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During or towards the end of inflation, the Standard Model (SM) Higgs forms a condensate with a large
amplitude. Following inflation, the condensate oscillates, decaying nonperturbatively into the rest of the
SM species. The resulting out-of-equilibrium dynamics converts a fraction of the energy available into
gravitational waves (GWs). We study this process using classical lattice simulations in an expanding box,
following the energetically dominant electroweak gauge bosons W� and Z. We characterize the GW
spectrum as a function of the running couplings, Higgs initial amplitude, and postinflationary expansion
rate. As long as the SM is decoupled from the inflationary sector, the generation of this background is
universally expected, independently of the nature of inflation. Our study demonstrates the efficiency of GW
emission by gauge fields undergoing parametric resonance. The initial energy of the Higgs condensate
represents, however, only a tiny fraction of the inflationary energy. Consequently, the resulting background

is highly suppressed, with an amplitude h2ΩðoÞ
GW ≲ 10−29 today. The amplitude can be boosted to

h2ΩðoÞ
GW ≲ 10−16, if following inflation the universe undergoes a kination-domination stage; however,

the background is shifted in this case to high frequencies fp ≲ 1011 Hz. In all cases the signal is out of the
range of current or planned GW detectors. This background will therefore remain, most likely, as a
curiosity of the SM.

DOI: 10.1103/PhysRevD.93.103521

I. INTRODUCTION

Gravitational waves (GWs) are ripples of the spacetime
which propagate at the speed of light. Until very recently,
the existence of GWs had only been proven indirectly,
through the modulation of the orbital period of binary
pulsars [1]. Advanced LIGO [2] has just announced,
however, the first direct detection of GWs from the
coalescence of two massive black holes. This historical
event opens a new window into the Universe, which will
allow us to probe astrophysical and cosmological environ-
ments previously inaccessible. This milestone detection
will very likely inaugurate a new era in cosmology.
The Universe is presumed to be permeated by various

GW backgrounds of cosmological origin. From inflation,
we expect an almost scale-invariant background [3]. From
nonequilibrium phenomena after inflation, we expect a
strong production of GWs from (p)reheating [4–10], phase
transitions [11–15], or cosmic defects [16–21]. A direct
detection of these backgrounds will open a new window
into the very early Universe, probing physical phenomena
at energies beyond the reach of particle colliders [22]. The

development of GW detectors like Advanced VIRGO [23],
Advanced LIGO [24], KAGRA [25], and eLISA [26], aims
to make this possible in the near future. We need therefore
to characterize all possible signals in order to better
understand a future detection.
In this work we study the production of GWs within the

framework of the Standard Model (SM) of particle physics.
The discovery of the Higgs boson at the Large Hadron
Collider (LHC) [27,28] has triggered intense work to
analyze its possible cosmological consequences in the
early Universe [29–47]. Here we consider the nonpertur-
bative decay of the SM Higgs condensate after inflation
[30–34], assuming that the general features of the SM are
valid all the way up to the inflationary scale.
A compelling possibility is the Higgs-inflation scenario

[48,49], in which the SM Higgs is responsible for inflation,
thanks to a large nonminimal coupling to gravity.
Interestingly, even if inflation is driven by an inflaton
scalar field other than the SM Higgs (typically a singlet
under the SM), the Higgs may still play a very relevant role
after inflation. In this work we assume that the SM Higgs is
not responsible for inflation, and indeed we consider it very
weakly coupled to the inflationary sector, even at loop
order. Under this circumstance, we can distinguish two
possibilities: (i) If the Higgs is minimally coupled to
gravity, it behaves as a spectator field during inflation. It
then forms a condensate with a large vacuum expectation
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value (VEV), and a correlation length exponentially larger
than the Hubble radius [50,51]. (ii) If on the contrary, the
Higgs is nonminimally coupled to gravity with a suffi-
ciently large coupling, the Higgs is not excited during
inflation [29,52], but it is however strongly excited during
the transition period at the end of inflation [53]. In this case,
the Higgs forms also a condensate with large VEV, but with
a correlation only of the order of the Hubble radius.
In either case (i) or (ii), shortly after the end of inflation,

the Higgs condensate starts oscillating around the mini-
mum of its potential. This gives rise to its decay into all the
species of the SM, as the latter are nonperturbatively
excited through parametric effects [30–34,54] (see also
[55–57] in the Higgs-inflation context). All the SM species
coupled directly to the Higgs, i.e., the electroweak gauge
bosons W�; Z, and the massive fermions (quarks and
charged leptons), are all highly excited. This is a violent
nonequilibrium process, creating large time-dependent
matter density inhomogeneities, which therefore act as a
classical source of GWs.
The decay of the Higgs into fermions, and the corre-

sponding GW production, was studied in [31], following
the formalism of [58,59]. Fermions are excited through
parametric effects [60,61], though the growth of their
occupation numbers is Pauli blocked. The most energetic
fermion species excited is the top quark, since its Yukawa
coupling is the largest one within the SM. In this paper we
focus instead in the production of GWs by the gauge
bosons. The gauge field production is expected indeed to be
more efficient than that of fermions, as their occupation
numbers grow exponentially [30,32–34]. Most of the
energy of the Higgs condensate is actually transferred into
the electroweakW� and Z gauge bosons. Therefore, even if
the final GW background is contributed by all the Higgs
decay product species, the gauge fields we study here
represent in fact the dominant contributors.
The decay of the SM Higgs condensate into gauge

bosons after inflation has been studied recently very
extensively. It was first studied in [30,32] with analytical
methods based on the linear regime, and later extended in
[33]. Beyond the linear regime, a full set of lattice
simulations of the process was presented in [33], modeling
the SM gauge interactions with an Abelian-Higgs setup.
Although this is just an approximation to the gauge
structure of the electroweak interactions, the non-Abelian
effects can be arguably neglected for a large fraction of the
physically motivated values of the Higgs self-coupling. The
outcome of these simulations, though neglecting the truly
non-Abelian structure, represent a precise calculation of the
dynamics of the SM after inflation, fully incorporating the
nonlinear and nonperturbative effects of the SM gauge
interactions between the Higgs and the W� and Z gauge
bosons.
More recently, lattice simulations presented in [34] have

considered the non-Abelian structure of the SM. They have

shown interesting effects due to the new nonlinearities
introduced. The non-Abelian corrections are however sup-
pressed by the smallness of the Higgs self-coupling
[32,33]. In high-energy inflationary models, the Higgs
self-coupling runs in fact into small values [62,63], making
the non-Abelian corrections less relevant the larger the
energy scale. In this paper we are mostly interested in
scenarios with the highest possible energy scale of infla-
tion, as this enhances the production of GWs in the system.
Therefore, the use of an Abelian modeling will suffice for
our aim to study the GW production from the SM fields
after inflation.
The structure of this paper is as follows. In Sec. II we

review the creation of a Higgs condensate during or
towards the end of inflation. In Sec. III we review the
postinflationary dynamics of the Higgs and of its decay
products, summarizing the results of [33]. In Sec. IV we
discuss our formalism to study GW production in this
process. In Sec. V we present our results, describing the
general features of the GW spectra obtained from our lattice
simulations. In Sec. VI we parametrize the GW spectra as a
function of the Higgs initial amplitude, Higgs self-cou-
pling, and postinflationary expansion rate. In Sec. VII we
discuss how the GW background redshifts until today.
Finally, in Sec. VIII we wrap up our results and conclude.
From now on, m2

p ¼ ð8πGÞ−1 ¼ 2.44 × 1018 GeV
is the reduced Planck mass, and we consider a flat
Friedmann-Robertson-Walker background metric ds2 ¼
a2ðtÞð−dt2 þ d~x2Þ, with t the conformal time and aðtÞ
the scale factor.

II. HIGGS EXCITATION DURING
(OR TOWARDS THE END OF) INFLATION

Relevant properties of the SM Higgs, like the nature of
its gravitational coupling, or its coupling to the inflationary
sector, are currently unknown. As a consequence, the role
played by the Higgs, and in general its dynamics during the
early Universe, are uncertain. In this paper we consider the
Higgs to be sufficiently weakly coupled to the inflationary
sector, so that the Higgs does not develop a super-Hubble
mass during inflation. The need to reheat the Universe after
inflation requires, however, the presence of a Higgs-
inflaton coupling, induced through radiative corrections
from some mediator field(s).
The only scale-free renormalizable Higgs-inflaton oper-

ator is g2ϕ2Φ†Φ, where Φ is the SM Higgs doublet, ϕ is the
inflaton, and g2 is the coupling strength. In order not to
spoil the inflationary predictions, it is required that g2 ≲
g2� ¼ 10−6 [42]. Furthermore, to avoid the Higgs develop-
ing a super-Hubble mass during inflation, one needs
g2 ≤ 10−4g2�. We will consider this second inequality as
valid from now on, providing in this way an operational
definition of what we mean by the Higgs being sufficiently
weakly coupled to the inflationary sector.
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The concrete particle physics realization of inflation has
eluded any clear identification so far. The inflationary
dynamics is normally described in terms of a scalar field,
the inflaton, a singlet under the SM, and with a vacuumlike
energy density. For simplicity, we will describe inflation as
a de Sitter background with Hubble rateH� ≫ MEW, where
MEW ∼Oð102Þ GeV is the electroweak (EW) scale. The
current upper bound of the inflationary Hubble rate is [64]

H� ≤ HðmaxÞ
� ≃ 8.5 × 1013 GeV; ð1Þ

so, in principle, there is plenty of room to fulfill the

demand MEW ≪ H� ≤ HðmaxÞ
� .

