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We derive the complete set of continuous maximal symmetries for standard model (SM) alignment that
may occur in the tree-level scalar potential of multi-Higgs doublet models, with n > 2 Higgs doublets.
Our results generalize the symmetries of SM alignment, without decoupling of large mass scales or
fine-tuning, previously obtained in the context of two-Higgs doublet models.
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I. INTRODUCTION

As more and more data are being collected at the CERN
Large Hadron Collider (LHC), it becomes even more
apparent from global analyses [1–5] that the observed
Higgs boson h, with a mass Mh ≈ 125 GeV, interacts with
the gauge bosons with coupling strengths that are very
close to those predicted by the standard model (SM) [6].
The constraints deduced from the strengths of these Higgs
couplings, primarily toW� and Z bosons, put severe limits
on the actual form of a possible heavy scalar sector in the
observable sub-TeV range, and so on the model structure of
new physics to be anticipated at the LHC.
If there are additional heavy scalars in the theory, as

predicted in two-Higgs doublet models (2HDMs) [7–9] or
nHDMs, with n > 2 Higgs doublets [10–15], there are two
main strategies that are followed in the literature to avoid
too large mixings of the heavy scalars to the SM Higgs
boson h. The first one is known as the decoupling limit
[16–18], in which the heavy scalars are made very heavy,
such that they effectively decouple from the low-energy SM
sector altogether. The second strategy, which is of interest to
us, is a bit more optimistic, as it leaves open the possibility to
directly probe the heavy scalar sector. It assumes that the
new scalars are not very heavy after all, e.g. they havemasses
in the sub-TeV range, but the theoretical parameters are
arranged in such a way that the new scalars do not mix
significantly with h. As a consequence, the hWþW− and
hZZ couplings retain their SM values, to a very good
approximation. In the 2HDM, such parameter arrangement
leads to a sort of alignment between the 2 × 2 charge parity
(CP)-odd scalar mass matrix M2

P and the 2 × 2 CP-even
scalar mass matrix M2

S in the CP-conserving limit of the
theory. In the so-called SM-alignment limit [19–26], the two
mass matrices M2

P and M2
S get diagonalized by means

of the same mixing angle, e.g. β, where tan β ¼ v2=v1 is
the ratio of the vacuum expectation values (VEVs) of
the two Higgs doublets Φ1 and Φ2, i.e. hΦ1i ¼ v1=

ffiffiffi
2

p
and

hΦ2i ¼ v2=
ffiffiffi
2

p
.

An unpleasant aspect of achieving SM alignment with-
out decoupling of mass scales is the degree of fine-tuning
that is frequently required among the theoretical parame-
ters. However, a recent study has shown [24] that the
phenomenologically desirable SM alignment in the 2HDM
may be realized upon the imposition of symmetries on its
scalar potential. In particular, three maximal symmetries,
softly broken possibly by bilinear mass terms, have been
identified for which the tree-level scalar potential of the
2HDM exhibits exact SM alignment. We therefore refer to
this mechanism as the natural alignment mechanism. We
briefly review the basic features of natural alignment in the
2HDM in Sec. II.
In this paper we extend the results, previously obtained

in the context of 2HDMs, and derive the complete set of
symmetries for SM alignment that may take place in
multi-HDMs, with more than two Higgs doublets. In
nHDMs, with n > 2 Higgs doublets, the task of identify-
ing all SM-alignment symmetries becomes more labori-
ous. An nHDM may have a number m of inert Higgs
doublets, which do not participate in the mechanism of
electroweak symmetry breaking (EWSB) because of some
unbroken symmetry, such as a Z2 symmetry [27–30],
resulting in the vanishing of VEVs for all inert Higgs
doublets. Nevertheless, the key observation to be made
here is that SM alignment is naturally achieved in multi-
HDMs, if the dimension-4 part of the scalar potential V
containing the quartic couplings of the EWSB scalars is
invariant under rotations that diagonalize their correspond-
ing squared mass matrix of dimension 2 in V. To put it
simply, the quartic couplings involving only EWSB scalars
must be invariant under SM-alignment-symmetry trans-
formations which include the so-called Higgs basis [16] in
which the bilinear mass matrix is diagonal. Our approach
to deriving the symmetries for SM alignment in multi-
HDMs is presented in Sec. III.
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The paper has the following structure. After this intro-
ductory section, Sec. II briefly reviews the basic features of
natural alignment in the 2HDM. After having gained useful
insight from the 2HDM case, we derive in Sec. III the
complete set of symmetries for SM alignment that may
occur in the tree-level scalar potential of multi-HDMs.
Finally, the key findings of our study are summarized
in Sec. IV.

