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We introduce higher-derivative Gauss-Bonnet correction terms in the gravity sector, and we relate the
modified gravity theory in the bulk to the strongly coupled quantum field theory on a de Sitter boundary.
We study the process of holographic thermalization by examining three nonlocal observables, the two-point
function, the Wilson loop and the holographic entanglement entropy. We study the time evolution of these
three observables, and we find that as the strength of the Gauss-Bonnet coupling is increased, the saturation
time of the thermalization process to reach thermal equilibrium becomes shorter with the dominant effect
given by the holographic entanglement entropy.
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I. INTRODUCTION

The AdS/CFT correspondence has been proven to be a
powerful tool in describing strongly coupled processes in
quantum field theories in regimes where perturbation
theory breaks down. This is achieved by mapping these
processes, using the holographic principle, to processes in
gravitational theories where the coupling is weak [1–3].
This duality has been applied to different areas of modern
theoretical physics, including areas of condensed matter
physics like superconductivity [4] and superfluity [5].
One noticeable application of this equivalence principle is

to describe quark-gluon plasma (QGP) which is formed in
heavy ion collisions at the Relativistic Heavy Ion Collider
(RHIC) [6–9]. The QGP behaves as an ideal fluid and it can
be described by finite-temperature quantum field theory [10].
Using the holographic principle, the hydrodynamic behavior
of the thermal field theory is identified with the hydro-
dynamic behavior of the dual gravity theory. This conjecture
was tested against a wide range of thermal field theories
having gravity duals [11–15]. Then it was found for these
field theories, the ratio of the shear viscosity to the volume
density of entropy has a universal value n=s ¼ 1=ð4πÞ.
However, in conformal field theories dual to Einstein gravity
with curvature square corrections [16–18] or in quantum

field theories at finite temperature having gravity duals with
hyperbolic horizons [19] it was found that the bound is
violated. This deviation from the boundmay indicate that we
have to go beyond the hydrodynamic description.
In the heavy ion collisions the formation of QGP after a

characteristic time reaches a thermal equilibrium and a
hydrodynamic description can be used to understand the
near-equilibrium physics of the QGP. However, the process
to reach thermal equilibrium, termed as the thermalization
process, can not be described by hydrodynamics. Results
from RHIC show that the time scale for equilibration of
matter is considerably shorter than expected from the use of
perturbative hydrodynamic description to thermalization
[20,21]. This indicates that the formation of QGP is a
strongly coupled process and this motivates the use of the
AdS/CFT correspondence to study the thermalization of
strongly coupled plasmas.
According to the holographic principle the gravitational

dual of the process of equilibration has to be specified. This
gravitational process will be dual to the dynamical passage
of a system from a pure state in its low-temperature phase to
an approximated thermalized state in its high temperature
phase. The proposed gravitational dual process was the
black hole formation via gravitational collapse of a scalar
field in AdS space [22–26], or of a collapsing thin shell of
matter described by an AdS-Vaidya metric [27–30].
To study the detailed process of the thermalization, local

observables in quantum field theories on the boundary,
such as the energy-momentum tensor and its derivative, are
not sufficient. We need to use some nonlocal observables to
probe the process [29,30]. According to the holographic
principle, in the dual gravity description, the expectation
value of local gauge-invariant operators is determined by
the asymptotical behavior of the metric close to the AdS
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boundary. However, in a holographic thermalization proc-
ess, the metric out of the collapsing matter is fixed during
the collapse, so that the expectation value of local gauge-
invariant operators cannot track the process. While non-
local observables are dual to geometric quantities which
can reach deeper into the bulk spacetime and thus provide
detailed information about the process. Three nonlocal
observables were used, the two-point function, the Wilson
loop and the entanglement entropy which can probe
different regions of the field system and reflect different
aspects of the thermalization process. These three observ-
ables can all be evaluated by calculating some geometric
quantities in the gravity side.
An interesting extension is to study thermalization process

in boundary quantum field theories leaving on a curved
spacetime (QFTCS). The holographic understanding of the
strongly coupled QFTCS were proposed in de Sitter (dS)
spacetime [31–36]. In [33] an interesting holographic
Einstein gravitymodelwas built to relate the strongly coupled
quantum field theories on the dS boundary to the bulk
Einstein gravity. Employing this model, the authors of [35]
examined the thermalization process of the dual quantum
field theories in dS background by using the holographic
entanglement entropy as a probe. They argued that similar to
flat boundary case [37,38], the whole thermalization process
can be divided into a sequence of processes: pre-local-
equilibration quadratic growth, post-local-equilibration linear
growth, memory loss and saturation. Moreover, they found
that the saturation time depends on the entanglement sphere
radius.When the radius is small, the saturation time increases
linearly as the radius increases. This is expected as the
behavior should reduce to coincide with the result of the flat
boundary case at this time [29,30]. However, when the radius
is large, due to the existence of the cosmological constant, the
saturation time blows up logarithmically as the radius
approaches to the cosmological horizon.
Further investigations of the thermalization process were

discussed. A model was proposed in [39,40] to include the
effect of a nonvanishing chemical potential μ, which is
usually the case in real heavy ion collision processes. The
effect on thermalization of the chemical potential in the
framework of Einstein gravity coupled to Born-Infeld
nonlinear electrodynamics was investigated in [41]. Also
higher curvature corrections [42,43] were introduced,
angular momentum [44], noncommutative and hyperscal-
ing violating geometries [45–47].
In most of the studies of the thermalization process with

a collapsing thin shell of matter some universal features
emerge. First of all the thermal limit is reached after a finite
time which is a function of the geometric size of the probe
in the boundary field theory. All probes used show a
slight delay in the onset of thermalization, an apparent
nonanalyticity at the endpoint of thermalization, the
transition to full thermal equilibrium is instantaneous
and these features are independent of dimensionality. For

homogeneous initial conditions the entanglement entropy
thermalizes slowest, and sets a timescale for equilibration
that saturates a causality bound [29,30].
It is interesting to investigate what is the influence on the

description of the holographic thermalization process of the
dual strongly coupled of quantum field theories living on a
curved boundary, if we go beyond Einstein gravity intro-
ducing higher-derivative terms such as the Gauss-Bonnet
correction in the gravity bulk. Also to investigate whether
the universal properties of the thermalization process of the
dual field system observed in Einstein gravity still persist in
the case of the presence of the higher-derivative terms in the
bulk. These are the main motivations of the present work.
We will use all of the three nonlocal observables, including
the two-point function, the Wilson loop and the entangle-
ment entropy to probe the thermalization process and
expect to disclose richer properties which resulted because
of the presence of the higher-derivative terms in the bulk.
From the three observables used to probe the thermal-

ization process in the boundary theory the one which is
giving more information is the entanglement entropy. The
reason is that entanglement entropy is related more to the
degrees of freedom of the system so that it is more sensitive
to the thermalization process. The inclusion of a Gauss-
Bonnet correction term in the bulk will modify the formulas
to compute the holographic entanglement entropy [48–52].
In [53], the formula for calculating the holographic entan-
glement entropy in Einstein gravity was proposed and it
was stated that the entanglement entropy of the boundary
quantum field theory is equivalent to the area of a minimal
surface in the bulk. However, when higher-derivative terms
are included the area law has to be modified including
additional contributions coming from the intrinsic curvature
of the minimal surface. We will show that the entanglement
entropy is giving district features on the thermalization
process compared to the other two probes.
The paper is organized as follows. In Sec. II, in the

Gauss-Bonnet gravity, we will derive bulk gravity solutions
with a foliation such that the boundary metric corresponds
to dS space in a given coordinate system. We will give a
vacuum AdS solution, a black hole solution and its Vaidya-
like version in the bulk. In Sec. III, we will apply three
nonlocal observables (two-point function, Wilson loop and
entanglement entropy) to study the process of holographic
thermalization in the Vaidya-like background. The last
section is devoted to a summary and discussions.