In the unitary gauge, the Higgs doublet can be written as
Φ ¼ φ=

ffiffiffi
2

p
, with φ a real degree of freedom with renor-

malized potential at large field values (φ ≫ MEW)

V ¼ 1

4
λðφÞφ4; ð2Þ

where the effective self-coupling λðφÞ encapsulates the
radiative corrections to the Higgs potential [65,66].
Under the circumstance that the Higgs is not responsible

for inflation, and is decoupled from (or weakly coupled to)
the inflationary sector, we can consider two possibilities:

(i) Higgs minimally coupled to gravity. In this case, the
Higgs plays no dynamical role during inflation. It
behaves as a light spectator field, independently of
its initial amplitude [30,67]. The Higgs performs a
random walk at superhorizon scales during inflation,
reaching within few e-folds an equilibrium distri-
bution with variance [50]

hφ2i≃ 0.13
H2�ffiffiffi
λ

p : ð3Þ

The Higgs forms this way a condensate with a large
VEV during inflation. A typical amplitude of the
Higgs condensate is then φrms ∼H�, (almost) inde-
pendently of the Higgs self-coupling for reasonable
values of λ. The scale over which the Higgs
condensate amplitude fluctuates, i.e., the correlation
length of the Higgs condensate, is exponentially
larger than the Hubble radius [50], l�∼
expð3.8= ffiffiffi

λ
p ÞH−1� ≫ H−1� . The Higgs condensate

is then homogeneous within cosmological scales.
(ii) Higgs nonminimally coupled to gravity. An inter-

action ξΦ†ΦR, with R the Ricci scalar, is required by
the renormalization of the SM in curved space. If the
value of ξ at the inflationary scale lies below ξ≲ 0.1,
the Higgs is sufficiently light during inflation, and
hence we recover scenario (i). If on the contrary,
ξ > 0.1, the Higgs becomes too heavy during
inflation. It develops a super-Hubble mass and,
consequently, it is not excited as a condensate.
However, the sudden drop of the curvature R, during
the transition from the end of inflation to a standard

power-law postinflationary regime, induces a non-
adiabatic change in the effective Higgs mass
m2

φ ¼ ξR. This translates into a significant excitation
of the Higgs modes at the Hubble scale k ∼ a�H�.
Following the recent analysis of [53], the Higgs
excitation acquires a large variance1 depending on
the postinflationary equation of state w. Further-
more, if after inflation the inflaton oscillates around
the minimum of its potential, the periodic time-
dependent behavior of R excites the Higgs modes
through parametric resonance. The Higgs amplitude
cannot in any case exceed [53]

hφ2i ≲Oð0.1Þ H2�
λ

ffiffiffi
ξ

p ; ð4Þ

as the Higgs self-interactions prevents any further
growth above this value. In summary, in the presence
of a large nonminimal coupling, the Higgs forms a
condensate immediately after inflation, with a large
amplitude bounded as φrms ≲H�=λ1=2ξ1=4. The co-
herent scale is, however, only of the size of the
Hubble radius, l� ≲H−1� , as the fluctuations at
different horizon patches are uncorrelated.

The running of the Higgs self-coupling λðμÞ has been
computed up to three loops [62,63]. The self-coupling
decreases with energy (dλ=dμ < 0), becoming negative at a
given critical scale μc. Due to this, the Higgs potential
Eq. (2) possesses a maximum (a barrier) at a scale μþ ≲ μc,
crosses zero at μc, and (possibly) develops a negative
minimum at higher energies. These scales are very sensitive
to the Higgs massmH, the strong coupling constant αs, and
the top quark massmt. For the SM central values for αs and
mH, as well as the world average top quark mass mt ¼
173.34 GeV [68], one finds μþ ≈ 7 × 109 GeV and
μc ≈ 1010 GeV. However, considering a value of mt two/
three sigma below its central value, we put the critical

scales at μþ; μ0 ≥ 5 × 1016 GeV ≫ HðmaxÞ
� , which is one

way of ensuring the stability. Another way is to consider
Higgs portals to scalar fields, changing the running of λ so
that it always remains positive [69]. In this work we assume
that the Higgs potential is stable up to inflationary energies,
so we consider that λ never becomes negative. The higher
the energy scale of inflation, the smaller is λ, with
reasonable values only within the interval 10−2 ≲ λ <
10−5 [33] (λ ∼ 10−5 being only marginally valid).

III. POSTINFLATIONARY DYNAMICS OF THE SM
HIGGS AND ITS DECAY PRODUCTS

As we have just discussed, either during inflation [case
(i)] or just towards its end [case (ii)], the Higgs is excited in

1Denoting the postinflationary equation of state as w, in [53] it
is found that hφ2i≃Oð10−2ÞH2�=

ffiffiffi
ξ

p
for w ¼ 1=3, or hφ2i≃

Oð1ÞH2�
ffiffiffi
ξ

p
for w ≠ 1=3.
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the form of a condensate with a large VEV. As a
consequence, the Higgs condensate starts oscillating
around the minimum of its potential soon after the end
of inflation. Each time the Higgs crosses zero, all particles
coupled to the Higgs, i.e., the electroweak gauge bosons
and the charged fermions of the SM, are created in
nonperturbative bursts [30–34]. In the case of gauge bosons
this phenomenon is called parametric resonance, and it is
very similar to the decay process of an inflaton in
preheating with a quartic potential [70]. The main differ-
ence with respect to preheating is that, in the present
scenario, the Higgs does not dominate the energy budget of
the Universe. On the contrary, given the typical Higgs
condensate amplitudes φrms [Eq. (3) in case (i), or Eq. (4) in
case (ii)], the Higgs energy density is always much smaller
than the energy density of the inflationary sector
ρ� ≡ 3m2

pH2�,

1
4
λhφ4i
ρ�

≲ δ ×Oð10−12Þ
�

H�
HðmaxÞ

�

�
2

≪ 1; ð5Þ

with δ ¼ 1 [case (i)] or δ≡ 1=λξ [case (ii)].
The decay of the Higgs and the dynamics of its

energetically dominant decay products have been recently
studied under these circumstances, with the help of
classical lattice simulations [33,34]. The lattice approach
takes into account the nonlinearities of the system beyond
the analytical approach (based on the initially valid linear
regime). Strictly speaking, however, the analysis pre-
sented in [33,34] only describes the postinflationary
dynamics of the system in the spectator field case (i),
when the Higgs is excited as a condensate during
inflation.
The postinflationary dynamics in the case (ii), when a

nonminimal coupling to gravity ξφ2R is present, can
however be expected to be (qualitatively) similar to that
of case (i), at least for moderate values of ξ. The reason for
this is that the coupling to the scalar curvature R introduces
an additive term in the Higgs oscillation frequency, propor-
tional to the square of the Hubble rate, R ∝ H2. As
H2 ∼ 1=t2, the new term decays rapidly in time.
Therefore, the Higgs oscillations in the case (ii) are
expected to be initially modulated by the nonminimal
coupling to gravity, but tending rapidly to the oscillations
of case (i) (characterized by an oscillation frequency ∝ λφ2,
given by the Higgs self-interactions).
In what follows, we will describe the details of the

postinflationary dynamics, considering only the scenario
(i) with ξ set to zero. This should capture equally well the
dynamics when 0 < ξ≲ 0.1. For the scenario (ii) with a
nonminimal coupling ξ > 0.1, we expect the dynamics to
tend rapidly to the case of ξ < 0.1, unless ξ is extremely
large. When ξ ≫ 1, a new analysis beyond our current
study should be performed. However, the larger
the ξ, the smaller the GW production is expected

to be.2 Therefore, from now on we only focus on the details
of scenario (i) with ξ ¼ 0, which maximizes the GW
production. This should still capture qualitatively well the
dynamics of the system, even in the presence of a moderate
nonminimal coupling to gravity, as long as ξ is not
extremely large.

A. Abelian model of the electroweak interactions

In order to describe the production of gauge bosons from
the Higgs decay after inflation, we will follow the approach
presented in [33].Wewillmodel the electroweak sector of the
SMwith an Abelian-Higgs setup, ignoring the nonlinearities
arising from the full non-Abelian structure of the electroweak
interactions. Non-Abelian corrections over the Abelian
dynamics are indeed suppressed as ∝ 1=

ffiffiffi
q

p
[32–34], where

q≡ e2=λ is the resonance parameter of the gauge field(s),
and e2 represents the Abelian coupling (mimicking either of
theW� orZ gauge couplings). TheAbelian approximation to
the full Higgs-gauge electroweak interactions works better
with a larger resonance parameter q. For GW production
through the Higgs decay products, we are interested in
inflationary scenarios with the highest possible energy
scales, since this enhances the GWs produced, see
Sec. IV. If the inflationary Hubble rate H� is sufficiently
high, say of the order of (though somewhat smaller than) its

current upper boundH� ≲HðmaxÞ
� ∼ 1014 GeV, thevalue of λ

runs into small values. This implies that the resonance
parameters are, in fact, rather large, q≡ e2

λ ≫ 1.
Therefore, taking the Abelian approximation in this regime
is well justified,3 and hence in the present work we will
consider the Abelian modeling from now on.
Within the Abelian-Higgs modeling, the interactions of

the Higgs with a gauge boson species Aμ can be described
by the action S ¼ R

Ld4x, with

2The larger the ξ, the faster the energy transfer from the Higgs
into its decay products, as the particle production (due to the
Higgs oscillations) is expected to be modulated by a larger
oscillation frequency. As we will explain later in Sec. IV, the
faster the decay of the Higgs proceeds, the higher the frequency
of the GWs produced during the process. However, the amount of
GWs produced is mostly determined by the energy stored initially
in the Higgs condensate, and not by the rapidity of its decay. In
the scenario (ii), the larger the ξ, the smaller the initial energy
stored in the Higgs [53]. Therefore, the larger the ξ, the larger the
frequency of the GW background, but the smaller the amplitude
of the background. We expect therefore the GW production in
scenario (i) with ξ ¼ 0 to be the largest possible one.

