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For the warm dark matter (WDM) candidates the momentum distribution of particles becomes important,
since it can be probed with observations of Lyman-α forest structures and confronted with coarse grained
phase space density in galaxy clusters. We recall the calculation [M. Kaplinghat, Phys. Rev. D 72, 063510
(2005)] of the spectrum in the case of dark matter nonthermal production in decays of heavy particles
emphasizing the inherent applicability conditions, which are rather restrictive and sometimes ignored in
literature. The cold part of the spectrum requires special care when WDM is considered.
DOI: 10.1103/PhysRevD.93.063502

I. INTRODUCTION

One of the major puzzles in physics as we know it at
present—dark matter (DM) phenomenon—requires new
massive electrically neutral collisionless particles stable at
the cosmological time scale [1]. They must be produced in
the early Universe before the plasma temperature T drops
below 1 eV, since later cosmological stages definitely need
the DM [2].
While the Universe expansion schedule is sensitive

only to the total energy density associated with the new
nonrelativistic particles (and hence to their number
density at a given particle mass), the evolution of spatial
inhomogeneities of matter is also sensitive to the velocity
distribution of the DM particles. Indeed, free streaming of
the DM particles smooths out all the inhomogeneities
smaller than the so-called free-streaming length lf:s:. The
latter is the typical distance traveled by a DM particle,
which is of order lf:s: ∼ v × lH, where v is the DM average
velocity and lH is the Hubble horizon size at a given time.
In order for successful generation of the smallest observed
primordial structures—dwarf galaxies—one needs v≲10−3

at the epoch of radiation-matter energy density equality,
T ∼ 1 eV. This requirement defines the border line between
faster and slower candidates named as hot and cold DM.
The candidates right at the border are called warm DM,

and the question about velocity distribution is especially
relevant for them. In fact, the hot DM is disfavored by

structure formation and may be only a small fraction of DM
(precise amount depends on the velocity distribution). On
the other extreme, the cold DM candidates, like weakly
interacting massive particles, are typically very slow at
equality, and allow for formation of structures much
smaller (and lighter) than the dwarf galaxies. These
structures are expected to be starless and empty of baryons
after reionization epoch and (partially) destroyed during
subsequent formation of heavier structures. Yet if some of
them remained, searches for gravitational lensing events in
galaxies may (in principle) detect them and determine the
structure abundance (the DM velocity distribution defines
the size of smallest structures). Therefore, both hot and cold
DM components suggest potential observables sensitive to
the velocity distribution. However, this is the intermediate
case of warm DM, where the corresponding observables
provide the most nontrivial constraints on the DM models,
and they have been actively exploited in the literature.
The most promising observable for this task is the small

structures in the Lyman-α forest [3,4]. Their studies have
already allowed one to rule out some warm dark matter
(WDM) models, e.g. (keV scale) sterile neutrino DM [5]
produced nonthermally by nonresonant oscillations of the
active neutrino in primordial plasma [6]. However, many
other candidates are still valid (e.g. light gravitino [7], axino
[8], etc.), which are mostly nonthermally produced, see [9]
for a review. Moreover, even in the case of sterile neutrino
DM various other production mechanisms were proposed,
such as resonant production [10], thermal production with
subsequent dilution [11], production in decays of scalar
particles [12–15], all providing some ways to evade the
present Lyman-α constraints [16,17].
To use the observations of Lyman-α forest structure in a

particular model, one must know the velocity distribution
of the DM particles. In this paper we focus our attention on
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the DM produced in the early Universe in decays of some
particle, which we, following [12], denote as DDM. Several
regimes are possible, corresponding to the DDM particle
being in or out of thermal equilibrium. The case of DDM in
thermal equilibrium due to annihilations in the SM par-
ticles, while also having a small decay branching ratio into
the DM, is analyzed in [13,14]. The production happens
mostly at a temperature of about the DDM mass, T ∼M,
leading to the distribution with average momentum slightly
below the thermal one. After production the spectrum can
be cooled further due to the decrease of degrees of freedom
of the relativistic plasma in the expanding Universe [14].
This mechanism leads to the lower bound on the DM mass
in the model, mDM > 7.8 keV where we used the recent
Lyman-α analysis from [17]. Another situation corresponds
to the case of DDM decaying while being out of thermal
equilibrium [12] (in particular, this may correspond to the
DDM itself produced in a nonthermal way). It was argued
that, for sufficiently long living DDM, the majority of its
decays happen when it is significantly nonrelativistic,
leading to a peculiar momentum distribution, which can
be strongly shifted towards low momenta. In this paper we
show that the approximation of nonrelativistic decay is
actually valid only for the high energy part of the DM
spectrum, while the low energy part is produced at earlier
stages, when DDM particles still have non-negligible
velocities.
The results of the paper show that for the proper

