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In this paper, for the first time to our knowledge, a method is proposed to compute electromagnetic
effects in hadronic processes, such as decays, using lattice simulations. The method can be applied, for
example, to the leptonic and semileptonic decays of light or heavy pseudoscalar mesons. For these
quantities the presence of infrared divergences in intermediate stages of the calculation makes the
procedure much more complicated than is the case for the hadronic spectrum, for which calculations
already exist. In order to compute the physical widths, diagrams with virtual photons must be combined
with those corresponding to the emission of real photons. Only in this way do the infrared divergences
cancel as first understood by Bloch and Nordsieck in 1937. We present a detailed analysis of the method for
the leptonic decays of a pseudoscalar meson. The implementation of our method, although challenging, is
within reach of the present lattice technology.
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I. INTRODUCTION

Precision flavor physics is a particularly powerful tool
for exploring the limits of the Standard Model of particle
physics and in searching for inconsistencies which would
signal the existence of new physics. An important compo-
nent of this endeavor is the overdetermination of the
elements of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix from a wide range of weak processes. The precision
in extracting CKM matrix elements is generally limited by
our ability to quantify hadronic effects, and the main goal
of large-scale simulations using the lattice formulation of
QCD is the ab initio evaluation of the nonperturbative QCD
effects in physical processes. The recent, very impressive,
improvement in lattice computations has led to a precision
ofOð1%Þ or even better for a number of quantities (see e.g.
Ref. [1] and references therein) and therefore in order to
make further progress electromagnetic effects (and other
isospin-breaking contributions) have to be considered. The
question of how to include electromagnetic effects in the
hadron spectrum and in the determination of quark masses
in ab initio lattice calculations was addressed for the first
time in [2]. Much theoretical and algorithmic progress has

been made following this pioneering work, particularly in
recent years, leading to remarkably accurate determinations
of the charged-neutral mass splittings of light pseudoscalar
mesons and light baryons (see Refs. [3–8] for recent papers
on the subject and Refs. [9,10] for reviews of these results
and a discussion of the different approaches used to
perform QEDþ QCD lattice calculations of the spectrum).
In the computation of the hadron spectrum there is a very

significant simplification in that there are no infrared
divergences. In this paper we propose a strategy to include
electromagnetic effects in processes for which infrared
divergences are present but which cancel in the standard
way between diagrams containing different numbers of real
and virtual photons [11]. The presence of infrared diver-
gences in intermediate steps of the calculation requires the
development of new methods. Indeed, in order to cancel the
infrared divergences and obtain results for physical quan-
tities, radiative corrections from virtual and real photons
must be combined. We stress that it is not sufficient simply
to add the electromagnetic interaction to the quark action
because amplitudes with different numbers of real photons
must be evaluated separately, before being combined in
the inclusive rate for a given process. In this paper, for the
first time to our knowledge, we introduce and discuss a
strategy to compute electromagnetic radiative corrections
to leptonic decays of pseudoscalar mesons which can then
be used to determine the corresponding CKM matrix
elements. Although we present the explicit discussion
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for this specific set of processes, the method is more general
and can readily be extended to generic processes including,
for example, to semileptonic decays.
We now focus on the leptonic decay of the charged

pseudoscalar meson Pþ. Let Γ0 be the partial width for
the decay Pþ → lþνl where the charged lepton l is an
electron or a muon (or possibly a τ) and νl is the
corresponding neutrino. The subscript 0 indicates that there
are no photons in the final state. In the absence of
electromagnetism, the nonperturbative QCD effects are
contained in a single number, the decay constant fP,
defined by

h0jq̄1γμγ5q2jPþðpÞi ¼ ipμfP; ð1Þ

where Pþ is composed of the valence quarks q̄1 and q2, and
the axial current in (1) is composed of the corresponding
quark fields. There have been very many lattice calculations
of the decay constants fπ , fK , fDðsÞ and fBðsÞ [1]; some
recent ones quote a precision of better than 1% (see e.g.
[12–14]). As noted above, in order to determine the
corresponding CKM matrix elements at this level of
precision isospin breaking effects, including electromag-
netic corrections, must be considered. It will become clear
in the following, and has been stressed in [15,16], that it is
not possible to give a physical definition of the decay
constant fP in the presence of electromagnetism, because
of the contributions from diagrams in which the photon is
emitted by the hadron and absorbed by the charged lepton.
Thus the physical width is not just given in terms of the
matrix element of the axial current and can only be obtained
by a full calculation of the electromagnetic corrections at a
given order.
The calculation of electromagnetic effects leads to an

immediate difficulty: Γ0 contains infrared divergences and
by itself is therefore unphysical. The well-known solution
to this problem is to include the contributions from real
photons. We therefore define Γ1ðΔEÞ to be the partial width
for the decay Pþ → lþνlγ where the energy of the photon
in the rest frame of Pþ is integrated from 0 to ΔE. The sum
Γ0 þ Γ1ðΔEÞ is free from infrared divergences (although,
of course, it does depend on the energy cutoff ΔE). We
restrict the discussion to OðαÞ corrections, where α is the
electromagnetic fine-structure constant, and hence only
consider a single photon.
The previous paragraph reminds us that the determina-

tion of the CKM matrix elements Vq1q2 at OðαÞ [i.e. at
Oð1%Þ or better] from leptonic decays requires the evalu-
ation of amplitudes with a real photon. The main goal of
this paper is to suggest how such a calculation might be
performed with nonperturbative accuracy. There are a
number of technicalities which will be explained in the
following sections, but here we present a general outline of
the proposed method. We start with the experimental
observable ΓðΔEÞ, the partial width for Pþ → lþνlðγÞ.

The final state consists either of lþνl or of lþνlγ where
the energy of the photon in the center-of-mass frame is
smaller than ΔE,

ΓðΔEÞ ¼ Γ0 þ Γ1ðΔEÞ: ð2Þ

In principle at least, Γ1ðΔEÞ can be evaluated in lattice
simulations by computing the amplitudes for a range of
photon momenta and using the results to perform the
integral over phase space. Such calculations would be very
challenging indeed. Since the computations are necessarily
performed in finite volumes, the available momenta are
discrete so that it would be necessary to choose the volumes
appropriately and compute several correlation functions.
We choose instead to make use of the fact that a very soft
photon couples to a charged hadron as if to an elementary
particle; it does not resolve the structure of the hadron. We
therefore propose to choose ΔE to be sufficiently small that
the pointlike approximation can be used to calculate
Γ1ðΔEÞ in perturbation theory, treating Pþ as an elemen-
tary particle. On the other hand, ΔE must be sufficiently
large that ΓðΔEÞ can be measured experimentally. We
imagine settingΔE ¼ Oð10–20 MeVÞ which satisfies both
requirements. From Refs. [17,18] we learn that resolutions
on the energy of the photon in the rest frame of the
decaying particle of this order are experimentally acces-
sible. In Appendix B we present a discussion, based on
phenomenological analyses, of the uncertainties induced by
treating the meson as elementary as a function of ΔE.
It is necessary to ensure that the cancellation of infrared

divergences occurs with good numerical precision leading
to an accurate result for ΓðΔEÞ. Since Γ0 is to be calculated
in a Monte Carlo simulation and Γ1ðΔEÞ in perturbation
theory using the pointlike (pt) approximation, this requires
an intermediate step. We propose to rewrite Eq. (2) in the
form

ΓðΔEÞ ¼ lim
V→∞

ðΓ0 − Γpt
0 Þ þ lim

V→∞
ðΓpt

0 þ Γ1ðΔEÞÞ; ð3Þ

where V is the volume of the lattice. Γpt
0 is an unphysical

quantity; it is the perturbatively calculated amplitude at
OðαÞ for the decay Pþ → lþνl with the Pþ treated as an
elementary pointlike particle. In Γpt

0 the finite-volume sum
over the momenta of the photon, k, is performed over the
full range. The contributions from small momenta to Γ0 and
Γpt
0 are the same, and thus the infrared divergences cancel

in the first term on the right-hand side of Eq. (3). Moreover,
the infrared divergences in Γ0 and Γpt

0 are both equal and
opposite to that in Γ1ðΔEÞ. The infrared divergences
therefore cancel separately in each of the two terms on
the right-hand side of Eq. (3), and so we can calculate
each of these terms separately. This is the motivation for
rewriting Eq. (2) as Eq. (3). Γpt

0 þ Γ1ðΔEÞ is calculated
in perturbation theory directly in infinite volume; the
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calculation is performed in Sec. V. Since the sum is infrared
finite, we can use any infrared regulator for each of Γpt

0

and Γ1ðΔEÞ. In the calculation presented in Sec. V we
introduce a mass for the photon as the regulator. The QCD
effects in Γ0 are calculated stochastically in a lattice
simulation and the virtual photon is included explicitly
in the Feynman gauge. For each photon momentum this is
combined with Γpt

0 , the difference is summed over the
momenta, and then the infinite-volume limit is taken. Since
the contribution of the zero momentum mode (k ¼ 0) is
absent in the difference Γ0 − Γpt

0 , it is possible and
convenient here to use the volume as the infrared regulator.
This completes the sketch of the proposed method, and in
the remainder of this paper we explain the many technical
issues which must be addressed.
Although for sufficiently small ΔE it is not necessary to

add the label pt on Γ1ðΔEÞ, since in that case
Γ1ðΔEÞ ¼ Γpt

1 ðΔEÞ, it will nevertheless be useful to do
so and to rewrite Eq. (3) as

ΓðΔEÞ ¼ lim
V→∞

ðΓ0 − Γpt
0 Þ þ lim

V→∞
ðΓpt

0 þ Γpt
1 ðΔEÞÞ: ð4Þ

We have to remember of course that in contrast to Eq. (3)
which is valid for all ΔE, Eq. (4) is only true for ΔE small
enough for the structure dependence of the Pþ meson to be
negligible, as assumed for most of this paper. The reasons
for introducing Γpt

1 ðΔEÞ are threefold. First it makes
explicit that the second term on the right-hand side of
Eq. (4) is to be calculated in perturbation theory with a
pointlike Pþ meson. Second, when we evaluate Γpt

