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We explore a technique recently proposed in [1] and suggest a correspondence between the N-point
correlation functions on a conifold and the ðN þ 1Þ-point correlation functions on a regular manifold.
This correspondence suggests a new systematic way to evaluate the correlation functions on a manifold
with conical defect. We apply the correspondence to study the vacuum expectation value of a scalar
operator and of the energy-momentum tensor in a conformal field theory living on a spacetime with conical
singularity. Our findings agree with the existing calculations for a cosmic string spacetime. We use the
correspondence to carry out calculations for the generic scalar operator and conserved vector current. For a
unitary field theory we also compute the expectation value of the energy-momentum tensor using the
spectral representation of a two-point function of the energy-momentum tensor in Minkowski spacetime.
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I. INTRODUCTION

In many physical applications we deal with a spacetime
which is regular everywhere except on a codimension two
surface around which the angular coordinate changes from
0 to 2πα with α different from one. The latter periodicity
results in a conical deficit; however in physics this
singularity arises in many circumstances. The spacetime
created by a cosmic string is probably the most familiar one
[2]. In this case wrong periodicity is directly related to the
energy density of a string. Moreover, conical singularity is
a widely used mathematical tool to evaluate the entangle-
ment entropy associated with a codimension two surface Σ.
There, in a replica trick, one allows the angular coordinate
in the transverse space to entangling surface Σ to have
periodicity 2πα. For an integer α ¼ n this corresponds to
gluing together n copies of identical spacetimes. The
entropy then is defined by differentiating the partition
function on such a replicated spacetime with respect to
the angle deficit and by imposing at the end n ¼ 1.
Considering various operators and their correlation

functions in all these examples one needs to impose a
2πα periodicity without violating other important proper-
ties inherent to the system. For free fields Green’s functions
this is done by making use of the Sommerfeld formula [3].
It allows us to achieve a required periodicity such that the
resulting Green’s function satisfies the free field equations
of motion. For more complicated operators the calculation
of correlation functions is less simple and often it should be
done case by case.

In this paper we suggest a more regular way of
computing the correlation functions on conical defects
by relating them to the higher order correlation functions
defined on a nonsingular Riemannian manifoldM. If there
is a rotational symmetry around Σ, then an infinitesimal
angular deficit can be treated in a well-defined way
following the approach of [4], where a description of
Riemannian geometry in the presence of a conical singu-
larity was studied. For general Σ and M one needs to
generalize this method by implementing a squashed cone
technique proposed in [5]. As of today the latter technique
is not entirely understood, e.g., its generalization to the case
of gravitational actions which include derivatives of the
Riemann tensor is not known (see [6] for recent progress in
this direction). Our general proposal in this paper should
hold within the domain of applicability of this generalized
method; however we restrict our conclusions to the case of
a flat entangling plane embedded in Minkowski space.
We assume that the theory resides in a vacuum state and

define the following operator:

P ¼ −lim
α→1

∂
∂α ; ð1:1Þ

which being applied to a function of α extracts a linear term
in ð1 − αÞ. With this definition we suggest the following
correspondence:

PhO1ðx1Þ…ONðxNÞiα ¼ hO1ðx1Þ…ONðxNÞK0ic; ð1:2Þ

where subscript “c” means connected correlator, Ok are
arbitrary operators, scalar or tensor, h…iα is the correlation
function computed in a spacetime with conical defect,
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2πð1 − αÞ, localized at Σ, h� � �i means vacuum expectation
value (vev) on M, and K0 is the modular Hamiltonian
associated with the vacuum state and a region bounded by
Σ. By definition, the correlator on the left-hand side of this
correspondence is expanded in powers of ð1 − αÞ and only
the linear term contributes.
Unfortunately, it is impossible to test our correspondence

in full generality since the modular Hamiltonian for generic
Σ and M is not known. This operator is not even local in
general. However, for certain symmetric geometries, such
as spherical and planar regions in Minkowski space, the
modular Hamiltonian is expressible in terms of energy-
momentum tensor. As of today, these geometries are
probably the only special cases when both sides of the
correspondence can be evaluated independently to verify
(1.2). Hence, we first provide a general derivation of the
correspondence, and then focus on a very special setup: a
plane in a d-dimensional Minkowski space. In this setup the
entangling surface is symmetric under Oð2Þ rotations
around Σ. We also test (1.2) in the case of a finite interval
in a two-dimensional CFT, where Σ consists of two disjoint
points and therefore lacks rotational symmetry in the
transverse space.
The key ingredient for planar Σ is the special role

