eμν;αβχαβ ¼
1

Mpl
ðTμν

m þ Tμν
χ Þ: ðA8Þ

Hence the energy-momentum tensor of the graviton is a
source of the gravitational field. Note that the conservation
law of the energy-momentum tensor is guaranteed without
taking an average over a spacetime region. The divergence
of Tμν

χ is calculated as

∂νT
μν
χ ¼

�
1

4
χαβ;μ −

1

2
χμα;β

�
χαβ;γ

;γ; ðA9Þ

which is zero due to the field equation.
The canonical energy-momentum tensor of the

massive graviton would be a source of the gravitational
field in bigravity. We denote the fully nonlinear Einstein
equations as

GμνðgÞ ¼ κ2gðTðintÞμν
g þ Tμν

m Þ; ðA10Þ

GμνðfÞ ¼ κ2fT
ðintÞμν
f ; ðA11Þ

where TðintÞμν
g and TðintÞμν

f are obtained from the variation of
the potential (2.2) with respect to gμν and fμν, respectively.
We expand the equations around the Minkowski vacuum up
to the second order of perturbations (2.6). We use the
transverse-traceless gauge for the massless graviton con-

tinuously. The second-order parts of TðintÞμν
g and TðintÞμν

f in
terms of the mass eigenstates are given by

δT
ð2ÞðintÞμν

g ¼ m2

8κ2
½ð9κ2g þ κ2f þ 2c3κ2Þφμαφν

α − ð4κ2g þ c3κ2Þφαβφαβη
μν� þm2

κgκf
κ2

�
1

4
φαðμhνÞα −

1

2
hαβφαβη

μν

�
; ðA12Þ

δT
ð2ÞðintÞμν

f ¼ m2

8κ2
½ð−5κ2g þ 3κ2f − 2c3κ2Þφμαφν

α − ð−3κ2g þ κ2f − c3κ2Þφαβφαβη
μν� þm2

κgκf
κ2

�
−
1

4
φαðμhνÞα þ

1

2
hαβφαβη

μν

�
;

ðA13Þ
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where we use hμμ ¼ 0 and φμ
μ ¼ 0. Note that although

both TðintÞμν
g and TðintÞμν

f are complicated, the sum is simply
given by

δT
ð2ÞðintÞμν

g þ δT
ð2ÞðintÞμν

f ¼ m2

2
φμαφν

α −
m2

8
φαβφαβη

μν: ðA14Þ

We find that the canonical energy-momentum tensors of
massless and massive gravitons are obtained as source

terms of the field equation of the massless graviton.
Including the energy-momentum tensors, the equation of
motion of the massless graviton is expressed by

Eμν;αβhαβ ¼
1

Mpl
ðTμν

m þ Tμν
gw þ Tμν

G Þ; ðA15Þ

where the energy-momentum tensors of the massless
graviton and the massive graviton are defined by

Tμν
gw ≔ −M2

plδG
ð2Þμν

ðhÞ ¼ −
1

4
hαβ;μhαβ ;ν þ

1

2
hμα;βhνβ;α −

1

2
hμα;βhνα;β

− hαðμhνÞα;β ;β −
1

2
hαβðhαβ ;μν − 2hðμα;νÞβ þ hμν;αβÞ þ ημν

�
3

8
hαβ;γhαβ;γ −

1

4
hαβ;γhαγ;β þ

1

2
hαβhαβ;γ ;γ

�
; ðA16Þ

Tμν
G ≔ −

1

κ2
δG
ð2Þμν

ðφÞ þ δT
ð2ÞðintÞμν

g þ δT
ð2ÞðintÞμν

f ¼ −
1

4
φαβ;μφαβ

;ν þ 1

2
φμ

α;βφ
νβ;α −

1

2
φμα;βφν

α;β

− φαðμφνÞ
α;β

;β −
1

2
φαβðφαβ

;μν − 2φðμ
α
;νÞ

β þ φμν
;αβÞ þ ημν

�
3

8
φαβ;γφ

αβ;γ −
1

4
φαβ;γφ

αγ;β þ 1

2
φαβφαβ;γ

;γ

�

þm2

2
φμαφν

α −
m2

8
φαβφαβη

μν: ðA17Þ

Averaging over a spacetime region, the energy-momentum
tensors are reduced into

Tμν
gw ¼ 1

4
hhαβ;μhαβ ;νi; ðA18Þ

Tμν
G ¼ 1

4
hφαβ;μφαβ

;νi; ðA19Þ

which are indeed the same as the canonical energy-
momentum tensors defined from Noether’s theorem. The
energy-momentum tensors Tμν

gw and Tμν
G satisfy the con-

servation laws without the average over a spacetime region.
The energy-momentum tensor of the massless graviton is

the same as that in the case of GR, while the divergence of
that of the massive graviton is calculated by

∂νT
μν
G ¼

�
1

4
φαβ;μ −

1

2
φμα;β

�
ðφαβ;γ

;γ −m2φαβÞ: ðA20Þ

Hence the conservation law of the energy-momentum
tensor of the massive graviton is guaranteed as well. As
a result, we conclude that, in bigravity, both massless and
massive gravitons are sources of the gravity mediated by
the massless graviton rather than either gμν; fμν or the
massive graviton.
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