3Lattice simulations considering the non-Abelian structure of
the electroweak interactions in a different postinflationary context
have been done in [71]. In the scenario we study in this paper,
simulations considering the non-Abelian structure were presented
in [34]. These simulations show, however, that even for the lowest
possible resonance parameter(s) q ≲ 10 (for which the non-
Abelian effects are maximized), the time scales of the problem
are modified with respect the Abelian approximation only by a
factor of ∼2.
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−L ¼ ðDμΦÞ�ðDμΦÞ þ 1

4e2
FμνFμν þ λðΦ�ΦÞ2: ð6Þ

Here Dμ ≡ ∂μ − iAμ is the covariant gauge derivative,
Fμν ≡ ∂μAν − ∂νAμ is the (Abelian) field strength, and e
is the strength of the Abelian coupling. In the Abelian
modeling the Higgs needs to be considered as a complex
scalar field Φ≡ 1ffiffi

2
p φ ¼ 1ffiffi

2
p ðφ1 þ iφ2Þ, with φi ∈ R. As we

are dealing with a gauge theory, we have a gauge freedom
to choose the field components. This allows us to set the
gauge A0 ¼ 0 from now on. By varying the action, the
equations of motion can be derived as

Φ̈ −DiDiΦþ 2
_a
a
_Φ ¼ −2λa2ðtÞjΦj2Φ; ð7Þ

Äj þ ∂j∂iAi − ∂i∂iAj ¼ 2e2a2ðtÞIm½Φ�DjΦ�; ð8Þ

∂i
_Ai ¼ 2e2a2ðtÞIm½Φ�Φ�: ð9Þ

Equations (7) and (8) of the system describe the dynamics
of the Higgs and the gauge boson, while Eq. (9) is the
Gauss law, representing a constraint that must be obeyed at
all times. The gauge-invariant electric and magnetic fields
are Ei ≡ F0i and Bi ¼ 1

2
ϵijkFjk.

We model the scale factor as

aðtÞ ¼ a�

�
1þ 1

2
ð1þ 3ωÞa�H�ðt − t�Þ

� 2
1þ3ω

; ð10Þ

where w is the equation of the state of the universe after
inflation. The value of w depends on the inflationary sector,
which is not specified here, so we will consider various
values representing different expansion rates. For example,
for matter-domination (MD), radiation-domination (RD) or
kination-domination (KD), the equation of state is w ¼ 0; 1

3
,

and 1, respectively. From now on we fix a� ¼ aðt�Þ≡ 1.
It is convenient to define dimensionless spacetime

variables zμ ¼ ðz0; ziÞ as

z≡ z0 ¼ H�t; zi ¼ H�xi: ð11Þ

It is also convenient to define dimensionless Higgs and
gauge field amplitudes as

h≡ aðzÞ
a�

φ

φ�
; Vi ≡ 1

H�
Ai; ð12Þ

(i ¼ 1, 2, 3) with h≡ h1 þ ih2, where φ� ≡ jφðt�Þj is the
initial modulus of the Higgs field at the end of inflation. To
distinguish between variables, we use a dot or a prime to
denote differentiation with respect to conformal or natural
variables, · ≡ d=dt or 0 ≡ d=dz. From now on, all spatial
derivatives will also be taken with respect the new
variables, unless otherwise stated. We also define a

dimensionless covariant derivative as Di ≡ ∂
∂zi − iVi.

With these changes, Eqs. (7)–(9) can be written as

h00 −DiDihþ β2jhj2h ¼ h
a00

a
; ð13Þ

V 00
j þ ∂j∂iVi − ∂i∂iVj ¼ qβ2Im½h�Dih�; ð14Þ

∂iVi
0 ¼ qβ2Im½h�h0�; ð15Þ

where q≡ e2
λ is the resonance parameter, and we have

defined the parameter

β≡
ffiffiffi
λ

p
φ�

H�
ð16Þ

characterizing the initial Higgs amplitude.
Let us denote byWþ

μ ,W−
μ , and Zμ, the Abelian version of

the SM electroweak W and Z gauge bosons. Let us also
denote by gW and gZ the SM gauge couplings of the Higgs
to such bosons. In order to mimic correctly the real Higgs-
gauge interactions, we need to identify e2 ¼ g2=4 in
Eqs. (7)–(9), with g2 ¼ g2W for W bosons and g2 ¼ g2Z
for Z bosons. This translates into the following resonance
parameters in Eqs. (13)–(15):

qZ ≡ g2Z
4λ

; qW ≡ g2W
4λ

: ð17Þ

In principle, for each of the three gauge bosons W� and
Z, there should be an equation of motion like Eq. (8) [or
equivalently Eq. (14)], and a Gauss constraint like Eq. (9)
[or equivalently Eq. (15)]. However, we demonstrated in
[33] that this system of three gauge fields can be mapped
identically into another system with a single gauge boson,
defined as

Sμ ≡Wþ
μ þW−

μ þ Zμ; ð18Þ

with associated resonance parameter (gauge coupling)

qs ≡ qZ þ 2qW ¼ g2Z þ 2g2W
4λ

: ð19Þ

See Sec. VB in [33] for details. At any moment one can
recover the original fields by simply taking W−

μ ¼ Wþ
μ ¼

ðqW=qsÞSμ and Zμ ¼ ðqZ=qsÞSμ. At very high energies, the
running of the SM gauge couplings show that g2Z ≈ 2g2W , so
qs ≈ 2qZ ≈ 4qW , and hence W−

μ ¼ Wþ
μ ≈ Zμ=2.

The energy density of the Higgs þ gauge fields is

ρsðzÞ ¼
V�

a4ðzÞEsðzÞ; V� ≡ λ

4
jφ�j4; ð20Þ

where V� is the value of the Higgs potential at the end of
inflation, and the functionEsðzÞ is formed by the sum of the
following energetic contributions:
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EsðzÞ ¼ EK þ EV þ EE þ EM þ EGD: ð21Þ

Here, EK and EV are the kinetic and potential energies of
the Higgs field, and EE and EM are the electric and
magnetic energy densities of the super gauge boson Sμ
of Eq. (18) (hence containing the contribution from all the
gauge bosons W� and Z),

Eφ
K ≡ a4

V�

P
i _φ

2
i

2a2
¼ 2

β2
X2
i

�
h0i − hi

a0

a

�
2

; ð22Þ

EV ≡ a4

V�

λðφ2
1 þ φ2

2Þ2
4

¼ ðh21 þ h22Þ2; ð23Þ

EE ≡ a4

V�

1

2e2a4
X
i

E2
i ¼

2

qβ4
X
i

E2
i ; ð24Þ

EM ≡ a4

V�

1

2e2a4
X
i

B2
i ¼

2

qβ4
X
i

B2
i ; ð25Þ

where we have defined dimensionless electric and magnetic
fields as Ei ¼ Ei=H2� and Bi ¼ Bi=H2�. The last contribu-
tion EGD is a gauge-invariant term formed by the product of
covariant derivatives of the Higgs field,

EGD ≡ a4

V�

1

2a2
X
i

Re½ðDiðφ1 þ iφ2ÞÞ�Diðφ1 þ iφ2Þ�

¼ 2

β2
X
i

Re½ðDiðh1 þ ih2ÞÞ�Diðh1 þ ih2Þ�; ð26Þ

hence representing the energy stored in the spatial Higgs
gradients and the Higgs-gauge interactions.
We have plotted in Fig. 1 the different energy contribu-

tions as a function of time for the resonance parameter
qs ¼ 79. We have normalized each energy component as
Ei=Es, and we have removed their oscillations, hence
showing only the corresponding envelope functions. We
see that initially the dominant contributions come from the
kinetic and potential energies of the Higgs field. This
corresponds to the oscillations of the Higgs condensate
around the minimum of its potential, before the gauge fields
backreact onto the Higgs. Meanwhile, the other compo-
nents of the energy (EE, EM, and EGD) grow very fast, due
to the energy transfer—via parametric resonance—from the
Higgs to the gauge fields. We can understand the time
evolution of these energies in light of the context of the next
subsection.

B. Summary of the postinflationary dynamics of the
Higgs and its decay products

The lattice simulations presented in [33] represent a
precise calculation of the dynamics of the SM after inflation,
fully incorporating the nonlinear and nonperturbative effects

of the SM gauge interactions between the Higgs and theW�
andZ gauge bosons, thoughneglecting the truly non-Abelian
structure. The advantage of a lattice approach with respect to
an analytical one is that the first includes the effect of the
nonlinearities of the system into the Higgs decay dynamics,
which become relevant very soon after the end of inflation.
Here we just briefly summarize the results obtained in [33].
The production of the gauge bosons from the postinfla-

tionary Higgs decay is controlled by three parameters: the
amplitude of the Higgs condensate φ� at the end of
inflation, the equation of state w of the Universe in the
period following immediately after inflation, and the
resonance parameter q≡ g2=4λ of the gauge fields, with
g2 equal to either of the W� or Z gauge couplings.4 Taking
the end of inflation as the initial time z� ¼ 0, the dynamics
of the system at later times z ≥ z� can be characterized by
three time scales:

(i) z ¼ zosc: This time signals the moment after infla-
tion when the Higgs effective mass becomes larger
than the Hubble rate. This “forces” the amplitude of
the Higgs condensate to start rolling down its
potential. Previous to this moment, during
z� ≤ z ≤ zosc, the Higgs amplitude remains frozen
in slow-roll.5 Hence z ¼ zosc signals the onset of the
Higgs oscillations around the minimum of its

FIG. 1. Plot, as a function of time, of the different contributions
Ei=Es [see Eq. (21)] to the total energy of the system, obtained
from a lattice simulation for qs ¼ 79, a RD postinflationary
expansion, and β ¼ 0.01. All functions are oscillating, but we
take the envelope of the corresponding oscillations for clarity.
The first dashed vertical line indicates the time ziðqÞ, whereas the
second dashed vertical line indicates the time zeðqÞ.