(suggested earlier by many authors [7]) played by operator
K0 which generates angular evolution in the transverse
space to Σ. This operator is related to the Rindler (or
modular) Hamiltonian HR as K0 ¼ 2πHR, and it has the
following integral representation:

K0 ¼ −2π
Z

dd−2y
Z

∞

0

dx1x1T22ðx1; x2 ¼ 0; yÞ; ð1:3Þ

where ðx1; x2Þ are Cartesian coordinates in the transverse
space, Σ is located at the origin x1 ¼ x2 ¼ 0, and yi with
i ¼ 1;…; d − 2 are Cartesian coordinates on Σ. In this
notation x2 plays the role of Euclidean time and T22 is the
respective component of the energy-momentum tensor. It is
useful to note that the modular Hamiltonian HR generates
angular evolution in plane ðx1; x2Þ.
According to our proposal (1.2) the calculation of

correlation functions on conical defects now reduces to a
calculation in Minkowski spacetime by inserting a special
operator K0. Thus, N-point correlation function h…iα
corresponds to an ðN þ 1Þ-point function in Minkowski
spacetime. This is an improvement over the standard
approach since the correlation functions in Minkowski
spacetime can be evaluated by using various symmetries
(Poincaré and conformal) and in general are better
understood.
That a certain relation between the N-point correlation

functions on conical defects and higher-point correlation
functions in regular flat spacetime should exist was
anticipated in [8] where it was suggested that the conformal
a-charge normally appearing (in four dimensions) starting
with the 3-point functions of energy-momentum tensor

would be visible already in the two-point function consid-
ered on spacetime with a defect. Our correspondence (1.2)
gives an exact realization of this idea.
It should be noted that after appropriate analytic con-

tinuation, a conical spacetime in the case of planar Σ in
Minkowski space transforms into the Rindler spacetime
characterized by some temperature different from the
Unruh temperature. Thus, the correspondence (1.2) should
be also valid for the correlation functions in a thermal field
theory in the Rindler spacetime.

II. DERIVATION OF THE CORRESPONDENCE

Let us consider a field theory living on a d-dimensional
Euclidean manifoldM equipped with a Riemannian metric
gμν. We assume that the system resides in a slightly excited
state given by

jΨi ¼ expð−gO=2Þj0i ð2:1Þ
where j0i is the vacuum state of the theory, g is some small
dimensionless parameter,1 and the scalar operator O in
general may take the following composite form:

O ¼
YN
k¼1

Z
ddxk

ffiffiffi
g

p
σkðxkÞOkðxkÞ; ð2:2Þ

where σkðxkÞ are arbitrary scalar sources with compact
support that couple to operators OkðxkÞ.
Let us evaluate the entropy in this state for an arbitrary

entangling surface Σ that divides M into two subregions A
and B. The entropy is defined with respect to a reduced
density matrix ρwhich is obtained from jΨi by tracing over
the degrees of freedom associated with A,

ρ ¼ TrAjΨihΨj
hΨjΨi ; ð2:3Þ

so that the entropy is

S ¼ −TrBρ ln ρ: ð2:4Þ

The standard way to compute this entropy is to use the
replica trick (for a review see [9])

S ¼ −ðα∂α − 1ÞTrBραjα¼1; ð2:5Þ

where TrBρα is given by a path integral for the theory living
on an α-folded cover ofM with insertion of e−gO on every
sheet of the replicated geometry.2 In this formulation the
entropy to leading order in g is given by

1Factor 1=2 is for later convenience.
2In fact, we have the insertion of e−gO=2 on upper (x2 > 0) and

lower (x2 < 0) parts of each sheet. However, we implicitly
assume that OkðxkÞ are symmetric under parity transformation,
and therefore we can combine these insertions into e−gO.
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S ¼ S0 þ gðα∂α − 1Þjα¼1hOiα; ð2:6Þ
where the expectation value h…iα is defined in the
replicated vacuum state j0i and S0 is the entanglement
entropy associated with this state. Note that realization of
conifolds in the absence of rotational symmetry around the
entangling surface requires engagement of squashed cone
techniques initiated in [5], and we implicitly assume that
this approach is applicable in general.
Alternatively, the corresponding change in the entangle-

ment entropy can be obtained considering a perturbation
in the density matrix, ρ ¼ ρ0 þ δρ, where ρ0 ¼ TrAj0ih0j.
To linear order in δρ variation in the entropy is given by the
“first law” of entanglement [10],