II. NATURAL ALIGNMENT IN THE 2HDM

In this section we briefly review the SM-alignment limit
in the 2HDM and the symmetries that naturally enforce this
limit. More details may be found in [24].
Let us start our discussion by writing down the tree-level

scalar potential V of the 2HDM, expressed in terms of the
SUð2ÞL Higgs doublets Φ1 and Φ2 with hypercharges
YΦ1;2

¼ 1,

V ¼ −μ21ðΦ†
1Φ1Þ − μ22ðΦ†

2Φ2Þ −m2
12ðΦ†

1Φ2Þ −m�2
12ðΦ†

2Φ1Þ
þ λ1ðΦ†

1Φ1Þ2 þ λ2ðΦ†
2Φ2Þ2 þ λ3ðΦ†

1Φ1ÞðΦ†
2Φ2Þ

þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
λ5
2
ðΦ†

1Φ2Þ2 þ
λ�5
2
ðΦ†

2Φ1Þ2

þ λ6ðΦ†
1Φ1ÞðΦ†

1Φ2Þ þ λ�6ðΦ†
1Φ1ÞðΦ†

2Φ1Þ
þ λ7ðΦ†

2Φ2ÞðΦ†
1Φ2Þ þ λ�7ðΦ†

2Φ2ÞðΦ†
2Φ1Þ: ð2:1Þ

Note that V contains four real mass parameters, μ21, μ
2
2,

Rem2
12 and Imm2

12, and ten real quartic couplings, λ1;2;3;4,
Reλ5;6;7 and Imλ5;6;7. To account for the mechanism of
EWSB, the Higgs doublets Φ1;2 are expressed as

Φ1 ¼
� ϕþ

1

1ffiffi
2

p ðv1 þ ϕ1 þ ia1Þ
�
;

Φ2 ¼ eiξ
� ϕþ

2

1ffiffi
2

p ðv2 þ ϕ2 þ ia2Þ
�
; ð2:2Þ

where ξ is a CP-odd phase, ϕ1;2 (a1;2) are CP-even
(CP-odd) scalars in the CP-conserving limit of the theory,
and ϕþ

1;2 are positively charged scalars in the weak basis.
Focusing on the neutral scalar sector, the corresponding
mass matrix in the basis ða1; a2;ϕ1;ϕ2Þ takes on the
symmetric form,

M2
N ¼

�
M2

P M2
PS

ðM2
PSÞT M2

S

�
; ð2:3Þ

where M2
P ¼ ðM2

PÞT, M2
S ¼ ðM2

SÞT and M2
PS are 2 × 2

matrices whose explicit form may be found in [8]. Notice
that in the CP-conserving limit of the theory, all CP-
violating scalar-pseudoscalar mass terms vanish, i.e.
M2

PS ¼ 0. Then, in this CP-conserving limit, the 2 × 2

mass matricesM2
P andM2

S can be diagonalized separately
by the SO(2) orthogonal transformations,

cM2
P ¼

�
cβ sβ
−sβ cβ

�
M2

P

�
cβ −sβ
sβ cβ

�
;

cM2
S ¼

�
cα sα
−sα cα

�
M2

S

�
cα −sα
sα cα

�
; ð2:4Þ

with sx ≡ sin x and cx ≡ cos x, and x ¼ α, β. Upon
diagonalization, the weak states are related to the mass
eigenstates through

�
a1
a2

�
¼

�
cβ −sβ
sβ cβ

��
G0

A

�
;

�
ϕ1

ϕ2

�
¼

�
cα −sα
sα cα

��
h

H

�
; ð2:5Þ

where G0 is the would-be Goldstone boson associated with
the longitudinal degree of polarization of the Z boson, A is
a physical CP-odd scalar, h is identified with the observed
CP-even Higgs boson at the LHC, and H is a new heavy
CP-even scalar having mass MH > Mh.

