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Rþ R2 supergravity is known to be equivalent to standard supergravity coupled to two chiral
supermultiples with a no-scale Kähler potential. Within this framework, that can accommodate vanishing
vacuum energy and spontaneous supersymmetry breaking, we consider modifications of the associated
superpotential and study the resulting models, which, viewed as generalizations of the Starobinsky model,
for a range of the superpotential parameters, describe viable single-field slow-roll inflation. In all models
studied in this work, the tensor-to-scalar ratio is found to be small, well below the upper bound established
by the very recent PLANCK and BICEP2 data.
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I. INTRODUCTION

A phase of de Sitter expansion in the early universe,
namely inflation [1], offers an attractive paradigm for the
production of primordial curvature perturbations that ulti-
mately generate the large scale structure of the Universe [2]
as well as the resolution of a number of issues of the
standard hot big bang cosmology. Although models of
inflation typically introduce new scalar fields, it would be
intriguing if the extra scalar degrees of freedom were
provided by gravity itself. It is known that generalizations
of the Einstein action containing extra powers of the Ricci
scalar are equivalent to standard Einstein gravity with an
additional scalar field [3]. Specifically, the Starobinsky
model [4], featuring an extra quadratic R2 term in the
action, is equivalent to standard gravitation with an extra
scalar field possessing an inflationary potential [5]. In the
point of view of conformal symmetry, expected to hold at
the high curvature regime where masses are negligible, an
additional motivation to consider the Starobinsky model is
supplied by the fact that the quadratic curvature term is
bound to be generated by the conformal anomaly at the
quantum level. Actually, the Starobinsky model is among
the few possibilities realizing slow-roll inflation that is in
perfect agreement with the PLANCK experiment data [6],
although its predictions were challenged by BICEP2 results
[7], claiming the discovery of primordial gravitational

waves resulting to a ratio r ¼ 0.16þ0.06
−0.05 . In the meantime,

the Planck Collaboration released new data of increased
precision [8], reconfirming its previous analyses, according
to which r < 0.11. Also the BICEP2 and PLANCK joint
collaboration [9] established a robust upper bound r < 0.12
which is lower than the value quoted in [7]. Independently
of the value of r, it is important to consider and analyze
generalizations of it, preferably embedded in a more
general framework encompassing the particle physics
theories as well. Such a general framework is supergravity,
either as a local extension of supersymmetric particle field
theories or as a limit of superstring theory. Higher deriva-
tive supergravity, leading to higher powers of the curvature
scalar in the action, has been proven to be equivalent to
minimal supergravity coupled to chiral supermultiplets
[10,11]. In particular, the Starobinsky model corresponds
to minimal supergravity coupled to two chiral supermul-
tiplets. Furthermore, the Kähler potential is of the type
encountered in no-scale models [12]. Modifications of the
basic no-scale Kähler potential and various choices for the
superpotential have been studied, leading to a number of
inflationary alternatives [13]. All these models are neces-
sarily multifield models containing, apart from the inflaton,
additional scalar fields. These extra fields, coupled to the
inflaton through both the potential and their kinetic terms,
follow a complicated path in field space towards the
minimum. If the inflationary process is to be driven by a
single field, these additional scalars should, presumably, be
well settled in their vacuum during inflation.
In this paper we study generalizations of the Starobinsky

model derived in the framework of no-scale supergravity by
considering deformations of the basic superpotential.
Aiming at the construction of single-field inflationary
models that can realize viable slow-roll inflation, we derive
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a simple correspondence between the desired inflaton
potential and the superpotential in a general no-scale
supergravity framework. Such a framework, through its
geometrical properties, allows for spontaneous supersym-
metry breaking with a vanishing classical vacuum energy at
the Minkowski vacuum. Given the no-scale supergravity
framework, we investigate whether viable inflationary
models can be constructed by considering deformations
and modifications of the basic superpotential yielding the
Starobinsky model. After reviewing the relation of the no-
scale supergravity realization of the Starobinsky model to a
scalar field model nonminimally coupled to gravity and the
universal attractor, we proceed to consider generalizations
that can lead to viable inflationary models. We start
with the basic SUð2; 1Þ=SUð2Þ × Uð1Þ Kähler structure
and consider specific one-parameter modified superpoten-
tials, which, for a range of the relevant parameter, yield
viable inflationary behavior neighboring to that of the
Starobinsky model. We also consider models based on a
SUð1; 1Þ=Uð1Þ × Uð1ÞKähler potential and proceed with a
particular superpotential, showing that for a certain param-
eter range, we obtain models with viable slow-roll inflation.