δS ¼ TrBðδρK0Þ; ρ0 ¼ e−K0 ; ð2:7Þ
here we assumed that the full density matrix is properly
normalized, TrBρ ¼ TrBρ0 ¼ 1, so that TrAδρ ¼ 0.
If the entangling surface exhibits rotational symmetry in

the transverse space, then K0 can be identified with the
generator of angular evolution around Σ, i.e., in the case of
a plane in flat space it is given by (1.3). However, there is
no closed form expression for the modular Hamiltonian in
general.
In the state (2.1) the variation of the density matrix for

small g takes the following form:

δρ ¼ −gTrAðj0ih0jOÞ þ gh0jOj0iTrAj0ih0j; ð2:8Þ
where the last term originates from expansion of hΨjΨi in
(2.3) and ensures proper normalization of δρ. As a result we
get a particular realization of (2.7),

δS ¼ −gTrBTrAðj0ih0jOK0Þ þ gh0jOj0iTrBTrAðj0ih0jK0Þ
¼ −ghOK0ic: ð2:9Þ

Recall that the connected vev on the right-hand side
is defined on a general Riemannian manifold M. By
comparing (2.9) with (2.6) we arrive at the relation

lim
α→1

ðα∂α − 1ÞhOiα ¼ −hOK0ic: ð2:10Þ

In this relation the operatorO has the integral form (2.2). We
note that the integration involves only one power of α despite
the fact that the integral is N multiple. This is due to the fact
that operator O is inserted only once on each sheet of the
replicated geometry. Taking this remark and the composite
structure of operator (2.2) with arbitrary functions3 σkðxkÞ,
we obtain (1.2), announced in the introduction.

In Minkowski spacetime the expectation value h0jK0j0i
vanishes. Therefore we shall systematically ignore in this
paper the difference between the connected and noncon-
nected correlation functions.
Notice that in the above derivation the scalar operator

OkðxkÞ is arbitrary, e.g., it can be some tensorial operator of
the theory contracted with an arbitrary polarization tensor.
Furthermore, in the case of flat Σ in Minkowski space,
operatorK0 is defined by (1.3) and therefore the correlation
function on the right-hand side of (1.2) reduces to an
ðN þ 1Þ-correlation function with insertion of Tμν. This
type of correlator will be in the focus of explicit compu-
tations presented in this paper.

III. VACUUM EXPECTATION OF A SCALAR
OPERATOR

A. General consideration

We start with the analysis of the simplest case of a one-
point function for a scalar operatorOwith scaling dimension
Δ in a generic nonconformal field theory. In order to use our
general prescription (1.2) we need to know a two-point
correlation function hOðxÞTμνðx0Þi of this operator and the
energy-momentum tensor. It should be possible to decom-
pose this correlation function in powers of 1=ðx − x0Þ2
provided this decomposition respects the tensor structure
of this correlation function and the conservation of the
energy-momentum tensor. These two conditions single out
uniquely the following decomposition:

hOðxÞTμνðx0Þi¼
X
k

akP
ðkÞ
μν ðx;x0Þ;

PðkÞ
μν ðx;x0Þ ¼ 1

ðx−x0Þ2ðd−kÞ

×

�
δμν−

ðd−kÞ
ðd−2kþ1Þ

2ðx−x0Þμðx−x0Þν
ðx−x0Þ2

�
;

∂μPðkÞ
μν ðx;x0Þ ¼ 0; ð3:1Þ

where k ≥ ðd − ΔÞ=2 is not necessarily an integer. We
notice that the conservation law fixes completely the relative

coefficient in PðkÞ
μν ðx; x0Þ. Relation (3.1) is a small ðx − x0Þ

expansion which contains both negative and positive powers
of ðx − x0Þ. The information about concrete scalar operator is
now contained in the coefficients fakg. For k ¼ dþ1