1 ðΔEÞ in
Sec. V below, we do so for general values of ΔE and check
our results with previous perturbative calculations which
were performed by integrating over all of phase space,
i.e. with ΔE set to its maximum value, ΔEmax ¼
mπ=2ð1 −m2

l=m
2
πÞ, where the pointlike approximation is

not valid. It will therefore be necessary to distinguish
Γ1ðΔEÞ from Γpt

1 ðΔEÞ. Finally, this distinction will also be
necessary when we discuss in Sec. VII the future extension
of our ideas to include the lattice evaluation of Γ1ðΔEÞ for
larger values of ΔE where structure-dependent terms are
important.
It will be helpful in the following to define ΔΓ0ðLÞ in

terms of the first term on the right-hand side of Eq. (4):

ΔΓ0ðLÞ ¼ Γ0ðLÞ − Γpt
0 ðLÞ; ð5Þ

where we have made the dependence on the volume
explicit, V ¼ L3 and L is the length of the lattice in any
spatial direction (for simplicity we assume that this length
is the same in all three directions). In analogy to Eq. (2) we
also define the perturbative quantity

ΓptðΔEÞ≡ Γpt
0 þ Γpt

1 ðΔEÞ: ð6Þ

We do not include a dependence on L in Eq. (6), since we
calculate it directly in infinite volume.
We note that, since the sum of all the terms in Eq. (4) is

gauge invariant as is the perturbative rate ΓptðΔEÞ, the
combination ΔΓ0ðLÞ is also gauge invariant, although each
of the two terms is not.
The plan of this paper is as follows. In the next section

we discuss the effective weak Hamiltonian and its renorm-
alization in the presence of electromagnetism. The structure
of the calculation and the correlation functions which need
to be calculated are presented in Sec. III. The evaluation of
the second term on the right-hand side of Eq. (4), ΓptðΔEÞ,
directly in infinite volume, is theoretically straightforward,
and we perform this calculation in Sec. V. Section VI
contains a detailed discussion of the regularization and
cancellation of infrared divergences in a finite volume. We
put all the elements of the calculation together in Sec. VII,
where we present a summary and the prospects for the
implementation of the method in numerical simulations.
There are two appendixes. In Appendix A we discuss the
matching of the bare lattice operators used in the calcu-
lation of correlation functions and those defined in the W
regularization which is a natural scheme used in the
definition of the Fermi constant GF in the presence of
electromagnetism. Finally in Appendix B we present some
phenomenological estimates of the uncertainties due to
the use of the pointlike approximation for Pþ in the decay
Pþ → lþνγ.
In the remainder of the paper, to be specific we choose

Pþ ¼ πþ, but the discussion generalizes trivially to other
pseudoscalar mesons with the obvious changes of flavor
labels. The method does not require Pþ to be a light
pseudo-Goldstone boson or the use of chiral perturbation
theory.

II. MATCHING THE EFFECTIVE LOCAL
FOUR-QUARK OPERATOR(S) ONTO THE

STANDARD MODEL

At lowest order in electromagnetic (and strong) pertur-
bation theory the process ud̄ → lþνl proceeds by an
s-channel W exchange; see the left-hand diagram in
Fig. 1. Since the energy-momentum exchanges in this
process are much smaller thanMW , it is standard practice to
rewrite the amplitude in terms of a four-fermion local
interaction,

FIG. 1. Tree-level diagram for the process ud̄ → lþνl (left-
hand diagram). In the effective theory the interaction is replaced
by a local four-fermion operator (right-hand diagram).
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LW ¼ −
4GFffiffiffi

2
p V�

udðd̄LγμuLÞðν̄lLγμlLÞ; ð7Þ

where the subscript L represents left, ψL ¼ ð1−γ5Þ
2

ψ , andGF

is the Fermi constant. In performing lattice computations
this replacement is necessary, since the lattice spacing a is
much greater than 1=MW , where MW is the mass of the W
boson. When including theOðαÞ corrections, the ultraviolet
contributions to the matrix element of the local operator are
different from those in the Standard Model, and in this
section we discuss the matching factors which must be
computed to determine the OðαÞ corrections to the πþ →
lþνl decay from lattice computations of correlation
functions containing the local operator in (7). Since the
pion decay width is written in terms ofGF, it is necessary to
start by revisiting the determination of the Fermi constant
at OðαÞ.

A. Determination of the Fermi constant, GF

GF is conventionally taken from the measured value of
the muon lifetime using the expression [19,20]

1

τμ
¼ G2

Fm
5
μ

192π3

�
1 −

8m2
e

m2
μ

��
1þ α

2π

�
25

4
− π2

��
; ð8Þ

leading to the value GF ¼ 1.16634 × 10−5 GeV−2. [For an
extension of Eq. (8) to Oðα2Þ and the inclusion of higher
powers of ρ≡ ðme=mμÞ2, see Sec. 10.2 of [21]. The Particle
Data Group [21] quote the corresponding value of the Fermi
constant to be GF ¼ 1.1663787ð6Þ × 10−5 GeV−2.]
Equation (8) can be viewed as the definition of GF.

When calculating the Standard Model corrections to the
muon lifetime, many of the contributions are absorbed into
GF and the remaining terms on the right-hand side of (8)
come from the diagrams in Fig. 2. Specifically in these
diagrams the factor 1=k2 in the Feynman-gauge photon
propagator is replaced by 1=k2 ×M2

W=ðM2
W − k2Þ, where k

is the momentum in the propagator; this is called the W
regularization of ultraviolet divergences. These diagrams
are evaluated in the effective theory with the local four-
fermion operator ðν̄μγμð1 − γ5ÞμÞðēγμð1 − γ5ÞνeÞ; the two
currents are represented by the filled black circles in Fig. 2.

An explanation of the reasoning behind the introduction
of the W regularization is given in [22]. The Feynman-
gauge photon propagator is rewritten as two terms,

1

k2
¼ 1

k2 −M2
W
þ M2

W

M2
W − k2

1

k2
; ð9Þ

and the ultraviolet divergent contributions come from the
first term and are absorbed in the definition of GF. In
addition, the Standard Model γ-W box diagram in Fig. 3 is
ultraviolet convergent and is equal to the corresponding
diagram in the effective theory (i.e. the third diagram in
Fig. 2) with the W regularization, up to negligible correc-
tions of Oðq2=M2

WÞ, where q is the four-momentum of the
electron and its neutrino. Other electroweak corrections not
explicitly mentioned above are all absorbed into GF.

B. W regularization and weak decays of hadrons

It is a particularly helpful feature that most of the terms
which are absorbed into the definition of GF are common
to other processes, including the leptonic decays of
pseudoscalar mesons [23,24]. There are, however, some
short-distance contributions which do depend on the
electric charges of the individual fields in the four-fermion
operators, and these lead to a correction factor of
ð1þ 2α

π log MZ
MW

Þ to Γ0 [23]. This is a tiny correction
(≃0.06%), but one which nevertheless can readily be
included explicitly.
The conclusion of the above discussion is that the

evaluation of the amplitude for the process πþ → lþν

FIG. 2. Diagrams contributing to the OðαÞ corrections to muon decay; see Eq. (8). The curly line represents the photon.

FIG. 3. Photon-W box diagrams contributing to the OðαÞ
corrections to muon decay in the Standard Model. The curly
line represents the photon.
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up toOðαÞ can be performed in the effective theory with the
effective Hamiltonian [20]

Heff ¼
GFffiffiffi
2

p V�
ud

�
1þ α

π
log

MZ

MW

�
ðd̄γμð1 − γ5ÞuÞ

× ðν̄lγμð1 − γ5ÞlÞ; ð10Þ

and with the Feynman-gauge photon propagator in the W
regularization. The value of GF is obtained from the muon
lifetime as discussed around Eq. (8).
Of course, we are not able to implement the W

regularization directly in present day lattice simulations
in which the inverse lattice spacing is much smaller than
MW . The relation between the operator in Eq. (10) in the
lattice and W regularizations can be computed in pertur-
bation theory. Thus for example, with the Wilson action
for both the gluons and fermions,

OW-reg
1 ¼

�
1þ α

4π
ð2 log a2M2

W − 15.539Þ
�
Obare

1

þ α

4π
ð0.536Obare

2 þ 1.607Obare
3 − 3.214Obare

4

− 0.804Obare
5 Þ; ð11Þ

where

O1 ¼ ðd̄γμð1 − γ5ÞuÞðν̄lγμð1 − γ5ÞlÞ;
O2 ¼ ðd̄γμð1þ γ5ÞuÞðν̄lγμð1 − γ5ÞlÞ;
O3 ¼ ðd̄ð1 − γ5ÞuÞðν̄lð1þ γ5ÞlÞ;
O4 ¼ ðd̄ð1þ γ5ÞuÞðν̄lð1þ γ5ÞlÞ;
O5 ¼ ðd̄σμνð1þ γ5ÞuÞðν̄lσμνð1þ γ5ÞlÞ: ð12Þ

The superscript “bare” indicates that these are bare oper-
ators in the lattice theory and the presence of 5 operators on
the right-hand side of Eq. (11) is a consequence of the
breaking of chiral symmetry in the Wilson theory. Using
lattice actions with good chiral symmetry, such as domain
wall fermions with a sufficiently large fifth dimension, only
Obare

1 would appear on the right-hand side of Eq. (11). The
coefficients multiplying the operators depend of course on
the lattice action being used. More details of the derivation
of Eq. (11) are presented in Appendix A. Equation (11) is
valid up to corrections of OðαsðaÞαÞ.
Having formulated the problem of calculating Γ0 in

terms of the evaluation of correlation functions involving
the effective Hamiltonian in Eq. (10) we are now in a
position to discuss the calculation of ΔΓ0ðLÞ, the first term
on the right-hand side of the master formula Eq. (4).

