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We assess two potential signals of the formation of our universe by the decay of a false vacuum. Negative
spatial curvature is one possibility, but the window for its detection is now small. However, another possible
signal is a suppression of the cosmic microwave background (CMB) power spectrum at large angles. This
arises from the steepening of the effective potential as it interpolates between a flat inflationary plateau and
the high barrier separating us from our parent vacuum. We demonstrate that these two effects can be
parametrically separated in angular scale. Observationally, the steepening effect appears to be excluded at
large l; but it remains consistent with the slight lack of power below l ≈ 30 found by the WMAP and
Planck collaborations. We give two simple models which improve the fit to the Planck data; one with
observable curvature and one without. Despite cosmic variance, we argue that future CMB polarization
and most importantly large-scale structure observations should be able to corroborate the Planck anomaly if
it is real. If we further assume the specific theoretical setting of a landscape of metastable vacua, as
suggested by string theory, we can estimate the probability of seeing a low-l suppression in the CMB.
There are significant theoretical uncertainties in such calculations, but we argue the probability for a
detectable suppression may be as large asOð1Þ, and in general is significantly larger than the probability of
seeing curvature.
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I. INTRODUCTION AND SUMMARY

Inflation [1–4] is a powerful framework for understand-
ing the early universe, in particular the spectrum of density
perturbations that led to structure formation and to anisot-
ropies in the cosmic microwave background (CMB) [5–9].
Measurement of these anisotropies [10–14] out to l ≈ 1000
were crucial in establishing the standard ΛCDM model of
cosmology. Very strong additional evidence for this model
has recently been provided by the Planck collaboration
[15–18], which reported measurements of temperature
anisotropies out to l ≈ 2500. Their results for the power
spectrum above l ¼ 50 are shown in Fig. 1.
There are some basic facts in cosmology which are not

explained by the ΛCDM model. Chief among these is the
smallness of the observed value of the cosmological
constant. Moreover, it is not obvious that slow-roll inflation

is generic. One could argue that some tuning of both the
fundamental theory and the initial conditions is required:

(i) Theory parameters: For the observed structure to be
seeded, there must be a hierarchy between the
fundamental scale and the scale of inflation, and also
sufficient flatness over a large enough field range.

(ii) Initial conditions: For inflation to begin, vacuum
energy must dominate in a region of order the
associated Hubble scale. If initial conditions can
be tuned to give rise to such a patch, why not solve
the horizon, homogeneity, and flatness problems
directly by tuning? Moreover, why should the field
start off high enough on the potential to inflate but
not so high as to overshoot the inflationary region?

It is difficult to quantify such concerns except within a
specific and well understood theoretical setting.
A setting in which one could aspire to do this is the string

landscape of metastable vacua [22–25], populated by
eternal inflation [26–28]. In this setting one can in principle
derive statistical predictions for the parameters of ΛCDM
and inflation. This determines which regions of parameter
space are typical and which are not.
In practice, our understanding of the string landscape is

too primitive to derive prior distributions from the top
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down. For a few parameters the prior can be derived with
some confidence. In particular, the cosmological constant
should have a flat distribution near Λ ¼ 0 if supersymmetry
is broken [29]. Along with the assumption that observers
require galaxies, this can explain its smallness [22,29–32].
(With the causal patch measure, specific anthropic assump-
tions can be eliminated and, in addition, the coincidence
that vacuum energy is comparable to the present matter
density can be explained [33].) Other parameters can also
be treated using simple phenomenological assumptions
about their distributions [34–38].
In the string landscape, our universe would emerge

through the decay of a metastable de Sitter vacuum, as a
Coleman-De Luccia bubble [39]. This setting goes a long
way toward solving the initial conditions problem for
inflation. The SOð3; 1Þ invariance of the bubble ensures
a homogeneous, isotropic Friedmann-Robertson-Walker
(FRW) universe inside. Because neighboring vacua typi-
cally have very different cosmological constant, the poten-
tial energy after decay can be large enough for slow-roll
inflation and reheating to follow. And the spatial curvature
of the universe inside is always negative, which creates
Hubble friction that prevents the field from overshooting
the inflationary plateau [36].
Motivated by this theoretical setting, but without com-

mitting specifically to the string landscape, we will con-
sider the phenomenological consequences of a first-order
phase transition followed by inflation. The relevant type of
potential [36,40] is shown in Fig. 2. In the first sections
of the paper we examine possible signatures of this type of
potential using standard inflationary techniques. Only in
the final sections will we make assumptions about the
distribution of potentials in the landscape; and subject to
these assumptions, we will estimate the probability that an
imprint of false vacuum decay will be detected in future
experiments.

If inflation was preceded by false vacuum decay, there
are two generic features which lead to potentially observ-
able signatures1:

(i) The negative spatial curvature inside the bubble
could be seen if it is not diluted by too much
inflation. The current observational bound is
ΩK ≲ 10−2, but ΩK as small as 10−4 should even-
tually be distinguishable from cosmic variance.

(ii) During the earliest part of slow-roll inflation, the
potential steepens as it interpolates from the infla-
tionary plateau to the potential barrier. This causes
the scalar field to roll faster, which suppresses the
primordial power spectrum P ∼ H4

_ϕ2 at low angular

parameter l [51]. Depending on the strength of this
effect and on the value of l at which it turns on, it
could be detectable in the CMB and in large scale
structure surveys.

The first of these effects was discussed in detail in the wide-
ranging analysis of [36]. The possibility of a signature from
the steepening of the potential was also raised, without
claiming that this generically leads to power suppression
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FIG. 1 (color online). Planck data for lðlþ1Þ
2π Cl, in ðμKÞ2, for

l ≥ 50. The red theory curve is ΛCDM with the Planck best-fit
parameters, as computed using CLASS [19–21].

FIG. 2 (color online). The decay of our parent vacuum followed
by slow-roll inflation. The dashed line indicates a tunneling event
from the high energy false vacuum, after which the field
classically rolls down the hill. There is an initial period of
curvature domination, where a ≈ t, during which the field does
not travel very much. This ends when 1

a2
becomes of order VðϕÞ,

after which inflation begins. Eventually inflation exits and the
system reheats into our vacuum, with small cosmological con-
stant. For later convenience we choose ϕ ¼ 0 where modes of
wavelength equal to our horizon size today are just exiting the
inflationary horizon.

1These are not the only possible signatures associated to
inflation as originating after vacuum decay. Two noteworthy
others are bubble collisions [41] and tensor modes from the
nucleation process [42]. The likelihood of the former is quite
difficult to estimate, and in any event it has recently been strongly
constrained by the optimal analysis [43,44] (see also [45,46]).
The latter only affects modes whose wavelength is of order the
radius of curvature, so we can simply think of it as another
manifestation of the open curvature that we discuss here. The
same can be said for the recent discussion of [47]. Other more
exotic possibilities include [48–50].
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relative to ΛCDM. The idea that a steeper potential leads to
a low l power suppression was noted in [51], outside of the
context of bubble nucleation.
In this paper, we will argue that in some respects the

power suppression from the steepening of the potential is a
more promising signature to look for than negative curva-
ture. To do so, we need to answer the following questions:

(i) Both the power suppression and the curvature
originate from the same feature, the potential barrier
at the beginning of inflation. Since curvature has
been bounded at the level of jΩKj≲ 10−2, is there
still hope of observing steepening?

(ii) Any suppression of the power would have to happen
below l ≈ 50, since the running is strongly con-
strained at smaller scales. For such large angles, will
cosmic variance prevent us from ever being able to
confirm this feature with high confidence?

(iii) If false vacuum decay induces a steepening feature,
what is the probability that the associated power
suppression begins between l ¼ 2 and l ¼ 50, the
range inwhich itmay be detectable in the future?Why
not in the invisible region (l ≪ 1), or at higher l?

We will be able to analyze the first two questions without
any specific assumptions about the underlying theory. The
last will require a quantitative discussion of plausible prior
distributions in the string landscape, as well as a consid-
eration of anthropic boundaries.
Our theoretical understanding of both the prior and the

catastrophic boundary is limited, so our analysis of this
third question should be considered preliminary.
(a) Summary of results Below we list our key findings:

(i) It is possible for steepening to be observable
even if inflation lasted long enough to wipe out
all observable traces of curvature. More gener-
ally, it will typically be the case that one should
see the suppression before seeing curvature.

(ii) One might worry that competing effects could
make it uncertain whether potential steepening
will result in a suppression or an enhancement
of power [36]. We show that suppression is the
larger effect in the parametric limit of small
slow roll parameters ϵ and η. We therefore
conclude that suppression is the generic signal.
We also show that there should be no analogous
suppression in the tensor power spectrum.

(iii) The Planck collaboration has reported a sup-
pression of power below l ≈ 30 [16], albeit
with low significance (2.5 − 3σ). This is such a
low level of statistical significance that it does
not demand a modification of ΛCDM. How-
ever, motivated by the theoretical case for a
steepening feature, we exhibit two models that
parametrize its inclusion. Both are found to
improve the fit to the CMB power spectrum
without violating the constraints on curvature.

(iv) The confidence in a suppression of power at
low l can be increased substantially, if such an
effect is real. Polarization measurements in the
CMB will be of some help in this direction, but
a more useful tool is large scale structure and
possibly 21 cm radiation measurements. We
argue that such observations may eventually
have the potential to increase the significance of
the anomaly to as much as ∼5 − 6σ.

(v) With a plausible prior for the distribution of
the steepening feature among landscape vacua
with slow-roll inflation, the probability for an
observable effect to lie in the visible region can
be as high as Oð1Þ.2 This is higher than the
probability for seeing curvature under similar
assumptions, which is Oð10%Þ.