4The production of fermions is equally controlled by the same
parameters, φ�; w, and q, but substituting the gauge coupling g2 in
the definition of q by the Yukawa coupling y2i , with the i index
referring to the fermion species [31].

5In the scenario (ii) with ξ > 0.1, the Higgs starts rolling down
its potential immediately after inflation, since the effective mass
of the Higgs (given by its nonminimal coupling to gravity) is
larger than the Hubble already at z�. Hence, zosc ¼ z� ¼ 0 in this
case.
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potential. Every time the Higgs crosses around zero,
particle creation via parametric effects occur. It is
found that zosc ≲Oð10Þ, the exact value depending
on the particular Higgs amplitude φ� and postinfla-
tionary equation of state w. Therefore, the Higgs
oscillations start, in all cases, shortly after inflation
ends. From then on, top quarks and gauge bosons are
strongly created every time the Higgs crosses
through zero. After few oscillations, the gauge boson
production dominates, as the gauge fields develop
parametric resonance, whereas the fermions are
Pauli blocked [72]. The excitation of the dominant
species Z andW� is very similar to the excitation of
preheat fields coupled to the inflaton, as preheating
is due to oscillations of an inflaton with quartic
potential.

(ii) z ¼ zi: This second time scale signals the moment
when the produced gauge bosons have accumulated
sufficient energy such that they start backreacting
onto the Higgs condensate, starting to affect the
latter severely. At z ≥ zi there is a sharp decrease of
the amplitude and energy density of the Higgs
condensate. This scale depends strongly on the
resonance structure of the gauge field dynamics,
characterized by the particular value of the reso-
nance parameter qs ≡ ðg2Z þ 2g2WÞ=ð4λÞ. For the
larger resonance parameters (due to small values
of λ), zi tends to be shorter, while weaker-resonance
parameters cases have larger zi’s. In prac-
tice, zi ≲ zosc þ ðOð0.1Þ −Oð103ÞÞ.

(iii) z ¼ ze: This third and final time scale signals the end
of the transfer of energy from the Higgs into the SM
species, as well as the onset of a stationary regime.
The time ze depends on the resonance parameter as a
power law ∝ qαs, where a phenomenological fit to the
simulations shows α ∼ 0.42 [33]. Therefore, the
greater the qs, the longer the time ze. At z ≥ ze,
the energies of the different components of the
system have established an equipartition regime,
with fixed relative ratios of the energies independent
of qs. For reasonable values of λ, qs ranges between
∼Oð10Þ and ∼Oð103Þ, so ze ranges between ∼103
and ∼104.

IV. GRAVITATIONAL WAVE PRODUCTION

GWs are tensor perturbations which propagate following
the equation of motion [22]

ḧij þ 2
_a
a
_hij − ∂k∂khij ¼

2

m2
p
ΠTT

ij ; ð27Þ

where the source of GWs, ΠTT
ij , is the transverse-traceless

(TT) part of the anisotropic stress tensor Πij. In our case, in
the presence of both scalar and vector fields, the source is
effectively given by [73]

ΠTT
ij ¼

�
2Re½ðDiφÞ�ðDjφÞ� þ

1

e2a2
ηαβFiαFjβ

�
TT

¼
�
2Re½ðDiφÞ�ðDjφÞ� −

1

e2a2
ðEiEj þ BiBjÞ

�
TT
;

ð28Þ

where f…gTT represents the TT part of the quantity inside
the brackets,Dμ is the gauge covariant derivative in Eq. (6),
Ei ≡ F0i and Bi ¼ 1

2
ϵijkFjk are the electric and magnetic

fields formed from the superfield Sμ in Eq. (18), and we
have discarded a term ∝ ðjEj2 þ jBj2Þδij because it is
actually a pure trace term. Note that here the charge must
be identified with that of Sμ, so that e2 ≡ ð2g2W þ g2ZÞ=4.
It is convenient to redefine the tensor mode amplitude

through a conformal redefinition like (recall that initially
we take a� ¼ 1)

hij ≡ hij
a
; ð29Þ

so that Eq. (27) can be written in terms of the dimensionless
variables Eqs. (11), (12) as

h00ij −
�
∂k∂k þ

a00

a

�
hij ¼

2

a
1

λ

�
H�
mp

�
2

PTT
ij ; ð30Þ

with

Pij ¼ P½h�
ij þ P½g�

ij ð31Þ

P½h�
ij ≡ β2Re½ðDihÞ�ðDjhÞ�;

P½g�
ij ≡ −

1

qs
ðEiEj þ BiBjÞ: ð32Þ

We recall that Ei ≡ Ei=H2�;Bi ≡ Bi=H2�, and qs ¼ ð2g2W þ
g2ZÞ=4 is the total resonance parameter Eq. (19). It is clear
from Eq. (32) that both the Higgs field and the gauge
bosons will contribute as a source of GWs.
The spectrum of the GWenergy density contained within

a volume V, and normalized to the total energy density ρtot
of the Universe (at the time of GW production), can be
written in the continuum as

ΩGWðk; zÞ≡ 1

ρtot

dρGW
d log k

ðk; zÞ

¼ 1

8π2a2
m2

pk3

ρtotV
h _h�ijðk; zÞ _hijðk; zÞi4π ð33Þ

where h…i4π ≡ 1
4π

R
dΩk…, with dΩk a solid angle differ-

ential in k-space.
In light of the parameters factorized out in the source

term of Eq. (30), it is convenient to define a new variable
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hijðk; zÞ≡ 2

λ

�
H�
mp

�
2

wijðk; zÞ: ð34Þ

It is then useful to express ΩGWðk; zÞ in terms of the
natural variables of the problem zμ and wij. We can
factorize out this way the dependence with the Hubble
scale H� and the background expansion rate as

ΩGWðk; zÞ≡ δ�ϵwðaÞΘGWðk; zÞ; ð35Þ

where

δ� ≡
�
H�
mp

�
4

; ϵwðaÞ≡
�
a
a�

�
3w−1

ð36Þ

and

ΘGWðk; zÞ≡ k3

6π2λ2
1

V
hðw0

ij −HwijÞðw0
ij −HwijÞi4π: ð37Þ

In order to derive Eqs. (35)–(37), we have used that the
total energy density of the Universe can be expressed as
ρtot ¼ 3m2

pH2�a−3ð1þwÞ, with w the postinflationary equa-
tion of state. We recall as well that H≡ a0=a. The
factorization ΩGW ¼ δ�ϵwΘGW in Eq. (35) is indeed very
convenient: the dependence on fqs; β; wg of ΘGWðk; zÞ,
comes only from the effect of these parameters on the
dynamics of the equation of motion (EOM) of the Higgs +
gauge fields system, Eqs. (13)–(15).
Note that the prefactor δ� in Eq. (35) implies a sup-

pression of the GWs (energy density) as ∼ðH�=mpÞ4⋘1.
This effect is related to the fact that the typical initial
amplitude of the Higgs condensate is φ2� ∼ φ2

rms ∼H2�,
which is then suppressed by the appearance of a Planck
mass factor as 1=m2

p in the rhs of the GWs’ Eq. (27). The
scaling ∝ δ� is ultimately responsible for the smallness of
the GW background today, as we will emphasize later in
Sec. VII. Note that in standard preheating scenarios, say
after chaotic inflation, the inflaton and preheat fields
dominate the energy budget of the universe, and have
typically much larger field amplitudes. Therefore, there is
no such suppression in standard preheating via parametric
resonance. The production of GWs from subdominant field
(s), like inflationary spectator fields as in our case, will
however be always suppressed by the smallness of the
fields’ amplitude φ ∼H� ≪ mp.
Depending on whether the postinflationary equation of

state is stiff, w > 1=3, or not, w ≤ 1=3, the background
energy density of the Universe will correspondingly
decrease slower or faster than relativistic species, i.e.,
d log ρtot=d log a ∝ −3ðwþ 1Þ will be < −4 for stiff back-
grounds, or ≥ −4 for nonstiff backgrounds. The prefactor
ϵw ¼ ða=a�Þ3w−1 in Eq. (37) will, therefore, either suppress
the GW background as ∝ ϵw < 1 for w < 1=3 (e.g., w ¼ 0

for MD), or enhance it as ∝ ϵw > 1 for w > 1=3 (e.g., w ¼
1 for KD). For w ¼ 1=3 the background energy density
corresponds to a RD universe, and hence ϵw ¼ 1, so that
there is neither a suppression nor an enhancement. As we
will discuss in Sec. VII, in a KD scenario with w ¼ þ1, the
amplitude of the GW background will be maximally
enhanced since ϵw ≫ 1. However, even in this case, the
large suppression due to δ� ≪ 1will still dominate over this
enhancement, so that the overall modulation of the signal is
ΩGW ∝ δ�ϵw ∼ ðH�=mpÞ2, which still represents a suppres-
sion, though a milder one.
In order to solve the EOM Eq. (30) for the GWs, we have

followed the standard procedure first introduced in [8],
solving a relativistic wavelike equation in real space
sourced by the full Pij, with no TT projection,

u00ij −
�
∂k∂k þ

a00

a

�
uij ¼

1

a
Pij: ð38Þ

We can then recover wij at any moment, in Fourier space,
through the relation

wijðk; zÞ ¼ uTTij ðk; zÞ ¼ Λij;lkðk̂Þulkðk; zÞ ð39Þ

Λij;lkðk̂Þ ¼ PilPjk −
1

2
PijPlk; Pij ¼ δij − k̂ik̂j ð40Þ

where Λij;lkðk̂Þ is a geometrical projector that filters out the
TT degrees of freedom in Fourier space. Since
Λij;pqðk̂ÞΛpq;lmðk̂Þ ¼ Λij;lmðk̂Þ, the argument inside the
angular average h…i in Eq. (37) can be computed as