description of the cold parts of DM it is important to
analyze exactly the decays of the DDM at early times, when
it is close to being relativistic (no matter whether it is in or
out of thermal equilibrium). The detailed analysis of several
possibilities of this type is present in [13–15,18,19].
In Sec. II we introduce the generic formalism, and review

the nonrelativistic approximation used to obtain the DM
spectrum in Sec. III. Regions of applicability of this
approximation and comparison with exact numerical
results are presented in Sec. IV.

II. GENERAL FORMALISM

In the model we have two sets of particles—the decaying
DDM of mass M and the dark matter DM, which is stable
with mass mDM. DM is produced in two-body decay of the
initial DDM particle. Distribution of the particles over
momentum fðpÞ are normalized to the physical particle
number density n in the expanding Universe with scale
factor a as

n ¼
Z

d3p
ð2πÞ3 fðpaÞ ¼

Z
d3k

ð2πÞ3a3 fðkÞ ¼
Z

∞

0

k2dk
2π2a3

fðkÞ;

ð1Þ

where p and k≡ pa are physical and conformal
3-momenta, respectively. We allow to be sloppy in writing

the conformal or physical momentum as an argument to f,
as far as they can always be mapped to another. One should
just be careful in the solution of the kinetic equations,
where the conformal momentummust be always used. Also
we often drop the explicit time dependence where it does
not lead to ambiguities. We use conformal η and physical t
times (related by dt ¼ adη) interchangeably. The normali-
zation used corresponds to fðkÞ remaining constant in time
in the absence of interactions, and (physical) number
density decreasing as n ∝ 1=a3.
The kinetic equation for the DDM evolution is [cf.

Eq. (1) of [12]]

dfDDMðkDDM; ηÞ
dη

¼ −
aM

τEDDM
fDDMðkDDM; ηÞ; ð2Þ

where τ is the DDM lifetime. The equation for the DM is

dfDMðkDM; ηÞ
dη

¼ aM2

τEDMpDMpCM

Z
E2

E1

fDDMðapÞdE

¼mDM→0 a32M
τk2DM

Z
∞

pDMþ M2

4pDM

fDDMðapÞdE; ð3Þ

where pDM ≡ kDM=a, p≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

p
, and pCM is the DM

momentum in the center of mass frame of DDM, E1;2 are
given by (8). There is overall coefficient 2 as compared to
(2) of [12], which assumed that only one of the two-body
decay products is the DM. In the present paper we assume
that both DDM decay products are DM.

III. ANALYTICAL SOLUTIONS TO THE
EQUATIONS IN THE CASE OF RADIATION

DOMINATION AND CONSTANT g�
The solution to Eq. (2) at the radiation dominated stage

with scale factor a≡ cη is (cf. Ref. [15])

fDDMðk; ηÞ ¼ fDDMðk; ηiÞ

0
B@ηþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ k2

M2c2

q

ηi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2i þ k2

M2c2

q
1
CA

k2

2τcM2

× e
− c
2τ

�
η

ffiffiffiffiffiffiffiffiffiffiffiffi
η2þ k2

M2c2

q
−ηi

ffiffiffiffiffiffiffiffiffiffiffiffi
η2iþ k2

M2c2

q �
: ð4Þ

Hereafter the subscript i refers to the moment when the
DDM particles freeze out or appear in the Universe through
another mechanism, leading to some fixed spectrum
fDDMðk; ηiÞ. The analytical solution (4) assumes a constant
number of relativistic degrees of freedom in plasma from
the DDM production ηi until its decay. The solution (4) can
be rewritten through the physical momenta p≡ k=a and
the Hubble parameter given by
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H ≡ da=dη
a2