(b) Outline In Secs. II–IV, we assume only that our
universe was produced by the decay of a metastable
vacuum, followed by slow-roll inflation. In Sec. II we
derive the perturbative effect of a steepening feature in
the inflationary potential on the power spectrum.
Section III discusses the observational status of
this effect. We find it to be excluded for l≳ 100
but allowed, and slightly favored, for l≲ 30. This
anomaly has little significance for now, but we argue
that future observations have the potential to eliminate
or corroborate it. In Sec. IV, we illustrate key features
of the steepening effect using two models. We show
that the onset of curvature can be parametrically
separated from the steepening feature.
In the final two sections we assume the existence of a

large landscape of metastable vacua. Sec. Vargues that
a steepening feature near the beginning of inflation is
statistically favored in the landscape, whereas flat-
tening is disfavored. In particular, this disfavors
scenarios such as slow-roll eternal inflation and
Hawking-Moss tunneling. In Sec. VI, we estimate
the probability that the steepening feature lies in the
observable region. We consider a range of plausible
prior distributions for its location in the potential. We
argue for a catastrophic boundary near l ∼Oð104.5Þ
and find that the probability for observable steepening
can be as large as Oð1Þ. After observational exclusion
of a feature for l≳ 102, we find that the probability
for a feature at lower l ranges between 10% and
40%, depending on our assumptions about the prior
distribution.

(c) Related work Our work builds on the seminal
analysis of Freivogel, Kleban, Martinez, and
Susskind [36]. Other work with some overlap in-
cludes Refs. [40,42,51–55]. We believe that each of

2Throughout, by a probability p ∼ Oð1Þ we mean that
p=ð1 − pÞ is of order unity; that is, p is neither very close to
0 nor very close to 1.
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the points we listed in our “summary of results”
above is original to this paper. Also the day before
this paper was posted, [56,57] appeared on the arXiv,
which give stringy realizations of a low-l power
suppression in the CMB from a steepening potential.
A preliminary version of our results was reported by
D. H. at the “Primordial Cosmology” workshop at
Kavli Institute for Theoretical Physics (KITP) on May
23rd, 2013, and are available online. This work was
although discussed further by D. H. at the “Open
Questions in an Open Universe” workshop in Istanbul
at Bogazici University, on August 12th 2013.

II. LARGE SCALE POWER SUPPRESSION FROM
POTENTIAL STEEPENING

In this section we study the effects of a steepening
feature in the inflaton potential on the scalar and tensor
power spectra of the CMB. Our working hypothesis is that
if our universe was created through a bubble nucleation,
then the inflaton potential is expected to be steeper at the
beginning of slow-roll inflation, as in Fig. 2. This can leave
a detectable imprint, as we now show.3

We work in the context of slow roll inflation, where the
parameters

ϵ≡M2
P

2

�
V 0

V

�
2

; ð1Þ

η≡M2
P
V 00

V
; ð2Þ

are small compared to unity.4 We use the reduced Planck
mass, M−2

P ≡ 8πG.
The scalar and tensor spectra are related to the dynamical

variables (H, _ϕ) and to the potential parameters (V, V 0),
evaluated at the time when modes with wave number k exit
the horizon during inflation (see for example [60]):

k3Ps ¼
1

2

H4

_ϕ2
≈

1

6M6
P

V3

V 02 ¼
1

12

V
M4

P

1

ϵ
; ð3Þ

k3Pt ¼ 4
H2

M2
P
≈
4

3

V
M4

P
: ð4Þ

The tensor to scalar ratio is

r≡ Pt

Ps
≈ 16ϵ: ð5Þ

In the slow-roll approximation these power spectra are
close to a power-law spectrum, which for Ps is often
parametrized as

k3Ps ¼ 2π2As

�
k
kpiv

�
ns−1

: ð6Þ

Here kpiv is some reference wave number often taken to be
:05 Mpc−1, and ns is called the spectral index. The Planck
best-fit parameters are As ¼ 2.215 × 10−9 and ns ¼ :9624
[17]. For slow-roll inflation we have

ns − 1 ≈ 2η − 6ϵ: ð7Þ

To find the power spectra as functions of kwe need to relate
ϕ and k, by solving

log

�
k
kh

Hh

HðϕÞ
�
≡ ΔN ≈

Z
ϕ

0

dϕ
MP

1ffiffiffiffiffi
2ϵ

p ; ð8Þ

where we used the condition that ka0 ¼ aH at horizon
crossing.5 Here and throughout, a subscript h indicates the
value of a parameter at the time when scales comparable to
our current horizon today were exiting the inflationary
horizon. Thus the wave number of modes which were
horizon sized at that time (and therefore today) is kh ¼ H0.
We shift ϕ to set ϕh ¼ 0. It will often be convenient to use
the approximate relationship

l ≈ kDls; ð9Þ

which relates angular scale on the CMB to the wave
number of modes which contribute strongest to the Cl’s
at that scale. Here Dls is the proper distance to the last-
scattering surface today, given by

Dls ¼
1

H0

Z
1

1=ð1þzlsÞ

dx

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ ΩKx−2 þΩMx−3 þΩRx−4

p
≈
3.1
H0

: ð10Þ

To include a steepening feature, we write the potential in
the form

3Imprints from the steepening feature could be evaded if the
Coleman-de Luccia decay deposits the field not on the steep
slope but further along on the inflationary plateau. We argue
in Appendix B that such potentials are not generic.

4Our results could also be derived in the effective field theory
of inflation [58,59]. This framework is largely motivated by the
fact that all observations apart from the curvature are related to
the perturbations themselves, and not to the background solution.
However, here we wish to exhibit the connection between a
perturbative signal (power suppression) and a property of the
background solution (steepening). Therefore, we use a formalism
that makes the background solution explicit.

5We mostly follow the conventions of [60], where both the
scale factor a and the wave vector ~k are dimensionful. The
dimensionless canonical conjugate to the dimensionless FRW
coordinate ~x is ~q≡ a0~k. Unlike [60] however, we define the
Fourier transform as f~k ≡

R
d3xe−i~k·~xfð~xÞ.

RAPHAEL BOUSSO, DANIEL HARLOW, AND LEONARDO SENATORE PHYSICAL REVIEW D 91, 083527 (2015)

083527-4



V ¼ VS þ γVR: ð11Þ

Here S and R stand for “slow” and “rapid.” VS is a slowly-
varying potential whose predicted values for ns, V=ϵ, and r
are consistent with the Planck best-fit parameters [17]. The
steepening perturbation VR is a positive, monotonically
decreasing function of ϕ that is small compared to VS at
large ϕ but becomes order VS as ϕ approaches 0 from the
right. γ is a small parameter, which we can make unam-
biguous by normalizing VR such that

VS½0� ¼ VR½0�; ð12Þ

remembering that by definition, ϕh ¼ 0 corresponds to the
present horizon scale. This decomposition is illustrated in
Fig. 3. We expand in γ ≪ 1.
The full slow-roll parameter ϵ can be expanded as

ϵ ¼ ϵS

�
1þ 2γ

�
V 0
R

V 0
S
−
VR

VS

�
þOðγ2Þ

�
: ð13Þ

Crucially, the firstOðγÞ correction will generically be larger
than the second near ϕ ¼ 0. This is because VR

0 is
significantly larger than VS

0, which is proportional toffiffiffiffiffi
ϵS

p
. This can be captured systematically by organizing

the expansion in terms of

~γ ≡ γffiffiffiffiffi
ϵS

p : ð14Þ

We will therefore demand not just that γ ≪ 1 but also that
~γ ≪ 1, so that perturbative corrections to ϵ are small.
Expanding to first order in ~γ, we find

V ≈ VS;

ϵ ≈ ϵS

�
1þ 2γ

V 0
R

V 0
S

�
; ð15Þ

and thus

Ps

Ps;S
≈
�
1 − 2γ

V 0
R

V 0
S

�
;

Pt

Pt;S
≈ 1: ð16Þ

This demonstrates the claimed effect: to leading order in
the slow-roll parameters and ~γ, the scalar power spectrum is
suppressed (never enhanced) by the steepening perturba-
tion. In this limit we can regard only the slope of the
potential as perturbed, not the height; thus, the tensor
spectrum is unaffected at this order. This means that low-l
suppression should be seen in the TT, TE, and EE
correlation functions in the CMB, which are dominated
by Ps, but not in the BB correlation function, which is
controlled by Pt.
We have expressed the power spectra as functions of ϕ.

What is actually measured is the power as a function of k,
but this does not change our result at leading nontrivial
order. To see this, we must solve (8), keeping track of
corrections proportional to γ. Parametrizing the exact
solution as

ϕðkÞ ¼ ϕSðkÞ þ δϕðkÞ; ð17Þ

one has

Ps;SðϕðkÞÞ ≈
1

6M6
P

VS½ϕS þ γδϕ�3
V 0
S½ϕS þ γδϕ�2

≈ Ps;SðϕSðkÞÞ
�
1þ

�
3
ffiffiffiffiffiffiffi
2ϵS

p
− 2

ηSffiffiffiffiffiffiffi
2ϵS

p
�

δϕ

MP

�
:

ð18Þ

To understand the size of these corrections, we need to find
δϕ. Since Hh

H ¼ 1þOð ffiffiffi
ϵ

p Þ, Eq. (8) can be approximated as

log

�
k
kh

�
≈
Z

ϕ

ϕh

dϕ
MP

1ffiffiffiffiffiffiffi
2ϵS

p
�
1 − γ

V 0
R

V 0
S

�
: ð19Þ

Solving this equation perturbatively in γ shows that

δϕðkÞ ≈ γ
V 0
R

V 0
S

ffiffiffiffiffiffiffi
2ϵS

p
logðk=khÞ; ð20Þ

so the corrections coming from this effect are smaller
than the suppression term in (16) by factors of either
ϵS logðk=khÞ or ηS logðk=khÞ. It is important here that we
are interested only in logðk=khÞ of order one, since the
effect due to VR decays at higher k. In practice, this means
that we can just use the solution ϕS in (8).

III. OBSERVATION

In this section, we consider the observational prospects
of the power suppression from steepening.