ðw0
ijðk;zÞ−Hwijðk;zÞÞðw0

ijðk;zÞ−Hwijðk;zÞÞ
¼ðu0ijðk;zÞ−Huijðk;zÞÞΛij;lmðk̂Þðu0lmðk;zÞ−Hulmðk;zÞÞ:

ð41Þ

We have studied the GW creation process in lattices of
N ¼ 256 points per dimension. To solve the Higgs + gauge
fields EOM Eqs. (13), (14), while verifying the constraint
Eq. (15) at every time, we have used the noncompact
Abelian lattice formulation presented in Ref. [33]. The
exact details of the discretization formalism preserving
gauge invariance are described in Appendix A of [33], so
we do not repeat them here. In the same way, a discussion
of how we set the initial conditions of the different fields
can be found in Appendix B of the same paper. In all
simulations we have ensured that the lattice resolution
covers well the dynamical range of momenta excited in the
process, for both the matter and the GW fields.
The discrete version of the GW EOM, Eq. (38), contrary

to the matter field’s EOM, Eqs. (13)–(15), does not follow
from a discretized action. Instead, we simply substituted the
continuous derivatives ∂μ in Eq. (38), with standard
forward/backward lattice derivatives. In order to introduce
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a lattice version of the energy density spectrum of GWs,
Eq. (37), we followed the prescription introduced in [74]. In
our case, this translates into

ΘGWð ~n; zÞ ¼
1

6π2λ2
d~x3κð ~nÞ3

N3

× hðu0ij −HuijÞΛðLÞ
ij;lmðu0lm −HulmÞi4π; ð42Þ

where d~x≡H�dx is the dimensionless lattice spacing,
κð ~nÞ≡ kð ~nÞ=H� the dimensionless momenta, kð ~nÞ≡
ð2π=LÞj ~nj the momentum at the Fourier lattice site ~n, L
the length of the lattice box, andwij ≡ wijð ~n; zÞ the discrete
Fourier transform of wijðn; zÞ, with n labeling the lattice

sites. Note that ΛðLÞ
ij;lm is a discretized version of the TT

projector given in Eq. (40), and multiple choices are
possible. We have chosen a lattice projector based on
forward derivatives, noticing that other choices did not
change the GW spectra appreciably; see [74] for a
thoughtful discussion on this point.

V. RESULTS FROM LATTICE SIMULATIONS

In this section we present the basic features of the GW
spectra produced during the postinflationary Higgs decay
process, obtained from the outcome of our lattice simu-
lations. We leave a detailed parametrization of the spectra
for Sec. VI, and the analysis of the redshift of the GW
background until today for Sec. VII.
Our simulations depend on a series of parameters, some

of them being unknown quantities of our system. The first
unknown quantity is the initial amplitude of the Higgs field
φ�. We know that, at the end of inflation, φ� changes from
patch to patch with variance given by Eq. (3). Our lattice
simulations do correspond to a single patch, inside which
we consider the random value φ� to be homogeneous. The
second unknown parameter is the amplitude of the Higgs
self-coupling λ at the postinflationary scales. This deter-
mines the exact form/amplitude of the Higgs potential V ¼
λφ4=4 introduced in the lattice. If we fix the strength of the
gauge couplings to their value at very high energies, g2W ≈
0.3 and g2Z ≈ 2gW ¼ 0.6, the two parameters ðφ�; λÞ can be
equivalently replaced by the pair ðβ; qsÞ, where β≡
λ1=2φ�=H� [Eq. (16)] characterizes the Higgs amplitude
parameter normalized to the unknown inflationary Hubble
rate H�, and qs ¼ ðg2Z þ 2g2WÞ=4λ [Eq. (18)].
Taking into account the large freedom in the Hubble rate,

102 GeV ≪ H� ≲ 1014 GeV, and the experimental uncer-
tainty in the top quark mass mt (which affects the running
of λ), a good physical range for these parameters is β ∈
½5 × 10−4; 0.3� and qs ∈ ½20; 3000� (corresponding
to λ ∈ ½1.5 × 10−2; 10−4�).
Note that we have also simulated values within the range

5 ≤ qs ≤ 20 for completeness, although for high-energy
inflationary scales with H� of the order of (or somewhat

smaller than)Hmax� ∼ 1014 GeV, those values correspond to
excessively high λ. Only for inflationary Hubble rates

H� ≪ HðmaxÞ
� we expect to obtain qs ≲Oð10Þ; however,

this kills completely the GW signal Eq. (35), as the latter
scales as ∝ ðH�=mpÞ4 ≪ 1.
As we do not consider any particular inflationary model,

the postinflationary expansion rate is also unknown. We
can characterize it by the equation of state w, see Eq. (10).
For example, if inflation is caused by an inflaton with a
quadratic potential, the Universe following inflation
expands effectively as MD, with ρtot ∝ 1=a3. If the inflaton
potential is quartic instead, it behaves as RD with
ρtot ∝ 1=a4. We can even consider more exotic scenarios,
like a KD universe, in which the energy density decays
faster than that of relativistic species, with ρtot ∝ 1=a6. As
we do not make any assumptions on the particular infla-
tionary model, we consider w as a free parameter determin-
ing the expansion rate. In conclusion, we parametrize the
GW spectra as a function of three independent variables qs,
β, and w.
As described in [33], the exact dynamics of the Higgs

decay process depend sensitively on the value of qs.
Correspondingly, it is expected that the exact details of
the GW spectra will also depend sensitively on qs.
However, the qualitative aspects of these spectra can be
easily understood, without the need to specify the particular
value of qs. To see this, let us look at Fig. 2. There we show
the temporal evolution of the spectrum ΘGWðk; z; qs; β; wÞ.
The plots correspond to the resonance parameters qs ¼ 61
and 750, and to KD, RD, and MD postinflationary
expansion rates. Within each plot, each line corresponds
to the GW spectra at a particular time, showing its evolution
from approximately the start of the Higgs oscillations until
well after the production of GWs ceases. Note that in these
plots we consider the particular value β ¼ 0.01; a scaling of
the results to arbitrary β values will be presented in the next
section.
Let us now discuss three qualitative aspects of the

ΘGWðk; z; qs; β; wÞ spectra shown in the figure: the time
evolution of the spectra, the amplitude when GWs stop
growing, and the appearance of peaks.
Let us focus first on the time evolution of the spectra, and

its relation with the time scales of the post inflationary
Higgs dynamics introduced in the last section: zosc (onset of
the Higgs oscillatory regime), zi (time at which the back-
reaction of the gauge bosons onto the Higgs condensate
starts becoming effective), and ze (stabilization of the Higgs
energy density and the onset of equipartition). We observe
in Fig. 2 that the GW production begins shortly after the
start of the Higgs oscillations, i.e., at the onset of parametric
resonance at z≳ zosc. From then on, we observe a signifi-
cant growth of the GW amplitude during the linear stage
z≲ zi. This is due to the initial exponential excitation of the
gauge bosons, due to the parametric resonance induced by
the Higgs condensate oscillations. However, the final
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amplitude of the spectra is mostly determined by the
nonlinear dynamics during some time after the onset of
backreaction z > zi, while the Higgs condensate is
decaying noticeably. We can define zGW as the time scale
at which GWs stop being produced, so that ΘGW saturates
to a fixed amplitude. In general, one finds that zGW < ze. In
other words, the GWs stop being produced before the onset
of equipartition. This can be clearly observed in Fig. 2. In
Ref. [33] we found

ze ≈ 58.1β
−ð1þ3wÞ
3ð1þwÞ q0.42s ;

which, in the examples shown in the figure, corresponds to
ze ≈ 1520, 3270, and 7040 for qs ¼ 67, and to ze ≈ 4350,
9370, and 20 190 for qs ¼ 750, for KD, RD, and MD

postinflationary expansion rates, respectively. Note that
these times are much longer than the final times displayed
in Fig. 2, when the spectra have already saturated.
The fact that zGW < ze is indeed not surprising. The

precise moment when GWs cease to be produced is better
determined when the Higgs energy density stops dropping
abruptly, and this happens sometime after z ¼ zi but before
z ¼ ze, see Fig. 1. From this time onwards (z > zGW), even
if the Higgs energy density is still decaying until the onset
of equipartition at z ¼ ze, the matter fields are only
evolving smoothly, adjusting themselves towards equipar-
tition. The time ze simply indicates when the Higgs
(comoving) energy density is finally stabilized to a fixed
amplitude, coinciding with the onset of equipartition. In
conclusion, there is no more GW production after z ¼ zGW.
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FIG. 2. Evolution in time of ΘGWðk; z; qs; β; wÞ as the GWs are being created, computed for the resonance parameters qs ¼ 61 and
750, and KD, RD, and MD postinflationary expansion rates. Within each plot, each colored line corresponds to a particular time, going
from early times just after the onset of resonance (red lines) to late times when the growth of the GWs ceases (purple lines). The time step
between spectra is Δz ≈ 32.7 for KD, Δz ≈ 15.5 for RD, and Δz ≈ 7.3 for MD. The last spectra plotted in each figure corresponds to the
output time z ≈ 3280 in KD, and to z ≈ 750 in both RD and MD. The dotted-dashed, dashed, and dotted vertical lines indicate the
position of various peaks k1, k2, and k3 in the spectra; see text.
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The growth of the GW spectra saturates at that moment, and
the GWs simply redshift from then on, due to the expansion
of the Universe.
Let us now discuss the final amplitude ofΘGW after it has