III. STRUCTURE OF THE CALCULATION

In this section we begin our explanation of how the
calculations of the amplitudes for the processes πþ → lþν

and πþ → lþνγ are to be performed. Before entering into
the details, however, we discuss more extensively the
structure of the different terms appearing in Eq. (4).
Since we add and subtract the same perturbative quantity

Γpt
0 , we find it convenient to choose this to be the virtual

decay rate for a pointlike pion computed in the W
regularization. In this way we obtain the important
advantage that the difference of the first two terms
[ΔΓ0ðLÞ] and the sum of the last two terms [ΓptðΔEÞ]
on the right-hand side of Eq. (4) are separately ultraviolet
and infrared finite.
Let

ffiffiffiffiffiffi
Zl

p
be the contribution to the decay amplitude from

the electromagnetic wave-function renormalization of the
final state lepton [see the diagram in Fig. 5(d)]. An
important simplifying feature of this calculation is that
Zl cancels in the difference Γ0 − Γpt

0 . This is because in any
scheme and using the same value of the decay constant fπ ,
the contribution from the diagram in Fig. 5(d) computed
nonperturbatively or perturbatively with the pointlike
approximation are the same. Thus we only need to calculate
Zl directly in infinite volume and include it in the second
term on the right-hand side of Eq. (4). As a result of this
cancellation it is convenient to rewrite Γ0 and Γpt

0 in the
form

Γ0 ¼ Γtree
0 þ Γα

0 þ ΓðdÞ
0 and Γpt

0 ¼ Γtree
0 þ Γα;pt

0 þ ΓðdÞ;pt
0 ;

ð13Þ

where the superscript tree indicates the width in the absence
of electromagnetic effects, ðdÞ denotes the contribution
from the leptonic wave-function renormalization and the
index α represents the remaining contributions of OðαÞ
other than those proportional to Zl. In this notation the

above discussion can be summarized by saying that ΓðdÞ
0 ¼

ΓðdÞ;pt
0 and that the calculation ofΔΓ0ðLÞ atOðαÞ reduces to

that of computing Γα
0 − Γα;pt

0 .
Having eliminated the need to include the effects of

the lepton’s wave-function renormalization from the evalu-
ation of ΔΓ0ðLÞ, we need to make the corresponding
modification in the factor(s) relating the lattice and W
regularizations. This simply amounts to subtracting the
term corresponding to the matching between the lattice to
W regularizations of the lepton wave-function renormali-
zation diagram. With the Wilson action (for both gluons
and fermions) for example, the OðαÞ contribution to this
matching factor is

ΔZW-reg
l ¼ α

4π

�
−
3

2
− log a2M2

W − 11.852

�
: ð14Þ

Thus, with the Wilson action, we can avoid calculating the
effects of the lepton’s wave-function renormalization in
ΔΓ0ðLÞ by neglecting the diagram in Fig. 5(d) and the
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corresponding diagram with the pointlike pion, and simply
replacing OW�reg

1 in Eq. (11) by

~OW�reg
1 ¼

�
1þ α

4π

�
5

2
loga2M2

W − 8.863

��
Obare

1

þ α

4π
ð0.536Obare

2 þ 1.607Obare
3 − 3.214Obare

4

− 0.804Obare
5 Þ: ð15Þ

Such matching factors depend, of course, on the lattice
discretization of QCD, and we simply present the results for
the Wilson action for illustration.
Of course ΓðdÞ;pt

0 needs to be computed for the second
term on the right-hand side of Eq. (4). This is a straightfor-
ward perturbative calculation in infinite volume and gives

ΓðdÞ;pt
0 ¼ Γtree

0

α

4π

�
log

�
m2

l

M2
W

�
− 2 log

�
m2

γ

m2
l

�
−
9

2

�
; ð16Þ

where we use the W regularization for the ultraviolet
divergences and have introduced a mass mγ for the photon
in order to regulate the infrared divergences. The explicit
expression for Γtree

0 is given in Eq. (21) below. Using theW
regularization we naturally work in the Feynman gauge, but
note that with mγ as the infrared regulator the result for Zl

is generally gauge dependent. For example, using dimen-
sional regularization for the ultraviolet divergences and mγ

as the infrared regulator leads to a gauge dependent result
for this single diagram [gauge invariance is restored of
course for ΓptðΔEÞ].
In summary therefore, we need to compute the two

quantities

ΔΓ0ðLÞ ¼ ~Γα
0 − Γα;pt

0 and

ΓptðΔEÞ ¼ Γtree
0 þ Γα;pt

0 þ ΓðdÞ;pt
0 þ Γ1ðΔEÞ; ð17Þ

where ~Γα
0 corresponds to Γα

0 using ~OW-reg
1 instead of OW-reg

1 .
Note that ΔΓ0ðLÞ and ΓptðΔEÞ are separately infrared
finite, and the result of the calculation of these two
quantities does not depend on the infrared cutoff. In
particular, this means that the infrared cutoff can be chosen
in two different ways for the two quantities. We have
decided to give a mass to the photon in the perturbative
calculation of ΓptðΔEÞ, whereas for ΔΓ0ðLÞ a possible
convenient choice is to use the finite volume as the infrared
regulator. This will be explained in more detail in Sec. VI.
In the following two sections we discuss the calculation

of ΔΓ0ðLÞ and ΓptðΔEÞ, respectively.

IV. CALCULATION OF ΔΓ0ðLÞ
In this section we describe the calculation of the first

term on the right-hand side of Eq. (4), ΔΓ0ðLÞ, at OðαÞ.

We start, however, by briefly recalling the calculation of
Γ0 at Oðα0Þ, i.e. without electromagnetism.

A. Calculation of Γ0 at Oðα0Þ
Without electromagnetic corrections we need to compute

the correlation function sketched in Fig. 4, which is a
completely standard calculation. Since the leptonic terms
are factorized from the hadronic ones, the amplitude is
simply given by

ūνlαðpνlÞðM0ÞαβvlβðplÞ

¼ GFffiffiffi
2

p V�
udh0jd̄γνγ5ujπþðpπÞi½ūνlðpνlÞγνð1− γ5ÞvlðplÞ�

¼ iGFfπffiffiffi
2

p V�
udp

ν
π½ūνlðpνlÞγνð1− γ5ÞvlðplÞ�: ð18Þ

Here u; d in the matrix element represent the quark fields
with the corresponding flavor quantum numbers and uνl
and vl the spinors of the leptons defined by the subscript.
The hadronic matrix element, and hence the decay constant
fπ , are obtained in the standard way by computing the
correlation function

C0ðtÞ≡
X
~x

h0jðd̄ð~0; 0Þγ4γ5uð~0; 0ÞÞϕ†ð~x;−tÞj0i

≃ Zϕ
0

2m0
π
e−m

0
π tA0; ð19Þ

where ϕ† is an interpolating operator which can create

the pion out of the vacuum, Zϕ
0 ≡ hπþð~0Þjϕ†ð0; ~0Þj0i and

A0 ≡ h0jd̄γ4γ5ujπþð~0Þi0. We have chosen to place the
weak current at the origin and to create the pion at negative
time −t, where t and T − t are sufficiently large to suppress
the contributions from heavier states and from the back-
ward propagating pions (this latter condition may be
convenient but is not necessary). The subscript or super-
script 0 here denotes the fact that the calculation is
performed at Oðα0Þ, i.e. in the absence of electromagnet-
ism. Zϕ

0 is obtained from the two-point correlation function
of two ϕ operators,

FIG. 4. Correlation function used to calculate the amplitude for
the leptonic decay of the pion in pure QCD. The two black filled
circles represent the local current-current operator ðd̄γμLuÞ
ðν̄lγμlÞ; the circles are displaced for convenience.

N. CARRASCO et al. PHYSICAL REVIEW D 91, 074506 (2015)

074506-6



Cϕϕ
0 ðtÞ≡X

~x

h0jTfϕð~0; 0Þϕ†ð~x;−tÞgj0i≃ ðZϕ
0 Þ2

2m0
π
e−m

0
π t:

ð20Þ

For convenience we take ϕ to be a local operator [e.g. at
ð~x;−tÞ in Eq. (19)], but this is not necessary for our
discussion. Any interpolating operator for the pion on the
chosen time slice would do equally well.
Having determined A0 and hence the amplitude

ūνlαðpνlÞðM0ÞαβvlβðplÞ, the Oðα0Þ contribution to the
decay width is readily obtained

Γtree
0 ðπþ → lþνlÞ ¼

G2
FjVudj2f2π

8π
mπm2

l

�
1 −

m2
l

m2
π

�
2

:

ð21Þ

In this equation we use the label tree to denote the absence
of electromagnetic effects since the subscript 0 here
indicates that there are no photons in the final state.

B. Calculation at OðαÞ
We now consider the one-photon exchange contributions

to the decay πþ → lþνl and show the corresponding six
connected diagrams in Fig. 5 and the disconnected dia-
grams in Fig. 6. By “disconnected” here we mean that there
is a sea-quark loop connected, as usual, to the remainder of
the diagram by a photon and/or gluons (the presence of the
gluons is implicit in the diagrams). The photon propagator
in these diagrams in the Feynman gauge and in infinite
(Euclidean) volume is given by

δμνΔðx1; x2Þ ¼ δμν

Z
d4k
ð2πÞ4

eik·ðx1−x2Þ

k2
: ð22Þ

In a finite volume the momentum integration is replaced
by a summation over the momenta which are allowed by the
boundary conditions. For periodic boundary conditions, we
can neglect the contributions from the zero-mode k ¼ 0 since
a very soft photon does not resolve the structure of the pion
and its effects cancel in Γ0 − Γpt

0 in Eq. (4). Although we
evaluate Γ0 þ Γ1ðΔEÞ [see Eq. (2)] in perturbation theory
directly in infinite volume,we note that the same cancellation
would happen if onewere to computeΓ1ðΔEÞ also in a finite
volume. Moreover from a spectral analysis we conclude that
such a cancellation also occurs in the Euclidean correlators
from which the different contributions to the decay rates are
extracted. For this reason in the following Γ0 and Γpt

0 are
evaluated separately but using the following expression for
the photon propagator in finite volume:

δμνΔðx1; x2Þ ¼ δμν
1

L4

X
k¼2π

Ln;k≠0

eik·ðx1−x2Þ

4
P

ρsin
2 kρ

2

; ð23Þ

where all quantities are in lattice units and the expression
corresponds to the simplest lattice discretization. k, n, x1 and
x2 are four component vectors, and for illustration we have
taken the temporal and spatial extents of the lattice to be the
same (L).
For other quantities, the presence of zero momentum

excitations of the photon field is a subtle issue that has to be
handled with some care. In the case of the hadron spectrum
the problem has been studied in [25] and, more recently in
[3,4], where it has been shown, at OðαÞ, that the quenching
of zero momentum modes corresponds in the infinite-
volume limit to the removal of sets of measure zero from
the functional integral and that finite volume effects are
different for the different prescriptions.
We now divide the discussion of the diagrams in Figs. 5

and 6 into three classes: those in which the photon is

FIG. 5. Connected diagrams contributing at OðαÞ to the amplitude for the decay πþ → lþνl. The labels (a)–(f) are introduced to
identify the individual diagrams when describing their evaluation in the text.
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attached at both ends to the quarks [diagrams 5(a)–5(c) and
6(a), (b), (d) and (e)], those in which the photon propagates
between one of the quarks and the outgoing lepton
[diagrams 5(e), 5(f) and 6(c)] and finally diagram 5(d)
which corresponds to the mass and wave-function nor-
malization of the charged lepton. We have already dis-
cussed the treatment of the wave-function renormalization
of the lepton in detail in Sec. III so we now turn to the
remaining diagrams.