II. DERIVATION OF THE STAROBINSKY
MODEL FROM NO-SCALE SUGRA

The standard no-scale Kähler potential involving two
chiral superfields T; S parametrizing the coset space
SUð2; 1Þ=SUð2Þ ×Uð1Þ is

K ¼ −3 ln ðT þ T − jSj2Þ: ð1Þ

For reasons of stability [14], the quadratic S-term may be
supplemented with extra higher powers of S, thus effec-
tively replacing jSj2 in the argument of the logarithm with
hðS; SÞ ¼ SSþ h1ðSSÞ2 þ � � �. The superpotential known
to correspond to the Starobinsky potential is

WðS; TÞ ¼ W0 þ λSðT − 1Þ; ð2Þ

λ being an arbitrary coupling. The scalar potential is

V ¼ eKðGiðK−1ÞijGj − 3jWj2Þ with

ðK−1Þij ¼ e−
K
3

3

�
T þ T S

S 1

�
ð3Þ

and

Gj ¼
∂W
∂ϕj þW

∂K
∂ϕj

¼
�
GT ¼ W0e−K=3 þ λSð1 − 3ðT − 1Þe−K=3Þ
GS ¼ λðT − 1Þð1þ 3jSj2e−K=3Þ: ð4Þ

In the limit S → 0 the Lagrangian reduces to

−3
j∇Tj2

ðT þ TÞ2 −
λ2

3

jT − 1j2
ðT þ TÞ2 ð5Þ

and can be cast partially in canonical form introducing real
scalar fields according to

T ¼ 1

2
e

ffiffi
2
3

p
ϕ þ iχ: ð6Þ

Then, it takes the standard Starobinsky form

−
1

2
ð∇ϕÞ2 − λ2

12
ð1 − 2e−

ffiffi
2
3

p
ϕÞ2 − 3e−2

ffiffi
2
3

p
ϕð∇χÞ2

−
λ2

3
e−2

ffiffi
2
3

p
ϕχ2; ð7Þ

with the additional presence of the imaginary part field χ.
Note that mχ > jmϕðϕÞj throughout inflation. Further
stabilization of the χ ¼ 0 vacuum can always be achieved
by adding a ðT − TÞ4 term in the logarithm argument of K.
The fact that supersymmetry is broken through both

GT ≠ 0 and GS ≠ 0 implies that the goldstino corresponds
to a mixture of the corresponding supermultiplets. Note
also that since at the Minkowski vacuum GS vanishes, the
imposition of a quadratic nilpotency constraint [15] con-
dition S2 ¼ 0 becomes singular.

III. RELATION TO NONMINIMAL COUPLING
AND THE UNIVERSAL ATTRACTOR

A scalar field, nonminimally coupled to gravity through
a coupling function ξfðφÞR and having a scalar potential
VðφÞ, is described in the Einstein frame with standard
Einstein gravity of the matter Lagrangian

−
1

2

�
3

2
ξ2

ð∇fÞ2
ð1þ ξfÞ2 þ

ð∇φÞ2
1þ ξf

�
−

V
ð1þ ξfÞ2 : ð8Þ

In the limit of very large coupling ξ ≫ 1, the second term in
the kinetic coefficient is subdominant and the model can be
set in the canonical form

−
1

2
ð∇ϕÞ2 − 4e−2

ffiffi
2
3

p
ϕVðϕÞ ð9Þ

in terms of 1
2
e

ffiffi
2
3

p
ϕ ¼ 1þ ξf. Then, the model is identical to

the Starobinsky model if the scalar potential is

VðfÞ ¼ λ2

12
ξ2f2: ð10Þ

Therefore, we may conclude that the nonminimal coupling
model
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1

2
ð1þ ξfðφÞÞR −

1

2
ð∇φÞ2 − λ2

12
ξ2f2ðφÞ ð11Þ

in the limit of very large coupling ξ ≫ 1 is equivalent to the
Starobinsky model. In fact, this limit corresponds to a
universal attractor [16] in which the Starobinsky model
predictions for the spectral index and the tensor-to-scalar
ratio predictions are indistinguishable from the nonminimal
coupling model predictions, being in agreement with the
Planck experiment results. Furthermore, it has also been
argued that, taking a nonminimal coupling function fðϕÞ
different than the function appearing in the potential
V ¼ λ2g2ðϕÞ, for sufficiently large ξ, we approach again
the Starobinsky potential with neighboring inflationary
predictions, while for ϕ in the inflationary regime
the values of the function g approach those of ξf
as gðϕÞ ≈ ξfðϕÞ þOð1=ξÞ.
The universal attractor model can be embedded in a

general no-scale supergravity model as follows. Consider
the Kähler potential K and the superpotential W

K ¼ −3 ln ð2þ FðTÞ þ FðTÞ − jSj2Þ; W ¼ λSFðTÞ:
ð12Þ

Taking the stabilizer S → 0, we obtain the Einstein-frame
Lagrangian

1

2
R − 3

j∇FðTÞj2
ð2þ FðTÞ þ FðTÞÞ2 −

λ2

3

jFðTÞj2
ð2þ FðTÞ þ FðTÞÞ2

¼ 1

2
R −

3

4

� ∇FðφÞ
ð1þ FðφÞÞ

�
2

−
λ2

12

F2ðφÞ
ð1þ FðφÞÞ2 ; ð13Þ

the last expression being valid if we take F to be a real
function of T ¼ φþ iχ and set the imaginary part χ to
zero.1 This is the Einstein-frame counterpart of the Jordan-
frame action