FIG. 3 (color online). Our decomposition of the potential into a
flat piece VS, that fits ΛCDM, and a steepening perturbation γVR.
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A. The Planck anomaly

From Fig. 1 it is clear that the Planck data is very well
described by ΛCDM for l≳ 100. The situation at low l is
less clear. From Fig. 4 it appears that for l≲ 30most of the
Cl’s are below the best fit.
It is not clear that this suppression should be taken

seriously. If the feature were localized in the middle of the
power spectrum, it would be easily attributable to the look-
elsewhere effect. That it affects the lowest l’s makes it
more special, but its significance is still decreased by the a
posteriori choice of l ∼ 30 for the onset of suppression.
Its significance was reported by the Planck collaboration
[16] as 2.5 − 3σ depending on the choice of estimator.6 In
Appendix A we give a crude method for estimating the
significance, which is in basic agreement with this result.
Thus, even assuming that the Planck anomaly will with-
stand improved analysis of the Planck temperature data, we
do not argue that the anomaly is serious enough to require
an explanation.
Rather, we have advanced a theoretical argument for a

suppression of the CMB spectrum at low l. If slow-roll
inflation was preceded by false vacuum decay, as would be
natural in a landscape setting, it becomes more plausible
that the Planck anomaly is indicative of a real suppression
of the primordial power spectrum. We will illustrate this
quantitatively in Sec. IV, by showing how two simple toy

models of potential steepening can improve the fit at low l.
We will further argue in Sec. VI that the probability for the
onset of such a feature is distributed smoothly over logl
with support mainly in the range 1≲ l≲ 104.5, rendering a
potential onset near l ∼ 30 quite natural.
Given this theoretical motivation, it will be important to

corroborate or eliminate any anomaly at large scales. Can
future measurements of cosmological data improve the
significance of the Planck anomaly, possibly at the level of
discovery?

B. Future sensitivity

In estimating the possible sensitivity of future experi-
ments an essential point is that, due to statistical rotational
invariance, having access to more modes with the same
wave number allows a more precise measurement of the
power spectrum PsðkÞ. Let us briefly review how this
applies to the CMB. One expands the observed temperature
anisotropy as

ΔTðn̂Þ≡ Tðn̂Þ − T0 ¼
X
l;m

almYlmðn̂Þ; ð21Þ

where T0 is the monopole T0 ¼ 1
4π

R
d2n̂Tðn̂Þ. The TT Cl’s

are then defined as the two-point function

halmal0m0 i≡ δll0δm;−m0Cl; ð22Þ
where the average is taken over the ensemble of realizations
of the universe.
We only get to measure the CMB once, so we cannot

observe this average directly. We can mitigate this limita-
tion by defining an estimator

Ĉl ≡ 1

2lþ 1

X
m

almal;−m; ð23Þ

which has the property that on average it is equal to Cl.
We can evaluate this estimator on the observed set of alm ’s,
and this represents our “best guess” for the true Cl. We can
get a sense of the accuracy of this guess by computing the
variance ��

Ĉl − Cl

Cl

�
2
�

¼ 2

2lþ 1
; ð24Þ

where we have now assumed that the distribution for the
alm’s is Gaussian in the sense that higher-point correlation
functions can be computed by Wick contraction. Thus the
typical deviation of the estimator Ĉl from the true average
Cl falls like 1=

ffiffiffi
l

p
.

We can heuristically understand this as follows: Ĉl is
roughly an average over 2lþ1

2
independently fluctuating

quantities almal;−m, each with mean Cl and variance C2
l,

so the standard deviation of the distribution of values of Ĉl

falls like 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of modes

p
, which for the CMB is just

∼1=
ffiffi
l

p
. The estimator in (23) is optimal, in the sense that

l
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FIG. 4 (color online). Planck data for lðlþ1Þ
2π Cl, in ðμKÞ2, for

l < 50. As in Fig. 1, the red curve is ΛCDM with the new best fit
parameters [17].

6A similar suppression was already seen in WMAP, at even
lower significance. With current data analysis by the Planck team
[16], the measurement of the low Cl’s by Planck is not
appreciably more precise than that of WMAP; both are essentially
limited by cosmic variance. However, the inclusion of the new
measurements at high-l by Planck gives ΛCDM less flexibility to
fit the low Cl’s. In other words, the data points have not gone
down, but the best fit curve has gone up. This has the practical
effect of increasing the significance of any suppression. Fur-
thermore, the better frequency coverage of Planck allows for a
more reliable exclusion of galactic foreground contamination.
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no other unbiased estimator can have smaller variance than
that. This cosmic variance permanently limits the precision
with which the Cl’s can be determined by CMB observa-
tions alone.
However, if different observations gave us access to

more modes of a given l, we could reduce cosmic variance.
We now argue that in fact future measurements of large
scale structure (LSS) have the potential to improve the
situation considerably. The key point is that the CMB
provides only a two-sphere’s worth of information about
the primordial power spectrum PsðkÞ, so at fixed l ∼ kDls
there are only ∼l modes available to average over. By
contrast, the large-scale distribution of galaxies, and perhaps
21 cm radiation, can provide three-dimensional information
about the power spectrumPsðkÞ. For a given k, one then has
∼k2 modes to average over. Compared to the CMB alone,
this would decrease the cosmic variance on PsðkÞ for each
measured wave number k by an additional factor propor-
tional to 1=

ffiffiffi
l

p
, where l and k are related by l ∼ kDls.

Determining the precise cosmic variance for PsðkÞ after
the inclusion of both the CMB and LSS is beyond the
scope of this work, but we can get a rough idea by the
following construction. Imagine that in the future we
are able to measure the density of matter inside a cube
centered on the earth, with the center of each face at redshift
z. The linear size of the cube is 2Dz, whereDz is determined
from Eq. (10). Imposing periodic boundary conditions, the
number of modes with wave number between k and kþ dk,
for sufficiently large k, is approximately 4πðDz

π Þ3k2dk. To
make contactwith the rest of our paper, we can reexpress k in
terms of l via l ¼ kDls, and we can also reexpress Dz in
terms of an effective l as lz ≡ π Dls

Dz
. The total number

independent of modes between l and lþ 1 accessible from
the CMB and LSS is then approximately determined by
adding the number of modes measured in the CMB to this
estimate:

Nl ¼ 2lþ 1þ 4π
l2

l3
z
: ð25Þ

The new term is correct only when l ≫ lz, but for lz ≳ffiffiffiffiffiffi
2π

p
this will basically be the case before it begins to

compete with the first term. We can then approximate the
new, smaller, cosmic variance of the power spectrum,
repackaged as the Cl’s, as

σ2l ≈
2

Nl
C2
l ð26Þ

for all l > lz without any large error. The factor of 2, as in
Eq. (24), arises because we are measuring a two-point

function that is symmetric under ~k → −~k. For l < lz LSS
does not provide any new information, so we will continue
to use the error bars from just the CMB.
In this paper we have in mind a particular, theoretically

motivated feature at low l: a monotonically decreasing
suppression of power. It is interesting to ask to what extent
including LSS would allow confirmation of such an effect.
As we mentioned in the previous subsection, there is
already a hint of such an effect in the current analysis of
the Planck data, and in the following section wewill present
two models which improve the fit to the current data.
There is a simple way to estimate how sharply future
LSS experiments could distinguish these models from
ΛCDM. Suppose that the second of our models, the
power-law model of Sec. IV B, is correct. We can then
generate future “data” for theCl’s independently for each l,
from a Gaussian ensemble centered on this model. The
standard deviations are taken as (26) for l > lz and (24) for
l < lz. Remember that here lz should be thought of as
setting the largest scale out to which we can measure 3D
information from LSS.
For lz ¼ 50 the “data” we generate should resemble

Fig. 4, while for lower values of lz it should move closer to
our exponential model. We illustrate this in Figs. 5, 6,
where we plot some fairly typical instances of “data” for
lz ¼ 50; 6.7; 5.5, and 3.6. Finally, we can use our crude
statistical techniques from Appendix A to estimate the
probability that this “data” arises from ΛCDM, again with
the error bars appropriately reduced thanks to the LSS
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FIG. 5 (color online). “Data” for the lðlþ1Þ
2π Cl’s generated from the power-law model. The red curve is ΛCDM, while the green curve

is the model we introduce in Sec. IV B. On the left we include no measurements of large scale structure, while on the right we include
LSS measurements only down to lz ¼ 6.7. The “data” on the left differs from ΛCDM at 2.4σ, while that on the right differs at 3.4σ.
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“data.” To focus on the low l region we use the diagnostic
with lmax ¼ 40.
We have chosen the numbers 6.7,5.5, and 3.6 for lz

because the first two are roughly what might be expected
from upcoming EUCLID-like galaxy surveys, while the
third is what might come out of 21 cm measurements. More
explicitly, lz ¼ 6.7 corresponds to z ≈ 3, while lz ¼ 5.5
corresponds to z ≈ 5. If we imagine that 21 cm measure-
ments can map gas out to z ≈ 50 then this gets us down to
lz ¼ 3.6. Generating the data 20-30 times for each choice
of lz, we find that with lz ¼ 50 the significance of the
deviation from ΛCDM is typically of order 2 − 3σ. This is
in rough agreement with what Planck has found. Including
LSS with lz ¼ 6.7, the typical significance increases to
about 3 − 4σ. For lz ¼ 5.5 it increases to about 3.5 − 4.5σ,
while for lz ¼ 3.6 it is typically in the vicinity of 5 − 6σ.
Thus, we find that future LSS surveys may have the

statistical power to strongly corroborate or exclude a low-l
power suppression of the type suggested by the Planck
anomaly. Our statistical methods have admittedly been
rather rough, but a more precise analysis that takes into
account the details of the experiments is quite possible. Our
significance results are rather sensitive to the order one
coefficient in front of l2

l3z
in Eq. (25), so it will be very

important to compute this more carefully. Of course, in an
actual LSS survey, there will also be systematic challenges
to face in order to approach these asymptotic estimates.
Although we have focused on a single model, this

analysis shows that future LSS measurements may in
general allow strong constraints on models that predict
deviation from ΛCDM at low l. If the actual inflationary
potential differs from LambdaCDM more than our model,
future observations could rule out ΛCDM at even greater
levels of confidence. We hope we have made it clear how
important this effort might be, and the potential discoveries
it could lead to.
Finally, let us comment on polarization measurements.