1

According to our conventions, the SM-alignment limit of
the 2HDM is defined as the limit α → β. As was explicitly
demonstrated in [24], SM alignment is realized in the
2HDM, iff the following condition is satisfied:

λ7t4β − ð2λ2 − λ345Þt3β þ 3ðλ6 − λ7Þt2β
þ ð2λ1 − λ345Þtβ − λ6 ¼ 0; ð2:6Þ

with λ345 ≡ λ3 þ λ4 þ λ5, for finite values of tan β≡ tβ,
upon implementation of the SM Higgs mass constraint
[23]: Mh ≈ 125 GeV. Obviously, if λ6 ¼ 0, one simple
solution to (2.6) for having SM alignment is tβ ¼ 0. By
analogy, if λ7 ¼ 0, SM alignment may be achieved for
infinite values of tβ, namely when tβ → ∞.
In the so-called SM-alignment limit α → β, the h-boson

coupling to W� and Z bosons has exactly the SM strength,
whereas the heavierH boson does not interact with theW�
and Z bosons at the tree level, i.e. it becomes partially
gaugophobic.2 In fact, such a scenario is getting increas-
ingly favorable in the light of global analyses of LHC data.
Nevertheless, the SM-alignment condition (2.6) would
require an unpleasant degree of fine-tuning among the
quartic couplings, unless there is some symmetry that
enforces it. As a first step to identify possible symmetries
of SM alignment, we follow [24] and require that the
condition (2.6) is fulfilled for any value of tβ. Imposing this
constraint, we find that

1It is straightforward to extend our discussion to scenarios with
an inverted hierarchy: MH < Mh.

2We should clarify that the H boson is not entirely gaugo-
phobic. Although the trilinear couplings HWþW− and HZZ are
absent in the SM-alignment limit, quadrilinear interactions, such
as HHWþW− and HHZZ, are nonzero.
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λ1 ¼ λ2 ¼ λ345=2; λ6 ¼ λ7 ¼ 0: ð2:7Þ

It is crucial to observe here that in deriving the above
constraint, no reference was made on the structure of the
bilinear mass terms μ21;2 and m

2
12 of the potential V in (2.1).

In principle, their form is not restricted from SM-alignment
considerations, as long as they lead to a CP-conserving
theory. Their role is simply to fix the parameter tan β to a
particular value, thus relating the weak basis ðΦ1;Φ2Þ to the
Higgs (mass-eigenstate) basis.
The next step taken in [24] was to identify possible

maximal symmetries of the 2HDM potential V that would
enforce the constraint (2.7). The complete classification of
all 13 SUð2ÞL-invariant maximal symmetries of the 2HDM
has been presented in [31,32], after extending the Uð1ÞY-
restricted bilinear formalism of [33–37]. In this way, the
following three symmetries for SM alignment have been
identified [24]3:

ðiÞ Spð4Þ∶ λ1¼ λ2¼ λ3=2; λ4¼ λ5¼ λ6¼ λ7¼0;

ðiiÞ SUð2ÞHF∶ λ1¼ λ2¼ λ34=2; λ5¼ λ6¼ λ7¼0;

ðiiiÞ SUð2ÞHF×CP∶ λ1¼ λ2¼ λ345=2; λ6¼ λ7¼0:

ð2:8Þ

We note that the unitary symplectic group Sp(4)4 is acting on
the reduced four-dimensional Φ basis, defined as Φ≡
ðΦ1;Φ2; iσ2Φ�

1; iσ
2Φ�

2ÞT, where σ2 is the second matrix of
the Pauli matrices: σa ¼ ðσ1; σ2; σ3Þ. Hence, the group
Sp(4) defines a larger set of custodial symmetry trans-
formations [32]. As for the symmetries SU(2) in (ii) and
SO(2) in (iii), they are acting on the two-dimensional Higgs
family (HF) space: ðΦ1;Φ2Þ. Therefore, we also denote these
symmetries as SUð2ÞHF and SOð2ÞHF, respectively. Finally,
the discrete group CP in (iii) refers to the canonical CP
symmetry, ðΦ1ðt;xÞ;Φ2ðt;xÞÞ → ðΦ�

1ðt;−xÞ;Φ�
2ðt;−xÞÞ,

which is tacitly assumed to apply to the classical action of
the theory.
Having gained valuable insight from the above exercise,

one might wonder how the three symmetries of the SM
alignment stated in (2.8), Sp(4), SU(2) and SO(2) would
manifest themselves in an explicit construction of the
2HDM scalar potential V. To this end, we observe that
there are correspondingly three symmetry structures that
are relevant to SM alignment:

S ¼ Φ†
1Φ1 þ Φ†

2Φ2 ¼
1

2
Φ†Φ;

Da ¼ Φ†
1σ

aΦ1 þ Φ†
2σ

aΦ2;

T ¼ Φ1ΦT
1 þ Φ2ΦT

2 : ð2:9Þ

Under an SUð2ÞL gauge transformation, Φ1;2→Φ0
1;2 ¼

UΦ1;2, with U ∈ SUð2ÞL, the symmetry structures S, Da

and T transform as follows:

S → S0 ¼ S; Da → D0a ¼ OabDb;

T → T 0 ¼ UTUT; ð2:10Þ

where O ∈ SOð3Þ. Evidently, S is a gauge-invariant scalar,
Da transforms as a three-dimensional Euclidean vector and
T transforms as a bidoublet. Under Higgs-doublet field
transformations, the quantity S is an Sp(4) invariant in the
Φ-space, while Da and T are invariant under SU(2) and
SO(2) rotations in the HF space ðΦ1;Φ2Þ, respectively.
In terms of S, Da and T, the most general scalar 2HDM

potential V realizing natural alignment may alternatively be
written down as follows,

V ¼ Vsym þ ΔV; ð2:11Þ

where

Vsym ¼ −μ2Sþ λSS2 þ λDDaDa þ λTTrðTT�Þ
¼ −μ2ðΦ†

1Φ1 þΦ†
2Φ2Þ þ ðλS þ λD þ λTÞ

× ½ðΦ†
1Φ1Þ2 þ ðΦ†

2Φ2Þ2� þ 2ðλS − λDÞðΦ†
1Φ1ÞðΦ†

2Φ2Þ
þ 4λDðΦ†

1Φ2ÞðΦ†
2Φ1Þ þ λT ½ðΦ†

1Φ2Þ2 þ ðΦ†
2Φ1Þ2�;

ð2:12Þ

with μ2 > 0,5 and

ΔV ¼
X

i;j¼1;2

m2
ijΦ

†
iΦj ð2:13Þ

are soft-symmetry breaking terms. In arriving at the last
equality in (2.12), we have employed the property of the
Pauli matrices: ðΦ†

1σ
aΦ1ÞðΦ†

2σ
aΦ2Þ ¼ 2ðΦ†

1Φ2ÞðΦ†
2Φ1Þ−

ðΦ†
1Φ1ÞðΦ†

2Φ2Þ. Obviously, the so-called maximally sym-
metric 2HDM studied in detail in [24], which corresponds
to scenario (i) of (2.8), is obtained when λD ¼ λT ¼ 0,
while the SUð2ÞHF-symmetric 2HDM [scenario (ii) of
(2.8)] is recovered when λT ¼ 0. Finally, scenario (iii) of
(2.8) is realized, if all three quartic couplings λS;D;T in
(2.12) are nonzero.3With the aid of the bilinear formalism, the three symmetries in

(2.8) are classified as (i) SOð5Þ≃Spð4Þ=Z2; (ii) SOð3Þ≃SUð2ÞHF=
Z2; and (iii) SOð2Þ × Z2 ≃ SOð2ÞHF × CP, e.g. according to
Table II of [32].

4We remind the reader about the basic set relations of Spð2nÞ
groups: SUðnÞ ⊂ Spð2nÞ ⊂ SUð2nÞ, with n ≥ 2.

5In addition to the condition for EWSB, convexity of V at large
values of Φ1;2 in any field direction can be simply enforced by
demanding that λS;D;T ≥ 0.

SYMMETRIES FOR STANDARD MODEL ALIGNMENT IN … PHYSICAL REVIEW D 93, 075012 (2016)

075012-3



We now notice that the SM alignment symmetries given
in (2.8) can be used to diagonalize the dimension-2 part of
the 2HDM potential V in the HF space ðΦ1;Φ2Þ. This
means that the Hermitian bilinear mass matrix, which we
define in the HF space as M2

ij ≡ −μ2δij þm2
ij, can be

brought into the diagonal form M̂2
ij by means of a SU(2)

transformation, without altering the dimension-4 part of V,
i.e. Vsym given in (2.12). For scenario (iii), the bilinear mass
matrix M2

ij must be real to be diagonalizable by means
of an SO(2) rotation, i.e. M2

ij ¼ M2
ij. In this HF basis, say

ðΦ0
1;Φ

0
2Þ, in whichM2

ij is diagonal, only one Higgs doublet
acquires nonzero VEV, e.g. Φ0

1, which is identified
with the VEV v of the SM Higgs doublet field Φ, i.e.
hΦ0

1i≡ hΦi ¼ v=
ffiffiffi
2

p
. This specific HF basis, i.e. ðΦ0

1;Φ
0
2Þ,

is also called the Higgs basis [16]. Hence, the key
observation is that SM-alignment-symmetry transforma-
tions not only leave the quartic couplings invariant, but also
include transformations that lead to the Higgs basis. Notice
that in the Higgs basis, an exact canonical Z2 symmetry
for the 2HDM potential becomes manifest, in which
Φ0