1. The evaluation of diagrams Figs. 5(a)–5(c) and
Figs. 6(a), 6(b), 6(d) and 6(e)

We start by considering the connected diagrams
5(a)–5(c). For these diagrams, the leptonic contribution
to the amplitude is contained in the factor
½ūνlðpνlÞγνð1 − γ5ÞvlðplÞ�, and we need to compute the
Euclidean hadronic correlation function

C1ðtÞ ¼ −
1

2

Z
d3~xd4x1d4x2

× h0jTfJνWð0Þjμðx1Þjμðx2Þϕ†ð~x;−tÞgj0iΔðx1; x2Þ;
ð24Þ

where T represents time ordering, JνW is the V-A current
d̄γνð1 − γ5Þu and we take −t < 0. jμ is the hadronic
component of the electromagnetic current, and we find it
convenient to include the charges of the quarks Qf in the
definition of j,

jμðxÞ ¼
X
f

Qff̄ðxÞγμfðxÞ; ð25Þ

where the sum is over all quark flavors f. The factor of 1=2
is the standard combinatorial one.
The computations are performed in Euclidean space

and in a finite volume with the photon propagator Δ given
in Eq. (23) (or the corresponding expression for other
lattice discretizations). The absence of the zero mode in the
photon propagator implies a gap between mπ and the
energies of the other eigenstates. Provided one can separate
the contributions of these heavier states from that of the
pion, one can perform the continuation of the correlation
function in Eq. (24) from Minkowski to Euclidean space
without encountering any singularities. From the correla-
tion function C1ðtÞ we obtain the electromagnetic shift in
the mass of the pion and also a contribution to the physical
decay amplitude, as we now explain. For sufficiently large t
the correlation function is dominated by the ground state,
i.e. the pion, and we have

C0ðtÞ þ C1ðtÞ≃ e−mπt

2mπ
Zϕh0jJ0Wð0Þjπþi; ð26Þ

where the electromagnetic terms are included in all factors
[up to OðαÞ]. Writing mπ ¼ m0

π þ δmπ , where δmπ is the
OðαÞ mass shift,

e−mπ t ≃ e−m
0
π tð1 − δmπtÞ ð27Þ

so that C1ðtÞ is of the schematic form

C1ðtÞ ¼ C0ðtÞðc1tþ c2Þ: ð28Þ

By determining c1 we obtain the electromagnetic mass shift,
δmπ ¼ −c1, and from c2 we obtain the electromagnetic

FIG. 6. Disconnected diagrams contributing at OðαÞ to the amplitude for the decay πþ → lþνl. The curly line represents the photon,
and a sum over quark flavors q, q1 and q2 is to be performed. The labels (a)–(e) are introduced to identify the individual diagrams when
describing their evaluation in the text.
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correction to Zϕh0jJWð0Þjπþi=2mπ . Note that δmπ is gauge
invariant and infrared finite, whereas the coefficient c2
obtained from these diagrams is neither.
In order to obtain the contribution to the π → lνl decay

amplitude A we need to remove the factor ðe−mπt=2mπÞZϕ

on the right-hand side of Eq. (26), including the OðαÞ
corrections to this factor. Having determined c1, we are in a
position to subtract the corrections present inmπ . TheOðαÞ
corrections to Zϕ are determined in the standard way, by
performing the corresponding calculation to C1ðtÞ but with
the axial current A replaced by ϕ,

Cϕϕ
1 ðtÞ ¼ −

1

2

Z
d3~xd4x1d4x2

× h0jTfϕð~0; 0Þjμðx1Þjμðx2Þϕ†ð~x; tÞgj0iΔðx1; x2Þ
ð29Þ

¼ Cϕϕ
0 ðtÞðc1tþ cϕϕ2 Þ: ð30Þ

We finally obtain

Zϕ ¼ Zϕ
0

�
1þ 1

2

�
cϕϕ2 −

c1
m0

π

��
; ð31Þ

and theOðαÞ contribution to the amplitude from these three
diagrams is

δA ¼ A0

�
c2 −

cϕϕ2
2

−
c1
2m0

π

�
: ð32Þ

For these three diagrams the OðαÞ term can simply be
considered as a correction to fπ . Note, however, that such
an “fπ” would not be a physical quantity as it contains
infrared divergences.
The treatment of the disconnected diagrams in Figs. 6(a),

6(b), 6(d) and 6(e) follows in exactly the same way. These
diagrams contribute to the electromagnetic corrections to
both the pion mass and the decay amplitude in an
analogous way to the discussion of the connected diagrams
above. It is standard and straightforward to write down the
corresponding correlation functions in terms of quark
propagators. We do not discuss here the different possibil-
ities for generating the necessary quark propagators to
evaluate the diagrams; for example we can imagine using
sequential propagators or some techniques to generate
all-to-all quark propagators.
We end this subsection by briefly considering the

possibility of an alternative approach to computing those
Feynman diagrams which contribute to Γ0 in which the
photon couples only to quarks. The evaluation of these
diagrams could proceed through a full dynamical QCDþ
QED simulation. In this approach, the contributions would
be obtained from the calculation of a single 2-point
correlation function of the pion interpolating operator

and the weak hadronic current. The corresponding ampli-
tude would then account automatically for the OðαÞ
contribution of the diagrams in Figs. 5(a), 5(b), 5(c) and
Figs. 6(a), 6(b), 6(d), 6(e) together with all analogous
contributions of arbitrary higher orders in α.
It should be noted, however, that cancellation of infrared

divergences at OðαnÞ requires the evaluation of diagrams
with up to n real photons in the final state. Since only the
calculation of Γn with n ¼ 1 (or perhaps 2) seems to be
affordable in practice, the cancellation of infrared diver-
gences in this approach would require us to isolate from Γ0

the pure OðαÞ contribution. This can be achieved, in
practice, by evaluating Γ0 for a number of (unphysically
large) values of α and extracting the linear contribution
through a numerical fit to the lattice data. The advantage of
the approach advocated in this paper, instead, is that the
OðαÞ contribution to Γ0 is accessed directly and is not
suppressed by the smallness of α, since the electromagnetic
coupling is always factored out.

2. The evaluation of diagrams Figs. 5(e) and 5(f)

For these diagrams the leptonic and hadronic contribu-
tions do not factorize, and indeed the contribution cannot
be written simply in terms of the parameter fπ. We start by
considering the Minkowski space quantity

ūνlαðpνlÞðM̄1ÞαβvlβðplÞ

¼ −
Z

d4x1d4x2h0jTðjμðx1ÞJνWð0ÞÞjπiiDMðx1; x2Þ

× fūνlðpνlÞγνð1 − γ5ÞðiSMðx2ÞÞγμvlðplÞgeipl·x2 ;

ð33Þ

where iSM and iDM are the lepton and (Feynman gauge)
photon propagators, respectively, in Minkowski space
[more precisely the photon propagator with Lorentz indices
ðρ; σÞ is iDMgρσ, but the Lorentz indices have been
contracted with the electromagnetic currents in (33)]. In
order to demonstrate that we can obtain the OðαÞ correc-
tions to the decay amplitude from a Euclidean space
correlation function, we use the reduction formula to
rewrite the expression in Eq. (33) as

ūνlαðpνlÞðM̄1ÞαβvlβðplÞ

¼ i lim
k0→mπ

ðk02 −m2
πÞ
Z

d4x1d4x2d4xe−ik
0x0

× h0jTðjμðx1ÞJνWð0ÞπðxÞÞj0iiDMðx1; x2Þ
× ½ūνlðpνlÞγνð1 − γ5ÞðiSMðx2ÞÞγμvlðplÞ�eipl·x2 ;

ð34Þ

where πðxÞ is the field which creates a pion with amplitude
1. On the other hand, the Euclidean space correlation
function which we propose to compute is
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C̄1ðtÞαβ¼−
Z

d3~xd4x1d4x2h0jTfJνWð0Þjμðx1Þϕ†ð~x;−tÞgj0i

×Δðx1;x2Þðγνð1−γ5ÞSð0;x2ÞγμÞαβeElt2e−i~pl·~x2 :

ð35Þ

Here S andΔ are Euclidean propagators, and α; β are spinor
indices. Similar to the discussion in Sec. IV B 1, provided
that the pion is the lightest hadronic state, then for large t,
C̄1ðtÞ is dominated by the matrix element with a single pion
in the initial state.
In view of the factor eElt2 on the right-hand side of

Eq. (35), the new feature in the evaluation of the diagrams
in Figs. 5(e) and 5(f) is that we need to ensure that the t2
integration converges as jt2j → ∞. For t2 < 0 the con-
vergence of the integral is improved by the presence of
the exponential factor, and so we limit the discussion to

the case t2 → ∞. El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ ~p2
l

q
is the energy of the

outgoing charged lepton with three-momentum ~pl. To
determine the t2 → ∞ behavior, consider the lepton-photon
vertex at x2 from the diagrams in Figs. 5(e) and 5(f),
redrawn in Fig. 7. kl and kγ are the four-momentum
variables in the Fourier transform of the propagators Sðx2Þ
and Δðx1; x2Þ, respectively, in Eqs. (33)–(35). The t2
integration is indeed convergent as we now show explicitly.
(1) The integration over ~x2 implies three-momentum

conservation at this vertex so that in the sum over the

momenta ~kl þ ~kγ ¼ ~pl, where pl is the momentum
of the outgoing charged lepton.