2
the

relevant definition of tensor Pμν is

P
ðdþ1

2
Þ

μν ðx; x0Þ ¼ ðx − x0Þμðx − x0Þν
ðx − x0Þðd−1Þ : ð3:2Þ

The correlation function (3.1) is OðdÞ invariant. Now, if
our correspondence (1.2) is correct then after two integra-
tions (over y and x1) present in definition (1.3) we should
end up with a Oð2Þ-invariant expression. Let us see how

3We assume that the compact supports of σkðxkÞ are disjoint
and do not include the singularities of replicated geometry, i.e., by
assumption none of them overlap with Σ. To include these cases
one needs to account for the standard contact terms as well as
possible anomalies that reside on the entangling surface. The
latter can be addressed by resorting to Ward identities.
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this works for the scalar operator. We consider the (22)
component of (3.1), multiply it by −2π, decompose the
coordinates as x ¼ ðy; x1; x2Þ, then integrate over
y0-variables, and after that take the integration over x10.
The integration over y0 is easily performed using the
following relation:

Z
dd−2y0PðkÞ

22 ðy; x1; x2; y0; x10; x20 ¼ 0Þ

¼ 1

2
Ωd−3

Γðd−2
2
ÞΓðd

2
− kþ 1Þ

Γðd − kÞðd − 2kÞðd − 2kþ 1Þ
∂2

∂2x01

×

�
1

ðx22 þ ðx10 − x1Þ2Þd−2k2

�
; ð3:3Þ

where

Ωd−3 ¼
2π

d−2
2

Γðd−2
2
Þ

is the area of ðd − 3Þ-sphere. We stress that namely due to
the precise balance between two terms in the expression for
PðkÞ
μν we have this second derivative form for the integral

(3.3) which otherwise would not have happened.
There are two special cases when we have to reevaluate

this integral more carefully. The first case is when k ¼ dþ1
2
.

Then we have

Z
dd−2y0Pðdþ1

2
Þ

22 ðy; x1; x2; y0; x10; x20 ¼ 0Þ

¼
ffiffiffi
π

p
4

Ωd−3
Γðd

2
− 1Þ

Γðdþ1
2
Þ

∂2

∂2x01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ ðx10 − x1Þ2

q
: ð3:4Þ

The second special case is when k ¼ d
2
. In this case the

integration in (3.3) gives

Z
dd−2y0Pðd

2
Þ

22 ðy; x1; x2; y0; x10; x20 ¼ 0Þ

¼ −
Ωd−3

2ðd − 2Þ
∂2

∂2x01
lnðx22 þ ðx01 − x1Þ2Þ: ð3:5Þ

Now the integration remaining over x10 is performed as
follows:

Z
∞

0

dx01x1
0 ∂2

∂2x01

�
1

ðx22 þ ðx10 − x1Þ2Þd−2k2

�
¼ 1

ðx21 þ x22Þ
d−2k
2

:

ð3:6Þ

For values of k such that ð2k − dÞ > 0 we use a regulari-
zation which consists in evaluating the integral only at the
lower limit of integration x10 ¼ 0 and ignoring the terms
coming from the infinity. Technically this is done by
evaluating the integral in (3.6) first for d − 2k > 0 and

then taking the continuous limit to values of k such
that d − 2k < 0.
Collecting everything together and using our correspon-

dence we arrive at our result,

PhOðy; x1; x2Þiα

¼ −πΩd−3

X
k

Γðd−2
2
ÞΓðd

2
− kþ 1Þ

Γðd − kÞðd − 2kÞðd − 2kþ 1Þ
ak

rd−2k

−
π3=2

2

Γðd−2
2
Þ

Γðdþ1
2
ÞΩd−3adþ1

2
rþ 2π

ðd − 2ÞΩd−3ad
2
ln r; ð3:7Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
and in the second line we explicitly

included two special terms with k ¼ d=2 and k¼ðdþ1Þ=2
respectively. We see that the resulting correlation function
does not depend on coordinate y on the singular surface Σ.
This is as expected since we have a translational symmetry
along the surface. On the other hand, the correlation
function is Oð2Þ invariant in the direction orthogonal
to the surface and thus it depends only on the distance r
to the singularity. Formally, this can be seen as follows.
The modular Hamiltonian is a generator of rotations in
plane ðx1; x2Þ and hence one has that 2π∂φO¼½O;K0�.
Therefore, the expectation value ∂φh0jOK0j0i ¼ 0 as we
observe in a direct calculation in (3.7).
By our proposal (1.2), Eq. (3.7) represents a linear in

ð1 − αÞ term in the expansion of expectation value of O
evaluated on a conifold. In order to test our proposal we
now consider a particular example of a minimally coupled
scalar field.