saturated, i.e., for z > zGW. If we focus on the panels where
qs ¼ 61, we see that, independently of the chosen post-
inflationary expansion rate (either KD, RD, or MD), the
maximum amplitude of the GW spectra is of the same order
of magnitude, ΘGW ∼Oð10−10Þ. Of course, the particular
shape of the final spectra is different in each case, but the
final amplitude seems to very similar. The same happens if
we focus on the qs ¼ 750 case, in which, for the three KD,
RD, and MD spectra, we have ΘGW ∼Oð10−8Þ. This
indicates that the final amplitude of ΘGW at saturation is
roughly independent on the postinflationary expansion rate.
This should not be confused, however, with the standard

change of amplitude of the GWs due to their nature as
relativistic species. The prefactor ϵw in Eq. (36), which
verifies ϵw1

> ϵw2
if w1 > w2, accounts precisely for this

effect. Therefore, the final amplitude of the GWs is indeed
much more affected by their natural redshifting than by the
small dependence of ΘGW on the rate of expansion. Since
ϵw has an exponential dependence on w, see Eq. (36),
the proportionality ΩGW ∝ ϵw impacts dramatically on the
amplitude of the GW background today. It can affect the
GWs in both ways, either suppressing the amplitude by
ϵw < 1 for w < 1=3, or enhancing it by ϵw > 1 for
w > 1=3. Furthermore, this modulation of the GW ampli-
tude will continue even after the production of GWs has
ceased, i.e., at z > zGW. This is because the GWs only
redshift at the same rate as the expanding background when
the Universe becomes RD, hence turning the prefactor into
unity, ϵw ¼ 1. In summary, the ΩGW ∝ ϵw dependence
means that the slower the postinflationary expansion rate
(i.e., the larger the equation of state w), the higher the final
amplitude of the GW background.
Let us finally discuss the appearance of peaks in the GW

spectra. In Fig. 2 we can see that, during the growth of the
GW spectra, a structure of peaks develops. The GWs are
sourced by both the Higgs and gauge fields through the
terms Pij of Eq. (32), acting in the rhs of Eq. (30). In
momentum space, the spectrum of GWs is then sourced by
a convolution of the Higgs and gauge fields spectra.
Therefore, the position of the peaks is correlated with
the appearance of peaks in the spectra of both the Higgs and
the gauge fields.
Let us denote by u½g�ij the contribution to the GWs sourced

only by the gauge fields term P½g�
ij ðE;BÞ, and by u½h�ij the

contribution sourced by the Higgs covariant derivatives

P½h�
ij ðDhÞ, see Eq. (32). From the linearity of Eq. (38), it

follows that

u½g�
00

ij −
�
∂k∂k þ

a00

a

�
u½g�ij ¼ 1

a
fP½g�

ij gTT; ð43Þ

u½h�
00

ij −
�
∂k∂k þ

a00

a

�
u½h�ij ¼ 1

a
fP½h�

ij gTT: ð44Þ

Similarly, let us denote asΘ½g�
GW andΘ½h�

GW the contribution to
the GW spectra associated to these fields, respectively.
Clearly, as the GW spectrum is quadratic in uij, then

ΘGW ¼ Θ½h�
GW þ Θ½g�

GW þ Θ½gh�
GW, where Θ½gh�

GW represents an
interference contribution from the convolution of a term

like ∼P½g�
ij P

½h�
ij . In Fig. 3 we show, for the case qs ¼ 61 and

β ¼ 0.01, both Θ½g�
GW and Θ½h�

GW as well as the total spectrum

ΘGW for two different times. One can see that Θ½g�
GW and

Θ½h�
GW evolve in a similar manner, being almost identical,

especially in the infrared regime. In particular, they both
show some peaks at certain scales. This is a reflection of the
dynamics of the system, which creates similar peaks in the
spectra of Ei, Bj, and Dih, correspondingly transferring

those peaks into P½g�
ij and P½h�

ij : during the linear regime of
parametric resonance, the fast creation of gauge bosons
induces a similar growth of the electric and magnetic fields,
as well as of the Higgs covariant derivatives. As a

consequence, P½g�
ij and P½h�

ij contribute very similarly to
the total spectrum of GWs. This has in fact a very
interesting effect in the GW spectrum, as it produces a
clear destructive interference effect in the infrared, sup-
pressing the total amplitude ΘGW with respect the individ-

ual amplitudes Θ½h�
GW ≈ Θ½g�

GW. At the same time, this softens
(in some cases it almost washes out) the peak structure,
which becomes much more smoothed in the final spectrum.
This is clearly shown by the continuous curves in Fig. 3 as
compared with the dashed and dotted-dashed curves.
The origin of the peaks can be understood by examining

the spectra of the matter fields, i.e., of the Higgs and gauge
bosons.6 Looking at the initial stages of the process, a
growth in both the Higgs and gauge fields spectra takes
place in infrared scales (small k). Peaks are generated in the
matter fields’ spectra, according to the band structure of the
Lamé equation. These peaks are created during the initial
stages of the process, when parametric resonance starts
building up, and the Lamé equation applies. These scales
are essentially imprinted in the spectrum of the GWs during
the excitation of the matter fields. The position of the most-
infrared peak in the GW spectra, common to both the qs ¼
61 and qs ¼ 750 cases in Fig. 2, is indicated with a dotted-
dashed line. It corresponds to the initial resonance band in
the spectra of the gauge fields. In the qs ¼ 750 case, there is
even a second peak in the GW spectrum, indicated with a
dotted line. It corresponds to another peak appearing in the
spectrum of the Higgs field. When the system becomes
fully nonlinear, the spectra of both fields show a

6The interested reader can see such spectra in Sec. V of [33].
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rescattering effect towards the ultraviolet, populating
modes of higher and higher momenta. This generates a
characteristic feature in the fields’ spectra, which develops
a relatively wide peak with a “hunchback” shape in the
ultraviolet scales. This last peak is shifted towards higher
momenta according to how large the resonance parameter
qs is. Again, this scale is imprinted in the GW spectrum,
and it is indicated with a dashed line in both cases qs ¼ 61
and qs ¼ 750 in Fig. 2.
A systematic study of the origin and correlation of the

peaks in the GW and the matter fields’ spectra would be
extremely interesting. Such a study could be used to probe
the properties of the SM at high energies, such as the
running of the couplings involved. This goes, however,
beyond the scope of this paper where, as a first step, we
only want to obtain a more modest characterization of the
general aspects of the GW background. We will therefore
adopt a phenomenological approach in Sec. VI, character-
izing the peak structure in the GW spectra by means of
simple fitting formulas.

VI. PARAMETRIZATION OF THE
GRAVITATIONAL WAVE SPECTRA

In this section we parametrize the position and amplitude
of the final peaks in the GW spectra as a function of qs, w,
and β. We will focus first on the particular case β ¼ 0.01,
and from this, we will apply the scaling found in [33] to
extrapolate and generalize this parametrization to other β
values.
Let us start with the position of the peaks. We show in

Fig. 4 the momenta ki at which the peaks appear as a
function of qs, for the β ¼ 0.01 case, and for the different
expansion rates we have simulated (KD, RD, andMD). The
maximum number of peaks we can observe in the spectra is
three: one associated to the hunchback, whose position we
denote by k3 (red circles), and two associated with the
initial parametric resonance dynamics, whose position we
denote by k1 (purple squares) and k2 (orange triangles).
However, for some values of qs we do not see all three
peaks: for qs ≲ 200 the k2 peak is not clearly observed, as it

FIG. 3. We show ΘGW (red continuous line), Θ½h�
GW (dashed blue line), and Θ½g�

GW (dotted-dashed purple line) at the times z ¼ 62 (left
panel) and z ¼ 373 (right panel). The panels correspond to qs ¼ 61 and β ¼ 0.01.