(2) The integrations over the energies k4l and k4γ lead to
the exponential factor e−ðωlþωγÞt2, where ωl ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~k2l þm2
l

q
, ωγ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2γ þm2

γ

q
, and mγ is the mass

of the photon introduced as an infrared cutoff. The
large t2 behavior is therefore given by the fac-
tor e−ðωlþωγ−ElÞt2.

(3) A simple kinematical exercise shows that in the sum
over ~kγ (with ~kl ¼ ~pl − ~kγ), the minimum value of
ωl þ ωγ is given by

ðωl þ ωγÞmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðml þmγÞ2 þ ~p2

l

q
: ð36Þ

(4) Thus for nonzero mγ , the exponent in e−ðωlþωγ−ElÞt2
for large t2 is negative for every term in the

summation over kγ and the integral over t2 is
convergent so that the continuation from Minkowski
to Euclidean space can be performed.

(5) We note that the integration over t2 is also con-

vergent if we set mγ ¼ 0 but remove the ~k ¼ 0

mode in finite volume. In this case ωl þ ωγ >

El þ ½1 − ðpl=ElÞ�j~kminj.
In summary the t2 integration is convergent because for

every term in the sum over momenta ωl þ ωγ > El, and so
for sufficiently large t we can write

C̄1ðtÞαβ ≃ Zϕ
0

e−m
0
π t

2m0
π
ðM̄1Þαβ; ð37Þ

and the contribution from the diagrams of Figs. 5(e) and
5(f) is ūαðpνlÞðM̄1ÞαβvβðplÞ. This completes the demon-
stration that the Minkowski-space amplitude (34) is equal
to the pion contribution to the Euclidean correlation
function (35), up to a factor Zϕ

0 which accounts for the
normalization of the pion field.
Again the evaluation of the correction to the amplitude

from the disconnected diagram in Fig. 6(c) follows in an
analogous way.

V. CALCULATION OF ΓptðΔEÞ
The evaluation in perturbation theory of the total width

Γpt ¼ Γpt
0 þ Γpt

1 in infinite volume was performed by
Berman and Kinoshita in 1958/1959 [19,26], using the
Pauli-Villars regulator for the ultraviolet divergences and a
photon mass to regulate the infrared divergences in both Γpt

0

and Γpt
1 . Γpt

1 is the rate for process πþ → lþνlγ for a
pointlike pion with the energy of the photon integrated
over the full kinematic range; Γpt

1 ≡ Γpt
1 ðΔEmaxÞ, where

ΔEmax ¼ mπ=2ð1 −m2
l=m

2
πÞ.

In our calculation, Γpt
0 is evaluated in the W regulariza-

tion, so that the ultraviolet divergences are replaced by
logarithms of MW . For convenience we rewrite here the
expression for ΓptðΔEÞ from Eq. (17)

ΓptðΔEÞ ¼ Γpt
0 þΓ1ðΔEÞ ¼ Γtree

0 þΓα;pt
0 þΓðdÞ;pt

0 þΓ1ðΔEÞ:
ð38Þ

Γtree
0 and ΓðdÞ;pt

0 have already been presented in Eqs. (21) and
(16), respectively. In the following we give separately the
results of the remaining contributions to ΓptðΔEÞ also using
a photon mass mγ as the infrared regulator. We neglect
powers of mγ in all the results.
In the perturbative calculation we use the following

Lagrangian for the interaction of a pointlike pion with the
leptons,

FIG. 7. Zoom of the lepton-photon vertex at x2 from the
diagrams in Figs. 5(e) and 5(f).
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Lπ−l−νl ¼ iGFfπV�
udfð∂μ − ieAμÞπg

�
ψ̄ νl

1þ γ5
2

γμψl

�

þ Hermitian conjugate: ð39Þ

The corresponding Feynman rules are

ð40Þ

In addition we have used the standard Feynman rules of
scalar electromagnetism for the interactions of charged
pions in an electromagnetic field.
We start by giving the OðαÞ contributions to Γα;pt

0 .
(i) Wave-function renormalization of the pion: The

contribution of the pion wave function renormaliza-
tion to Γα;pt

0 is obtained from the diagrams in Fig. 8
and is given by

Γπ
0 ¼ Γtree

0 ×
α

4π
Zπ;

where Zπ ¼ −2 log
�
m2

π

M2
W

�
− 2 log

�
m2

γ

m2
π

�
−
3

2
:

ð41Þ

These diagrams correspond to those in Figs. 5(a),
5(b) and 5(c) in the composite case.

(ii) π-l vertex: The remaining graphs contributing to
Γα;pt
0 are the π-l vertex corrections from the dia-

grams shown in Fig. 9 and their complex conjugates.
The contribution from these diagrams is

Γπ−l
0 ¼ Γtree

0 ×
α

4π
Zπ−l; where ð42Þ

Zπ−l ¼ −2
1þ r2l
1 − r2l

logðr2lÞ log
�
m2

γ

m2
π

�
þ 4 log

�
m2

π

M2
W

�

þ 1þ r2l
1 − r2l

log2ðr2lÞ þ 2
1 − 3r2l
1 − r2l

logðr2lÞ − 1;

ð43Þ

and rl ¼ ml=mπ . These diagrams correspond to
diagrams Figs. 5(e) and 5(f) in the composite pion
case.
Next we give the contributions to Γ1ðΔEÞ where

the real photon is emitted and absorbed by the pion
(ππ), the charged lepton (ll) or emitted by the pion
and absorbed by the lepton or vice versa (πl).
The results are presented in the Feynman gauge,

X
r

ε⋆μðk; rÞενðk; rÞ ¼ gμν; ð44Þ

where εμðk; rÞ are the polarization vectors of the real
photon carrying a momentum k, with k2 ¼ 0 in
Minkowski space.

(iii) Real photon emission, ππ: The contribution to
Γ1ðΔEÞ from the emission and absorption of a real
photon from the pion, represented by diagram (a) in
Fig. 10, is given by

Γππ
1 ¼ Γtree

0 ×
α

4π
ðRππ

1 þ Rππ
2 Þ; where ð45Þ

Rππ
1 ¼ 2 log

�
m2

γ

4ΔE2

�
þ 4;

Rππ
2 ¼ 2r4l

ð1 − r2lÞ2
logð1 − rEÞ þ

rEð6 − rE − 4r2lÞ
ð1 − r2lÞ2

;

ð46Þ

rE ¼ 2ΔE=mπ and 0 ≤ rE ≤ 1 − r2l. Here we have
separated Rππ

1 , the contribution in the eikonal
approximation, from Rππ

2 which vanishes as
ΔE → 0. In the eikonal approximation only the
leading terms in the photon’s momenta are kept in
the numerator and denominator of the integrand as
rE → 0. Rππ

1 contains the infrared divergence.

FIG. 8. One loop diagrams contributing to the wave-function
renormalization of a pointlike pion.

FIG. 9. Radiative corrections to the pion-lepton vertex. The diagrams representOðαÞ contributions to Γpt
0 . The left part of each diagram

represents a contribution to the amplitude and the right part the tree-level contribution to the Hermitian conjugate of the amplitude.
The corresponding diagrams containing the radiative correction on the right-hand side of each diagram are also included.
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(iv) Real photon emission, ll: The contribution to
Γ1ðΔEÞ from the emission and absorption of a real
photon from the charged lepton, represented by
diagram (b) in Fig. 10, is given by

Γll
1 ¼ Γtree

0 ×
α

4π
ðRll

1 þ Rll
2 Þ; where ð47Þ

Rll
1 ¼ 2 log

�
m2

γ

4ΔE2

�
− 2

1þ r2l
1− r2l

logðr2lÞ; and

Rll
2 ¼ r2E − 1þð4rE− 6Þr2l

ð1− r2lÞ2
logð1− rEÞ

−
rEðrEþ 4r2lÞ
ð1− r2lÞ2

logðr2lÞþ
rEð6− 3rE− 20r2lÞ

2ð1− r2lÞ2
:

ð48Þ

(v) Real photon emission, πl: Finally, the contribution
to Γ1ðΔEÞ from the emission of a real photon
from the pion and its absorption by the charged
lepton, represented by diagrams (c)–(f) in Fig. 10, is
given by

Γπl
1 ¼ Γtree

0 ×
α

4π
ðRπl

1 þ Rπl
2 Þ; ð49Þ

where

Rπl
1 ¼2

1þr2l
1−r2l

logðr2lÞ log
�

m2
γ

4ΔE2

�
−
1þr2l
1−r2l

½logðr2lÞ�2

−4
1þr2l
1−r2l

Li2ð1−r2lÞ and

Rπl
2 ¼−2

2rEþr4l−2

ð1−r2lÞ2
logð1−rEÞþ

4rE
ð1−r2lÞ2

logðr2lÞ

þrEð2þrEÞ
ð1−r2lÞ2

−4
1þr2l
1−r2l

Li2ðrEÞ: ð50Þ

Note that for diagrams (c), (d) and (e) we include the
conjugate contribution in which the photon vertices
are interchanged between the left and right parts of
the diagrams. Thus for example, in addition to
diagram (c) there is the diagram in which the photon
is emitted from the lepton on the left and absorbed
on the pion on the right.

We are now in a position to combine the results in
Eqs. (41)–(50) in order to obtain the final expression for
ΓptðΔEÞ. As expected the infrared cutoff cancels and
we find

ΓptðΔEÞ ¼ Γtree
0 ×

�
1þ α

4π

�
3 log

�
m2

π

M2
W

�
þ logðr2lÞ − 4 logðr2EÞ þ

2 − 10r2l
1 − r2l

logðr2lÞ − 2
1þ r2l
1 − r2l

logðr2EÞ logðr2lÞ

− 4
1þ r2l
1 − r2l

Li2ð1 − r2lÞ − 3þ
�
3þ r2E − 6r2l þ 4rEð−1þ r2lÞ

ð1 − r2lÞ2
logð1 − rEÞ þ

rEð4 − rE − 4r2lÞ
ð1 − r2lÞ2

logðr2lÞ

−
rEð−22þ 3rE þ 28r2lÞ

2ð1 − r2lÞ2
− 4

1þ r2l
1 − r2l

Li2ðrEÞ
���

: ð51Þ

Note that the terms in square brackets in Eq. (51) vanish when rE goes to zero; in this limit ΓptðΔEÞ is given by its eikonal
approximation.