II. GRAVITY SOLUTIONS WITH
DE SITTER SLICES

In this section, we will discuss the bulk gravity solutions
with a Gauss-Bonnet correction term and a foliation such
that the boundary metric corresponds to a de Sitter space.
We are going to present three bulk solutions, including a
vacuum AdS solution, a static AdS black hole solution and
its Vaidya-like solution.
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A. The action

We consider the Gauss-Bonnet gravity theory in ðdþ 1Þ dimensions (d ≥ 4) with the action

S ¼ 1

16πGðdþ1Þ
N

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
dðd − 1Þ

L2
þ Rþ L2λ

ðd − 2Þðd − 3Þ ðRμνρσRμνρσ − 4RμνRμν þ R2Þ
�
; ð1Þ

where the first term dðd−1Þ
L2 corresponds to the cosmological

constant. λ is the Gauss-Bonnet factor, which is usually
constrained within the range [54–56]

−
ðd− 2Þð3dþ 2Þ

4ðdþ 2Þ2 ≤ λ ≤
ðd− 2Þðd− 3Þðd2 − dþ 6Þ

4ðd2 − 3dþ 6Þ2 ð2Þ

by respecting the causality of the dual field theory on the
boundary and preserving the positivity of the energy flux in
CFTanalysis. In our discussion below, we will allow λ to go
beyond this constraint to examine how the violation of
causality can influence the thermalization and further to
study if the holographic thermalization process can put
some constraints on λ.
From the above action, we can derive the equations of

motion

Rμν −
1

2
Rgμν −

dðd − 1Þ
2L2

gμν þ
L2λ

ðd − 2Þðd − 3ÞHμν ¼ 0;

ð3Þ

where

Hμν ¼ 2ðRμρσξRν
ρσξ − 2RμρνσRρσ − 2RμρRρ

ν þ RRμνÞ

−
1

2
ðRαβρσRαβρσ − 4RαβRαβ þ R2Þgμν: ð4Þ

For asymptotically AdS spacetime, the metric can be
written in the Fefferman-Graham form [57]

ds2 ¼
~L2

z2
ðgμνðz; xÞdxμdxν þ dz2Þ; ð5Þ

where ~L is the AdS radius which is fixed in terms of L as
we will see in the following. From the above form, we can
read off the metric of the dual quantum field theory, which
lives at the boundary z ¼ 0, as ds2 ¼ gμνð0; xÞdxμdxν. In
this paper, we are interested in cases in which gμνð0; xÞ
corresponds to dS space in a given system.

B. An AdS vacuum solution

The first solution we are going to discuss in this
subsection is an AdS vacuum solution. It is dual to the
vacuum state of the dual quantum field theory. For free

field theory, there is a well-known vacuum state, the
Bunch-Davies or the Euclidean vacuum, which is dS
invariant and can be reduced to the standard Minkowski
vacuum in the limit H → 0 [58]. Here we will consider the
Bunch-Davies vacuum, which is well defined in the
entire space.
In the static patch, the dS metric is

ds2 ¼ −ð1 −H2r2Þdt2 þ dr2

1 −H2r2
þ r2dΩ2

d−2; ð6Þ

which only covers one-fourth of the entire de Sitter space.
There is a cosmological horizon at r ¼ 1=H associated
with a geodesic observer sitting at r ¼ 0. For such an
observer, the Bunch-Davies vacuum appears to have
temperature TdS ¼ H=2π natural for the existence of the
cosmological horizon.
To obtain a bulk solution with such boundary metric,

following [35], we write the ðdþ 1Þ-dimensional bulk
metric in the Fefferman-Graham form,

ds2 ¼
~L2

z2
ð−fðr; zÞdt2 þ jðr; zÞdr2 þ hðr; zÞdΩ2

d−2 þ dz2Þ:
ð7Þ

with

fðr;0Þ ¼ 1−H2r2; jðr;0Þ ¼ 1

1−H2r2
; hðr;0Þ ¼ r2:

ð8Þ

The unknown functions can be determined using pertur-
bation methods [35], as follows

fðr; zÞ ¼ ð1 −H2r2Þ
�
1 −

H2z2

4

�
2

;

jðr; zÞ ¼ 1

ð1 −H2r2Þ
�
1 −

H2z2

4

�
2

;

hðr; zÞ ¼ r2
�
1 −

H2z2

4

�
2

: ð9Þ

We note that the Eqs. (7) and (9) are the same as the ones
derived in [35] for the Einstein case except with a modified
AdS curvature scale ~L, which is related to the cosmological
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constant by the relation ~L2 ¼ 1þ ffiffiffiffiffiffiffiffi
1−4λ

p
2

L2. The solution has
a regular Killing horizon at z ¼ 2=H with constant surface
gravity and this is in fact related to the de Sitter temper-
ature TdS ¼ H=2π.

C. A black hole solution

Our aim is to study the holographic thermalization of the
dual field theory system on the boundary starting from a
nonequilibrium state at the beginning. The process can be
described holographically by a Vaidya-like geometry in
the bulk.
The static patch of dSd can be written in the form as

ds2 ¼ ð1−H2r2Þ
�
−dt2þ dr2

ð1−H2r2Þ2þ
r2

1−H2r2
dΩ2

d−2

�
:

ð10Þ

Defining a new coordinate r≡ 1
H tanh ξ, the above metric

becomes

ds2 ¼ ð1 −H2r2Þð−dt2 þ dΣ2
d−1Þ: ð11Þ

This static patch of dSd is conformally related to the
Lorentzian hyperbolic cylinder R × Hd−1, where Hd−1 is
the Euclidean hyperboloid dΣ2

d−1 ¼ dξ2 þ sinh2ξdΩ2
d−2. A

black hole solution in the bulk exist, with a boundary being
the Lorentzian hyperbolic cylinder R × Hd−1 and it reads,

ds2 ¼ −fðρÞdt2 þ 1

fðρÞ dρ
2 þ ρ2dΣ2

d−1;

fðρÞ ¼ −1þ ρ2

2L2λ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ

�
m
ρd

− 1

�s !
: ð12Þ

This is the well-known Gauss-Bonnet black hole with
k ¼ −1 [59] where m is related to the mass of the black
hole. In the Einstein limit λ → 0, the above black hole
solution reduces to the topological black hole described in
Refs. [60–62]. The horizon ρþ is given by the largest
positive root of fðρÞ ¼ 0. With the horizon, the mass
parameter can be expressed as

m ¼ ρd−4þ ðρ4þ − L2ρ2þ þ L4λÞ: ð13Þ

The Hawking temperature is

T ¼ 1

4π

d
dρ

fðρÞjρþ ¼ dρ4þ − ðd − 2ÞL2ρ2þ þ ðd − 4ÞL4λ

4πL2ρþðρ2þ − 2L2λÞ :

ð14Þ
We should note that the zero temperature solution of
Eq. (12) is not the solution with m ¼ 0 which is isometric
to the AdS vacuum solution. Given a fixed λ, the smallest
black hole has the horizon radius

ρ2min ¼
ðd − 2ÞL2

2d

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4dðd − 4Þ
ðd − 2Þ2 λ

s !
; ð15Þ

which has vanishing Hawking temperature when the black
hole mass is most “negative,” that is

mmin ¼−
ðd− 2ÞL4ρd−4min

d2

 
1−

4d
d− 2

λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4dðd− 4Þ
ðd− 2Þ2 λ

s !
:

ð16Þ
This means that when the mass is negative in the range
0 > m > mmin, the black hole still has a regular horizon and
reasonable thermodynamics with T < TdS. This is a typical
behavior of topological black holes [63]. In Fig. 1, we plot
the relation between the temperature T and the mass
parameter m. From the figure, we can see that the minimal
mass increases as λ increases. The three curves intersect at
the point for the AdS vacuum solution when m ¼ 0.
Going back to the r coordinate, the metric becomes

ds2 ¼ ρ2

1 −H2r2

�
−
fðρÞ
ρ2

ð1 −H2r2Þdt2 þ dr2

1 −H2r2
þ r2dΩ2

d−2

�
þ dρ2

fðρÞ ; ð17Þ

whose boundary metric is just (or conformal to) the dS
metric in static patch equation (6). Holographically, this
bulk geometry is dual to the thermal quantum field theorie
on the static patch of dSd at the temperature given by

Eq. (14). Note that this temperature does not have to be the
same as the dS temperature TdS, and this will yield a
conical singularity in the manifold unless T ¼ TdS. We do
not have to worry about this singularity since we only have

0.09
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T

FIG. 1 (color online). Hawking temperature T versus the mass
parameter m for d ¼ 4. We have set L ¼ 1. The three curves are
for λ ¼ −0.25;−0.1; 0.09, respectively, and they intersect at the
AdS vacuum solution when m ¼ 0.
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interest on the physics outside the horizon, see more
discussions about this point in Ref. [35].

D. A Vaidya-like solution

To study the process of the thermalization in the
boundary quantum field field theory the bulk should be

holographically modelled by the process of a black hole
formation. Thus, we need a Vaidya-like version of the black
hole solution of Eq. (17). Defining an inverse radius
z ¼ L2=ρ, going to Eddington-Finkstein coordinates and
introducing a time-dependent mass parameter, we obtain
the Vaidya-like bulk metric [35]

ds2 ¼ L2

z2

�
−fðz; vÞdv2 − 2dvdzþ H2L2

ð1 −H2r2Þ2 dr
2 þ H2L2

1 −H2r2
r2dΩ2

d−2

�
; ð18Þ

where the metric function in the presence of the
Gauss-Bonnet term is

fðz; vÞ ¼ z2

L2

�
−1þ L2

2λz2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λðmðvÞzd − 1Þ

q
Þ
�
:

To obtain (18) the equation of motion (3) has to be
modified by introducing an external source,

Rμν−
1

2
Rgμν−

dðd−1Þ
2L2

gμνþ
L2λ

ðd−2Þðd−3ÞHμν ¼ 8πGText
μν :

ð19Þ

Substituting the Vaiya-like metric (18) into the above
equation, one can obtain the energy-momentum tensor
of the required external source,

8πGText
μν ¼ d − 1

2
zd−1

dm
dv

δμvδνv; ð20Þ

which implies that the infalling shell is made of null dust.
The mass function mðvÞ can take two different forms as
follows [35]:

(i) mðvÞ ¼ M
2
ð1 − tanh v

v0
Þ with mmin < M < 0

This choice is equivalent to preparing the field
system in a state with T < TdS and then letting it
evolve to the Bunch-Davies vacuum.

(ii) mðvÞ ¼ M
2
ð1þ tanh v

v0
Þ with M > 0

This corresponds to a case that we start from the
Bunch-Davies vacuum and then evolve to a state
with T > TdS.

In this paper, we will focus on the second choice with the
geometric picture that a null dust shell falls from the
boundary into the bulk to form a black hole. At the field
theory side, it corresponds to a sudden injection of energy
into the system and then let it evolves to thermal
equilibrium.

III. NONLOCAL OBSERVABLES

In this section, we use three nonlocal observables—
equal-time two-point function, Wilson loop and entangle-
ment entropy—to probe the thermalization process.

According to the holographic principle, these three probes
in the saddle approximation correspond to some geometric
quantities in the dual bulk geometry with a metric given by
(18). It is expected that these observables provide insights
into the thermalization process in the strongly coupled
quantum field theories the boundary. We will study the time
evolution behavior of these three observables after a
quantum quench, and examine the influence of the
Gauss-Bonnet factor and the spacetime dimensions in
the thermalization process. Relying on numerical calcu-
lations and without loss of generality following [29,30], we
will consider a thin shell with a small v0, i.e., v0 ¼ 0.01,
and we will set L ¼ 1 and fix the mass parameter toM ¼ 1.

A. Two-point function

Defining ~r≡Hr and choosing two antipode points on
the sphere ~r ¼ ~R on the boundary at the boundary time ~t,
we can calculate the equal-time correlation function of
some operator with large conformal dimension, which
depends on ~t. Holographically, in the saddle approximation
this two-point function corresponds to the length of the
geodesic in the bulk which is anchored at the two points on
the boundary. The geodesic γ can be parametrized by two
functions, zð~rÞ and vð~rÞ, with other coordinates fixed
respecting the spherical symmetry. With the Vaidya-like
metric (18), we can obtain the induced metric on the
geodesic, which is

ds2γ ¼
L2

z2

�
L2

ð1 − ~r2Þ2 − fðz; vÞv02 − 2v0z0
�
d~r2: ð21Þ

Then, the length functional of the geodesic is

L ¼ 2L
Z

~R

0

d~r
z
Q;

Q≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2

ð1 − ~r2Þ2 − fðz; vÞv02 − 2v0z0
s

: ð22Þ

To minimize the length of the geodesic, we need to solve
the two equations of motion for zð~rÞ and vð~rÞ, respectively,
which are derived varying the length functional (22),
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2ð~r2 − 1Þ4zv02z00 þ
��

6L2ð~r2 − 1Þ2v0 − 6ð~r2 − 1Þ4fv03 þ ð~r2 − 1Þ4zv0
�
3v02

∂f
∂z − 2v00

��
z0

þ ð~r2 − 1Þ
�
4L2 ~rv0 þ 2L2ð~r2 − 1Þv00 − L2ð~r2 − 1Þv02 ∂f∂z þ ð~r2 − 1Þ3v04

�∂f
∂v þ f

∂f
∂z
��

z

− 2ð~r2 − 1Þ4f2v04 − 4ð~r2 − 1Þ4v02z02 þ 4L2ð~r2 − 1Þ2fv02 − 2L4

�
¼ 0; ð23Þ

2ð~r2 − 1ÞðL2f þ ð~r2 − 1Þ2z02Þzv00 þ
�
ð~r2 − 1Þ3z0

�
2f2 − z

∂f
∂v − zf

∂f
∂z
�
v03

þ
�
6ð~r2 − 1Þ3fz02 þ L2ð~r2 − 1Þz ∂f∂v − 3ð~r2 − 1Þ3zz02 ∂f∂z

�
v02

þ
�
4L2 ~rfz − 2L2ð~r2 − 1Þfz0 þ 4ð~r2 − 1Þ3z03 − 2ð~r2 − 1Þzz0

�
ð~r2 − 1Þ2z00 − L2

∂f
∂z
��

v0

þ 2L2½zð2~rz0 þ ðr2 − 1Þz00Þ − ð~r2 − 1Þz02�
�

¼ 0: ð24Þ

Here prime denotes the derivative with respect to ~r, i.e.,
0 ≡ d

d~r. To solve these equations, we need to consider the
symmetry of the geodesic and impose the following
boundary conditions,

zðϵÞ ¼ z� þOðϵ2Þ; z0ðϵÞ ¼ 0þOðϵ2Þ;
vðϵÞ ¼ v� þOðϵ2Þ; v0ðϵÞ ¼ 0þOðϵ2Þ; ð25Þ

where ϵ is a small quantity, with order of 10−3 typically. To
avoid the numerical problem at ~r ¼ 0 (note that ~r ¼ 0 is a
singular point of Eq. (23) as v0ð0Þ ¼ 0 respecting the
symmetry), we impose the boundary conditions at the
neighborhood of the midpoint ~r ¼ 0, rather than exactly at
the midpoint. The Oðϵ2Þ terms above are the correction
terms, and can be obtained by solving the two equations
of motion around ~r ¼ 0 order by order. Here, we only
calculate the equations to the order ϵ2. The two free
parameters z� and v� are determined by the constraint
equations,

zð ~RÞ ¼ z0; vð ~RÞ ¼ ~t; ð26Þ

where z0 is a UV cutoff and ~t is the boundary time.
Using numerical methods, we can calculate the geodesic

length L at any given time, which is cutoff dependent and
divergent as z0 → 0. To remove its dependence on the
cutoff, one can define a relative geodesics length
δL̄≡ L−Lthermal

Rrs
, with Lthermal being the length of the late

time and Rrs ¼ L lnð1þ ~R
1− ~R

Þ is the proper radial separation

between the two points on the boundary. δL̄ is a function of
the boundary time ~t and ~R is the boundary separation.