1

2
ð1þ FðφÞÞR −

λ2

12
F2ðφÞ ð14Þ

which coincides with (11) in the large nonminimal cou-
pling limit. Thus, in this limit we have a triple correspon-
dence of the general no-scale model defined by (12), the
Starobinsky model, and the nonminimal coupling model,
all comprising a universal attractor with coinciding infla-
tionary predictions.
Nevertheless, since, as we mentioned above, the no-scale

model with

K ¼ −3 lnð2þ fðTÞ þ fðTÞ − jSj2Þ; W ¼ λSgðTÞ;

for gðTÞ ≠ fðTÞ is expected to give inflationary predictions
neighboring to those of the Starobinsky model in the limit
of large fðTÞ; due to the universal attractor properties, a
line of generalization would be to start with (1) and deform
the superpotential as

W ∝ ðT − 1Þc; ð15Þ
the exponent c reducing to the universal attractor case for
c → 1. Further deformations are possible along the lines of

W ∝ ðT − 1ÞcðT þ bÞd: ð16Þ

IV. GENERALIZATIONS OF THE
STAROBINSKY MODEL

A. SUð2; 1Þ=SUð2Þ × Uð1Þ
We consider again the basic SUð2; 1Þ=SUð2Þ ×Uð1Þ

Kähler potential (1) expressed in terms of T and S but
generalize the superpotential as [15]

W ¼ W0 þ fðTÞS: ð17Þ

Then, we have

GT ¼ S
∂f
∂T − 3e−K=3ðW0 þ fðTÞSÞ;

GS ¼ fðTÞ þ 3e−K=3SðW0 þ fðTÞSÞ ð18Þ

or, in the S → 0 limit,

GT ¼ −
3W0

ðT þ TÞ ; GS ¼ fðTÞ: ð19Þ

In that limit the Lagrangian is

−
3j∂Tj2
ðT þ TÞ2 −

jfðTÞj2
3ðT þ TÞ2

¼ −
1

2
ð∇ϕÞ2 − 3e−2

ffiffi
2
3

p
ϕð∇χÞ2 − 1

3
e−2

ffiffi
2
3

p
ϕjfðTÞj2; ð20Þ

where, again, T ¼ 1
2
e

ffiffi
2
3

p
ϕ þ iχ. Again, supersymmetry is

broken by both S and T and the Minkowski vacuum
corresponds to fðT0Þ ¼ 0. If fðTÞ is a real function of
T, we have jfðTÞj2 ¼ jf�ðT�Þj2 ¼ jfðT�Þj2 and the scalar
potential is an even function of the imaginary part χ,
namely, Vðϕ; χÞ ¼ Vðϕ;−χÞ. This means that the point
χ ¼ 0 is always a minimum of the scalar potential. We,
thus, proceed by setting χ ¼ 0 and have

VðϕÞ¼ 1

3
e−2

ffiffi
2
3

p
ϕf2ðϕÞ⇒ fðϕÞ¼

ffiffiffi
3

p
e

ffiffi
2
3

p
ϕ

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞ

p
: ð21Þ

This is a useful formula that relates the desired inflationary
potential to the function fðTÞ of the superpotential. In the
case of the standard Starobinsky potential (7) we obtain

1Throughout this paper when a holomorphic function is
defined as “real” it is meant that it has real coefficients when
it is expanded as a power series. These functions become real
when the imaginary part of their argument is set to zero.
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fðϕÞ ¼ λ

2

�
e

ffiffi
2
3

p
ϕ − 2

�
⇒ fðTÞ ¼ λðT − 1Þ ð22Þ

as expected.
A more general scalar potential of the form

VðϕÞ¼ λ2

3
e−2

ffiffi
2
3

p
ϕ

�
1

2
e

ffiffi
2
3

p
ϕ−1

�
2c
�
1

2
e

ffiffi
2
3

p
ϕþb

�
2d
; ð23Þ

where b; c; d are real parameters, corresponds to the
superpotential function

fðTÞ ¼ λðT − 1ÞcðT þ bÞd; ð24Þ

being along the lines of the deformation (16). The corre-
sponding superpotential is

WðS; TÞ ¼ W0 þ λSðT − 1ÞcðT þ bÞd: ð25Þ

Note that the potential (23), being

V ∝
�
1 − 2e−

ffiffi
2
3

p
ϕ
�
2
�
1

2
e

ffiffi
2
3

p
ϕ − 1

�
2ðc−1Þ�1

2
e

ffiffi
2
3

p
ϕ þ b

�
2d

possesses an upward tail, in contrast to the completely
flat tail of the Starobinsky potential, which could be
unstable for superlarge field values. The simpler case of
c ¼ 1 and b ¼ 0 is shown in Fig. 1 for various values of the
parameter d.
The full scalar potential resulting from (25), including

χ ¼ ImðTÞ, is

Vðϕ;χÞ¼λ2

3
e−2

ffiffi
2
3

p
ϕ

×

��
1

2
e

ffiffi
2
3

p
ϕ−1

�
2

þχ2
	
c
��

1

2
e

ffiffi
2
3

p
ϕþb

�
2

þχ2
	
d
:

ð26Þ

Single-field inflation with this potential assumes a rapid
approach to the minimum χ ¼ 0. This is the case if the

ϕ-dependent masses m2
χðϕÞ ¼ 1

6
e2

ffiffi
2
3

p
ϕ ∂2V
∂χ∂χ and m2

ϕðϕÞ;¼
∂2V
∂ϕ∂ϕ are such that m2

χðϕÞ > m2
ϕðϕÞ for values of ϕ in the

inflationary plateau. In the case d ¼ 0 the potential pos-
sesses an upward tail at superlarge values for c > 1
reducing to the standard Starobinsky for c ¼ 1. The mass
ratio and the corresponding inequality are

m2
χ

m2
ϕ

¼ c=2h
ðc − 1Þ2 þ ð3c − 4Þe−

ffiffi
2
3

p
ϕ þ 4e−2

ffiffi
2
3

p
ϕ
i > 1

⇒
c
2
> ðc − 1Þ2; ð27Þ

leading to the range 1=2 ≤ c ≤ 2 in the inflationary regime.

B. SUð1;1Þ=Uð1Þ × Uð1Þ
In the seminal paper of Ceccoti [10] it was shown that the

extension of N ¼ 1 supergravity to include a quadratic
Ricci curvature term in the action corresponds to standard
supergravity with two chiral supermultiplets, namely,
our T and S, necessarily introduced through the
SUð2; 1Þ=SUð2Þ × Uð1Þ Kähler potential (1). Another line
of generalization of the no-scale models that lead to an
inflationary potential in the vicinity of the Starobinsky
model is to depart from the full coset space of (1) and
restrict ourselves to the SUð1; 1Þ=Uð1Þ ×Uð1Þ structure

K ¼ −3 lnðT þ TÞ þ jSj2: ð28Þ

Starting with a general superpotential linear in S

W ¼ gðTÞ þ fðTÞS; ð29Þ

we obtain

GT ¼ ∂g
∂T þ S ∂f

∂T −
3

ðTþTÞ ðgþ SfÞ
GS ¼ fþ Sðgþ SfÞ

⇒S¼0

�
GT ¼ ∂g

∂T −
3g

ðTþTÞ
GS ¼ fðTÞ:

The limit S → 0 may be achieved either by imposing a
nilpotency condition, if this is feasible, or by introducing an
additional stabilizing higher power term in the Kähler
potential. The resulting scalar potential is

VðT; TÞ ¼ 1

3ðT þ TÞ





 ∂g∂T −
3gðTÞ
ðT þ TÞ






2

þ 1

ðT þ TÞ3 ðjfðTÞj
2 − 3jgðTÞj2Þ; ð30Þ

while the corresponding kinetic term is

� � normalized

V

d�0.01

d�0.10

d�0.30

0 2 4 6 8
�2

0

2

4

6

8

10

FIG. 1 (color online). The inflation potential of Eq. (23), in
units of λ2=3, for values of the parameters c ¼ 1; b ¼ 0, and
various values of d.

A. B. LAHANAS AND K. TAMVAKIS PHYSICAL REVIEW D 91, 085001 (2015)

085001-4



3j∇Tj2
ðT þ TÞ2 : ð31Þ

It is clear that positive semidefiniteness of (30) is not
guaranteed unless jfðTÞj2−3jgðTÞj2¼c2≥0. Nevertheless,
a holomorphic relation between f and g allows only for the
choice c ¼ 0 or

fðTÞ ¼
ffiffiffi
3

p
gðTÞ ⇒ W ¼ fðTÞffiffiffi

3
p ð1þ

ffiffiffi
3

p
SÞ: ð32Þ

Going back to the potential and setting T ¼ φþ iχ, we get

Vðφ; χÞ ¼ 1

9ðT þ TÞ





 ∂f∂T −
3fðTÞ
ðT þ TÞ






2

¼ 1

18φ





 ∂
∂φ fðφþ iχÞ − 3

2φ
fðφþ iχÞ






2

: ð33Þ

Assuming that fðTÞ is a real function of T, it is clear that
the potential will be an even function of the imaginary part
χ, i.e.

Vðφ; χÞ ¼ Vðφ;−χÞ: ð34Þ

This implies that the point χ ¼ 0 will be always a
minimum. Therefore, we can proceed setting χ ¼ 0.
Then, the potential takes the form

VðφÞ ¼ 1

18φ

�
f0ðφÞ − 3

2φ
f

�
2

¼ 1

3
ðφ3=2ðφ−3=2fÞ0Þ2

¼ φ2

18
ððφ−3=2fðφÞÞ0Þ2

or

fðφÞ ¼
ffiffiffiffiffi
18

p
φ3=2

Z
dφ
φ

ffiffiffiffiffiffiffiffiffiffiffi
VðφÞ

p
: ð35Þ

The field φ ¼ ReðTÞ can be replaced by the canonical field
ϕ ¼

ffiffi
3
2

q
ln 2φ or φ ¼ 1

2
e

ffiffi
2
3

p
ϕ, in terms of which fðϕÞ reads

fðϕÞ ¼
ffiffiffi
6

p

2
e

ffiffi
3
2

p
ϕ

Z
dϕ

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞ

p
: ð36Þ

The formulas (35) and (36) are useful expressions
from which we may infer by analytic continuation the
superpotential function fðTÞ. Note that supersymmetry is
broken through GSðTÞ ¼ fðTÞ ≠ 0 and W ≠ 0, while
GTðTÞ vanishes at the Minkowski vacuum. S can be
identified with the goldstino multiplet and the limit s ¼
0 could be obtained through a nilpotency condition S2 ¼ 0.
Alternatively, stabilization can always be achieved by
including quartic S-terms in the Kähler potential.