FIG. 4. Location of the different peaks ki=H� that appear in the
GW spectra, as a function of the resonance parameter qs. The
panels correspond to KD (top), RD (middle), and MD (bottom),
all obtained for β ¼ 0.01. Red circles, purple squares, and orange
triangles correspond to k1, k2, and k3, respectively. Dashed lines
correspond to the best fits to k1, k2, and k3, as given by
Eqs. (45)–(49).
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overlaps with either of the two. Also, for some qs the peaks
k1 and k3 are too near to each other, and hence it is difficult
to attribute a particular peak to either of them. This explains
why, for some specific values of qs (particularly at low qs),
we just show the red circles corresponding to k3.
The key idea is that, except for very low qs, we

appreciate a clear separation between the hunchback k3
scale and the other scales k1, k2. This separation is
appreciated in all the postinflationary expansion rates.
More specifically, the position of the hunchback peak
increases with qs, exhibiting a clear power-law depend-
ence. We find the following fit:

k3 ≈ A3qrsH� ð45Þ

with the parameter values (for β ¼ 0.01) as

A3 ≈

8<
:
0.0315; if KD

0.0593; if RD

0.0627; if MD

; r≈

8<
:
0.44; if KD

0.59; if RD

0.82; if MD

. ð46Þ

On the other hand, the position of k1 and k2 are mostly
independent7 on qs. We find these peaks to be well fitted by

k1 ≈ A1H�; ð47Þ

k2 ≈ A2H�½qs ≳ 200�; ð48Þ

with parameter values (again for β ¼ 0.01) as

A1 ≈

8<
:
0.091; if KD

0.20; if RD

0.42; if MD

; A2 ≈

8<
:
0.18; if KD

0.38 if RD

0.81; if MD

. ð49Þ

These fits are depicted with straight lines in Fig. 4.
On the other hand, we show in Fig. 5 the amplitude of the

spectrum evaluated at the highest peak ΘGWðkpÞ, for the
different qs considered and for different postinflationary
expansion rates. For β ¼ 0.01, we find the following
phenomenological fit:

ΘGWðkpÞ ≈ AGW

�
qs
100

�
αGW ðβ ¼ 0.01Þ ð50Þ

where

AGW ≈

8<
:
3.1×10−9; if KD

2.4×10−9; if RD

2.1×10−9; if MD

; αGW ≈

8<
:
1.50; if KD

1.58; if RD

1.61; if MD

.

ð51Þ

This peak corresponds to the maximum amplitude of the
GWs at the moment when they stop being actively created,
i.e., at z ¼ zGW. However, note that kp does not necessarily
correspond always to the same peak k1, k2, or k3; rather, it
alternates among these [for KD and RD expansion rates we
normally have ΘGWðkpÞ≃ ΘGWðk3Þ, while for MD we
have ΘGWðkpÞ≃ ΘGWðk1Þ]. We see in Fig. 5 that the three
fits for KD, RD, and MD coincide pretty well, confirming
what we pointed out in the last section: the maximum
amplitude of ΘGW at saturation time zGW is roughly
independent of the postinflationary expansion rate (the
shape, however, is not; see Fig. 2).
These fits have been obtained for the particular β ¼ 0.01

case, but a generic extrapolation to other β values can be
easily carried out. We just need to use the rescaling laws
that we found in [33], which connect scales and field
amplitudes, from one simulation with Higgs initial ampli-
tude and postinflationary equation of state ðβ1; w1Þ, to
another simulation with different parameters ðβ2; w2Þ. In
particular,

zðβ2;ω2Þ ≈ βpðω1Þ
1 β−pðω2Þ

2 zðβ1;ω1Þ; ð52Þ

kðβ2;ω2Þ ≈ β−pðω1Þ
1 βpðω2Þ

2 kðβ1;ω1Þ; ð53Þ

hðβ2;ω2Þ ≈ βpðω1Þ−1
1 β1−pðω2Þ

2 zðβ1;ω1Þ; ð54Þ

where

FIG. 5. Amplitudes ΘGW of the highest peak of the GW spectra
as a function of q and for different postinflationary expansion
rates: KD (brown triangles), RD (blue diamonds), and MD (green
squares). Dashed lines correspond to the best-fit functions of
Eqs. (50)–(51).

7In reality there is a logarithmic dependence to qs, but wewould
need to go to very large values qs ≫ 103 to start noticing it.
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pðwÞ≡ 1þ 3ω

3ð1þ ωÞ ¼
8<
:

2=3; if KD

1=2; if RD

1=3; if MD

. ð55Þ

Using these rescaling laws we predict the position of the
peaks in the GW spectrum for arbitrary initial Higgs
amplitudes β as

k1 ≈ A1 ×

�
β

0.01

�
pðwÞ

H�

k2 ≈ A2 ×

�
β

0.01

�
pðwÞ

H�

k3 ≈ A3 ×

�
β

0.01

�
pðwÞ

qrsH�: ð56Þ

On the other hand, using the scaling laws Eqs. (52)–(54),
we demonstrated in Ref. [33] that we can recover the
dynamics of the matter fields for a given set of ðβ; wÞ
parameters, in terms of the results from an actual simulation
done for another set ðβ0; w0Þ. Likewise, rescaling the terms
involved in the GW source Eq. (32) by means of
Eqs. (52)–(54), we can predict the scaling of ΘGW
[Eq. (43)], and, hence, how the amplitude of the back-
ground of GWs scales with β. We find that

ΩGW ∝ ΘGW ∝ β4þvðwÞ; vðwÞ ¼ 2
ðw − 1=3Þ
ðwþ 1Þ : ð57Þ

We have confirmed the validity of these predictions by
carrying out several lattice simulations with different β and
w parameters. As an example, in Fig. 6 we show various
spectra of GWs for qs ¼ 354, for both RD (w ¼ 1=3) and
KD (w ¼ 1). The continuous red, dashed yellow, and
dotted-dashed blue lines show the spectra for β ¼ 0.2,
0.03, and 0.004, respectively, obtained directly from lattice

simulations. We indicate with arrows the theoretical pre-
dictions for β ¼ 0.2, as obtained from the β ¼ 0.03 and
β ¼ 0.004 lattice simulations, using the extrapolation laws
Eqs. (56), (57). We see that the two extrapolated predictions
match quite well the output of the real β ¼ 0.2 lattice
simulations, within errors.
Using Eqs. (35), (50), and (57), we obtain that the

maximum amplitude of the GW background at the end of
the production stage, as a function of β; qs, andw, is given by

ΩGWðkpÞ ≈ AGWδ�ϵw

�
q
100

�
αGW

�
β

0.01

�
4þvðwÞ

; ð58Þ

where ϵw; δ� are given by Eq. (36), and AGW; αGW by
Eq. (50). The amplitude in Eq. (58) constitutes one of the
key results of our analysis. However, in order to quantify the
amplitude of the signal today, we need to redshift its
amplitude and frequency.

VII. THE GRAVITATIONAL WAVE
BACKGROUND TODAY: REDSHIFTING THE
SPECTRUM THROUGH COSMIC HISTORY

We now compute how the GW background redshifts
until today. We first define

ϵRD ≡ ϵwðaRDÞ≡
�

a�
aRD

�ð1−3ωÞ
; ð59Þ

with a� the scale factor at the end of inflation at z ¼ z� ¼ 0,
aRD the scale factor at the onset of the radiation-dominated
stage of the Universe at z ¼ zRD, and w the effective
equation of state between z� and z ¼ zRD. Essentially, ϵRD
quantifies our ignorance about the expansion rate between
z� and zRD.
Let us take as a frequency of reference the one

corresponding to the mode kp of the highest peak of the

FIG. 6. We show the final spectra ΘGW for the cases of β ¼ 0.2 (continuous red line), of β ¼ 0.03 (dashed yellow line), and of
β ¼ 0.004 (dot-dashed blue line), obtained directly from lattice simulations. This corresponds to the qs ¼ 354 case, for RD (left panel)
and KD (right panel). We also indicate with arrows the theoretical predictions for the β ¼ 0.2 case, obtained from the β ¼ 0.03 and
β ¼ 0.004 lattice results, using the extrapolation laws Eqs. (56), (57). We can see that the two extrapolated predictions match quite well
the output of the real lattice simulations of the β ¼ 0.2 case.
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spectrum. The frequency today associated to the peak scale
kp is then given by

fp ≡
�
a�
ao

�
kp
2π

ð60Þ

¼ ϵ1=4RD

�
gs;o
gs;RD

�1
3

�
go
gRD

�
−1
4

�
ρðoÞrad

ρ�

�1
4 kp
2π

≃ ϵ1=4RD

�
H�
Hmax�

�1
2 kp
H�

× 2 × 108 Hz; ð61Þ

where gs;t and gt are the entropic and matter relativistic
degrees of freedom at a time t, and we have used the
entropy conservation law aT ∝ g−1=3s;t for a background
temperature T, the temperature-energy density relation of a
relativistic thermal fluid ρ ∝ gtT4, the evolution of the total
energy density of the Universe as ρ ∝ a−3ð1þwÞ, the total
energy density at the end of inflation ρ� ¼ 3m2

pH2�, and the
value of the energy density of the relativistic species today

ρðoÞrad ≈ 2 × 10−15 eV4. Assuming that the effective degrees
of freedom do not change from z� to zRD, i.e., gs;� ¼ gs;RD
and g� ¼ gRD, and taking into account that gs;t ∼ gt, we
obtain then ðgs;o=gs;RDÞ1=3ðgo=gRDÞ−1=4 ∼ ðgo=gRDÞ1=12∼
Oð1Þ.
The amplitude of the GW background today, normalized

to the present critical energy density ρðoÞc , can be written as

h2ΩðoÞ
GW ≡ h2

ρðoÞc

�
dρGW
d log k

�
o

¼ h2ΩðoÞ
rad

1

ρðoÞrad

�
aRD
ao

�
4
�
dρGW
d log k

�
RD

¼ h2ΩðoÞ
rad

�
gs;o
gs;RD

�4
3

�
gRD
go

�
1

ρRD

�
dρGW
d log k

�
RD

ð62Þ

where h2ΩðoÞ
rad ≡ h2ρðoÞrad=ρ

ðoÞ
c , with ρðoÞrad the radiation compo-

nent of the Universe today. Using that freely propagating
GWs scale as a radiation fluid like ρGW ∝ 1=a4,