Given that E and T modes are quite uncorrelated, due to
difference in the visibility function, measurement of the EE
power spectrum will also give us access to more indepen-
dent modes, in fact twice as many in the limit where T and

E are completely uncorrelated. However, some of the
difference in the visibility function comes from the con-
tribution to polarization from the epoch of reionization.
This unfortunately contaminates the low-l signal with
contribution from higher wave numbers than the ones
contributing to the same l’s at recombination. Removing
this effect would increase the TE correlation, decreasing
the potential improvement to the statistical significance
of thePlanck anomaly fromEEmeasurements, sowe expect
the benefit of these measurements to be limited, although
non-negligible, and we do not study them in detail here
(for a discussion ofmany of the relevant issues see [61]).7 As
we already discussed however, the potential steepening
does lead to power suppression directly in the TE and
EE CMB, and this should eventually be detectable with at
least some significance. More optimistically, if BB is ever
measured than eventually it might be possible to see that it is
not suppressed at low l, as predicted in Sec. II.

IV. TWO MODELS

We will now illustrate our general discussion with two
simple models. In the first, the steepening of the potential is
rapid enough that the CMB power suppression is closely
related to the onset of inflation, whenΩK ≃ 1. As expected,
one finds that this model is already fairly tightly con-
strained; in models of this type, a future discovery of
curvature is likely. The second model illustrates a more
gradual steepening feature which allows parametric sepa-
ration of the onset of CMB power suppression and the
beginning of inflation. It is thus much less constrained. In
this model, observation of the CMB suppression is possible
even if curvature is never found. We show that both models
are able to improve the fit to the Planck data at low l.
Both models are toy models. They represent the two

extreme possibilities for the suppression of the curvature
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FIG. 6 (color online). More “data” from the power-law model. On the left LSS is included down to lz ¼ 5.5, while on the right it is
included down to lz ¼ 3.6. The left side “data” differs from ΛCDM at 3.8σ, while the right differs at 5.2σ.

7To get a rough idea of size, if we imagine we get 4=3 as many
independent modes from polarization this should allow us to
multiply the existing significance from the TT anomaly byffiffiffiffiffiffiffiffi

4=3
p

≈ 1.15. We then might expect increases of order a few
tenths of a σ.
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while exhibiting power suppression at low l. We expect
that realistic inflationary models with these characteristics
can be constructed, but we will not attempt this here.

A. Exponential steepening

We first take

VS ¼ Vi

�
1 −

ffiffiffiffiffiffiffi
2ϵS

p ϕ

MP

�

VR ¼ Vie−
ϕ
M: ð27Þ

This model has two parameters, γ andM. It is convenient to
define

n≡ ffiffiffiffiffiffiffi
2ϵS

p MP

M
; ð28Þ

and instead work in terms of γ and n. Equations (8), (16)
then give

PsðkÞ ¼ Ps;SðkÞ
�
1 − γ

n
ϵS

�
kh
k

�
n
þ…

�
: ð29Þ

We need to take n ∼ 1 in order to fit the low l power
suppression in Planck. With this constraint, we need to
take γ small enough so that the correction to ϵS is still
perturbative for ϕ > 0. This model is plotted against the
data in Fig. 7 for n ¼ :7 and γ ¼ 3.5 × 10−3.8 Using the
crude statistical measure from the Appendix, we find that
for lmax ¼ 30 the significance of the low-l anomaly is
decreased from about 2.4σ to 1.0σ, while for lmax ¼ 49 it
decreases from 1.8σ to :36σ. From the figure it seems that
we could fit even better by increasing both γ and n a little
bit, but as we now argue the exponential growth of this
potential allows so little inflation for ϕ < 0 that doing so
would produce observable curvature.
Whenϕ < 0 in thismodel, the potential rapidly approaches

Viγe−
ϕ
M.When this happens, the slow-roll parameters are both

proportional to ðMP
M Þ2 ¼ n2

2ϵS
, so the slow roll approximation

fails almost immediately. To compute the size of curvature in
the model we need to solve the full FRW equations

H2 ¼ 1

a2
þ 1

3M2
P

�
1

2
_ϕ2 þ VðϕÞ

�

ϕ̈ ¼ −3H _ϕ − V 0ðϕÞ; ð30Þ

and then evaluate ΩK ¼ ðahHhÞ−2. General properties of
the solutions of these equations are discussed in detail for
example in [62]; the initial conditions from the CDL
instanton [39] are that _ϕ ¼ 0, a ¼ 0, _a ¼ 1, and ϕ is some
negative number such that jϕj is significantly greater than
M but VðϕÞ ≪ M4

P. γ and n are taken from the quoted
values above, and we take Vi¼3×10−9M4

p and ϵS ¼ 0.006
tomatch thePlanck data usingEqs. (3), (7). A rough analytic
treatment is possible, but it is more convenient to simply
solve them numerically. For the quoted values of parameters
this gives ΩK ¼ 0.011, which is just barely consistent
with the current 2σ bound, −0.028 < ΩK < 0.008, from
(Planckþ lensingþWPþ highL) [17]. Some plots of the
solution are shown in Fig. 8. We show some values ofΩK as
a function ofn, with γ chosen to approximately fit thePlanck
anomaly, in Fig. 9.
The simplicity of the exponential potential in this model

produces an interesting tension between curvature and
cosmic variance. From Fig. 9 we see that getting enough
inflation to dilute curvature requires n < 1, but since the
deviation of the power spectrum from ΛCDM falls off like
1
ln at large l we need n > :5 for this to fall off faster than
cosmic variance. Above we chose n ¼ :7, which satisfies
both of these constraints, but not by much. This tension can
be relaxed either by allowing VR to fall off faster at large ϕ
or making it a little less steep for ϕ < 0.
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FIG. 7 (color online). Comparison of lðlþ1Þ
2π Cl for the model

(29) in green, ΛCDM in red, and the Planck data. Theory curves
are computed using CLASS [19–21].

8This plot is slightly dishonest for the following reason; the
simple VS from Eq. (27) was chosen to make our discussion
simple, but strictly speaking it does not quite match ΛCDM with
the Planck parameters since it predicts r ≈ :1 which is a bit large.
This has the effect of slightly enhancing the Cl’s at low l, by of
order a few percent, so to be consistent with Planck in Fig. 7 we
have set r ¼ 0 for both curves. This can be justified by slightly
modifying VS by making the slow roll parameter η nonvanishing,
and therefore to suppress r, but since our models are really just
heuristic illustrations anyway we have not done so. This comment
also applies to Fig. 10 below.
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B. Power law steepening

The previous model was an example of a potential that
steepens rapidly enough that it is very difficult to have an
observable suppression of power without observable cur-
vature. We now consider a more gentle model, with the
same VS as before but now with

VR ¼ Θðϕc − ϕÞVi

ς

�
ϕc − ϕ

MP

�
ς

; with ς > 1: ð31Þ

Here Θ is the Heaviside theta function; this potential is
nonanalytic at ϕc, but that is no issue for the illustrative
purposes of our toy model. For future convenience we
parametrize ϕc as

ϕc ≡
ffiffiffiffiffiffiffi
2ϵS

p
log

lc

DlsH0

: ð32Þ

Equation (16), at leading order in slow roll and γ, then gives

PsðkÞ¼Ps;SðkÞ
�
1−Θ

�
lc

Dls
−k

�
2γffiffiffiffiffiffiffi
2ϵS

p
� ffiffiffiffiffi

2ϵ
p

log
lc

Dlsk

�
ς−1

þ…

�
ð33Þ

The correction turns off for kDls > lc, which in the CMB
corresponds to l > lc. It is quite easy to fit the data by
varying ς, γ, and lc. For example for ς ¼ 2.3, γ ¼ :08, and
lc ¼ 65 using the method from the Appendix we find the
significance decreases from 2.4σ to :29σ for lmax ¼ 30 and
from 1.8σ to :35σ for lmax ¼ 49. A comparison of this
model to standard ΛCDM and the data is shown in Fig. 10.
It may appear that the improvement of fit for this model
compared to the previous one came from having three
parameters as opposed to two, but lc does not really have
too much effect on the curve in the relevant region. The
important difference is that in this model it is easy to inflate
away the curvature, so we are free to take a larger value for
γ without running into the observational bound on ΩK.
To see that this model indeed allows inflation for ϕ < 0,

we observe in this region the potential is essentially just
∼γVið ϕ

MP
Þς. The slow roll parameters are both proportional

to ðMP
ϕ Þ2, which are quite small for jϕj ≫ MP. The number of

e-foldings prior to ϕ ¼ 0 will thus be approximately ð ϕi
MP

Þ2,
where ϕi is the point where curvature domination ends. The
number of e-foldings in the past is limited by the onset of
slow roll eternal inflation, as in that case we have
k3PsðkÞ ∼ΩK ∼ 1, and so, having inflation in that regime
does not help diluting curvature anymore.9 To avoid slow
roll eternal inflation we need γVið ϕi

MP
Þςþ2 ≪ M4

P, so we can
get at most a number of e-foldings before horizon entry of
order
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FIG. 8 (color online). Plots of ϕ=M and _H
H2 from a numerical solution of (30). The field is dropped at ϕ=M ¼ −4, and the time is

measured in units of the Hubble constant on the plateau,
ffiffiffiffiffiffiffi
Vi

3M2
p

q
. The second plot shows that inflation does not really begin until soon

before horizon crossing at t ≈ 2.9.
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FIG. 9 (color online). ΩK as a function of n. A rough analytic
treatment suggests approximating this function as e−

2.5
n .