¼ 1

cη2
: ð5Þ

In the limit of very nonrelativistic particles one obtains
approximately from (4)

fDDMðk; ηÞ ¼ fDDMðk; ηiÞ × e−
1
2τð1H− 1

Hi
Þ; ð6Þ

and at the next-to-leading order both for the exponent
(which remains the same) and the prefactor

fDDMðk;ηÞ ¼ fDDMðk;ηiÞ
�
1þ k2

a2M2

1

4τH
log

Hi

H

�
e−

1
2τð 1H− 1

Hi
Þ:

ð7Þ

To solve (3) one must evaluate the upper E2 and lower E1

limits of the integration in the rhs. One gets approximately
(in the relativistic limit, pDM ≫ mDM)

E2 ¼ pDM
M2

m2
DM

− pDM þ M2

4pDM
→ ∞;

E1 ¼ pDM þ M2

4pDM
: ð8Þ

In the nonrelativistic limit (6), when all decaying
particles DDM are (almost) at rest, it is reasonable to
assume that their distribution function is

fDDMðk; ηÞ ¼ F
2π2δðkÞ

k2
; ð9Þ

where the normalization is fixed by (1), and

FðηÞ ¼ Fi × e−
1
2τð 1H− 1

Hi
Þ ≡ ~Fi × e−

1
2τH: ð10Þ

To avoid singularities at E ¼ E1 in (3), it is convenient to
regularize (9) as

fDDMðkÞ ¼ F
2π2δðk − κÞ

k2
: ð11Þ

This regularization has physical meaning, as it assumes that
the DDM particles are not exactly at rest, but move with
some small conformal momentum κ. Note that the nor-
malization (10) means that at the moment ηi of DDM
freeze-out its concentration is given by nDDMðηiÞ ¼ Fi=a3i .
In this approximation the collision integral in (3) can be
taken easily:

Z
∞

pDMþ M2

4pDM

fDDMðapÞdE ¼ 2π2F
a3M

δ

�
pDM −

M
2

�
: ð12Þ

Using Eq. (12), Eq. (3) can be reduced to

dfDMðkÞ
dη

¼ 4π2F
τk2

δ

�
k
a
−
M
2

�
¼ 16π2F

τa2M2
δ

�
k
a
−
M
2

�
ð13Þ

and can be directly integrated for each k individually. The
δ-function in (13) gives the moment, η ¼ η�, when the
particle with properly rescaled 3-momentum

p ¼ k
a
¼ a�

a
k
a�

¼ M
2

a�
a

ð14Þ

was created, so the integration leads to

fDMðkÞ ¼
16π2Fðη�Þ
τa2�M2

: ð15Þ

The conformal time (for some given number of degrees of
freedom encoded in c�) is η� ¼ a�=c� and (14) implies
η� ¼ 2k=ðc�MÞ. Then for the Hubble parameter one
obtains from (5)

H� ¼
1

c�η2�
¼ c�

a2�
¼ c�M2

4k2
¼ c�

c
HM2

4p2
: ð16Þ

Using (10) we get

fDMðkÞ ¼
32π2 ~Fi

τM3

1

a3�H�
× e−

1
2τH�

¼ 1

a3
16π2

τM2
~Fi

c
c�H

1

p
× e−

c
c�

2p2

τHM2 : ð17Þ

Finally, introducing the effective number of degrees of
freedom in the plasma g�ðTÞ, photon temperature T and

M�
PlðTÞ≡ MPl

1.66 ×
ffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p ; so that H ¼ T2

M�
Pl
;

we find for the DM distribution in physical momentum
p ¼ k=a the following expression:

fDMðpÞ ¼
16π2

τM2
~Fi

�
g�ðT�Þ
g�ðTÞ

�
2=3M�

Pl

T3

×
T
p
× e−ð

g�ðT�Þ
g�ðTÞ Þ

2=3p2

T2

2M�
Pl

τM2 ; ð18Þ

which precisely coincides with the results from [12].