FIG. 10. Diagrams contributing to Γ1ðΔEÞ. For diagrams (c), (d) and (e) the “conjugate” contributions in which the photon vertices on
the left and right of each diagram are interchanged are also to be included. The labels (a)–(f) are introduced to identify the individual
diagrams when describing their evaluation in the text.
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The total rate is readily computed by setting rE to its
maximum value, namely rE ¼ 1 − r2l, giving

Γpt ¼ Γtree
0 ×

�
1þ α

4π

�
3 log

�
m2

π

M2
W

�
− 8 logð1 − r2lÞ

−
3r4l

ð1 − r2lÞ2
logðr2lÞ−8

1þ r2l
1 − r2l

Li2ð1 − r2lÞþ
13 − 19r2l
2ð1 − r2lÞ

þ 6 − 14r2l − 4ð1þ r2lÞ logð1 − r2lÞ
1 − r2l

logðr2lÞ
��

:

ð52Þ

The result in Eq. (52) agrees with the well known results in
literature [19], which provides an important check of our
calculation. We believe that the result in Eq. (51) is new.
In the description of our method above, we limit the

photon’s energy to be smaller than ΔE to ensure that the
photon is sufficiently soft for the pointlike approximation
to be valid in the evaluation of Γ1ðΔEÞ. It is of course
possible instead to impose a cutoff on the energy of the
final-state lepton, requiring it to be close to its maximum
value Emax

l ¼ mπ
2
ð1þ r2lÞ. For completeness we also give,

up to OðΔElÞ, the distribution for ΓptðΔElÞ defined as

ΓptðΔElÞ ¼
Z

Emax
l

Emax
l −ΔEl

dE0
l
dΓpt

dE0
l
; ð53Þ

where 0 ≤ ΔEl ≤ ðmπ −mlÞ2=ð2mπÞ;

ΓptðΔElÞ

¼ Γtree
0 ×

�
1þ α

4π

�
3 log

�
m2

π

M2
W

�
þ 8 log ð1 − r2lÞ − 7

þ logðr2lÞ
3 − 7r2l þ 8ΔEl þ 4ð1þ r2lÞ log ð1 − r2lÞ

1 − r2l

þ log ð2ΔElÞ
�
−8 − 4

1þ r2l
1 − r2l

logðr2lÞ
���

: ð54Þ

VI. REGULARIZATION AND CANCELLATION
OF INFRARED DIVERGENCES

IN FINITE VOLUMES

In the previous section we have explicitly demonstrated
the cancellation of infrared divergences in the perturbative
quantity ΓptðΔEÞ. This of course is simply the standard
Bloch-Nordsieck cancellation [11]. In this section we
discuss in more detail the cancellation of infrared diver-
gences in

ΔΓ0ðLÞ ¼ ~Γα
0 − Γα;pt

0 : ð55Þ

We have already explained in Sec. III that the contribution
of the lepton’s wave-function renormalization in ΔΓ0ðLÞ is

simply to introduce the tilde in ~Γα
0 , denoting that the

corresponding contribution to the matching factor between
the lattice and W regularizations is to be removed. We also
do not discuss further the evaluation of the remaining
infrared-finite terms in the matching factor because these
are straightforward to evaluate [see e.g. Eq. (15) for the
Wilson action]. Here we concentrate on the remaining
diagrams in Figs. 5 and 6 and the corresponding diagrams
for the pointlike meson.
Although the right-hand side of Eq. (55) is a difference

of decay widths, since at this order the widths are linear in
the OðαÞ virtual amplitude, we can equivalently consider
the difference of the OðαÞ contributions to the amplitudes.
In order to reduce statistical fluctuations when performing
the sum over the gauge field configurations, we define the
ratios

Rα ¼
~Aα

A0

;

Rα;pt ¼ Aα;pt

A0

; ð56Þ

where ~Aα andAα;pt are theOðαÞ amplitudes corresponding
to the widths in Eq. (55). The nonperturbative amplitude
~Aα is precisely the quantity that we propose to compute
numerically in a lattice simulation. It is then combined with
Aα;pt, for which we have given the explicit expression in
infinite volume in Sec. V.
In the calculation of Aα;pt we set the mass of the photon

to zero and consider the theory on a finite volume of length
L, which will be used as an infrared regulator. The form of
the vertices and propagators is the same as in the infinite
volume (the ultraviolet cutoff is provided by the W
regularization), but the momenta are quantized kμ ¼
2π=L × nμ ¼ 2π=ðNaÞ × nμ where −∞ ≤ nμ ≤ þ∞ with

the zero mode n ¼ ð0; ~0Þ removed and N is the number of
lattice sites in one direction, which for simplicity we take to
be the same in all directions.
The calculation of ~Aα

0 is performed nonperturbatively on
the same finite volume as in the perturbative case, but in a
numerical simulation and with the photon propagator
defined as in Eq. (23), which does not contain the zero
mode. Indeed, as already discussed in Sec. IV B, the zero
mode does not contribute to the difference

ΔRðLÞ ¼ Rα − Rα;pt: ð57Þ

This is a gauge invariant, ultraviolet and infrared finite
quantity and for these reasons we expect that its finite
volume effects are comparable to those affecting the OðαÞ
corrections to the hadron masses (that are also gauge
invariant, ultraviolet and infrared finite). The formalism
introduced in this paper was necessary because Γ0 and Γ1

are separately infrared divergent.
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We should add that in principle any consistent regulari-
zation of the infrared divergences is acceptable. The main
criterion for the choice of the infrared regulator will be
determined by the precision of the terms remaining after the
cancellation of the infrared divergences in a numerical
simulation.

VII. SUMMARY AND PROSPECTS

Lattice calculations of some hadronic quantities are
already approaching (or even reaching) Oð1%Þ precision,
and we can confidently expect that the uncertainties will
continue to be reduced in future simulations. At this level of
precision, isospin-breaking effects, including electromag-
netic corrections, must be included in the determination of
the relevant physical quantities. In this paper we present,
for the first time to our knowledge, a method to compute
electromagnetic effects in hadronic processes. For these
quantities the presence of infrared divergences in the
intermediate stages of the calculation makes the procedure
much more complicated than is the case for the hadronic
spectrum, for which calculations in several different
approaches [3–8] already exist. In order to obtain physical
decay widths (or cross sections) diagrams containing
virtual photons must be combined with those correspond-
ing to the emission of real photons. Only in this way are the
infrared divergences cancelled. We stress that it is not
sufficient simply to add the electromagnetic interaction to
the quark action because, for any given process, the
contributions corresponding to different numbers of real
photons must be evaluated separately.
We have discussed in detail a specific case, namely the

OðαÞ radiative corrections to the leptonic decay of charged
pseudoscalar mesons. The method can, however, be
extended to many other processes, for example to semi-
leptonic decays. The condition for the applicability of our
strategy is that there is a mass gap between the decaying
particle and the intermediate states generated by the
emission of the photon, so that all of these states have
higher energies than the mass of the initial hadron (in the
rest frame of the initial hadron).
A key ingredient which is necessary to make the

calculation of the decay widths at OðαÞ possible is the
separation in Eqs. (3) and (4) of the calculation into two
terms which are infrared finite, each of which can be
calculated, the first by using lattice simulations and the
second in perturbation theory. This makes the control of the
cancellation of infrared divergences feasible. In the present
paper, we have limited the discussion to real photons with
energies which are much smaller than the QCD scale ΛQCD.
In the future one can envisage relaxing the conditionΔE ≪
ΛQCD and including the emission of real photons with
energies which do resolve the structure of the initial hadron.
In order to achieve practical control of the cancellation of
infrared divergences in Γ0 þ Γ1ðΔEÞ, the natural generali-
zation of the present strategy would be to rewrite Eq. (3) as

Γ0 þ Γ1ðΔEÞ ¼ lim
V→∞

ðΓ0 − Γpt
0 Þ

þ lim
V→∞

ðΓ1ðΔEÞ − Γpt
1 ðΔEÞÞ

þ lim
V→∞

ðΓpt
0 þ Γpt

1 ðΔEÞÞ: ð58Þ

Whereas in (4) we had envisaged ΔE being sufficiently
small so that Γ1ðΔEÞ can be calculated in the pointlike
approximation, this is no longer the case here. Note that
each of the three terms in (58) is separately infrared finite,
but now Γ1ðΔEÞ − Γpt

1 ðΔEÞ is calculated in a finite volume
with the subtraction performed for each momentum mode
contributing to the phase-space sum. In principle such
calculations can be performed in Euclidean space under the
same conditions as above, i.e. providing that there is a mass
gap, although in practice evaluating the phase-space sum
sufficiently accurately and controlling the finite-volume
effects are likely to be very difficult. Note that the results
from our perturbative calculation of Γpt

0 þ Γpt
1 ðΔEÞ in

Sec. V, which was performed for a general value of ΔE,
will still be a necessary ingredient for this case.
In the calculation of electromagnetic corrections a

general issue concerns finite-size effects. In this respect,
our method reduces to the calculation of infrared-finite,
gauge-invariant quantities for which we expect the finite-
size corrections to be comparable to those encountered in
the computation of the spectrum. This expectation will be
checked in forthcoming numerical studies and studied
theoretically in chiral perturbation theory. Indeed an ana-
lytical calculation of the finite-volume effects requires a
detailed analysis of the form factors parametrizing the
structure dependent contributions [see. Eq. (B4)].
Although the implementation of our method is challeng-

ing, it is within reach of present lattice technology
particularly as the relative precision necessary to make
the results phenomenologically interesting is not exceed-
ingly high. Since the effects we are calculating are, in
general, of Oð1%Þ, calculating the electromagnetic correc-
tions to a precision of 20% or so would already be more
than sufficient. As the techniques improve and computa-
tional resources increase, the determination of both the
QCD and QED effects will become even more precise.
We now look forward to implementing the method
described in this paper in an actual numerical simulation.
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APPENDIX A: MATCHING BETWEEN LATTICE
AND W REGULARIZATION

In this appendix we briefly describe the matching
between the lattice and W regularizations, in perturbative
QED for the complete basis of four-fermion operators