1 → þΦ0
1 and Φ

0
2 → −Φ0

2, which remains unbroken, even
after EWSB, i.e. Φ0

2 becomes an inert doublet (see also our
discussion below for the inert 2HDM). This symmetry-
based approach proves very useful in deriving the complete
set of symmetries for alignment in nHDMs, with n > 2, in
the next section.
Besides the softly broken SM-alignment symmetries

stated in (2.8), under which the EWSB Higgs doublets
Φ1 andΦ2 have nontrivial transformation properties, another
possible way for getting natural alignment in 2HDM is to
impose an unbroken discrete Z2 symmetry n, under which
one of the Higgs doublets is Z2 odd, e.g. Φ2 → −Φ2. In this
class of scenarios, in which λ6 ¼ λ7 ¼ 0 andm2

12 ¼ 0, while
the quartic couplings λ1;2;3;4;5 are unconstrained, the Higgs
basis is fixed to be along the Z2-even scalar field, e.g. Φ1,
representing the SM Higgs doublet Φ. Such naturally
aligned scenarios, in which the Z2-odd Higgs doublet is
an inert field, correspond to the limits tβ → 0 (for Φ1 ≡ Φ)
or tβ → ∞ (for Φ2 ≡ Φ). As we see in the next section, the
inert scalar sector in multi-HDMs can have much richer
structure possessing its own set of symmetries.

III. NATURAL ALIGNMENT IN MULTI-HDMS

It is straightforward to generalize the results of the
previous section and derive the complete set of symmetries
for alignment in nHDMs, with n > 2. We may assume
that the scalar sector of the theory consists of m inert
Higgs doublets bΦâ (with â ¼ 1̂; 2̂;…; bm), for which
hbΦâi ¼ 0, and NH ≡ n −m Higgs doublets Φa (with
a ¼ 1; 2;…; NH) which generally take part in EWSB with
nonzero VEVs, i.e. hΦai ≠ 0. The vanishing of the VEVs
of the inert Higgs doublets is enforced by imposing a
suitable discrete or continuous symmetryD, which remains

unbroken after EWSB. Under the action of D, the noninert
NH Higgs doublets Φa transform trivially, i.e. Φa → Φa. In
general, the discrete group D could be Z2, or even a higher
ZN symmetry, but not the canonical CP and/or a permu-
tation symmetry, such as S3, since such symmetries do not
necessarily imply the vanishing of the VEVs for the inert
Higgs doublets bΦâ.
The full scalar potential V of a naturally aligned nHDM

may be written down as a sum of three terms,

V ¼ Vsym þ V inert þ ΔV; ð3:1Þ
where Vsym describes the symmetry-constrained part of the
scalar sector, which is responsible for the EWSB of the
theory. Its form turns out to be the same as the one found in
the 2HDM [cf. (2.12)], which we elucidate in more detail
below. In addition, the potential term V inert in (3.1)
represents the inert scalar sector which does not participate
in EWSB, i.e.

V inert ¼ bm2
â b̂
bΦ†
â
bΦb̂ þ λâ b̂ ĉ d̂ðbΦ†

â
bΦb̂ÞðbΦ†

ĉ
bΦd̂Þ

þ λâ b̂ cdðbΦ†
â
bΦb̂ÞðΦ†

cΦdÞ þ λab̂ ĉ dðΦ†
abΦb̂ÞðbΦ†

ĉΦdÞ
þ ½λab̂cd̂ðΦ†

abΦb̂ÞðΦ†
cbΦd̂Þ þ H:c:�; ð3:2Þ

where summation of the indices over their allowed range of
values is understood, and λâ b̂ ĉ d̂, λâ b̂ cd, λab̂ ĉ d and λâbĉd are
all different sets of quartic couplings. The m ×m matrixbm2

â b̂
is taken to be positive definite, so as to avoid

spontaneous EWSB. From the explicit construction of
the inert scalar sector in (3.2), we readily see that it
remains invariant under the Z2 symmetry,

ZI
2∶ Φa → Φa; bΦb̂ → −bΦb̂: ð3:3Þ

Consequently, ZI
2 should always be contained in the D

symmetry group of the inert scalar sector, i.e. ZI
2 ⊂ D.