In Fig. 2, we plot the time evolution of δL̄ in five
dimensions (d ¼ 4) for two boundary scales ~R ¼ 0.3 and
~R ¼ 0.9. We take the Gauss-Bonnet factor in a range bigger
than the constraint (2) by choosing λ ¼ −0.25, − 7

36
(lower

bound), −0.1, 0, 0.03, 0.09 (upper bound), 0.2, respec-
tively. In Fig. 2 we can see the whole thermalization
process. At very early time the evolution encounters a
delay, especially for large ~R; then it follows a pre-local-
equilibration stage during which the growth is quadratic in
time; later, it appears in a post-local-equilibration stage of
linear growth, and finally there emerges a period of
memory loss prior to equilibration, after which the curves
flatten out and the two-point functions reach their thermal
equilibrium values.
For large ~R, it takes more time for the two-point function

to reach thermal equilibrium value. This can be understood
by the fact that the collapsing shell from the boundary
passes the geodesic with larger length slower than the one
with smaller length. These phenomena, disclosed in Fig. 2,
are consistent with that observed in the flat boundary case
[29,30,37,38] and also in the Einstein dS boundary case
[35]. They are universal and do not change in case that the
high curvature corrections are considered in the gravity,
even when the Gauss-Bonnet coupling constant λ takes
values beyond the constraint appearing in Eq. (2).
Although the Gauss-Bonnet factor does not alter quali-

tatively in the five successive processes of the thermal-
ization, in Fig. 2 we do clearly see that it leaves imprints.
The increase of the Gauss-Bonnet factor makes the initial
absolute value of δL̄ to increase, which means that the dual
field system is initially further away from the thermal
equilibrium. However, the larger λ makes the delay time
shorter and the growth of δL̄ faster, so that the saturation
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FIG. 3 (color online). Time evolution of δL̄ in six dimensions (d ¼ 5) with the boundary scale ~R ¼ 0.3; 0.9, respectively. In each
graph, on the left, from top to bottom, four curves take Gauss-Bonnet coupling constant λ ¼ −0.25;−0.1; 0; 0.09, respectively.
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FIG. 2 (color online). Time evolution of δL̄ in five dimensions (d ¼ 4) for the two-boundary scale ~R ¼ 0.3; 0.9, respectively. In each
graph, on the left, from top to bottom, seven curves take Gauss-Bonnet coupling constant λ ¼ −0.25, − 7

36
(lower bound), −0.1, 0, 0.03,

0.09 (upper bound),0.2, respectively.
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time to reach thermal equilibrium decreases. The same
phenomenon is also observed in higher dimensions, for
example as shown in Fig. 3 with d ¼ 5. Comparing the
results of the d ¼ 4 and d ¼ 5 cases, one can see that, for
the fixed λ, the absolute initial value of δL̄ decreases as the
spacetime dimension increases, while the delay time
increases, which leaves the saturation time nearly
unchanged. The dimensional influence can be seen more
clearly in Fig. 4, where we exhibit the results of two fixed
Gauss-Bonnet factors for different spacetime dimensions
(d ¼ 4 and d ¼ 5).
We find that the saturation time ~t is a key quantity to

characterize the thermalization process: it decreases when
the Gauss-Bonnet coupling constant increases, while it
weakly depends on the spacetime dimensions.
From Figs. 2–4 we can further learn that the saturation

time strongly depends on the boundary scale ~R≡ RH. In
Fig. 5, we plot the saturation time versus the boundary scale
~R. For small ~R, ~tsat increases linearly with ~R and weakly
depends on the Gauss-Bonnet constant, since the behavior
should reduce to that of the flat boundary case there
[29,30,43,64]. However, as ~R approaches the cosmological
horizon, ~tsat blows up logarithmically and shows strong
dependence on the Gauss-Bonnet factor. Moreover, from the
right panel of Fig. 5, one can observe that there is not a clear
influence on the saturation time measured by the two-point
function which is due to the dimensionality of spacetime. As
we will discuss in the next subsection, the same behavior is
observed also in the Wilson loop. To see an effect, we have
to study the entanglement entropy as the probe.

B. Wilson loop

In this subsection, we study the time evolution of the
observable of the Wilson loop. On the boundary at time ~t,
we choose an equator of a sphere with radius ~r ¼ ~R;
parametrized by the angular coordinate θ, and calculate the
expectation value of this Wilson loop, which depends on ~t.
In the bulk, it corresponds to the area of a two-dimensional
extremal surface Σ anchored at the circle on the boundary.
Considering the symmetry, the extremal surface Σ can be
parametrized by two functions, zð~rÞ and vð~rÞ, and the
induced metric on Σ is

ds2Σ ¼ L2

z2

�
L2

ð1 − ~r2Þ2 − fðz; vÞv02 − 2v0z0
�
d~r2

þ L4

z2
~r2

1 − ~r2
dθ2: ð27Þ

The area functional is given by

A ¼ 2πL3

Z
~R

0

d~r
z2

QP:

Q≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2

ð1 − ~r2Þ2 − fðz; vÞv02 − 2v0z0
s

; P≡ ~rffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~r2

p :

ð28Þ
To deduce the extreme value of this area functional, we
need to solve the two equations of motion, which can be
derived by varying the area functional,
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FIG. 4 (color online). Time evolution of δL̄ in different dimensions (d ¼ 4 and d ¼ 5) with the boundary scale ~R ¼ 0.3; 0.9,
respectively.
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2~rð~r2 − 1Þ4zv02z00 þ
�
−4~rðL2 − ð~r2 − 1Þ2fv02Þ2 − 8~rð~r2 − 1Þ4v02z02

þ
�
12~rð~r2 − 1Þ2v0ðL2 − ð~r2 − 1Þ2fv02Þ þ ð~r2 − 1Þ3zv0

�
4v0 − 2~rð~r2 − 1Þv00 þ 3~rð~r2 − 1Þv02 ∂f∂z

��
z0

þ ð~r2 − 1Þ
�
2L2ð2~r2 − 1Þv0 þ 2ð~r2 − 1Þ2fv03 þ 2L2 ~rð~r2 − 1Þv00 − L2 ~rð~r2 − 1Þv02 ∂f∂z

þ ~rð~r2 − 1Þ3v04
�∂f
∂v þ f

∂f
∂z
��

z

�
¼ 0; ð29Þ

2~rð~r2 − 1ÞzðL2f þ ð~r2 − 1Þ2z02Þv00 þ
�
2L2½zðð2~r2 − 1Þz0 þ ~rð~r2 − 1Þz00Þ − 2~rð~r2 − 1Þz02�

þ ð~r2 − 1Þ2
�
2f2ðzþ 2~rð~r2 − 1Þz0Þ − ~rð~r2 − 1Þzz0

�∂f
∂v þ f

∂f
∂z
��

v03

þ ð~r2 − 1Þ
�
6ð~r2 − 1Þfz0ðzþ 2~rð~r2 − 1Þz0Þ þ ~rz

�
L2

∂f
∂v − 3

�
~r2 − 1Þ2z02 ∂f∂z

��
v02

þ
�
2L2ð2r2 − 1Þfz − 4L2rðr2 − 1Þfz0 þ 4ðr2 − 1Þ2zz02 þ 8rðr2 − 1Þ3z03

− 2~rð~r2 − 1Þzz0
�
ð~r2 − 1Þ2z00 − L2

∂f
∂z
��

v0
�

¼ 0: ð30Þ

Again, to avoid the numerical problem at the midpoint
~r ¼ 0, we impose the boundary condition (25) at the
neighborhood of the midpoint.
Now we study the time evolution of the related area

δĀ≡ A−Athermal
Abny

, where Abny ¼ 2πL2ð 1ffiffiffiffiffiffiffiffi
1− ~R2

p − 1Þ is the area

of the disk bounded by the loop on the boundary. We list the
results in Figs. 6–9, which present similar influences of the

Gauss-Bonnet coupling and the spacetime dimensions to
those observed in the two-point function. Fig. 9 shows the
saturation time ~tsat, which shows the same behavior as in
Fig. 5 of the two point function. For big boundary scale, the
saturation time deduced from the Wilson loop exhibits the
consistent behaviors with those from the two-point func-
tion, it decreases as the Gauss-Bonnet factor increases, but
it depends very mildly on the spacetime dimensions.
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FIG. 5 (color online). Saturation time ~tsat as a function of the boundary scale ~R. In the left plot, we fix the spacetime dimension d ¼ 4.
In the right panel, we compare the dimensional influence by choosing two values of the Gauss-Bonnet factor, λ ¼ −0.25 and λ ¼ 0.
Solid curves in both panels are produced by fitting the numerical points with function a ~Rþ b lnð1 − ~RÞ.
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FIG. 7 (color online). Time evolution of δĀ in six dimensions (d ¼ 5) with the boundary scale ~R ¼ 0.3; 0.9, respectively. In each
graph, on the left, from top to bottom, four curves take Gauss-Bonnet coupling constant λ ¼ −0.25;−0.1; 0; 0.09, respectively.
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C. Entanglement entropy

1. Holographic entanglement entropy formulas
with Gauss-Bonnet correction

Now we move on to study the observable of the
entanglement entropy to see how it can be used to measure
the thermalization process. Suppose the system of the
quantum field theory in the boundary dS space is divided

into two parts A and Ac, where Ac is the complement of A.
Then we can define entanglement entropy of the region A
as the Von Neuman entropy,

SA ¼ −trAρA log ρA; ð31Þ

where ρA is the reduced density matrix of A.
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FIG. 8 (color online). Time evolution of δĀ in different dimensions (d ¼ 4 and d ¼ 5) and with the boundary scale ~R ¼ 0.3; 0.9,
respectively.
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FIG. 9 (color online). Saturation time ~tsat as a function of the boundary scale ~R. The left plot has fixed spacetime dimension d ¼ 4. In
the right panel the comparison of the spacetime dimensional influence for chosen Gauss-Bonnet factors has been given. Solid curves in
both panels are produced by fitting the numerical points with function a ~Rþ b lnð1 − ~RÞ.
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Generally, it is hard to calculate the entanglement
entropy from quantum field theory directly. However,
AdS/CFT provides a powerful tool to deal with this
problem. A holographic entanglement entropy has been
proposed to relate this entropy to some geometric quantity
of the dual bulk geometry. In Einstein gravity, the holo-
graphic entanglement entropy formulas is [53,65]

SA ¼ 1

4Gðdþ1Þ
N

ext½AreaðγAÞ�; ð32Þ

where γA is the extremal codimensional two surface in the
bulk with the boundary ∂γA ¼ ∂A.
For higher derivative gravity theory, such as the Gauss-

Bonnet gravity we are considering, the holographic entan-
glement formulas is modified to be [48–52]

SHEE ¼ 1

4Gðdþ1Þ
N

Z
γA

ffiffiffi
γ

p �
1þ 2L2λ

ðd − 2Þðd − 3ÞRγA

�

þ 1

Gðdþ1Þ
N

L2λ

ðd − 2Þðd − 3Þ
Z
∂γA

ffiffiffi
h

p
K: ð33Þ

The integration is done on the extremal surface γA. RγA is
the intrinsic curvature scalar of γA, which is the contribution

due to the Gauss-Bonnet term. The last term is added to
make the variation problem well defined. h is the deter-
minant of the induced metric on ∂γA, and K is the trace of
the extrinsic curvature of ∂γA.
For a warped geometry with the following metric

ds2 ¼ ds2X þ
X
i

e2FiðXÞds2Yi
; ð34Þ

we have the formulas [49]

R ¼ RX þ
X
i

½e−2FiRYi − 2dið∇2FiÞ − dið∂FiÞ2�

−
X
i;j

didjð∂Fi · ∂FjÞ; ð35Þ

where X and Yi are subspaces of the manifold and di is the
dimension of Yi. FiðXÞ is the warped factor which depends
only on the coordinates of X. All derivatives are evaluated
in the X space and ∇ denotes the covariant derivative
compatible with metric on X. In this subsection, the number
of dimension of X space is only 1 and then RX ¼ 0, and the
space Y is a ðd − 2Þ-dimensional sphere. Calculating the
holographic entanglement entropy by using the formulas
(35), we have

SHEE ¼ 1

4Gðdþ1Þ
N

Ωd−2

Z
dX

ffiffiffiffiffiffiffiffi
hXX

p
eðd−2ÞF½1þ 2L2λðe−2F þ hXXF02Þ�: ð36Þ

2. Time evolution of holographic entanglement entropy

On the boundary at time ~t, we choose the entangled region A to be a ðd − 1Þ-dimensional sphere with ~r ¼ 0 as the
original point. Considering the symmetry, the extremal codimensional two surface γA in the bulk can be parametrized by
functions zð~rÞ and vð~rÞ. The induced metric on γA is

ds2Σ ¼ L2

z2

�
L2

ð1 − ~r2Þ2 − fðz; vÞv02 − 2v0z0
�
d~r2 þ L4

z2
~r2

1 − ~r2
dΩ2

d−2; ð37Þ

which takes a form as in (34). With the formulas of Eq. (36), the holographic entanglement entropy functional becomes

S ¼ L2d−3

4Gðdþ1Þ
N

Ωd−2

Z
~R

0

d~r
zd−1

QPd−2
�
1þ 2λz2

L2

�
P−2 þ L2Q−2

�
P0

P
−
z0

z

�
2
��

:

Q≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2

ð1 − ~r2Þ2 − fðz; vÞv02 − 2v0z0
s

; P≡ ~rffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~r2

p : ð38Þ

As done in the above two subsections, we need to solve the
two equations of motion to get the extreme value of the
holographic entanglement entropy functional. The two
equations of motion are very complicated and we do not
show them explicitly here. We adopt the same boundary
conditions of (25) in doing the computation.