9Slow-roll eternal inflation is a situation where the scalar field
is rolling slowly enough that quantum fluctuations carry it up the
potential as often as classical rolling takes it down [28]. In this
situation, inflation lasts forever globally, but in each region of
space sooner or later by chance the field fluctuates down the
potential enough that it then rolls smoothly down. This allows a
fairly homogeneous inflating region to be created in a manner that
is crudely similar to bubble nucleation. Instead modes that exited
the horizon during the eternal inflation period induce density
perturbations H2= _ϕ of order one. While for many years a
quantitative and sharp understanding of slow roll eternal inflation
was lacking, recently relevant progress in this direction has been
made [63–65].
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N ≈
�
M4

P

γVi

� 2
ςþ2

: ð34Þ

This can be quite large. We thus view this model as an
extreme case where curvature and steepening can be
separated almost arbitrarily.

V. STATISTICAL TUNING IN A
LARGE LANDSCAPE

In the former sections, we described predictions for
observables, given a certain potential. We discussed how to
observationally recognize an inflationary potential with a
steepening at large scales, as in Fig. 2. We argued
qualitatively that such potentials are natural if slow-roll
inflation followed the decay of a false vacuum.
In this and the next section, we will turn to a quantitative

question: what is the likelihood that our own inflationary
history contains a potential with steepening, and what is the
probability that this feature is observable? This question
can only be posed if many possible potentials exist, that is,
if there exists a large landscape of effective potentials. In
order to answer it, we would need to compute the statistical
distribution of potentials. For the landscape of string theory,
this task lies beyond our current understanding. However,
we can make progress by considering a range of plausible
distributions and investigating their implications.
We stress that the conclusions of the previous sections

are not affected by the following discussion. They do not
depend on the assumptions we are about to make.

A. The landscape of string theory

The landscape of string theory provides a setting in
which low energy parameters can take on many different
values. Their statistical distribution is controlled by the
underlying unique fundamental theory. If this prior dis-
tribution can be computed or at least constrained, proba-
bility distributions over observed values of parameters can
be obtained by conditioning on observers. This allows for

quantitative and falsifiable predictions. At present, the
landscape provides the only viable explanation of the
smallness of the cosmological constant [22,30]. The land-
scape can also explain other fine-tuning or coincidence
problems. The hierarchy problem increasingly appears to
be of this type, as no evidence for naturalness of the weak
scale has so far been found at the LHC or by any other
experiment.
Any theory that contains at least one long-lived meta-

stable vacuum with positive cosmological constant (such
as, apparently, our own [66,67]) leads to eternal inflation:
globally, the universe grows faster than it decays. Thermal
effects and vacuum decays give rise to infinite recurrences
and obstruct the computation of relative probabilities.
The question of how to regulate these infinities is known
as the measure problem of eternal inflation; see, e.g.,
Refs. [68,69] for reviews. Any viable proposal must
reproduce the standard probabilities for the outcome of
laboratory experiments and closely related physical proc-
esses.10 Perturbative effects on the CMB spectrum are of
this type [76], so we will be able to ignore the measure
problem for the purposes of our analysis.
The main idea that will go into our discussion of the

genericity of potentials is that having flat directions is
statistically tuned. By statistically tuned we do not mean
that it is radiatively unstable in the way that the Higgs
boson mass is (without a new symmetry at the weak scale).
A potential which is approximately flat at tree level will
also be flat at higher order in perturbation theory, since in
the limit of zero slope there is a shift symmetry which
emerges. This type of argument cannot explain however
why the tree-level potential was flat in the first place, and it
is reasonable to ask what type of tree-level potentials are
typical.
The question of genericity of potentials goes beyond the

usual particle-physics notion of tuning. But in a large
landscape, the question is well defined. Its answer depends
on the statistical distribution of potentials, which can at
least in principle be derived from the underlying theory. To
emphasize the distinction from the standard notion of
tuning, we will refer to the atypicality of a feature in the
landscape as statistical tuning. Atypicality in the prior
distribution need not conflict with observation. But if an
observed feature is statistically tuned even after
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FIG. 10 (color online). Comparison of lðlþ1Þ
2π Cl for the model

(31) in orange, ΛCDM in red, and the Planck data.

10This requirement turns out to be a powerful constraint (which
is fortunate, since no fundamental derivation of the correct
measure is known). Measure proposals that survive this constraint
have proven remarkably successful phenomenologically. In
particular, the causal patch measure allows for a direct explan-
ation of the Why Now coincidence [33] and other cosmological
coincidences [37,38,70,71]. This has improved on the predictions
of classic arguments (e.g., [29,31,32,34,35,72]) quantitatively,
while eliminating their specific anthropic assumptions. A small
set of closely related, phenomenologically interesting proposals
also remain viable [73–75].
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conditioning on observers, then it rules out the theory at the
corresponding level of confidence.

B. Steepening vs flattening

As a first application of this framework, we will now
motivate our assumption that our region of the universe is
inside a bubble nucleated in a metastable false vacuum.
Why could the era of standard slow-roll inflation not
instead be preceded by slow-roll eternal inflation? In this
situation there would be no potential barrier of the type
shown in Fig. 2, so there would be no generic argument for
a steepening feature. We suggest however that this type of
eternal inflation requires significantly more statistical tun-
ing of the potential than the false vacuum eternal inflation
we have been considering so far. Consider an extremum in
a multifield landscape, where the potential obeys

∂V
∂ϕn

¼ 0 ∀n: ð35Þ

A point where either false-vacuum or slow-roll eternal
inflation is happening should satisfy this to a very good
approximation. Let us now consider the eigenvalues m2

n of
the second-derivative matrix ∂2V

∂ϕn∂ϕm
. In order to be able to

neglect quantum gravity and in order to have inflation, we
roughly need

−
H2

M2
p
¼ −

V
3M4

p
<

m2
n

M2
p
< 1 ∀n: ð36Þ

The first inequality ensures that the field will not roll down
a tachyonic direction before inflating, and is equivalent to
η > −1. The second inequality ensures that the masses are
not Planckian. The point however is that the lower bound
on eachm2

n is much smaller in absolute value than the upper
bound, so typically we can expect all of the eigenvalues to
be positive and significantly larger than H2. In this case we
have a false-vacuum, which decays via bubble nucleation
as in Fig. 2. More quantitatively, let us imagine that the
energy scale of the potential is of order 10−1 in Planck
units. We get to raise this to the fourth power in Eq. (36), so
if we imagine a uniform distribution for each m2 over the
allowed range then the probability is roughly 10−4 per
direction that we get slow-roll eternal inflation. This is not
quite correct, since because of eigenvalue repulsion the
different eigenvalues are not all independent. This problem
has been studied quantitatively for the Gaussian matrix
ensemble in [77], and applying their results we find that for
ð V
Mp
Þ1=4 ∼ 10−1 we need at least of order 102 fields to have a

decent chance of even a single tachyonic direction.11 More
realistically we should probably demand the energy be even

lower in Planck units, which causes this number to increase
quadratically in the energy scale. We emphasize that we are
not claiming that it is impossible to have slow-roll eternal
inflation somewhere in the landscape, but only that we can
argue that our immediate ancestor is most likely to be a
false vacuum.
This argument can also be applied to the question of

whether we should have included other field directions near
the inflationary plateau in Fig. 2. In fact, multifield inflation
is even more disfavored from this point of view, since
during the observable period of inflation, V

M4
p
≲ 10−12. (Of

course, even if there were other fields whose masses are
comparable to Hubble on the inflationary plateau of Fig. 2,
one would still expect the field trajectory to steepen near a
potential barrier.)

C. Coleman-De Luccia vs Hawking-Moss decay

As a second application of the landscape framework, we
will explain why we believe we are justified in taking the
barrier to be quite sharp.12 By contrast, one could imagine a
potential of the form shown in Fig. 11, in which the false
vacuum is separated by a broad barrier. This construction
however requires the top of the barrier to be quite flat. More
quantitatively we can argue that we must have η ≪ 1 at the
top, by noting that as long as V 0 < 0 we have

d
dϕ

logV ¼ −
ffiffiffiffiffi
2ϵ

p

MP
;

d2

dϕ2
logV ¼ η − 2ϵ

MP
; ð37Þ

and thus that

ffiffiffiffiffi
2ϵ

p
¼ −

Z
ϕ

ϕpeak

dϕ
MP

ðη − 2ϵÞ: ð38Þ

We then observe that any Oð1Þ negative value of η near
ϕpeak would need to be offset by anOð1Þ positive value of η
at some later time over a comparable field range in order to
get ϵ to be small again during the period of observable
inflation. This would lead to the kind of potential with
steeping that we have considered so far. One could try to
avoid this conclusion by asking instead that the field
excursion from ϕpeak to the beginning of inflation be small
in Planck units, shrinking the range of the integration in
(38) and thus allowing large values of η near the top. Doing
this would require η to get fromOð1Þ to a small value quite
quickly and then stay there, which would need fairly
precise manipulation of the higher derivatives of V. Once
we have jηj ≪ 1 at the top of the hill, this requires
additional statistical tuning beyond the one needed to get
inflation. In general this “wide-barrier” scenario seems to
require extra statistical tuning compared to the potential in

11We thank Timm Wrase for help in understanding and using
their results.