IV. APPLICABILITY OF THE NONRELATIVISTIC
APPROXIMATION

The final spectrum (18) is valid as far as the non-
relativistic approximation (12) for the DDM distribution
was applicable. This puts two bounds on the allowed values
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of the momenta p of the DM particle. The upper bound is
rather trivial and is irrelevant for most considerations, as far
as it kicks in the region where the spectrum is anyway
exponentially suppressed. Above the value

pmax ¼ M=2; fðpDM > pmaxÞ ¼ 0; ð19Þ

the result is completely cut off due to absence (or
exponential suppression in precise calculation) of high
momenta DDM particles at the present time. The more
interesting bound modifies the spectrum for the low values
of momenta.1 This is not a hard cutoff, but a suppression of
the spectrum. This suppression is not grasped by (18) as it
is obtained in the assumption that at the moment η� the
DDM particle was already nonrelativistic, and hence the
DM momentum at the moment of production is

pDMjη¼η� ¼
M
2
≫ hpDDMijη¼η� : ð20Þ

Later the Universe expands and the DM momentum gets
redshifted, so that at temperature T (today) it equals

pDM ¼
�
g�ðTÞ
g�ðT�Þ

�
1=3 T

T�

M
2
:

Smaller momenta correspond thus to higher Universe
temperature T� at the time of production. As far as the
typical momentum of a particle in the plasma is p ∼ 3T, the
DDM particles are nonrelativistic only at T� ≪ M=3, and
the spectrum (18) is valid only for high momenta,

pDM ≫
3

2

�
g�ðTÞ
g�ðT�Þ

�
1=3

T: ð21Þ

So the cold part of the distribution is not described by (18),
and analysis beyond the nonrelativistic approximation (12)
is required. This constraint alone is also not always an
important correction for the spectrum (18), as far as the
spectrum is again suppressed at low momenta, at least for
large τ, see e.g. Fig. 1 and the average momentum (23).
There are two more constraints referring to the model

parameters, which leave the spectrum (18) valid. One is
very relevant in practice. It follows from the analysis of the
assumption of decaying particle being (almost) at rest and
implies the lower bound on the DDM lifetime,

1 ≪ τHðT ¼ M=3Þ ¼ 2τM2

18M�
PlðT ¼ M=3Þ≡

1

18

1

Λ
; ð22Þ

which limits significantly the exponential factor ∝ Λ in
(18). Note that the limit corresponds to explosion of the

expansion in the preexponent in (7). Basically, the DDM
particles with short lifetime decay mostly before becoming
nonrelativistic. So spectrum (18) is justified only for
Λ ≪ 0.05, otherwise we come out of the applicability
region.
On the contrary, for very long lifetime τ of the DDM

particle (small Λ) and large enough initial abundance the
DDM may start to dominate the Unverse expansion and
lead to a temporary matter dominated stage. This means
that for large τ formula (18), which is derived assuming
radiation domination stage, also cannot be applied.
We illustrate the statements above with Fig. 1. Here, for

several values of Λ we plot DM spectra (18) and the exact
numerical solution of Eq. (3), withDDMspectra given by (4)
(see [15]). The maximum of the distribution moves towards
larger momenta when Λ diminishes. The smaller the latter,
the more accurate the approximation (22) becomes. For
larger values of Λ pronounced deviation develops between
the approximate formula (18) and the exact numerical
spectrum. At low momenta, p=T ≲ 3=2ðg�ðTÞ=g�ðT�ÞÞ1=3
the approximate spectrum (18) is always incorrect, since this
region is beyond the border (21).
Account for these limits impacts the calculations of the

average velocity,

hvDMi ¼
hpDMi
T

T
mDM

:

When integration is performed using distribution (17) over
all momenta [i.e. violating the bounds (19) and (21)], and/or
ignoring the constraint (22) (e.g. [20–23]) the obtained
average velocity is not correct. Recall that the average
velocity is usually adopted in estimates of the free-streaming
length important for the small scale structure formation and
tested with Lyman-α forest data. The coldest component of

Num, =0.001

Appr

Num, =0.01

Appr

Num, =0.1

Appr

5 10 15 20 25 30
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x2f (x)

FIG. 1. DM spectra (arbitrary units) obtained by exploiting the
approximate formula (18) (dashed curves) and by integrating the
equations numerically (solid curves), through inserting (4) into
(3). Parameter Λ (22) takes three different values: the smaller the
value is, the more shallow the curves. The horizontal axis is
x ¼ ðg�ðT�Þ=g�ðTÞÞ1=3p=T.