For convenience, we define the relative holographic

entanglement entropy δS̄ ≡ S−Sthermal
Vb

, where Vb ¼
Ld−1Ωd−2

R ~R
0

~rd−2

ð1−~r2Þd=2d~r¼Ld−1Ωd−2
~Rd−1

d−1 2F1ðd−12 ; d
2
; dþ1

2
; ~R2Þ

is the volume of the entangled region A on the boundary. In
Fig. 10, we plot the time evolution of δS̄ with various
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FIG. 11 (color online). Time evolution of δS̄ in d ¼ 5 case, the rescaled radius of the entangled sphere ~R ¼ 0.3; 0.9, respectively. In
each figure, the Gauss-Bonnet coupling constant λ, from top to bottom, are taken to be 0.09; 0;−0.1;−0.25.
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Gauss-Bonnet coupling constant λ for chosen size ~R of the
entangled sphere. The disclosed saturation time decreases
as λ increases, which is consistent with the results of the
previous two observables. Comparing with the previous
two observables, we observe that the delay time in the onset
of thermalization becomes shorter as shown in the entan-
glement entropy. This can be understood, since the entan-
glement entropy is related more to the degrees of freedom

of the system so that it is more sensitive to the thermal-
ization process.
Looking at the initial absolute value of δS̄, we surpris-

ingly find that with the increase of λ, it becomes smaller,
instead of becoming bigger. This means that the initial state
of the field system due to the higher curvature correction
terms in the gravity is closer to the thermal equilibrium
state, which is completely different from the results of the
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FIG. 13 (color online). Saturation time ~tsat as a function of the boundary scale ~R. The left panel is for d ¼ 4. The right panel is the
comparison of the dimensional influence by fixing the Gauss-Bonnet factor. Solid curves in both panels are produced by fitting the
numerical points with function a ~Rþ b lnð1 − ~RÞ. There is a large overlap between the curve with ðd ¼ 4; λ ¼ 0Þ and the one with
ðd ¼ 5; λ ¼ −0.25Þ.
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FIG. 12 (color online). Time evolution of δS̄ in d ¼ 4 and d ¼ 5 cases. From left to right, The rescaled radius of the entangled sphere
are ~R ¼ 0.3; 0.9, respectively.
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previous two observables. The relation of the thermal-
ization process to the Gauss-Bonnet factor holds as well
when we fix the spacetime dimension to be d ¼ 5 as shown
in Fig. 11.
In Fig. 12, we show the spacetime dimensional influence

on the thermalization process reflected by the entanglement
entropy. It is clear that with the increase of the spacetime
dimension, the initial absolute value of δS̄ increases, while
the saturation time decreases. This is displayed more
clearly in Fig. 13, where the saturation time ~tsat versus
the size of the entangled sphere is plotted. Comparing with
the other two observables, the entanglement entropy
reflects more clearly the dependence of the saturation time
on the spacetime dimensions, especially for large ~R. This is
expected, since the two-point function and the Wilson loop
are only related to the degrees of freedom on the two points
and the loop, respectively, while the entanglement entropy
is related to the degrees of freedom in the volume of the
bounded region Awhich depends strongly on the spacetime
dimensions. This point can also be seen by comparing
definitions of these three observables in Eqs. (22), (28) and
(38). From Fig. 13, it is clearly shown that the saturation
time decreases as d increases. Physically, we can under-
stand this phenomenon, since quanta in higher dimensions
have more degrees of freedom to collide and interact with
neighboring quanta, and thus thermalize faster.

IV. CONCLUSIONS AND DISCUSSION

In this work we have discussed the holographic thermal-
ization process by relating gravity theory with higher
curvature corrections to the dual strongly coupled quantum
field theory living on the dS boundary. We found that the
whole thermalization process follows the general pattern
observed in [35]. At very early time, the evolution of the
thermalization encounters a delay, then it enters the pre-
local-equilibration stage during which the growth is
quadratic in time. Afterwards, we have the post-local-
equilibration stage of linear growth, and finally there
emerges a period of memory loss, after which the curves
flatten out and the observables reach their thermal values.
Our findings follow some universal properties, as

observed in the Einstein case with flat [29,30,37,38] or
with curved [35] boundary, but also they show some district
features due to the presence of higher curvature correction
term in the bulk. As we discussed in the Introduction, a
delay in the onset of thermalization was found. In our case
for large boundary scales ~R we also observed a delay on the
onset of thermalization for the two probes, the two-
point function and the Wilson loop, while the onset of

thermalization becomes much shorter for the third probe,
the entanglement entropy.
In Einstein gravity the saturation time, i.e the time

needed the system to reach thermal equilibrium is very
fast. In our study for larger boundary scales ~R it takes more
time for the system to reach thermal equilibrium and this
result holds for all the three probes. However, as the
strength of the Gauss-Bonnet coupling λ is increased,
the saturation time of the thermalization process becomes
shorter as the entanglement entropy shows. This is inter-
esting because it relates directly the straight of gravity
effects to the time that the system on the boundary needs to
reach thermal equilibrium.
In Einstein gravity the thermalization process seems to

be independent of dimensionality. In the presence of the
higher curvature correction term in the bulk the two probes
the two-point function and the Wilson loop show the same
behavior. However, the entanglement entropy shows clearly
a spacial dependence of the thermalization process. This
can be attributed to the fact that the holographic entangle-
ment entropy contains more bulk information and is more
sensitive to the spacetime dimensions. We have found that
the thermalization process as probed by the entanglement
entropy is faster in the spacetime with higher dimensions.
This can be understood since quanta in higher dimensions
have more degrees of freedom to collide and interact
with neighboring quanta, which makes the thermalization
quicker.
It is interesting to investigate further the effect of a

nontrivial gravity bulk on the thermalization process. A
way to study this effect is to consider a scalar field
collapsing in an AdS space. Following this approach it
was found [22–26] that for a collapsing scalar field
minimally coupled to gravity the thermalization process
proceeds very rapidly. One can introduce a nonminimal
coupling like a coupling of a scalar field to Einstein tensor
and investigate the thermalization process on the boundary.
Work in this direction is in progress.

ACKNOWLEDGMENTS

We thank Shao-Feng Wu and Yong-Zhuang Li for their
kind help on the numerical calculations. This work is
supported in part by the National Natural Science
Foundation of China. E. A. thanks the support of
FAPESP and CNPq (Brasil). E. P. is partially supported
by the ARISTEIA II Action of the Operational Program
“Eduction and Lifelong Learning” which is co-funded by
the European Union (European Social Fund) and National
Resources.

HOLOGRAPHIC THERMALIZATION IN GAUSS-BONNET … PHYSICAL REVIEW D 91, 106010 (2015)

106010-15



[1] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113
(1999); Adv. Theor. Math. Phys. 2, 231 (1998).

[2] S. S. Gubser, I. R. Klebanov, and A.M. Polyakov, Gauge
theory correlators from noncritical string theory, Phys. Lett.
B 428, 105 (1998).

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor.
Math. Phys. 2, 253 (1998).

[4] G. T. Horowitz, Introduction to holographic superconduc-
tors, Lect. Notes Phys. 828, 313 (2011).

[5] S. A. Hartnoll, Lectures on holographic methods for con-
densed matter physics, Classical Quantum Gravity 26,
224002 (2009).

[6] F. Gelis, The early stages of a high energy heavy ion
collision, J. Phys. Conf. Ser. 381, 012021 (2012).

[7] E. Iancu, QCD in heavy ion collisions, arXiv:1205.0579.
[8] B. Muller and A. Schafer, Entropy creation in relativistic

heavy ion collisions, Int. J. Mod. Phys. E 20, 2235
(2011).

[9] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and
U. A. Wiedemann, Gauge/string duality, hot QCD and
heavy ion collisions, arXiv:1101.0618.

[10] E. Shuryak, Why does the quark gluon plasma at RHIC
behave as a nearly ideal fluid?, Prog. Part. Nucl. Phys. 53,
273 (2004).

[11] G. Policastro, D. T. Son, and A. O. Starinets, Shear Viscos-
ity of Strongly CoupledN ¼ 4 Supersymmetric Yang-Mills
Plasma, Phys. Rev. Lett. 87, 081601 (2001).

[12] D. T. Son and A. O. Starinets, Viscosity, black holes, and
quantum field theory, Annu. Rev. Nucl. Part. Sci. 57, 95
(2007).

[13] G. Policastro, D. T. Son, and A. O. Starinets, From AdS/
CFT correspondence to hydrodynamics, J. High Energy
Phys. 09 (2002) 043.