As a first application of the above, we may consider the
standard Starobinsky scalar potential

VðφÞ ¼ λ2

12

�
1 −

1

φ

�
2

and obtain

fðTÞ ¼ λ

ffiffiffi
3

2

r ffiffiffiffi
T

p
ðT lnT þ 1þ CTÞ

⇒ W ¼ λffiffiffi
2

p ffiffiffiffi
T

p
ðT lnT þ 1þ CTÞð1þ

ffiffiffi
3

p
SÞ: ð37Þ

As another example we consider the potential

VðφÞ ¼ λ2

12

�
1 −

1

φ

�
2

φ2d: ð38Þ

Applying (35) for (38) we obtain (C is an integration
constant)

fðTÞ ¼ λ
ffiffiffi
3

p

d
ffiffiffi
2

p T
1
2

�
CdT þ T1þd þ d

1 − d
Td

�
: ð39Þ

The realization of single-field inflation depends crucially
on how fast the vacuum value of the imaginary part χ ¼ 0 is
approached during the inflationary phase. The field depen-
dent mass of χ is

m2
χ ¼

2

3
φ2

∂2V
∂χ∂χ

¼ 2φ

27

��
f00ðφÞ − 3

2φ
f0ðφÞ

�
2

−
�
f000ðφÞ − 3

2φ
f00ðφÞ

�

×

�
f0ðφÞ − 3

2φ
fðφÞ

��
: ð40Þ

The mass of the inflaton is more conveniently expressed in
terms of the canonical field ϕ as

m2
ϕ ¼ ∂2VðϕÞ

∂ϕ∂ϕ ¼ ∂2

∂ϕ2

�
2

3

�
ðfe−

ffiffi
3
2

p
ϕÞ0

�
2
�
; ð41Þ

where all derivatives are with respect to the canonical field.

For the last example above, for large ϕ, we have fðφÞ ∼
λ
ffiffi
3

p
d
ffiffi
2

p φ3=2þd and

m2
ϕ ≈

2d2λ2

9
φ2d

m2
χ ≈

λ2

9d2

�
dþ 3

2

���
d −

1

2

�
2

þ 5

4

�
φ2d

which necessitates the inequality
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�
dþ 3

2

���
d −

1

2

�
2

þ 5

4

�
> 2d4 ð42Þ

for the m2
χ > m2

ϕ to hold.

V. DUAL DESCRIPTION

The Starobinsky model (7) for χ ¼ 0 can also be set in its
original Ricci curvature form by going back to the Jordan
frame

1

4
Re

ffiffi
2
3

p
ϕ −

λ2

12

�
1

2
e

ffiffi
2
3

p
ϕ − 1

�
2

¼ 1

2
Rþ α

2
R2; ð43Þ

with α ¼ 3=2λ2. An alternative line of generalization
leading to a more general potential like (23) can arise
from a generalization of (43). We may start with the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Rþ α

2
R2ð1−nÞ

�
: ð44Þ

This can also be written as

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Rð1þ 2ΦÞ − CΦ

2ð1−nÞ
ð1−2nÞ

�
ð45Þ

with

C ¼ 1

2α1=ð1−2nÞ
ð1 − 2nÞ

ð1 − nÞ2ð1−nÞð1−2nÞ
: ð46Þ

The Einstein-frame action corresponding to (45) is

SE¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R−

3

4
ð∇ lnð1þ2ΦÞÞ2−C

Φ
2ð1−nÞ
ð1−2nÞ

ð1þ2ΦÞ2
�

ð47Þ
or, introducing again the canonical field ϕ as

1þ 2Φ ¼ 1

2
e

ffiffi
2
3

p
ϕ; ð48Þ

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
ð∇ϕÞ2

−
C

2
ð1−nÞ
1−2n

�
1 − 2e−

ffiffi
2
3

p
ϕ

�
2
�
1

2
e

ffiffi
2
3

p
ϕ − 1

� 2n
ð1−2nÞ

�
: ð49Þ

This corresponds to case

d ¼ 0; c ¼ 1 − n
1 − 2n

;

λ2

12
¼ ð1 − 2nÞ

2α1=ð1−2nÞð2ð1 − nÞ2Þ ð1−nÞ
ð1−2nÞ

ð50Þ

of (23). The parameter n can be positive 0 ≤ n ≤ 1=2,
giving an exponent of R between 1 and 2, or negative
giving an exponent 2ð1þ jnjÞ ≥ 2. Note, however, that in
the second case the potential vanishes asymptotically. This
model is embeddable in a no-scale supergravity model with
superpotential