Finally, the third term ΔV in (3.1) contains the soft-
symmetry breaking mass parameters of the EWSB sector
and is given by

ΔV ¼ m2
abΦ

†
aΦb; ð3:4Þ

wherem2
ab is in general a Hermitian NH × NH matrix. Note

that dimension-2 mixed bilinear operators, such as bΦ†
âΦb,

are not allowed in the theory.
On the basis of the assumption that the soft-symmetry

breaking mass matrixm2
ab in (3.4) has no particular discrete

symmetry structure,6 there are then three possible

6Our assumption that m2
ab must have no particular discrete

symmetry structure may also be motivated by the strong con-
straints on the nonobservation of domain walls [31] that are
produced from the spontaneous breaking of possible ungauged
discrete symmetries in the theory at the SM electroweak phase
transition.
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continuous symmetry groups that can bring m2
ab into the

diagonal form, as required to happen in the Higgs basis.
These three continuous maximal symmetries for SM align-
ment, which should be respected by the EWSB potential
term Vsym in (3.1), are the generalization of those found in
the 2HDM, i.e.

ðiÞ Spð2NHÞ ×D;

ðiiÞ SUðNHÞ ×D;

ðiiiÞ SOðNHÞ × CP ×D; ð3:5Þ

where the discrete CP symmetry is acting on the noninert
scalar sector consisting of NH ¼ n −m Higgs doublets Φa,
withNH > 1.Wenote that, forNH ¼ 1, theEWSBpart of the
potentialVsym becomes identical to the SMpotential,whereas
the symmetry group D of the inert sector may have its own
rich structure, as we see below. As mentioned in Sec. II, we
emphasize again that for themaximal symmetry (iii), the soft-
symmetry breaking mass matrixm2

ab must be real or close to
real, in order to avoid too large tree-levelCP-violating scalar-
pseudoscalar transitions, whose effects are severely con-
strained by limits on electric dipole moments [38,39].
We note that as in the 2HDM, the effect of ΔV given in

(3.4) is to fix the rotation angles of the continuous
symmetries in (3.5) to particular values that relate the
weak-basis fields Φa to the corresponding fields Φ0

a in the
Higgs (mass-eigenstate) basis. In the Higgs basis, one of
the rotated scalar doublets, e.g. Φ0

1, becomes aligned to the
SM Higgs doublet Φ, i.e. Φ0

1 ≡ Φ, such that hΦ0
1i ¼ hΦi ¼

v=
ffiffiffi
2

p
is the SM VEV. Like in the 2HDM case, in the Higgs

basis, an exact canonical Z2 symmetry for the EWSB part
of the nHDM potential becomes manifest,

ZEW
2 ∶ Φ0

1 → Φ0
1; Φ0

a0 → −Φ0
a0 ; ð3:6Þ

where a0 ¼ 2; 3;…; NH. As a consequence, after EWSB,
the full nHDM potential becomes invariant under
ZEW
2 × ZI

2, where Z
I
2 is given in (3.3). In fact, this residual

product symmetry ZEW
2 × ZI

2 is instrumental, as it is the one
that enforces SM alignment in the nHDM, even beyond the
tree-level approximation.
Let us now turn our attention to the symmetry-

constrained part of the scalar sector Vsym that occurs in
the nHDM potential V in (3.1). We demonstrate that its
analytical form is the same as the one found in the 2HDM.
To elucidate this point, we first introduce the symmetry-
covariant structures,

SA ¼
XNH

k;l¼1

Φ†
k½Akl ⊗ 12�Φl; Da

B ¼
XNH

k;l¼1

Φ†
k½Bkl ⊗ σa�Φl;

TC ¼
XNH

k;l¼1

ΦkCklΦT
l ; ð3:7Þ

where A ¼ A†, B ¼ B† and C ¼ �CT are all NH × NH
matrices. Observe that the three symmetry structures SA,
Da

B and TC all share the same transformation properties
under the SUð2ÞL gauge group as the corresponding ones
given in (2.10) for the 2HDM. Specifically, SA is a gauge-
invariant singlet, Da

B transforms as a three-dimensional
Euclidean vector, and TC transforms as a bidoublet. In
principle, one could have also considered more involved
covariant objects of the form Dab…

B ¼ P
n−m
k;l¼1Φ

†
k½Bkl ⊗

ðσaσb � � �Þ�Φl. Then, gauge-invariant objects, such as
ðDab…

B Þ2, which would potentially contribute to Vsym,
can always be reduced to ðSAÞ2 and ðDa