[14] S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M.
Rangamani, Nonlinear fluid dynamics from gravity, J. High
Energy Phys. 02 (2008) 045.

[15] P. K. Kovtun and A. O. Starinets, Quasinormal modes and
holography, Phys. Rev. D 72, 086009 (2005).

[16] M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S. Yaida,
Viscosity bound violation in higher derivative gravity, Phys.
Rev. D 77, 126006 (2008).

[17] M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S. Yaida,
The Viscosity Bound and Causality Violation, Phys. Rev.
Lett. 100, 191601 (2008).

[18] Y. Kats and P. Petrov, Effect of curvature squared correc-
tions in AdS on the viscosity of the dual gauge theory, J.
High Energy Phys. 01 (2009) 044.

[19] G. Koutsoumbas, E. Papantonopoulos, and G. Siopsis,
Shear viscosity and Chern-Simons diffusion rate from
hyperbolic horizons, Phys. Lett. B 677, 74 (2009).

[20] R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Bottom-up
thermalization in heavy ion collisions, Phys. Lett. B 502, 51
(2001).

[21] A. H. Mueller, A. I. Shoshi, and S. M. H. Wong, A possible
modified “bottom-up” thermalization in heavy ion colli-
sions, Phys. Lett. B 632, 257 (2006).

[22] U. H. Danielsson, E. Keski-Vakkuri, and M. Kruczenski,
Black hole formation in AdS and thermalization on the
boundary, J. High Energy Phys. 02 (2000) 039.

[23] R. A. Janik and R. B. Peschanski, Gauge/gravity duality and
thermalization of a boost-invariant perfect fluid, Phys. Rev.
D 74, 046007 (2006).

[24] P. M. Chesler and L. G. Yaffe, Boost invariant flow, black
hole formation and far-from-equilibrium dynamics inN ¼ 4
supersymmetric Yang-Mills theory, Phys. Rev. D 82,
026006 (2010).

[25] D. Garfinkle and L. A. P. Zayas, Rapid thermalization in
field theory from gravitational collapse, Phys. Rev. D 84,
066006 (2011).

[26] D. Garfinkle, L. A. Pando Zayas, and D. Reichmann, On
field theory thermalization from gravitational collapse, J.
High Energy Phys. 02 (2012) 119.

[27] S. Bhattacharyya and S. Minwalla, Weak field black hole
formation in asymptotically AdS spacetimes, J. High
Energy Phys. 09 (2009) 034.

[28] S. Lin and E. Shuryak, Toward the AdS/CFT gravity dual
for high energy collisions. 3. Gravitationally collapsing
shell and quasiequilibrium, Phys. Rev. D 78, 125018 (2008).

[29] V. Balasubramanian, A. Bernamonti, J. de Boer, N.
Copland, B. Craps, E. Keski-Vakkuri, B. Muller, A. Schafer,
M. Shigemori, and W. Staessens, Thermalization of
Strongly Coupled Field Theories, Phys. Rev. Lett. 106,
191601 (2011).

[30] V. Balasubramanian, A. Bernamonti, J. de Boer, N.
Copland, B. Craps, E. Keski-Vakkuri, B. Muller, A. Schafer,
M. Shigemori, and W. Staessens, Holographic thermal-
ization, Phys. Rev. D 84, 026010 (2011).

[31] T. Hirayama, A holographic dual of CFT with flavor on de
Sitter space, J. High Energy Phys. 06 (2006) 013.

[32] K. Ghoroku, M. Ishihara, and A. Nakamura, Gauge theory
in de Sitter space-time from a holographic model, Phys. Rev.
D 74, 124020 (2006).

[33] D. Marolf, M. Rangamani, and M. Van Raamsdonk,
Holographic models of de Sitter QFTs, Classical Quantum
Gravity 28, 105015 (2011).

[34] A. Buchel and D. A. Galante, Cascading gauge theory on
dS4 and String Theory landscape, Nucl. Phys. B883, 107
(2014).

[35] W. Fischler, S. Kundu, and J. F. Pedraza, Entanglement and
out-of-equilibrium dynamics in holographic models of de
Sitter QFTs, J. High Energy Phys. 07 (2014) 021.

[36] W. Fischler, P. H. Nguyen, J. F. Pedraza, and W. Tangarife,
Fluctuation and dissipation in de Sitter space, J. High
Energy Phys. 08 (2014) 028.

[37] H. Liu and S. J. Suh, Entanglement Tsunami: Universal
Scaling in Holographic Thermalization, Phys. Rev. Lett.
112, 011601 (2014).

[38] H. Liu and S. J. Suh, Entanglement growth during thermal-
ization in holographic systems, Phys. Rev. D 89, 066012
(2014).

[39] D. Galante and M. Schvellinger, Thermalization with a
chemical potential from AdS spaces, J. High Energy Phys.
07 (2012) 096.

[40] E. Caceres and A. Kundu, Holographic thermalization with
chemical potential, J. High Energy Phys. 09 (2012) 055.

[41] G. Camilo, B. Cuadros-Melgar, and E. Abdalla, Holo-
graphic thermalization with a chemical potential from
Born-Infeld electrodynamics, J. High Energy Phys. 02
(2015) 103.

ZHANG et al. PHYSICAL REVIEW D 91, 106010 (2015)

106010-16

http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1007/978-3-642-04864-7
http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://dx.doi.org/10.1088/1742-6596/381/1/012021
http://arXiv.org/abs/1205.0579
http://dx.doi.org/10.1142/S0218301311020459
http://dx.doi.org/10.1142/S0218301311020459
http://arXiv.org/abs/1101.0618
http://dx.doi.org/10.1016/j.ppnp.2004.02.025
http://dx.doi.org/10.1016/j.ppnp.2004.02.025
http://dx.doi.org/10.1103/PhysRevLett.87.081601
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123120
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123120
http://dx.doi.org/10.1088/1126-6708/2002/09/043
http://dx.doi.org/10.1088/1126-6708/2002/09/043
http://dx.doi.org/10.1088/1126-6708/2008/02/045
http://dx.doi.org/10.1088/1126-6708/2008/02/045
http://dx.doi.org/10.1103/PhysRevD.72.086009
http://dx.doi.org/10.1103/PhysRevD.77.126006
http://dx.doi.org/10.1103/PhysRevD.77.126006
http://dx.doi.org/10.1103/PhysRevLett.100.191601
http://dx.doi.org/10.1103/PhysRevLett.100.191601
http://dx.doi.org/10.1088/1126-6708/2009/01/044
http://dx.doi.org/10.1088/1126-6708/2009/01/044
http://dx.doi.org/10.1016/j.physletb.2009.05.010
http://dx.doi.org/10.1016/S0370-2693(01)00191-5
http://dx.doi.org/10.1016/S0370-2693(01)00191-5
http://dx.doi.org/10.1016/j.physletb.2005.10.047
http://dx.doi.org/10.1088/1126-6708/2000/02/039
http://dx.doi.org/10.1103/PhysRevD.74.046007
http://dx.doi.org/10.1103/PhysRevD.74.046007
http://dx.doi.org/10.1103/PhysRevD.82.026006
http://dx.doi.org/10.1103/PhysRevD.82.026006
http://dx.doi.org/10.1103/PhysRevD.84.066006
http://dx.doi.org/10.1103/PhysRevD.84.066006
http://dx.doi.org/10.1007/JHEP02(2012)119
http://dx.doi.org/10.1007/JHEP02(2012)119
http://dx.doi.org/10.1088/1126-6708/2009/09/034
http://dx.doi.org/10.1088/1126-6708/2009/09/034
http://dx.doi.org/10.1103/PhysRevD.78.125018
http://dx.doi.org/10.1103/PhysRevLett.106.191601
http://dx.doi.org/10.1103/PhysRevLett.106.191601
http://dx.doi.org/10.1103/PhysRevD.84.026010
http://dx.doi.org/10.1088/1126-6708/2006/06/013
http://dx.doi.org/10.1103/PhysRevD.74.124020
http://dx.doi.org/10.1103/PhysRevD.74.124020
http://dx.doi.org/10.1088/0264-9381/28/10/105015
http://dx.doi.org/10.1088/0264-9381/28/10/105015
http://dx.doi.org/10.1016/j.nuclphysb.2014.03.022
http://dx.doi.org/10.1016/j.nuclphysb.2014.03.022
http://dx.doi.org/10.1007/JHEP07(2014)021
http://dx.doi.org/10.1007/JHEP08(2014)028
http://dx.doi.org/10.1007/JHEP08(2014)028
http://dx.doi.org/10.1103/PhysRevLett.112.011601
http://dx.doi.org/10.1103/PhysRevLett.112.011601
http://dx.doi.org/10.1103/PhysRevD.89.066012
http://dx.doi.org/10.1103/PhysRevD.89.066012
http://dx.doi.org/10.1007/JHEP07(2012)096
http://dx.doi.org/10.1007/JHEP07(2012)096
http://dx.doi.org/10.1007/JHEP09(2012)055
http://dx.doi.org/10.1007/JHEP02(2015)103
http://dx.doi.org/10.1007/JHEP02(2015)103