12This discussion is inspired by conversations with Enrico
Pajer.
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Fig. 2, with no added benefit. Incidentally jηj ≪ 1 at the top
of the hill changes the physics qualitatively. As reviewed
for example in [78], in this situation the Coleman-De
Luccia instanton no longer exists and the relevant transition
is now the Hawking-Moss instanton [79]. This instanton
can be interpreted as causing an entire Hubble-sized region
to thermally jump up to the top of the potential barrier
[78,80]. Since jηj ≪ 1 and ϵ ¼ 0 there, slow-roll eternal
inflation then necessarily ensues. Thus the present issue is
closely related to the previous subsection.
Of course the potential in Fig. 2 still has some non-

generic features: the inflationary plateau is flat, its scale is
low, and the cosmological constant in our vacuum is
small. Unlike the other statistical tunings we have just
discussed however, these can be anthropically explained.
The anthropic argument for the smallness of ρΛ is well
known [29,31,32]. The low scale of the inflationary plateau
is needed to avoid over-production of structure, since we
need V inflation ≈ 10−10ϵ in Planck units. The flatness of the
plateau is needed to get enough e-foldings to dilute
curvature [34,36]. This last statistical tuning, the flatness
of the potential, is quite close to the steepening we are
interested in; it was studied quantitatively in [36], and we
now study the steepening along similar lines.

VI. THE PROBABILITY FOR
OBSERVABLE STEEPENING

In this section, we further quantify the notion that flat
potential regions require statistical tuning. Our goal will be
to estimate the probability for observing a power suppres-
sion in the CMB due to steepening of the potential near the
beginning of inflation. Wewill consider a range of plausible
assumptions about the statistical distribution of potentials
in the landscape. Again, as for the former section, it is
worth stressing that only the conclusions of the present
section depend on these assumptions.
In making statistical predictions from the landscape, it is

important to clearly state which parameters are being varied
and which are not. In this section we assume that the power
spectrum asymptotes at large k to the standard ΛCDM

power spectrum given by (6). Motivated by our discussion
of the previous sections, we will further assume that below
some k the power is suppressed. At some even lower k, the
potential has become steep enough that inflation is no longer
possible; this is the beginning of inflation. This model of the
power spectrum involves essentially four parameters: the
asymptotic value ofAs andns, as well as the point of onset of
power suppression and of the onset of inflation. Herewewill
take the asymptotic parameters As and ns to be fixed. We
thus do not need to discuss prior distributions or anthropic
cuts for these parameters. Of course a more general analysis
would do so, but already in fixing them, there is still a chance
that our discussion of the remaining two parameters might
be in conflict with observations.13 (If they are not, i.e., if we
succeed for now, then later work may still falsify the theory
by allowing As and ns to vary and exhibiting a conflict
between the predicted and observed values. In the present
context, theory should be understood to include our assump-
tions about the prior distribution, Eqs. (45) below, which
may require modification.) Our project for the rest of this
section is thus to motivate prior distributions for the location
of the onset of potential steepening and the beginning of
inflation, identify anthropic cuts on this two-parameter
space, and then compute the probabilities for observable
suppression or curvature.
A first worry is that, given that we have excluded

steepening above l ≈ 100, the remaining window is small
enough that seeing steepening is very unlikely. In looking
for features of the inflationary potential in the CMB, a
crucial point is that the relationship between ϕ and l is
logarithmic, as can be seen from Eq. (8) and the discussion
below it. We emphasize this in Fig. 12, where we plot the
power spectrum for ΛCDM and for the two models of
Sec. IV against logl. For example, the Cl’s with 2 < l <
70 contain information about a region of the inflationary
potential which is just as large as the region described by the
Cl’s with 70 < l < 2500. We will argue below that the
probability distribution over the location of the steepening
feature, in terms of logls, is not very steep in this regime.
Moreover, we will argue that the entire observable regime is
anthropically allowed. Thus, we will find that the proba-
bilities for finding a steepening feature, say, in the range
2≲ l < 70 is not much smaller than finding it in the
range 70 < ls < 2500.
Another question is why a steepening feature should lie

in the region 2 < l < 2500 in the first place. Why should it

FIG. 11. A potential with a fat barrier. The tunneling path is
shown as a dashed line. For a broad enough peak the tunneling
instanton will not exist, and the Hawking-Moss instanton will
dominate, leading to slow-roll eternal inflation at the top of the
barrier. We argue that potentials of this type are statistically
suppressed in the landscape.

13We briefly comment however that it is unclear to what extent
the prior for As favors larger or smaller values. On the one hand V
likes to be large, but on the other hand so does ϵ, so the tendency
of their ratio is unclear. Making As smaller prevents structure
formation, so any tendency in this direction would be cutoff
anthropically fairly quickly. Making it larger is more subtle, but it
has been argued that there is an anthropic cut in this direction as
well [35]. Scanning the parameter ns is expected to be quite
irrelevant. We leave a detailed discussion of this to future work.
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be located where it can be observed through the CMB? The
angular modes that leave the horizon during inflation range
up to exponentially large values [lreh ≈ e63 for grand
unified theory (GUT)-scale inflation]. Moreover, if there
were extra e-folds of inflation beyond what is needed to
dilute curvature, then there would also be room at “l ≪ 1”
for the steepening to happen. This regime is invisible
because the corresponding modes are too far outside
our horizon. In Sec. VI A, we will describe an anthropic
boundary which prevents the steepening feature from turn-
ing on at l ≫ 104.
In Sec. VI B, we will discuss prior distributions for

the number of e-folds of inflation, and for the onset of
steepening. They quantify our assumption that having the
suppression turn on in the invisible “l ≪ 1” region is
statistically suppressed, since it would require a larger total
number of e-foldings of inflation.
Combining these assumptions and results in Sec. VI C,

we conclude that the probability for a steepening feature
lying in the observable region can be as much as Oð1Þ,
while the probability for a curvature lying in the observable
region is of order Oð10%Þ. This probability is larger than
the probability for observable curvature, because the
relevant anthropic boundaries correspond to different val-
ues of l; and it remains larger after observational exclu-
sions are taken into account.

A. Anthropic bound on steepening

If flat potentials are rare, as we assume, the steepening
should begin at very large l. But there could be an
anthropic reason why this cannot be the case. The power
spectrum of scalar density perturbations generated during
inflation is proportional to H4= _ϕ2 evaluated at the time
where the mode of interest is leaving the horizon. A steeper
potential will lead to a larger _ϕ and thus to a lower power
spectrum [36,42,51]. If this happens at distance scales

which are associated with the mass of a typical galaxy, it
will prevent the formation of galaxies.
To see this quantitatively we need to briefly recall how

primordial density perturbations are connected to structure
formation. In evolving modes from horizon entry to last
scattering, it is important to know whether or not they were
inside the horizon at the time of matter-radiation equality.
To understand which modes we are interested in, we note
that the proper distance to the last-scattering surface today,
Eq. (10), is about 14 gigaparsecs. The typical distance
between galaxies is of order a few megaparsecs [60]. From
Eq. (9) the relationship between the proper wavelength λ of
a fluctuation today and the angular scale of that fluctuation
on the CMB is

l ≈
2πDls

λ
; ð39Þ

so the density perturbations important for the formation of
galaxies evolved from fluctuations whose angular size on
the CMB is of order

lg ≈ 104.5: ð40Þ

By comparison modes which were entering the horizon at
matter-radiation equality have

lEQ ¼ H0Dls
aEQHEQ

a0H0

≈ 143; ð41Þ

so the modes of interest for galaxy formation entered the
horizon long before matter-radiation equality. The cold
dark matter density perturbation for such modes at the time
of last scattering is given by14

δρ

ρ

				
t¼tls;k¼l=Dls

≈
9

2

�
lEQ

lLS

�
2

log

�
4ffiffiffi
3

p l
lEQ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Psðl=DlsÞ

p
:

ð42Þ

Here lLS ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ zLSÞΩM

p
H0Dls ≈ 59 is the angular scale

of modes which were entering the horizon at the time of last
scattering, and PsðkÞ is the primordial power spectrum.
This is the density perturbation for an individual mode, to
get the typical size of the total mass fluctuation in a box of
linear size 2π

k we should sum in quadrature over the modes
in the box whose wavelengths are of order 2πk . This amounts
to multiplying by a factor of k3=2; for l of order lg, this

l

l l 1 Cl

2

2 10 30 50 70 100 200 300 500 70010001500 2500
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FIG. 12 (color online). The TT power spectrum for the best fit
to ΛCDM in red, our exponential model in green, and our power-
law model in orange, all plotted on a log scale.

14This equation follows from a hydrodynamic treatment of the
evolution of density perturbations from horizon entry to last
scattering; see Eqs. 6.5.11 and 6.5.15 of [60]. The ðlEQ=lLSÞ2
factor comes from the linear (in the scale factor) growth of the
perturbation after matter domination. The log comes from the
growth during radiation domination.

RAPHAEL BOUSSO, DANIEL HARLOW, AND LEONARDO SENATORE PHYSICAL REVIEW D 91, 083527 (2015)

083527-14



gives a total mass perturbation of order 10−3 sinceffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3PðkÞ

p
is of order 10−5.

During the matter dominated era these perturbations
grow like the scale factor a ∝ ð1þ zÞ−1,15 so since zls is of
order 103, δρρ would become order one and the overdensity
would become gravitationally bound at redshift z ≈ 1. But
this is when the cosmological constant began dominating
the evolution of the universe and turning off perturbation
growth.
We then can see that galaxy formation in our universe is

occurring close to a catastrophic boundary. Suppose that
the initial density contrast was smaller, even by just a factor
of order one. Then only exponentially rare multi-sigma
overdensities would have formed large galaxies, and there
would be exponentially fewer observers (according to all
viable measures currently under consideration [81]).
Smaller galaxies are further from the catastrophic boun-
dary, but cooling problems impose a lower bound on galaxy
mass [70], and metallicity may be insufficient if hierarchi-
cal structure formation is disrupted too early.
The above argument makes the simplifying assumption

that the change of slope, at the onset of steepening, is
immediately so large as to suppress the density contrast by
a factor of order one. A more natural expectation is that the
steepening sets on more gradually, ramping up from
undetectable, to detectable, to order-one suppression of
the power as l decreases. It is difficult to parametrize such
features in detail. But it is clear that this effect moves the
anthropic boundary for the onset of detectable steepening
toward even larger values of l. We will neglect this shift in
what follows. This makes our estimates below for the
probability of detecting steepening more conservative, but a
larger uncertainty arises in any case from our ignorance of
the details of the prior distribution.