W ¼ W0 þ
λffiffiffi
3

p SðT − 1Þ ð1−nÞ
ð1−2nÞ: ð51Þ

VI. SLOW-ROLL INFLATION

Based on the generalizations of the Starobinsky model
discussed in the previous sections we may proceed now and
study their inflationary predictions. For a canonical field in
a Friedmann-Robertson-Walker background, the equations
of motion are

H2 ¼ 8π

3M2
ρ; ϕ̈þ 3H _φþ V 0ðϕÞ ¼ 0: ð52Þ

The parameters relevant to single-field inflation are
defined as2

ϵ¼ 3

2

�
p
ρ
þ1

�
¼ 4π

M2

�
_ϕ

H

�2

¼−
_H
H2

; η¼−
ϕ̈

H _ϕ
: ð53Þ

Assuming that the slow-roll approximation holds, we may
have

_ϕ2 ≪ V ⇒ H2 ≈
8π

3M2
V; _ϕ ≈ −

V 0ðϕÞ
3H

:

Then, we have the following approximate expressions for
the slow-roll parameters:

ϵ≈
M2

16π

�
V 0ðϕÞ
VðϕÞ

�
2

; η≈
M2

8π

�
V 00ðϕÞ
VðϕÞ −

1

2

�
V 0ðϕÞ
VðϕÞ

�
2
�
:

ð54Þ

A. A SUð1;1Þ=Uð1Þ × Uð1Þ example

Let us consider the potential

V
�
ϕ
�
¼ λ2

12

�
1 − 2e−

ffiffi
2
3

p
ϕ

�
2

e2d
ffiffi
2
3

p
ϕ ¼ λ2

12
22d

�
1 −

1

φ

�
2

φ2d;

ð55Þ

written in terms of the canonical field ϕ or φ ¼ 1
2
e

ffiffi
2
3

p
ϕ. This

potential arises in the case of the Kähler metric (28) and

2Note that the definition for η differs from the potential
definition ηV ¼ M2

8π ðV
00
V Þ as η ¼ ηV − ϵ.
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corresponds to a superpotential

W ∝ ð1þ
ffiffiffi
3

p
SÞT1=2

�
dCT þ T1þd þ d

1 − d
Td

�
:

We obtain

ϵ ≈
M2

6π

�
dþ 2e−

ffiffi
2
3

p
ϕ

1 − 2e−
ffiffi
2
3

p
ϕ

�2

¼ M2

6π

�
dþ 1

φ − 1

�
2

η ≈
M2

6π

�
d2 þ 2ð2d − 1Þe−

ffiffi
2
3

p
ϕ

1 − 2e−
ffiffi
2
3

p
ϕ

�
¼ M2

6π

�
d2 þ ð2d − 1Þ

φ − 1

�
:

ð56Þ

The amount of required inflation is parametrized
in terms of the number of e-folds given by the integral
formula

N ¼ −
Z

ϕ1

ϕ
dϕ

V
V 0 ð57Þ

in terms of the initial field value ϕ and the field value at the
end of inflation ϕ1, defined by the breakdown of the slow-
roll approximation [ϵðϕ1Þ ≥ 1]. Integrating the expression
(57) we obtain

N ¼ 3

4ð1 − dÞ lnðφ1=φÞ −
3

4dð1 − dÞ ln
�
φ1 − 1þ 1

d

φ − 1þ 1
d

�

¼ 1

2ð1 − dÞ

ffiffiffi
3

2

r
ðϕ1 − ϕÞ

−
3

4dð1 − dÞ ln
�
e

ffiffi
2
3

p
ϕ1 þ 2ð1d − 1Þ

e
ffiffi
2
3

p
ϕ þ 2ð1d − 1Þ

�
: ð58Þ

The field value ϕ1 is determined by

4

3

�
dþ 1

φ1 − 1

�
2

¼ 1 ⇒ φ1 ¼
1þ 2ffiffi

3
p ð1 − dÞ
1 − 2dffiffi

3
p

or ϕ1 ¼
ffiffiffi
3

2

r
ln

�
2þ 4ffiffi

3
p ð1 − dÞ
1 − 2dffiffi

3
p

�

with ϕ1 larger than the field value at the minimum ϕ0,

obtained from 2e−
ffiffi
2
3

p
ϕ0 ¼ 1 or φ0 ¼ 1.3 In Fig. 2 we

display the regions of the field valued slow-roll parameters,
when d < 0.3, for which slow-roll approximation is valid.
In Fig. 3, for values of d < 0.15, we show the regions
(shaded) for the number of e-foldings left, N, the scalar tilt
index ns and the tensor-to-scalar ratio r,