1We do not discuss here the issue of Pauli blocking at low
momenta which might be relevant for any mechanism with light
fermionic dark matter.
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the dark matter may be obtained for decays of DDM which
just start to be nonrelativistic. To grasp this part of the
spectrum the exact solution of (3) is required instead of the
approximation (18), see [15] for a detailed solution. An even
more interesting situation happens if the DDMparticle stays
in thermal equilibrium long enough, and decays (partially)
into theDMwhile still in thermal equilibriumwith the rest of
the Universe, as analyzed in [13,14]. This situation corre-
sponds to using the purely thermalDDMdistribution instead
of (4) for early production times [or, equivalently, restoring
the full collision integral in the rhs of (2), including all
production and destruction terms], and the relevant contri-
bution to the DDM can be read of [14]. Then, an additional
peak in the spectrum arises at low momenta, leading to an
interesting two-component DDM spectrum with very pro-
nounced two maxima, see Fig. 2. This situation was also
analyzed in detail numerically in [19] for the case of DDM
decaying only to DM particles.
The average velocity for different spectra can differ

significantly. As we show below, it takes place even in the
one-component case of Fig. 1. For the approximate solution
(18) the average momentum corresponds to p=T ≃
ðg�ðTÞ=g�ðT�ÞÞ1=3=

ffiffiffiffi
Λ

p
and should always be much larger

than one, if the applicability condition (22) is satisfied.
Therefore, the relative contribution of low momenta p=T ≲
ðg�ðTÞ=g�ðT�ÞÞ1=3 is small, and one can neglect the bound
(21) and obtain the approximation for the average momen-
tum using the distribution (18):

hpDMi
T

¼
ffiffiffi
π

p

2
ffiffiffiffi
Λ

p
�
g�ðTÞ
g�ðT�Þ

�
1=3

¼
ffiffiffiffiffi
πτ

p
Mffiffiffiffiffiffiffiffiffiffi

2M�
Pl

p
�
g�ðTÞ
g�ðT�Þ

�
1=3

; ð23Þ

where presently g�ðT ¼ T0Þ ¼ 43=11 ≈ 3.9 (and not 3.36
as in [15,20–23]). This value must be compared to the exact
numerical estimate obtained by averaging over the spectra
derived by inserting (4) into (3). Both results depend on the
parameter Λ, and coincide when it is sufficiently small,
Λ ≪ 0.05, so that the approximation (22) is valid. It
happens when the model parameters, DDM mass M and
lifetime τ, obey the inequality

1 ≪
�

M
1 TeV

�
2
�

τ

4 × 10−12 s

�
≈
0.05
Λ

:

When Λ increases, the numerical estimate reaches the finite
asymptote hpDMi=T ∼ 1.3 × ðg�ðTÞ=g�ðT�ÞÞ1=3, while the
approximate formula (18) yields steadily decreasing to zero
average velocity (23), which would imply colder and colder
DM, see Fig. 3. Therefore, the decay of the DDM particles
after they leave thermal equilibrium can lead to DM slightly
colder than a thermally produced one with hpi=T ∼
3.15 × ðg�ðTÞ=g�ðT�ÞÞ1=3.
To summarize we conclude that the process of non-

thermal generation of the DM in decays of another
particle has many nontrivial features, and should be
approached with care. The situations that can be tracked
analytically are the case of in-equilibrium decay, leading to
the colder component of the DM, and decay of relatively
long-lived particles that decay out of equilibrium when
they became nonrelativistic, leading to a relatively hot DM
component. Intermediate situations of short DDM
lifetime should be analyzed exactly numerically, as in
[15,18,19].
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x
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x2f (x)

FIG. 2. DM spectra obtained (the same variable x as in Fig. 1):
1) by exploiting the approximate formula (18); 2) by integrating
the equations numerically, through inserting (4) into (3); 3) from
decays of a particle while it is still in thermal equilibrium (here it
was assumed to freeze out at T ∼M=7.5), see e.g. [13]; 4) by
summing contributions (2) and (3), total answer, see e.g. [15]. We
choose Λ ¼ 3 × 10−4, which obeys (22).

0.001 0.010 0.100 1 10
0.1

0.5

1

5

10

g *1/
3

(T
*
)

g *1/
3

(T
)

<
p

D
M

>

T

FIG. 3. Average velocity of the DM calculated with for-
mula (23) derived for the approximated spectrum (18) (dashed
line); numerical integration with spectrum obtained through
inserting (4) into (3) (solid curve).
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