OXY ¼ ðd̄ΓXuÞðν̄lΓYlÞ≡ ΓX ⊗ ΓY; ðA1Þ
where ΓX;Y are Dirac matrices. We consider the following
basis of 5 four-fermion operators given in Eq. (12):

O1 ¼ γμð1 − γ5Þ ⊗ γμð1 − γ5Þ;
O2 ¼ γμð1þ γ5Þ ⊗ γμð1 − γ5Þ;
O3 ¼ ð1 − γ5Þ ⊗ ð1þ γ5Þ;
O4 ¼ ð1þ γ5Þ ⊗ ð1þ γ5Þ;
O5 ¼ σμνð1þ γ5Þ ⊗ σμνð1þ γ5Þ: ðA2Þ

The complete basis is made up of ten operators. The five
additional operators are obtained from O1–O5 by the
exchange ð1 − γ5Þ↔ð1þ γ5Þ. Since the neutrino is electri-
cally neutral, its chirality is conserved, the operatorsO1–O5

do not mix under renormalization with the remaining five
operators, and invariance under parity transformations
ensures that the two 5 × 5 renormalization matrices are
equal. For this reason, in the following we focus the
discussion on the five operators of Eq. (A2). Moreover,
the basis of operators in Eq. (A2) is the complete basis of
operators for a left-handed neutrino.
With regularizations which respect chiral symmetry the

four-fermion operator relevant for the leptonic weak decay,
O1, renormalizes multiplicatively. In this appendix we are
using the lattice theory with Wilson fermions to illustrate
the matching between the lattice andW regularizations, and
the explicit breaking of chiral symmetry with this discre-
tization of QCD leads to the mixing of O1 with the other
four operators O2–O5. If instead of using Wilson fermions,
we used a lattice formulation with good chiral properties,
such as domain wall fermions, the corresponding discussion
to the one presented below would be restricted to the single

operator O1 which transforms as the (8,1) representation
under SUð3ÞL × SUð3ÞR chiral symmetry for the quarks.
We define ZijðaMWÞ to be the matrix which relates the

operators Oi (i ¼ 1–5) in the lattice and W regularizations,

OW
i ðMWÞ ¼ ZijðaMWÞOlatt

j ðaÞ: ðA3Þ

In order to perform the matching we adapt the regulariza-
tion-independent momentum (RI-MOM) renormalization
procedure developed for QCD [27], although, as described
below, all the calculations here are performed in perturba-
tion theory. Let Λlatt

i and ΛW
i (i ¼ 1–5) be the amputated

4-quark Green function of the operator Oi with the lattice
and W regularizations, respectively, both with external
momenta p as illustrated in Fig. 11. We determine Z by
imposing that

�
Z
−1
2

u Z
−1
2

d Z
−1
2

l

�
ZikTrðΛlatt

k PjÞ ¼ TrðΛW
i PjÞ: ðA4Þ

The projectors Pj are defined by their action on the tree-

level Green function Λð0Þ
i ,

TrðΛð0Þ
i PjÞ ¼ δij; ðA5Þ

where the trace here and in Eq. (A4) is defined by
TrðΛiPjÞ ¼ TrðΓi

XP
j
XΓi

YP
j
YÞ for Oi ¼ Γi

X ⊗ Γi
Y and Pj ¼

Pj
X ⊗ Pj

Y . Zu;d;l are the matching factors for the wave-
function renormalization constants of the corresponding

fermion fields, e.g. uW ¼ Z
1
2
uulatt.

Consider the perturbative expansion of the amputated
bare Green function in powers of the electromagnetic
coupling in either the lattice or W regularizations,

Λi ¼ Λð0Þ
i þ α

4π
Λð1Þ
i þ � � � : ðA6Þ

In order to implement the matching conditions between
the two regularization schemes we require the quantities
TrðΛiPjÞ in both schemes. At one-loop order we write

FIG. 11. One-loop Feynman diagrams computed for the renormalization of the four-fermion operators OXY ¼
ðd̄ΓXuÞðν̄lΓYlÞ≡ ΓX ⊗ ΓY . The labels (a)–(c) are introduced to identify the individual diagrams when describing their evaluation
in the text.
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TrðΛlattð1Þ
i PjÞ≡Dij and TrðΛWð1Þ

i PjÞ≡ Cij: ðA7Þ
We represent the matching of the wave functions in the
lattice andW regularizations up to one-loop order by Zq ¼
1þ ðα=4πÞZð1Þ

q þ � � �. Using Eq. (A4), we see that the
matching matrix of the operators in Eq. (A2) at OðαÞ is
given by

Zð1Þ
ij ¼ Cij −Dij þ

1

2
ðZð1Þ

u þ Zð1Þ
d þ Zð1Þ

l Þδij: ðA8Þ

We have presented theOðαÞ contribution to the matching
factor for the wave function of the charged lepton in
Eq. (14) of Sec. III,

Zð1Þ
l ¼ −3=2 − logða2M2

WÞ − 11.852; ðA9Þ
where Zð1Þ

u and Zð1Þ
d differ from Zð1Þ

l only by factors of Q2
u

and Q2
d, where Qf is the charge of the fermion f. We have

verified with an explicit calculation that the contribution to
the matching given in Eq. (A9) is the same whether
evaluated for an on-shell or an off-shell external lepton.

In order to evaluate the matrices Cij and Dij it is
necessary to compute the Feynman diagrams shown in
Fig. 11 in the two regularization schemes. All the external
momenta are chosen to be equal to p and all external
particles are taken to be massless. We deduce Dij from the
results of the corresponding QCD calculation performed in
[28]. (Reference [28] includes a package containing an
ASCII file, in order to make the results most easily
accessible to the reader.) Diagrams (a), (b) and (c) of
Fig. 11 correspond to the diagrams d5, d6 and d1 of [28].
The expression for the lattice wave-function renormaliza-
tion can be obtained from [29].
We now present results for the standard Wilson fermions

and the “naïve” QED gauge action, for which the tree-level
lattice photon propagator in the Feynman gauge is given in
Eq. (23). In infinite volume the sum over momenta in
Eq. (23) is replaced by the corresponding integral. By
combining the ingredients discussed above, we obtain the
following result for the OðαÞ contribution to the renorm-
alization matrix Zij of Eq. (A8):

Zð1Þ ¼

0
BBBBBB@

2LW − 15.539 0.536 1.607 −3.214 −0.804
0.536 LW − 14.850 −3.214 1.607 −0.402
0.402 −0.804 − 2

3
LW − 13.702 −1.071 0

−0.804 0.402 −1.071 − 2
3
LW − 13.702 1

12
LW − 0.057

−9.643 −4.822 0 4LW − 2.756 20
9
LW − 15.692

1
CCCCCCA
; ðA10Þ

where LW ¼ logða2M2
WÞ.

The four-fermion operator relevant for the leptonic decay
rate is O1. From Eq. (A10) we obtain the expression in
Eq. (11) for O1 in theW regularization in terms of the bare
lattice operators.
The result presented for Z in Eq. (A10) above is also

valid if the twisted-mass (or Osterwalder-Seiler [30])
lattice regularization is used for the fermions instead of
the Wilson action. This statement follows from the
observation that the twisted mass action, in the so-called
twisted basis [31], only differs from the Wilson action by
the presence of γ5 in the mass term. The two actions are

therefore identical in the chiral limit, and all renormaliza-
tion constants are equal for Wilson and twisted-mass
fermions in the twisted basis in all mass-independent
renormalization schemes. The renormalization constants
for twisted-mass fermions in the physical basis are
obtained from those in the twisted basis through a simple
twisted rotation [31].
The lattice results in [28,29] are also given for a number

of pure gauge actions including the tree-level Symanzik
and Iwasaki actions. For completeness we give below the
results for the renormalization matrix for these two choices
of the gauge action:

Zð1Þ
TS ¼

0
BBBBBB@

2LW − 12.399 0.451 1.354 −2.709 −0.677
0.451 LW − 11.866 −2.709 1.354 −0.339
0.339 −0.677 − 2

3
LW − 10.978 −0.903 0

−0.677 0.339 −0.903 − 2
3
LW − 10.978 1

12
LW − 0.044

−8.127 −4.063 0 4LW − 2.132 20
9
LW − 12.518

1
CCCCCCA
; ðA11Þ
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Zð1Þ
Iw ¼

0
BBBBBBBB@

2LW − 11.732 0.323 0.969 −1.938 −0.485
0.323 LW − 11.525 −1.938 0.969 −0.242
0.242 −0.485 − 2

3
LW − 11.181 −0.646 0

−0.485 0.242 −0.646 − 2
3
LW − 11.181 1

12
LW − 0.017

−5.815 −2.908 0 4LW − 0.826 20
9
LW − 11.777

1
CCCCCCCCA
: ðA12Þ

APPENDIX B: STRUCTURE DEPENDENT
CONTRIBUTIONS TO THE REAL DECAY

In this appendix we estimate the size of the neglected
structure-dependent contributions to the decay Pþ →
lþνlγ for light mesons, Pþ ¼ πþ; Kþ. We base our
estimates on the results of the phenomenological analyses
performed in Refs. [32–34] based on the use of chiral
perturbation theory atOðp4Þ. Although the relevant expres-
sions have also been derived at Oðp6Þ [35,36] (see also
page 10 of [37]), in that case there are too many unknown
low-energy constants to be useful in making an estimate.
As was done in the main body of the paper, for the general
framework we give the explicit formulas for pion decays;
the generalization of the framework to kaons, and indeed
also to D mesons and B mesons decays, is straightforward.
We then make the numerical estimates of the structure
dependent effects for pions and kaons based on chiral
perturbation theory. Finally we make some comments
about structure dependent terms when Pþ is a heavy-light
meson, Dþ or Bþ.
The starting point of the analysis is the decomposition in

terms of Lorenz invariant form factors of the hadronic
matrix element [see also Eq. (33)]

Hμνðk; pπÞ ¼
Z

d4xeikxTh0jjμðxÞJνWð0ÞjπðpπÞi: ðB1Þ

We follow the standard convention of separating the
contribution corresponding to the approximation of a
pointlike pion (also frequently called inner bremsstrah-
lung) Hμν

pt , from the structure dependent part Hμν
SD,

Hμν ¼ Hμν
SD þHμν

pt : ðB2Þ

Hμν
pt is simply given by

Hμν
pt ¼ fπ

�
gμν −

ð2pπ − kÞμðpπ − kÞν
ðpπ − kÞ2 −m2

π

�
: ðB3Þ

The structure dependent component can be parametrized
by four independent invariant form factors which we
define as