ns ¼ 1 − 4ϵþ 2η; r ¼ 16ϵ: ð59Þ

The acceptable value forN should be in the range 50–60.
As for the spectral index, Planck data combined with
WMAP large-angle polarization yield ns ¼ 0.9603�
0.0073, which is robust to the addition of external data
sets. This value is only slightly changed, in view of the new
Planck data [8], ns ¼ 0.968� 0.006. Thus, the most
favorable value for the spectral index is very close to
ns ≈ 0.96. For the much disputed tensor-to-scalar ratio r
of the primordial spectrum, the PLANCK Collaboration
and BICEP2 have now established a joined upper bound,
r < 0.12 [9], and thus values of r lower than or close to
∼0.1 are consistent with current observations. In Fig. 3 we
display regions (as shadowed) in which ns is in the range
0.95–0.97 and the ratio r is less than 0.1 and larger than
0.001. The region where 50 < N < 60 is also shown. The
latter overlaps with the ns region at two distinct areas
specified by values of the parameter d ∼ 0.12 and
d≲ 0.01. Within the first region r ∼ 0.25 and in the second
r≲ 0.006. In this sensewemay say that the particular model
interpolates between values favored by chaotic inflation
scenarios, which predict r ∼ 0.1, and Starobinsky’s model
predictions that yield small values, r ∼ 0.001, for the ratio r.
Within the area shown in Fig. 3, the slow-roll parameters are

FIG. 2 (color online). Within the shaded regions in the ϕ; d
plane, for the potential given by Eq. (55), the slow-roll parameters
are jηj < 1 and ϵ < 1 and slow-roll holds. The value of the field
minimizing the potential is also shown.

3This actually holds for values d < 1=2 which is the regime in
which agreement with observational data can be obtained. The
region for which both ϵ and η are less than unity is shown in
Fig. 2. One observes that ϵ < 1 results to jηj < 1, as well, for
values d > 1þ ffiffi

3
p

−
ffiffi
7

p
2

≈ 0.043. For smaller values of d, departure
from slow roll is determined by jηðφ1Þj ¼ 1. In this case the
resulting value φ1 is very close to the one determined above as
shown in the same figure.
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well within the slow-roll regime, jηj ≪ 1 and ϵ ≪ 1. Note
that the bound r < 0.1 excludes the overlapping region for
ns; N, centered around values ofd in thevicinity ofd ∼ 0.12,
leaving as the only possibility the region designated by small
values d < 0.01.

B. A SUð2;1Þ=SUð2Þ × Uð1Þ example

Consider now the potential

V ¼ λ2

3
e−2

ffiffi
2
3

p
ϕ

�
1

2
e

ffiffi
2
3

p
ϕ − 1

�
2c

ð60Þ

arising in the case of the SUð2; 1Þ=SUð2Þ ×Uð1Þ Kähler
metric with a superpotential

W ¼ W0 þ λSðT − 1Þc: ð61Þ

Note that for c ¼ 1 we have exactly the Starobinsky
potential. Note also that this model corresponds to the
Rþ Rm theory with exponent m ¼ 2c=ð2c − 1Þ. We have

V 0

V
¼ 2

ffiffiffi
2

3

r �
−1þ

c
2
e

ffiffi
2
3

p
ϕ

1
2
e

ffiffi
2
3

p
ϕ − 1

�
¼ 2

ffiffiffi
2

3

r �
−1þ cφ

φ − 1

�

and

ϵðϕÞ ¼ 4

3

�
−1þ

c
2
e

ffiffi
2
3

p
ϕ

1
2
e

ffiffi
2
3

p
ϕ − 1

�2

¼ 4

3

�
−1þ cφ

φ − 1

�
2

;

η ¼ 4

3

½ððc − 1Þφþ 1Þ2 − cφ�
ðφ − 1Þ2 : ð62Þ

The end of inflation is given by ϵðφ1Þ ¼ 1 and it occurs at a
field value

φ1 ¼
1

1 − c
ð1þ

ffiffi
3

p
2
Þ
:

The number of e-folds is given by

N ¼ 3

4
lnφ1 −

3

4

c
ðc − 1Þ ln ððc − 1Þφ1 þ 1Þ − 3

4
lnφ

þ 3

4

c
ðc − 1Þ ln ððc − 1Þφþ 1Þ: ð63Þ

Taking sample values for the exponent c we may arrive at
the values for the inflationary parameters shown in Table I.
In Fig. 4 we plot the shape of the potential for this model,

given by Eq. (60), for three representative values of the
parameter c. In Fig. 5 we display the regions (as shaded)
where the slow-roll parameters are less than unity and slow-
roll holds. In Fig. 6, in the ϕ; c plane, we display the
regions for the number of foldings N and the parameters ns

FIG. 3 (color online). In the ϕ; d plane, and for the potential
given by Eq. (55), we delineate the regions (shaded) for which
50 < N < 60, 0.95 < ns < 0.97, and 0.001 < r < 0.1. Only for
small values of d can the three quantities be simultaneously
within observational limits.