BÞ2, through the
successive use of the identities σaσb ¼ 12δab þ iϵabcσc and
ϵabcϵabd ¼ 2δcd. Hence, such higher rank tensors, under the
SUð2ÞL gauge group, do not introduce new candidate
structures for Vsym, other than the ones stated in (3.7).
Let us now consider symmetry transformations in the HF

space of the EWSB sector. Under such transformations, the
structures SA, Da

B and TC stated in (3.7) must transform
covariantly with respect to SUðNHÞ ⊂ Spð2NHÞ and
SOðNHÞ global groups. This means that the NH × NH
matrices A, B and C must be products of the generators Ta

of either SUðNHÞ or SOðNHÞ groups (including the identity
1NH

), in the fundamental representation. These products of
Ta generate tensors in the group space and may also have
particular symmetry orderings as determined by the Young
tableaux. For instance, nontrivial rank-2 tensor objects
can be produced, if A;B; C ¼ −i½Ta; Tb� ¼ fabcTc, or if
A;B; C ¼ fTa; Tbg ∝ dabcTc, for SUðNH > 2Þ and
SOðNH > 4Þ. However, taking into account the known
identities for the groups generators,

SUðNHÞ∶ ðTaÞijðTaÞkl ¼
1

2

�
δilδkj −

1

NH
δijδkl

�
; ð3:8Þ

SOðNHÞ∶ ðTaÞijðTaÞkl ¼ 2ðδilδkj − δijδklÞ; ð3:9Þ

and the fact that fabcfabd; dabcdabd ∝ δcd, it is then not
difficult to show that all symmetry-invariant objects of
potential interest, such as ðSAÞ2, ðDa

BÞ2 and TrðTCT�
CÞ,

reduce to linear combinations of the objects ðS1Þ2, ðDa
1Þ2

and TrðT1T�
1Þ, with A ¼ B ¼ C ¼ 1NH

in (3.7). Therefore,
the HF-singlet structures, S1, Da

1 and T1, are sufficient to
describe the symmetry-constrained part of the scalar sector
Vsym, i.e.

Vsym ¼−μ2S1þλSS21þλDDa
1D

a
1þ λTTrðT1T�

1Þ; ð3:10Þ

with μ2 > 0. Consequently, the general group-structure
form of Vsym in nHDMs (with n > 2) is the same as the
one found in the 2HDM [cf. (2.12)].
For illustration, let us now apply our findings in (3.5), in

order to obtain all the admissible forms for naturally
aligned 2HDM and 3HDM potentials. In the 2HDM, if
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both the Higgs doublets Φ1;2 participate in EWSB, (3.5)
leads obviously to the three maximal symmetry groups
presented in Sec. II: (i) Sp(4); (ii) SU(2); (iii) SOð2Þ × CP
[cf. (2.8)]. Now, if one of the scalar doublets of the
2HDM is inert, e.g. bΦ2̂ (m ¼ 1), then there are three
distinct possibilities:

(i) the Z2 ¼ ZI
2 symmetry [27–30] as discussed in the

previous section [cf. (3.3)];
(ii) the unbroken Peccei-Quinn-type U(1) symmetry

[40,41], enforcing that λ12̂12̂ ≡ λ5 ¼ 0, under whichbΦ2̂ is charged;
(iii) the custodial symmetry Spð2Þ≃ SUð2ÞC;I acting on

the inert field space ðbΦ2̂; iσ
2bΦ�

2̂Þ, which implies that
λ12̂12̂ ≡ λ5 ¼ 0 and λ12̂ 2̂ 1 ≡ λ4 ¼ 0. This symmetry
is classified as SOð4Þ≃ SUð2ÞC;EW × SUð2ÞC;I in
Table I (number 11) of [32], where the first custodial
group SUð2ÞC;EW acts on the EWSB sector.

We now turn our attention to the 3HDM. If all three
Higgs doublets participate in the mechanism of EWSB
which corresponds to m ¼ 0, the symmetries of alignment
resulting from (3.5) are

ðiÞ Spð6Þ; ðiiÞ SUð3Þ; ðiiiÞ SOð3Þ×CP; ð3:11Þ

where Sp(6) is acting on the six-dimensional Φ-multiplet,
Φ≡ ðΦ1;Φ2;Φ3; iσ2Φ�

1; iσ
2Φ�

2; iσ
2Φ�

3ÞT, and SU(3) and
SO(3) on the HF space: ðΦ1;Φ2;Φ3Þ. This means that
the 3HDM potential has the symmetry form of (3.10),
softly broken by terms as given in (3.4).
Considering now the case of one inert Higgs doublet, e.g.bΦ3̂ (m ¼ 1), the symmetries of the inert sector are (i) the Z2

symmetry, with bΦ3̂ → −bΦ3̂; (ii) the global U(1) symmetry,

under which bΦ3̂ carries nonzero charge, leading to λa3̂b3̂ ¼
0 (with a, b ¼ 1, 2); and (iii) the custodial symmetry group
Spð2Þ≃ SUð2ÞC acting on the field space ðbΦ3̂; iσ