ρðoÞrad ¼ ðgs;RD=gs;oÞ4=3 ðgo=gRDÞρRDðaRD=aoÞ4, ρRD ¼
ρ�ðaRD=a�Þ−3ð1þwÞ (assuming again that the effective
degrees of freedom do not change), and taking into account

that h2ΩðoÞ
rad ≃ 4 × 10−5 and ðgs;o=gs;RDÞ4=3ðgRD=goÞ∼

ðgo=gRDÞ1=3 ∼Oð0.1Þ, we can then write the GW energy
density spectrum today as

h2ΩðoÞ
GW ≃ ϵRDδ�ΘGW × 10−6; ð63Þ

where ΘGW [Eq. (43)], read out from the simulations at
z ¼ zGW, characterizes the final spectrum shape.
The highest peak of the GW spectrum today is

of course characterized by the highest peak of ΘGW,

parametrized8 by Eqs. (45), (50). The frequency and
amplitude of highest peak today is then

fp ≃ ϵ1=4RD

�
H�

HðmaxÞ
�

�1
2

�
β

0.01

�
pðwÞ

qrs × 107 Hz ð64Þ

h2ΩðoÞ
GWðfpÞ≃ 10−24 × ϵRDAGW

�
qs
100

�
αGW

×

�
H�

HðmaxÞ
�

�
4
�

β

0.01

�
4þvðwÞ

: ð65Þ

In order to understand what frequencies and amplitudes
these expressions really imply, we need to consider specific
cases. For instance, let us assume that the universe is RD
after inflation, so that ϵRD ¼ 1, and let us consider that the
inflationary Hubble rate is close to its upper bound,

H� ≲HðmaxÞ
� . Taking qs ¼ 100 and βrms ≃ 0.1, we obtain

RD∶ h2ΩðoÞ
GWðfpÞ≲ 10−29; at fp ≲ 3 × 108 Hz: ð66Þ

This amplitude is tiny, so unfortunately there is not much
hope to expect to detect it in the future, unless
high-frequency GW detection technology undergoes
unforeseen development. The main reason why this
signal is so small lies in the suppression ∝ δ� ¼
ðH�=mpÞ4 ∼ 10−18ðH�=H

ðmaxÞ
� Þ4 ≪ 1.

If the Universe was MD after inflation, the situation
becomes even worse; there is an extra dilution of the signal,
as the latter is now proportional to some factor ϵRD ≪ 1,
which becomes smaller and smaller the longer it takes for
the Universe to reach a RD regime at z ¼ zRD. This dilution
is simply a consequence of the fact that GWs scale with the
expansion of the Universe as relativistic species,
ρGW ∝ 1=a4, whereas a MD background energy density
dilutes slower as ρ ∝ 1=a3.
If the Universe is KD after inflation, the GW signal is,

however, enhanced significantly. In particular, given the
initial ratio of energies Δ≡ V�=ρ� ∼ 10−12 [Eq. (5)], the
Universe will sustain a KD expansion rate until the moment
when the relativistic SM fields become dominating the
energy budget. This implies that the GW signal is enhanced
by a factor ∝ ϵRD ¼ 1=Δ ∼ 1012. The scaling of the signal
also goes as ∝ ðβ=0.01Þ4þvð1Þ with vð1Þ ¼ 2=3, instead of
with vð1=3Þ ¼ 0 as in RD. In addition, AKD

GW ≳ ARD
GW.

Compared to a RD background, and for β ¼ 0.1, there is
therefore another enhancement (however milder) by a

8Although the highest-amplitude peak kp is normally k3, this is
not always the case. However, when kp is instead associated with
k1 or k2 (typically for low qs), the spectral amplitude at the k3
peak is still very similar to that of the highest peak. Therefore, for
simplicity, we are going to associate here the amplitude ΘGWðkpÞ
[Eq. (50)] to the peak k3 [Eq. (46)].
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factor ðAKD
GW=A

RD
GWÞð0.1=0.01Þvð1Þ−vð1=3Þ ∼ 10. Plugging all

this into Eqs. (64), (65), we obtain

KD∶ h2ΩðoÞ
GWðfpÞ≲ 10−16; at fp ≲ 3 × 1011 Hz: ð67Þ

This corresponds yet to a small signal, but its amplitude is
in fact comparable9 to the standard scale-invariant infla-

tionary background h2ΩðInfÞ
GW ≃ 5 × 10−16ðH�=H

ðmaxÞ
� Þ2.

Our signal in this case of KD after inflation, however, lies
at extremely high frequencies ∼1011 Hz, beyond the range
of planned GW detectors.
Before we move into the concluding section, it is perhaps

interesting to make a remark about a particular aspect of this
GW background, which we have not studied in this paper.
Given the condition of the Higgs as a condensatewith a finite
correlation length at the end of inflation, it is indeed expected
that this GW background will have anisotropies on angular
scales corresponding to that correlation scale. This is very
similar to the case of preheating scenarios with light preheat
fields [75,76]. Of course, given the smallness of the back-
ground amplitude itself, detecting such anisotropic variation
in the sky seems even more chimeric than detecting the
background itself. Yet, it is interesting to note that these
anisotropies are expected in the present case, as opposed to
the situation when the decaying (oscillatory) field is an
inflaton, which is considered to be homogeneous10 over
scales much larger than our present horizon.

VIII. SUMMARY AND DISCUSSION

Independently of the nature of the inflationary sector, a
stochastic background of GWs is expected simply due to the
existence of the Standard Model Higgs. This background of
GWs is always generated after inflation, as long as the Higgs
is decoupled from (or sufficiently weakly coupled to) the
inflationary sector. In such a case, the Higgs is excited either
(i) during inflation, if it is minimally coupled to gravity (or if
it has a weak nonminimal coupling), or (ii) at the end of
inflation, if it has a (sufficiently) large nonminimal coupling
to gravity. Either way, we expect the Higgs to be in the form
of a condensate after inflation, decaying very rapidly—via
nonperturbative effects—into the rest of the SM species. The
resulting postinflationaryout-of-equilibriumdynamics of the
SM fields generates necessarily a stochastic background of
GWs. Both the SMHiggs and the electroweak gauge bosons
act as the dominant sources of the GW background.

We have studied the details of the form of the GW
spectrum, determining its frequency, amplitude, and shape.
We have characterized the GW spectrum dependence on
the unknown parameters of the system, namely the Higgs
initial amplitude at the end of inflation β ¼ ffiffiffi

λ
p

φ�=H�, the
equation of state w characterizing the postinflationary
expansion rate of the Universe, and the resonance param-
eter qs ¼ ðg2Z þ 2g2WÞ=4λ. The running of the Higgs self-
coupling at high energies is in fact quite uncertain within
the experimental input, so λ can vary within the range
10−2 ≲ λ < 10−5. This translates into some uncertainty in
the regime of the resonance parameter, which may vary
within the range qs ∼Oð10Þ −Oð103Þ.
We have used real-time classical gauge field lattice

simulations in an expanding box in (3þ 1) dimensions.
We chose N ¼ 256 points per dimension, ensuring that the
relevant modes involved in this process were well captured
within the dynamical range of the simulations. Our results
have been obtained within an Abelian-Higgs modeling,
expected to describe sufficiently well the system when
qs ≫ 1. Only in the case of the smallest resonance
parameters qs ∼Oð10Þ does one expect the dynamics of
the system to be affected by the presence of the full non-
Abelian structure of the SM.
From our lattice simulations, we have obtained Eq. (58),

which is a phenomenological fit of the amplitude of the
GW spectra as a function of the different unknown
parameters described above. We also obtain a parametriza-
tion of the observed redshifted amplitude until today in
Eq. (65). However, the GW signal is suppressed by the
inflationary Hubble rate as ∝ ðH�=mpÞ4. The largest
amplitudes for the GW background are therefore obtained
when H� is only somewhat smaller than (but of the order

of) its current upper bound HðmaxÞ
� ∼ 1014 GeV. This

implies that λ runs to small values λ < 10−2, hence making
the resonance parameter large, qs > 10. In light of this, the
use of the Abelian approach is fully justified. In any case,
the basic features of the fields dynamics and GW produc-
tion, i.e., its dependence on qs, β, and w, are not expected to
change drastically in the full non-Abelian scenario. Our
study can be considered therefore as a good indicator of the
GW amplitudes to expect in general, even if non-Abelian
corrections were to be considered.
If the Universe was RD after inflation, our calculations

show in fact that this background is tiny, with an amplitude
of h2ΩðoÞ

GWðfpÞ≲ 10−29, and peaked at high frequencies
fp ∼ 300 MHz. The smallness of this background reflects
simply the fact that the initial energy of the Higgs
condensate represents only a tiny fraction of the infla-
tionary energy. If the Universe was MD after inflation,
although the background will be peaked at slightly smaller
frequencies, its amplitude today can only be even smaller
than in the RD case. The amplitude of the background is
expected, however, to be enhanced significantly if the
Universe underwent a KD regime after inflation. In that

9In reality, the comparison to the inflationary signal is
not fair here, as the KD regime after inflation would also
boost the amplitude of the inflationary background by a
factor ∝ ϵRD ∼ 1012.

10Of course, the inflaton is not completely homogeneous, as it
has fluctuations in order to explain the primordial density
perturbations. However, those fluctuations are very tiny com-
pared to its zero mode, whereas in the case at hand of the SM
Higgs as a spectator field, the Higgs amplitude varies substan-
tially from patch to patch (of size of its correlation length), with
respect its averaged amplitude.
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case, our calculations show that the background today

could have an amplitude up to h2ΩðoÞ
GWðfpÞ ≲ 10−16. This

larger background is, however, peaked at very high
frequencies, of the order of fp ≲ 1011 Hz.
The generation of the GW background we have studied

in this paper is, in some sense, universally expected, as long
as the SM is not strongly coupled to the inflationary sector.
However, given that the background is always peaked at
very high frequencies, and its amplitude today is very small
(in all cases), our prediction will remain, most likely, as a
curiosity of the SM.
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