Hμν
SD ¼ H1½k2gμν − kμkν�

þH2f½ðk · pπ − k2Þkμ − k2ðpπ − kÞμ�ðpπ − kÞνg

− i
FV

mπ
ϵμναβkαpπβ

þ FA

mπ
½ðk · pπ − k2Þgμν − ðpπ − kÞμkν�: ðB4Þ

Note that the vector Ward identity kμHμν ¼ fπpν
π, derived

in Ref. [32], is saturated by Hμν
pt

kμH
μν
pt ¼ fπpν

π; kμH
μν
SD ¼ 0: ðB5Þ

As discussed in the main body of the paper, Hμν
pt also

contains the infrared divergences which appear in the virtual-
and real-photon contributions to the decay rate. These
observations motivate the decomposition in Eq. (B2).
In the calculation of the decay rate for πþ → lþνlγ

the tensor Hμν is contracted with the polarization vector of
the real photon. In physical gauges with ε⋆ · k ¼ 0 we
define

Hν ≡ ε⋆μHμν; ðB6Þ
so that

Hν
SD ¼ −ε⋆μ

�
i
FV

mπ
ϵμναβkαpπβ −

FA

mπ
½ðk · pπ − k2Þgμν

−ðpπ − kÞμkν�
�
; ðB7Þ

showing that the structure dependent part of the decay rate
can be parametrized in terms of the two form factors FV
and FA.
Before performing the integrations over the three-body

phase space, the differential decay rate can be expressed as
a function of the two independent Dalitz variables (pπ ¼
pl þ pν þ k)

xl ¼ −
ðpπ − plÞ2

m2
π

þ 1; xγ ¼ −
ðpπ − kÞ2

m2
π

þ 1: ðB8Þ

The decay rate as a function of the photon’s energy in the
pion’s rest frame can be obtained by performing the
integration over xl with the limits xl ∈ ½xmin

l ; xmax
l � where
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xmin
l ¼ 1− r2γ −

1− xγ − r2l
2ð1− xγÞ

h
xγ − r2γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxγ þ r2γÞ2 − 4r2γ

q i
;

xmax
l ¼ 1− r2γ −

1− xγ − r2l
2ð1− xγÞ

h
xγ − r2γ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxγ þ r2γÞ2 − 4r2γ

q i
;

ðB9Þ

rl ¼ ml=mπ and rγ ¼ mγ=mπ. The total decay rate is
obtained by performing the integral over xγ in the range
xγ ∈ ½xmin

γ ; xmax
γ � with

xmin
γ ¼ rγð2 − rγÞ; xmax

γ ¼ 1 − r2l: ðB10Þ

The photon’s mass mγ was introduced in the definition of
rγ to regulate the infrared divergences in the pointlike

contribution. For the structure dependent contribution,
which is infrared finite we can set mγ → 0 and simplify
the above expressions by making the replacements

xmin
l ↦ ð1 − xγÞ þ

xγr2l
ð1 − xγÞ

; xmax
l ↦ 1;

xmin
γ ↦ 0; xmax

γ ↦ 1 − r2l: ðB11Þ

The different contributions to the differential decay rate
have been obtained in Ref. [32]. Writing Γ1 ¼ Γpt

1 þ
ΓSD
1 þ ΓINT

1 , where ΓINT
1 is the contribution to the decay

rate coming from the interference between the pointlike
and the structure-dependent amplitudes, we confirm the
following results:

4π

αΓtree
0

d2Γpt
1

dxγdxl
¼ 2fptðxγ; xlÞ

ð1 − r2lÞ2
;

4π

αΓtree
0

d2ΓSD
1

dxγdxl
¼ m2

πf½FVðxγÞ þ FAðxγÞ�2fþSDðxγ; xlÞ þ ½FVðxγÞ − FAðxγÞ�2f−SDðxγ; xlÞg
2f2πr2lð1 − r2lÞ2

;

4π

αΓtree
0

d2ΓINT
1

dxγdxl
¼ −

2mπf½FVðxγÞ þ FAðxγÞ�fþINTðxγ; xlÞ þ ½FVðxγÞ − FAðxγÞ�f−INTðxγ; xlÞg
fπð1 − r2lÞ2

: ðB12Þ

The functions appearing in Eq. (B12) are

fptðxγ; xlÞ ¼
1 − xl

x2γðxγ þ xl − 1Þ
�
x2γ þ 2ð1 − xγÞð1 − r2lÞ −

2xγr2lð1 − r2lÞ
xγ þ xl − 1

�
;

fþSDðxγ; xlÞ ¼ðxγ þ xl − 1Þ½ðxγ þ xl − 1þ r2lÞð1 − xγÞ − r2l�;
f−SDðxγ; xlÞ ¼ − ð1 − xlÞ½ðxl − 1þ r2lÞð1 − xγÞ − r2l�;

fþINTðxγ; xlÞ ¼ −
1 − xl

xγðxγ þ xl − 1Þ ½ðxγ þ xl − 1þ r2lÞð1 − xγÞ − r2l�;

f−INTðxγ; xlÞ ¼
1 − xl

xγðxγ þ xl − 1Þ ½x
2
γ þ ðxγ þ xl − 1þ r2lÞð1 − xγÞ − r2l�: ðB13Þ

While we confirm the results of Ref. [32], we note that we
disagree with the sign of the interference term d2ΓINT

1 =
dxγdxl given in Refs. [38,39].
The sum of Eqs. (45), (47) and (49) of the main body of

the paper can also be obtained by integrating the pointlike
contributions over xl with the limits given in Eq. (B9) and
over xγ in the range ½rγð2 − rγÞ; rE�. It will be useful below
to define the following quantities:

QA
1 ðxγÞ ¼

4π

αΓtree
0

dΓA
1 ðxγÞ
dxγ

;

A ¼ fpt; SD; INTg; ðB14Þ

RA
1 ðΔEÞ ¼

ΓA
1 ðΔEÞ

Γα;pt
0 þ ΓðdÞ;pt

0 þ Γpt
1 ðΔEÞ

;

A ¼ fSD; INTg; ðB15Þ

where ΔE ¼ rEmπ=2 and Γα;pt
0 and ΓðdÞ;pt

0 have been
defined in the main body of the paper [see Eq. (38)].
Notice that the quantity in the denominator of RA

1 ðΔEÞ is
infrared finite (although it does depend on MW , the ultra-
violet cutoff in the W regularization).
In the following we use phenomenological parametri-

zations of the form factors in order to estimate the size
of the structure-dependent contributions to the decay rate
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FIG. 12 (color online). Pointlike (pt), structure-dependent (SD) and interference (INT) contributions to the decay π → lνγ. The first
(second) row corresponds to l ¼ e (l ¼ μ).
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FIG. 13 (color online). Pointlike (pt), structure-dependent (SD) and interference (INT) contributions to the decay K → lνγ. The first
(second) row corresponds to l ¼ e (l ¼ μ).
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Γ1. For the case of light mesons, we can use the results of
the calculations of Refs. [32–34] (see also Ref. [37]) based
on chiral perturbation theory and approximate the form
factors as constants. At Oðp4Þ in chiral perturbation
theory,

FV ¼ mP

4π2fπ
and

FA ¼ 8mP

fπ
ðLr

9 þ Lr
10Þ; ðB16Þ

where P ¼ π or K and Lr
9; L

r
10 are Gasser-Leutwyler

coefficients. The numerical values of these constants have
been taken from the review by Bychkov and D’Ambrosio
in Ref. [38]; the values of FV and FA are 0.0254 and
0.0119 for the pion and 0.096 and 0.042 for the kaon (for
the pion these values of the form factors, obtained from
direct measurements, can be found in the supplement to
[38] found in [40]). In Figs. 12 and 13 we compare the
pointlike, structure-dependent and interference contribu-
tions to the decays π → lνγ and K → lνγ, respectively.
As can be seen, interference contributions are negligible in
all the decays. The structure-dependent contributions can
be sizable because they are chirally enhanced with respect
to the pointlike contribution [notice the factor 1=r2l in the
second equation in (B12)]. From the phenomenological
estimates of the form factors, this happens for the real
decay K → eνeγ. On the other hand, for Eγ < 20 MeV
both structure dependent and interference contributions
can be safely neglected with respect to the pointlike
contributions for all the decays of pions and the decay
K → μνγ. We learn from Refs. [17,18] that a cutoff on the
energy of the photon in the rest frame of the decaying
particle of Oð20 MeVÞ is experimentally accessible.

The application of chiral perturbation theory described
above does not apply to the decays ofD and Bmesons, and
we believe that for these decays a lattice calculation of
FV;AðxγÞ for a range of values of xγ will prove to be very
useful as a check of the range of validity of the pointlike
approximation. As stressed in the main body of the paper,
such a lattice calculation, starting from Euclidean correla-
tors is indeed possible. A new feature in the case of B
decays in particular, one which is a consequence of the
heavy-quark symmetry, is that the B� and B are almost
degenerate (mB� −mB ≃ 45 MeV). The radiation of a
relatively soft photon can therefore cause the transition
from a B meson to an internal B� close to its mass shell.
Lattice calculations of the form factors would allow us to
investigate the effect this small hyperfine splitting has on
the size of the structure dependent terms as a function
of ΔE.
In the absence of lattice calculations of the form factors,

we note the phenomenological analysis of Ref. [39], based
on the extreme assumption of the single pole dominance,
B� for FV and B1ð5721Þ for FA (in reality many other
virtual states contribute to the form factors):

FVðxγÞ≃ CV

xγ − 1þm2
B⋆=m2

B
;

FAðxγÞ≃ CA

xγ − 1þm2
B1ð5721Þ=m

2
B
; ðB17Þ

with CV ¼ 0.24 and CA ¼ 0.20. The corresponding ratios
R1 are shown in Fig. 14, from which it can be seen that
under this assumption the structure-dependent contribu-
tions to B → eνeγ for Eγ ≃ 20 MeV can be very large, but
are small for B → μνμγ and B → τντγ.
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