2bΦ�
3̂Þ,

which implies that λa3̂ 3̂ b ¼ 0 and λa3̂b3̂ ¼ 0.
The last possible class of naturally aligned 3HDMs is the

one that has two inert Higgs doublets, bΦ2̂ and bΦ3̂ (m ¼ 2).
In addition to the inert Z2 symmetry in (3.3), Φ1 → Φ1,bΦ2̂ → −bΦ2̂ and bΦ3̂ → −bΦ3̂, one inherits at least all 13
maximal symmetries of the 2HDM [31,32] when λ1â b̂ 1 ¼
λ1â1b̂ ¼ 0 (with â; b̂ ¼ 2̂; 3̂) in (3.2), where Sp(4) is the
largest symmetry group. However, if λ1â b̂ 1 and λ1â1b̂ are
nonzero, further symmetries, which include ZI

2, may exist

in the 3HDM potential that forbid bΦ2̂ and bΦ3̂ from
developing a VEV. A recent example is the generalized
CP symmetry of order 4 observed recently in [42]. It should
be stressed here again that all the symmetries of the 3HDM
inert sector must remain unbroken under EWSB.
For nHDMs with n > 3, the complexity of the classi-

fication of the inert scalar sector increases, but results
from lower n-cases become crucial in our approach to

constructing all naturally aligned multi-HDMs. Instead, the
alignment symmetries for the noninert sector are fully
specified by the three maximal symmetries given in (3.5). If
other inert scalars are present in the theory, e.g. singlets Si
or triplets Δl, our results still hold true for the EWSB part
(3.10) of the scalar potential. Thus, the approach presented
here is not confined to multi-HDMs only, but it can easily
be generalized to more abstract scalar sectors.

IV. CONCLUSIONS

We have derived the complete set of maximal sym-
metries for SM alignment that could take place in the tree-
level scalar potential of the SM, with n ≥ 2 Higgs doublets.
Our results generalize the symmetries of SM alignment,
previously obtained in the context of two-Higgs doublet
models (the n ¼ 2 case [24]), without decoupling of large
mass scales or recourse to specific model parameter
arrangements. For the scalar sector participating in the
EWSB mechanism, the general symmetry conditions for
natural SM alignment are given by Eq. (3.5), which is one
of the central results of this paper.
Another highlight of our study is that the inert scalar

sector of multi-HDMs may have its own rich symmetry
structure. In particular, within our symmetry-based
approach, we have found that the 2HDM with one inert
Higgs doublet may exhibit three distinct maximal sym-
metries: (i) the discrete Z2 ¼ ZI

2 symmetry [27–30]; (ii) the
U(1) symmetry and (iii) the custodial symmetry SUð2ÞC;I,
which all remain unbroken after EWSB. In addition to the
frequently considered symmetry (i), it would be interesting
to explore the phenomenological and cosmological impli-
cations of the inert symmetries (ii) and (iii).
We should stress again that the mechanism of SM

alignement does not get invalidated, even to all orders,
if soft-symmetry breaking masses [cf. (3.4)] are added to
the theory. As noted in Sec. III [cf. (3.6)], this is because of
the presence of an exact ZEW

2 × ZI
2 symmetry in the nHDM

potential, which becomes manifest in the Higgs basis [16].
In particular, beyond the tree-level approximation, the
alignement symmetries are preserved by the SUð2ÞL gauge
interactions, whereas the hypercharge Uð1ÞY group only
breaks, Spð2nÞ → SUðnÞ, without spoiling the SM align-
ment. Instead, the Yukawa sector of the theory violates
explicitly the alignment symmetries, and so it could size-
ably break the SM alignment beyond the tree level.
However, such explicit violations are highly model depen-
dent, and for a given flavor structure of the Yukawa sector,
they lead to predictable deviations [24] from the SM values
of the Higgs-boson couplings toW� and Z bosons that may
constrain the parameter space of the theory. In this context,
it is useful to remark that the effect of these constraints can
be drastically reduced in the so-called Yukawa-aligned
models [43], if the quark-Yukawa basis happens to be
coincidentally aligned with the Higgs basis of the nHDM.
In conclusion, given the existing strict limits on non-SM
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deviations in the Higgs couplings to W� and Z bosons,
Eq. (3.5) provides an important constraint on future model
building of multi-HDMs predicting additional low-scale
scalars with masses being in the explorable sub-TeV range
of the LHC.
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