B. Prior distribution for steepening and curvature

From an observational viewpoint, the steepening feature
is conveniently parametrized by the angular scale ls at
which it appears in the CMB spectrum. However, from a
theoretical perspective, the feature appears in the slow-roll
potential. Thus, its prior distribution is more naturally
parametrized in terms of the number of e-folds before the
end of inflation, S, at which the potential steepens notice-
ably. This number is related simply to the potential
via Eq. (8).
The logarithmic relationship (8) between k and ϕ implies

S ≡ log
lreh

ls
≈ 63 − logls: ð43Þ

Here the index reh indicates reheating, and in the second
equality we have assumed reheating at the GUT scale. The

anthropic cutoff of the previous section demands
S > Sg ≡ 52.
Following inflation back in time, steepening indicates

the transition between a flat slow-roll potential and a steep
barrier separating our vacuum from its parent vacuum.
Slow-roll inflation can begin at a somewhat more negative
value of ϕ than the location of this feature, but one expects
that the location of the steepening feature is statistically
distributed in a way very similar to the distribution of the
total number of e-folds of inflation, N . For motivation we
now briefly recall this distribution.
Based on our general discussion of statistical tuning, the

prior probability distribution forN in the landscape should
be suppressed at large N . A plausible guess is that at large
N the prior distribution should fall like some power

dP
dN

∝ N −ν; ð44Þ

with ν > 1 but of order unity [36]. (Indeed for a particular
parametrization of a linear potential, assuming a uniform
distribution over parameters implies ν¼4 [36], while ν ≈ 3
in a mini-landscape inspired by a brane moving in a
conifold [82].) Exponential suppression is ruled out ex-
perimentally, since slow-roll inflation would be too rare in
the landscape to explain the observed flatness of the
universe even after anthropic conditioning.
A natural first guess for the prior distribution for the

steepening location S is that at large S it falls like S−ζ for
some ζ > 1 of order unity, but this does not quite work
since in factN and S are not independent; the beginning of
inflation must happen at more negative ϕ than the onset of
steepening. We can implement this as a constraint N ≥ S,
but this means that in fact we need to consider a joint
distribution for both N and S. We thus propose an
unnormalized joint distribution16

dP
dN dS

¼ S−ðζþ1Þ
�
S
N

�
ν

ΘðN − SÞ ð45Þ

with ν and ζ being order one positive numbers. The first
term in this distribution suppresses large values of S, as
expected from our general discussion of flatness, while the
second implements the expectation that once the potential
begins to steepen, it typically should not be too much
longer before it can no longer support inflation. The
parametrization is chosen so that integrating outN , without
imposing anthropic constraints, gives dP

dS ∝ S−ζ; and inte-
grating out S, again without anthropic constraints, gives
dP
dN ∝ N −γ , with γ ¼ ζ − ν, so the suppression for N is
smaller than for S. Larger ζ suppresses large S more,
making observable power suppression more likely.

15See for example Sec. 8.2 of [60].

16We have also considered some other similar distributions, the
results are comparable to what we present here.
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ν governs the expected separation between power suppres-
sion and curvature. If ν is large, then potentials like our
exponential model should be more typical. If ν is small,
then our power law model should be more typical.

C. Conditional probability distributions

We now turn to the computation of the conditional
probability distributions for the location of the steepening
feature, S, and the number of e-foldings, N , after con-
ditioning on the existence of galaxies, and later, in addition,
on observational exclusion limits. This will allow us to
estimate the probability for a discovery of either feature in
the CMB. In this analysis we will need the corresponding
anthropic boundary and exclusion limit for curvature,
which we now briefly review.
The anthropic constraint that curvature does not

disrupt galaxy formation requires aLSHLS > 10 [36].
Assuming GUT-scale inflation,17 this condition becomes

N > 61: ð46Þ
The observational constraint is of course stronger. The
number of e-foldings required to dilute curvature to the
current exclusion limit, ΩK < 10−2, is N ≈ 64. Curvature
becomes unobservable in principle [83] when ΩK ≲ 10−4,
which happens for N ≳ 66.
Note that the window in which the steepening is both

anthropically allowed and potentially observable, 52 < S <
63, is about twice as wide as the analogous window for
curvature, 61 < N < 66. (And the differencewould be even
greater, had we not assumed the worst case, that the change

in slope is so dramatic as to completely eliminate galaxy
formation, for a steepening feature located atSg.) As a result,
we are about to find that the probability for observing
steepening is about twice as large as the probability for
observing curvature. Why is the window for steepening
larger, even though both anthropic boundaries are related to
galaxy formation?
The reason is that curvature, like a positive cosmological

constant, disrupts the growth of small perturbations. It can
do so at any time while perturbations are still in the linear
regime, nearly until virialization. Thus, if curvature domi-
nates the evolution of the scale factor before perturbations on
the galactic scale become nonlinear, galaxies will not form.
Steepening, on the other hand, only affects the initial
strength of the perturbations. Consequently, the anthropic
bound from curvature is set by the horizon scale at
virialization, which corresponds in the CMB to l ∼Oð1Þ,
whereas the bound associated with steepening is set by the
much smaller comoving scale of the current intergalactic
distance, corresponding to l ∼ lg ¼ 104.5.
Treating both anthropic cutoffs as sharp, the probability

distributions conditioned on the existence of galaxies can
be obtained by removing the forbidden region and renorm-
alizing. We can then compute the probabilities that the
power suppression or curvature lie in their respective
observable windows 52 < S < 63 and 61 < N < 66:

Psuppression ¼
R
63
52 dS

R∞
61 dN

dP
dSdNR∞

52 dS
R∞
61 dN

dP
dSdN

Pcurvature ¼
R
∞
52 dS

R
66
61 dN

dP
dSdNR

∞
52 dS

R
∞
61 dN

dP
dSdN

; ð47Þ

where dP
dSdN is the prior (45). (The probability for seeing

both curvature and power suppression is nearly as large as
the probability for seeing curvature.)
Psuppression and Pcurvature are plotted for some ranges of ν

and ζ in Fig. 13. As expected, the probability for seeing
power suppression is significantly larger than the proba-
bility for seeing curvature. For ν ¼ 3 and ζ ¼ 4 it is about
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FIG. 13 (color online). On the left, a plot of Psuppression, the probability for observable power suppression, as a function of ζ, for various
values of ν. On the right, a plot of Pcurvature, the probability for observable curvature, as a function of ν, for various values of ζ. These are
total probabilities that do not take into account that some signal regions have already been excluded.

17The appearance of the GUT scale here has nothing to do with
particle physics. The scale is really chosen by taking the highest
possible scale for inflation that has PðkÞ of order 10−10 and ϵ at
most 10−2. Using the quoted parameters below Eq. (6), this gives
reheating energy density ρ ≈ ð2 × 1016 GeVÞ4. It is straightfor-
ward to check that making the scale of reheating high is the
“worst-case” assumption from the point of view the probabilities
for observing steepening and curvature we compute below, but
the dependence is logarithmic so the scale has to be decreased a
lot to improve the odds significantly.
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40%, and it can be even larger. It may be somewhat
surprising that increasing ν at fixed ζ, which makes seeing
curvature more likely, makes seeing power suppression less
likely. This is because the term ðSN Þν in the prior distribution
(45) suppresses a large separation betweenN and S, which
pushes S up towards the anthropic cut for N once we
impose it, even though the cut for S is significantly lower.
We can also compute the probabilities P0 for future

detection of power suppression or curvature, given the
current exclusions. N ≳ 64 is required for ΩK ≲ 10−2,
while S ≳ 58 is needed for the suppression to begin below
l ≈ 100 as suggested in Sec. III A. We can include these
constraints simply by replacing 61 → 64 and 52 → 58 in
(47). We show the results in Fig. 14; as expected they both
decrease by about a factor of two.
These estimates are quite rough. The odds for a future

discovery improve if we take into account that the steep-
ening feature may turn on gently at l ≫ lg and slowly ramp
up. This shifts the anthropic boundary to values below
Sg ¼ 52. On the other hand, the odds for an observable
feature decrease if the steepening is so subtle that it escapes
detection.Moreover, cosmic variancewill limit our ability to
detect a feature close to l ∼ 1ðS ≈ 63Þ, so it may be
appropriate to narrow the range of S that can be considered
observable. One could also weaken the anthropic bounds
somewhat by allowing observers to form in smaller galaxies,
but this does not significantly change our results. S depends
only logarithmically on scale, so decreasing the galaxy scale
even by a factor of 10 gives only a small (3–5%) increase in
the probability of seeing suppression. Moreover this is only
true for the probability before imposing observational
constraints. Since the observational constraint is already
at lower logl than the anthropic bound, relaxing the latter to
larger logl has no effect on the probability for future
detection.
It is worth emphasizing an important point again. Because

the probability distribution for the steepening location is
roughly flat not over l but over logl, we should not
necessarily expect the steepening feature to be close to the
anthropic boundary, in the sense of l ∼ 104.5. For example,
assuming an observable steepening feature and ζ ¼ 4, the
probability that the feature lies at l < 50 is about 70%.
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APPENDIX A: STATISTICS FOR
STRING THEORISTS

There is a simple way to get a rough estimate for the
significance of the suppression we have been discussing.
The basic idea is to calculate the likelihood of the data
assuming that the measured Cl’s are independently
Gaussian distributed about the red curve in Fig. 4. The
χ2 variable
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FIG. 14 (color online). Plots of P0
suppression and P