[42] X.-X. Zeng and W.-B. Liu, Holographic thermalization
in Gauss-Bonnet gravity, Phys. Lett. B 726, 481
(2013).

[43] Y. Z. Li, S. F. Wu, and G. H. Yang, Gauss-Bonnet correction
to holographic thermalization: two-point functions, circular
Wilson loops and entanglement entropy, Phys. Rev. D 88,
086006 (2013).

[44] I. Aref’eva, A. Bagrov, and A. S. Koshelev, Holographic
thermalization from Kerr-AdS, J. High Energy Phys. 07
(2013) 170.

[45] X.-X. Zeng, X.-M. Liu, and W.-B. Liu, Holographic
thermalization in noncommutative geometry, Phys. Lett.
B 744, 48 (2015).

[46] M. Alishahiha, A. F. Astaneh, and M. R. M. Mozaffar,
Thermalization in backgrounds with hyperscaling violating
factor, Phys. Rev. D 90, 046004 (2014).

[47] P. Fonda, L. Franti, V. Keränen, E. Keski-Vakkuri, L.
Thorlacius, and E. Tonni, Holographic thermalization with
Lifshitz scaling and hyperscaling violation, J. High Energy
Phys. 08 (2014) 051.

[48] J. de Boer, M. Kulaxizi, and A. Parnachev, Holographic
entanglement entropy in Lovelock gravities, J. High Energy
Phys. 07 (2011) 109.

[49] L. Y. Hung, R. C. Myers, and M. Smolkin, On holographic
entanglement entropy and higher curvature gravity, J. High
Energy Phys. 04 (2011) 025.

[50] R. C. Myers, R. Pourhasan, and M. Smolkin, On spacetime
entanglement, J. High Energy Phys. 06 (2013) 013.

[51] X. Dong, Holographic entanglement entropy for general
higher derivative gravity, J. High Energy Phys. 01 (2014)
044.

[52] J. Camps, Generalized entropy and higher derivative gravity,
J. High Energy Phys. 03 (2014) 070.

[53] S. Ryu and T. Takayanagi, Holographic Derivation of
Entanglement Entropy from AdS/CFT, Phys. Rev. Lett.
96, 181602 (2006).

[54] A. Buchel and R. C. Myers, Causality of holographic
hydrodynamics, J. High Energy Phys. 08 (2009) 016.

[55] X. O. Camanho and J. D. Edelstein, Causality constraints in
AdS/CFT from conformal collider physics and Gauss-
Bonnet gravity, J. High Energy Phys. 04 (2010) 007.

[56] A. Buchel, J. Escobedo, R. C. Myers, M. F. Paulos, A.
Sinha, and M. Smolkin, Holographic GB gravity in arbitrary
dimensions, J. High Energy Phys. 03 (2010) 111.

[57] C. Fefferman and C. R. Graham, Conformal invariants, in
Élie Cartan et les Mathématiques d’Aujourd’hui (Société
Mathématique de France, Paris, 1985), p. 95.

[58] T. S. Bunch and P. C. W. Davies, Quantum field theory in de
Sitter space: Renormalization by point splitting, Proc. R.
Soc. A 360, 117 (1978).

[59] R. G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys.
Rev. D 65, 084014 (2002).

[60] R. Emparan, AdS membranes wrapped on surfaces of
arbitrary genus, Phys. Lett. B 432, 74 (1998).

[61] D. Birmingham, Topological black holes in anti-de Sitter
space, Classical Quantum Gravity 16, 1197 (1999).

[62] R. Emparan, AdS/CFT duals of topological black holes and
the entropy of zero energy states, J. High Energy Phys. 06
(1999) 036.

[63] L. Vanzo, Black holes with unusual topology, Phys. Rev. D
56, 6475 (1997).

[64] X. Zeng and W. Liu, Holographic thermalization in Gauss-
Bonnet gravity, Phys. Lett. B 726, 481 (2013).

[65] V. E. Hubeny, M. Rangamani, and T. Takayanagi, A
covariant holographic entanglement entropy proposal, J.
High Energy Phys. 07 (2007) 062.

HOLOGRAPHIC THERMALIZATION IN GAUSS-BONNET … PHYSICAL REVIEW D 91, 106010 (2015)

106010-17

http://dx.doi.org/10.1016/j.physletb.2013.08.049
http://dx.doi.org/10.1016/j.physletb.2013.08.049
http://dx.doi.org/10.1103/PhysRevD.88.086006
http://dx.doi.org/10.1103/PhysRevD.88.086006
http://dx.doi.org/10.1007/JHEP07(2013)170
http://dx.doi.org/10.1007/JHEP07(2013)170
http://dx.doi.org/10.1016/j.physletb.2015.03.028
http://dx.doi.org/10.1016/j.physletb.2015.03.028
http://dx.doi.org/10.1103/PhysRevD.90.046004
http://dx.doi.org/10.1007/JHEP08(2014)051
http://dx.doi.org/10.1007/JHEP08(2014)051
http://dx.doi.org/10.1007/JHEP07(2011)109
http://dx.doi.org/10.1007/JHEP07(2011)109
http://dx.doi.org/10.1007/JHEP04(2011)025
http://dx.doi.org/10.1007/JHEP04(2011)025
http://dx.doi.org/10.1007/JHEP06(2013)013
http://dx.doi.org/10.1007/JHEP01(2014)044
http://dx.doi.org/10.1007/JHEP01(2014)044
http://dx.doi.org/10.1007/JHEP03(2014)070
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1088/1126-6708/2009/08/016
http://dx.doi.org/10.1007/JHEP04(2010)007
http://dx.doi.org/10.1007/JHEP03(2010)111
http://dx.doi.org/10.1098/rspa.1978.0060
http://dx.doi.org/10.1098/rspa.1978.0060
http://dx.doi.org/10.1103/PhysRevD.65.084014
http://dx.doi.org/10.1103/PhysRevD.65.084014
http://dx.doi.org/10.1016/S0370-2693(98)00625-X
http://dx.doi.org/10.1088/0264-9381/16/4/009
http://dx.doi.org/10.1088/1126-6708/1999/06/036
http://dx.doi.org/10.1088/1126-6708/1999/06/036
http://dx.doi.org/10.1103/PhysRevD.56.6475
http://dx.doi.org/10.1103/PhysRevD.56.6475
http://dx.doi.org/10.1016/j.physletb.2013.08.049
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://dx.doi.org/10.1088/1126-6708/2007/07/062