TABLE I. Sample values for the inflationary parameters, for
various values of the parameter c, for the potential given by
Eq. (60).

c ϕ1 N ϕ ϵ η ns r

1.001 1.79 59.87 6.29 0.00022 −0.01585 0.96740 0.00356
1.01 1.80 55.01 6.71 0.00046 −0.01098 0.97622 0.00730
1.05 1.86 55.67 9.31 0.00347 þ0.00207 0.99025 0.05560
1.08 1.91 59.68 12.13 0.00856 þ0.00841 0.98260 0.13690
1.09 1.92 59.55 12.98 0.01081 þ0.01074 0.97823 0.17301

normalized

V

c 1.001

c 1.050

c 1.090

0 2 4 6 8
0.2

0.0

0.2

0.4

0.6

0.8

FIG. 4 (color online). As in Fig. 1 for the inflation potential of
Eq. (60) for values of the parameters c ¼ 1.001; 1.050; 1.090.
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and r. As in the case of the potential (55), considered
previously, the shadowed regions correspond to
50 < N < 60, 0.95 < ns < 0.97, and 0.001 < r < 0.1.
The region in which the spectral index and the number

of e-foldings is within observational limits forces c to
values c < 1.01 and therefore the potential (60) deviates
little from the Starobinsky’s model. The maximum value of
r within the allowed region in this case is r≃ 0.006.

VII. BRIEF SUMMARY AND CONCLUSIONS

The obvious need to embed inflationary models into the
general framework of fundamental particle physics leads
naturally to the consideration of these models in the
framework of supergravity. In the light of existing cosmic
microwave background data, favoring large field inflation,
among the possible viable inflationary models the
Starobinsky model has received particular attention, real-
izing the attractive property that the inflaton degree of
freedom is supplied by gravity itself. The minimal super-
gravity theory incorporating quadratic curvature terms has
been shown to be equivalent to standard minimal super-
gravity coupled to a pair of chiral multiplets [10,11].
Furthermore, the associated Kähler potential is that of
the SUð2; 1Þ=SUð2Þ × Uð1Þ no-scale models [12]. The
geometrical properties of these models can accommodate
a naturally vanishing classical vacuum energy and sponta-
neous supersymmetry breaking. For the given Kähler
potential, the Starobinsky model is obtained for a particular
choice of superpotential. Nevertheless, it is legitimate to
investigate whether viable inflationary models can arise
within this general context from various deformations or
modifications of the superpotential.
In the present article, after briefly reviewing the relation

of the no-scale supergravity realization of the Starobinsky
model to a scalar field model nonminimally coupled to
gravity and the universal attractor, we proceeded to con-
sider generalizations that can lead to viable inflationary
models. We started with the basic SUð2; 1Þ=SUð2Þ ×Uð1Þ
Kähler structure and considered superpotentials of the form
(25) that lead to generalizations of the Starobinsky potential
having the generic form (26). In those models the imagi-
nary part of the chiral superfield T settles to its vacuum
value at the origin and the scalar potential reduces to an
effectively single-field potential, the inflaton being the real
part of T. This was exemplified analytically in super-
potentials (61) by showing that in the parameter range
1=2 < c < 2, the imaginary part of the chiral superfield T
has a field dependent mass which is large enough, as
compared with that of the inflaton, to drive it towards its
minimum value at ImT ¼ 0, reducing the potential to (60).
Interestingly, enough the Starobinsky potential is recovered
for the value c ¼ 1, being within the aforementioned range
of the values of c. We then proceeded to study slow-roll
inflation of this model and found that the parameter c must
be quite close to the Starobinsky value c ¼ 1 in order to
yield inflationary predictions as shown in Fig. 6.
Within this region the tensor-to-scalar ratio r cannot
exceed 0.006.

FIG. 5 (color online). As in Fig. 2 for the potential of Eq. (60).
Within the shaded regions, in the ϕ; c plane, the slow-roll
parameters are jηj < 1 and ϵ < 1 and slow-roll holds. The value
of the field minimizing the potential is also shown.

FIG. 6 (color online). As in Fig. 3, for the potential of Eq. (60),
we delineate regions (shaded) in the ϕ; c plane for which
50 < N < 60, 0.95 < ns < 0.97, and 0.001 < r < 0.1. Only
for values of c in the vicinity of 1 can the three quantities be
simultaneously within observational limits.
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We also considered modifications of the basic Kähler
structure to SUð1; 1Þ=Uð1Þ × Uð1Þ, assuming a general
superpotential of the form (32). We proceeded to consider
a particular form (39), characterized by one parameter d
that sets the scale of departure from the inflationary
plateau, and showed that for the parameter range defined
by (42) the scalar potential reduces to (55). We proceeded
to study slow-roll inflation of this model. The results can
be exhibited in Fig. 3. In this model the number of e-
foldings and the spectral index can be within observa-
tional limits for values of the parameter d around ∼0.12
and also small values of it, d < 0.01. In the “high” d
regime (d ∼ 0.12) the values of r are large r > 0.2 and thus
the predictions mimic those of the chaotic inflation
models. Such large values, however, are above the bounds
set by the recent PLANCK and BICEP2 data. The most

reasonable option for the range of d is the “low” region,
d < 0.01, which inevitably leads to predictions close to
the Starobinsky model with values of r that can be slightly
enhanced, reaching r≃ 0.006.
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