0
curvature, obtained after conditioning on current observational exclusions. These are the

probabilities that future experiments will find a signal.
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χ2 ≡Xlmax

l¼2

 
Cfdatag
l − Cftheoryg

l

σl

!
2

; ðA1Þ

where we take the standard deviations σl of the Gaussians
to be the average of the distances of the upper and lower
error bars in Fig. 4 from the observed value, gives a decent
measure of the absolute deviation of the data away from
the red theory curve.18 lmax is a parameter which controls
over what range we are looking for an effect. With our
Gaussian probability assumption we can compute the
p-value for a deviation at least this large from the
cumulative χ2 distribution19:

pχ2ðχ2Þ≡ 1

2
lmax−1

2 Γ


lmax−1

2

�Z ∞

χ2
dxx

lmax−3
2 e−x=2: ðA2Þ

In looking for a suppression we must also take into account
the sign of the deviations, which the χ2 parameter is
insensitive to. For our Gaussian distribution this sign is
uncorrelated with the absolute size of the fluctuation, so we
can take the probability that at most m points lie above the
red curve to be given by a binomial distribution

p�ðmÞ ¼ 1

2#ðSÞ
X

k∈S;k≤m

�
#ðSÞ
k

�
; ðA3Þ

where to make this estimate more robust we have included
only l’s in a set S containing those l < lmax whose Cl’s
differ from the theory curve nontrivially.20 The full p-value
for estimating the significance of the suppression is then
p≡ pχ2ðχ2Þp�ðmÞ, from which we can determine the
number of standard deviations by solving

p ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

n
e−x

2=2: ðA4Þ

Applying this method to the model and data in Fig. 4 we
find n ¼ 1.8 for lmax ¼ 49 and n ¼ 2.4 for lmax ¼ 30,
which is roughly consistent with the much more sophis-
ticated analysis of [16]. We emphasize that this method is
no substitute for a real Monte Carlo analysis scanning over

parameters, although we believe it suffices for the theo-
retical points we make here.

APPENDIX B: WHERE DOES THE CDL
INSTANTON DROP US?

In this appendix we argue that for potentials like that of
Fig. 2, the tunneling instanton typically drops the field off
high enough that the subsequent Lorentzian evolution rolls
through enough of the steepening region to produce a
potentially observable power suppression. For simplicity
we first consider the Mp → ∞ limit, where the geometry
becomes Minkowski space and the Euclidean instanton is a
solution of the equation

ϕ00 þ 3

ξ
ϕ0 ¼ V 0; ðB1Þ

where V is some potential of the form shown in Fig. 2 and ξ
is Euclidean time. The boundary conditions are that
ϕ0ð0Þ ¼ −1 and ϕð∞Þ ¼ ϕfv. For intuition we can reinter-
pret ξ as a Lorentzian time, in which case this equation
describes the motion of a particle with potential −V, with a
friction term. This situation is illustrated in Fig. 15. The
instanton is a trajectory which starts at rest at ξ ¼ 0 and
ϕ ¼ ϕ0, rolls “down” through the potential barrier, and
then climbs back “up” to come to rest on top of the false
vacuum at ξ ¼ ∞. If the friction term were absent then
by energy conservation it is obvious that we would need
to choose ϕ0 such that Vðϕ0Þ ¼ Vfv. Since ϕ0 is also the
starting point for real Lorentzian evolution inside the bubble,
and since we expect that Vfv ≫ V inf , where V inf is the scale
of inflation, this would ensure that the Lorentzian evolution
of the field begins at a scale much higher than the infla-
tionary plateau, leaving plenty of room to roll through the
steepening feature on the way to the inflationary plateau.
Because of friction however, we need to start the field higher
up on minus the potential, which means that the tunneling
event drops the field lower on the potential.

FIG. 15 (color online). Evolution on the potential −V. To
overcome friction we must start the field higher than −Vfv, after
which it rolls down through the barrier at ϕb and comes up back
up to rest at ϕfv at Euclidean time ξ ¼ ∞.

18A subtlety which was emphasized to us by Uros Seljak is that
most sources of error are proportional to the signal. So in
comparing models other than ΛCDM to the data we should
rescale the standard deviations σl by a ratio of the Cl for the
model over Cl for ΛCDM with the best-fit parameters. We take
this into account in the significances reported in Sec. IV, although
the effect turns out to not be too large.

19See, for example, the review of probability and statistics
from [84], although it is straightforward to derive this from the
Gaussian distribution by integrating out the angular directions.

20This may seem arbitrary, but in any event all of the six
excluded l’s below 30 and five out of the seven excluded between
30 and 50 lie below the curve, so including them would only
increase the significance of the suppression.
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One may worry that because of friction it is actually
necessary to have ϕ0 already on the inflationary plateau. If
this were generically what happened, then the steepening of
the potential would not lead to an observable effect in the
CMB since the field would not roll through it inside the
bubble. It may appear “obvious” from Fig. 15 that, since
Vfv ≫ V inf , friction should not be important enough tomove
the starting point all the way from Vfv to something of order
V inf . Adam Brown and Alex Dahlen have emphasized
however that this conclusion depends on the form of the
potential barrier. In particular if the height of the barrierVb is
parametrically larger than Vfv − V inf , then from the point of
viewof solvingEq. (B1)we should think of the false vacuum
and the inflationary plateau as essentially being degenerate,
even ifV inf=Vfv ≪ 1. From Fig. 15 it would then seem quite
likely that friction would require the field to be dropped off
on the inflationary plateau. This limit seems statistically
tuned to us, but still this argument suggests that if we take
Vb ≈ Vfv − V inf ≈ Vfv then we should be right at the edge of
this limit and it should be ambiguous whether or notϕ0 is on
the inflationary plateau.
In fact the situation is better than it appears. For anthropic

reasons the potential barrier is quite asymmetric; on the left
side is a high-scale false vacuum whose parameters should
typically be Planckian, while on the right side it interpolates
to a very flat region in order to get inflation and structure
formation. As long as this interpolation does not happen
extremely sharply, we expect that the field will be dropped
off high enough that it will be able to roll through the last part
of the interpolation and thus produce a potentially observ-
able suppression of power. We now briefly present two
models that support this intuition.
For the first model, we consider the piecewise linear/

quadratic potential shown in Fig. 16. For this potential the
instanton can be constructed analytically by sewing together
solutions of (B1) in the different regions. We will not
describe this explicitly, but the main results are as follows.
First of all ifVb > 4Vf thenwemust haveϕ0 > ϕ1. So if we
had tried to only have two linear segments, meaning that the
interpolation was instantaneous, this would realize the
Brown-Dahlen claim that a reasonably high barrier requires
the instanton to drop us on the flat region. If we insert an
extra segment, which here we take be in the region
ϕ1 < ϕ < ϕ2, the situation is more interesting. In particular
in the regime where Vb≫Vðϕ1Þ≫Vðϕ2Þ, with ϕb − ϕfv ≪
ϕ1 − ϕb, we find that as long as ϕ2 − ϕ1 is at least of order
ϕ1 − ϕb then ϕ0 is greater than but close to ϕ1. The
Lorentzian evolution then rolls through most of the region
ϕ1 < ϕ < ϕ2, giving potentially observable steepening.
This is perhaps the most natural region of parameter space,
since it represents a more smooth interpolation between the
steep barrier and the flat plateau.
Of course one might worry that this argument requires to

interpolation to be so gradual that the steepening would not
be observable. In our second model we show that this is not

the case. For our second model, for ϕ > ϕb we take the
potential to be

VS þ γVR; ðB2Þ
with VS, γ, and VR taken from the exponential model we
discuss in Sec. IVA, with the parameters the same as were
used to fit the Planck anomaly. For ϕ < ϕb we take the
potential to be quadratic

V ¼ 1

2
m2ðϕ − ϕfvÞ2 þ Vfv; ðB3Þ

with ϕfv chosen to make the potential continuous at ϕb. In
this model inflation begins at ϕ ≈ 0, which is also where we
took horizon crossing to be in Sec. IVA, so as long as we
find ϕ0 less than zero the field will roll through the
steepening region that led to CMB power suppression.
We will take VðϕbÞ ¼ 10−4M4

p, m ¼ 10−1Mp, and then
study ϕ0 as a function of Vfv. Solving Eq. (B1) numerically,
we find that if we take Vfv ¼ 10−1Vb then the field is
dropped at ϕ0=M ¼ −9.6, while if we take Vfv ¼ 10−2Vb it
is dropped at ϕ0=M ¼ −3.6. In both cases ϕb=M ≈ 16 and
ϕfv=M ≈ 17, so indeed ϕb − ϕfv ≪ ϕb and the barrier is
quite asymmetric. Thus we seem to be ok even in the
somewhat unnatural case where Vfv=Vb ≈ 10−2. Since the
fairly steep case of an exponentially growing potential
already works, we should also be fine for our more gentle
power-law steepening model from Sec. IV B.
Finally let us consider including dynamical gravity. The

only change to the ϕ equation of motion is to change 1
ξ to

a0
a ,

with a determined by simultaneously solving the Euclidean
FRW equation�

a0

a

�
2

¼ 1

a2
þ 1

3M2
p

�
1

2
ϕ02 − V

�
: ðB4Þ

Instead of the instanton coming to rest at the false
vacuum at ξ ¼ ∞, it now comes to rest earlier at a
point ξc where a linearly returns to zero. It is not hard to
see that the friction is now less than in the gravity-free

FIG. 16 (color online). A piecewise potential. For ϕ < ϕb it is
quadratic, and there are three linear segments of decreasing
steepness as ϕ increases.

INFLATION AFTER FALSE VACUUM DECAY: … PHYSICAL REVIEW D 91, 083527 (2015)

083527-19



case we just studied. Indeed observe that the Euclidean
Hubble constant H ¼ a0

a obeys H0 ¼ −ð 1a2 þ 4πGϕ02Þ, so
the positivity of ϕ02 ensures that H is always less than it
would have been with G ¼ 0. This means that as we

slowly turn on gravity, the drop-off point ϕ0 will have to
move up the potential (or down minus the potential). This
only makes it easier for the field to roll through the
steepening feature.
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