B. Free massive scalar field

In this subsection we shall evaluate the expectation value
of ϕ2 on a conical defect using our correspondence and
then compare this with the known results. Let us first
consider a minimally coupled scalar field of mass m. The
corresponding energy-momentum tensor is the canonical
one,

Tc
μν ¼ ∂μϕ∂νϕ − δμν

�
1

2
ð∂ϕÞ2 þm2

2
ϕ2

�
: ð3:8Þ

We are interested in evaluating the following connected
correlator:

hϕ2ðxÞTc
μνðx0Þi ¼ 2hϕðxÞ∂μϕðx0ÞihϕðxÞ∂νϕðx0Þi

− δμνðhϕðxÞ∂μϕðx0ÞihϕðxÞ∂μϕðx0Þi
þm2hϕðxÞϕðx0Þi2Þ: ð3:9Þ

The Euclidean two-point function in free field has the
standard form
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hϕðxÞϕðx0Þi ¼
Z

ddp
ð2πÞd

eip·ðx−x0Þ

p2 þm2
¼ 1

2π

�
m
2πσ

�d−2
2

Kd−2
2
ðmσÞ;

ð3:10Þ

where σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2

p
. Substituting this into (3.9) yields

hϕ2ðxÞTc
μνðx0Þi¼−

1

ð2πÞd
md

σd−2

�
δμν

�
K2

d
2

ðmσÞþK2
d−2
2

ðmσÞ
�

−2
ðx−x0Þμðx−x0Þν

σ2
K2

d
2

ðmσÞ
�
: ð3:11Þ

In order to make contact with our general representation
(3.1) we expand this expression in m or, equivalently, in
powers of σ using the expansion formula for the Bessel
function

K2
d
2

ðxÞ ¼ x−dΓðd=2Þð2d−2Γðd=2Þ
− 2d−3Γðd=2 − 1Þx2 þ…Þ: ð3:12Þ

We then find

hϕ2ðxÞTc
μνðx0Þi

¼ −
Γðd=2Þ2
4πd

×

�
Pð1Þ
μν ðx; x0Þ −m2

ðd − 3Þ
ðd − 2Þ2 P

ð2Þ
μν ðx; x0Þ þ…

�

ð3:13Þ

in terms of PðnÞ
μν introduced in (3.1). Now we can use our

general result (3.7) and, after some simplifications, arrive at
the following expression:

Phϕ2ðxÞiα ¼
Γðd=2Þ2

2dπ
d−1
2 ðd − 2ÞΓðdþ1

2
Þ

1

rd−2

×

�
1 −

2ðd − 1Þ
ðd − 2Þðd − 4Þ ðmrÞ2 þ…

�
; ð3:14Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
is the distance to the conical

singularity.
In d ¼ 4 the second term in (3.13) is the one which

corresponds to k ¼ d=2. It should be treated separately
using (3.4) and it produces the logarithmic term outlined in
(3.7). With this term taken into account the result in four
dimensions is as follows:

Phϕ2ðxÞiα ¼
1

24π2r2
ð1þ 3ðmrÞ2 logðmrÞ þ…Þ: ð3:15Þ

This result can now be compared with those available in the
literature, see for instance [11], for the direct calculation in
conical spacetime and we find exact agreement. This is an

important check for our general proposal. We however
stress that our results in this section are much more general.
They are valid for any scalar operator in arbitrary
dimensions.
It is straightforward to generalize our discussion to

include a nonminimally coupled scalar field. In this case
(3.8) undergoes the following improvement:

~Tμν ¼ Tc
μν þ ξðδμν∂2 − ∂μ∂νÞϕ2: ð3:16Þ

For a conformally coupled scalar,

ξc ¼
d − 2

4ðd − 1Þ : ð3:17Þ

The new term in the energy-momentum tensor induces the
following correction to (3.9):

hϕ2ðxÞ ~Tμνðx0Þi ¼ hϕ2ðxÞTc
μνðx0Þi

þ ξðδμν∂2 − ∂μ∂νÞhϕðxÞϕðx0Þi2; ð3:18Þ

where derivatives act on x0.
Now using (3.10) and expansion (3.12) one can carry out

all necessary integrals as we did it in Sec. III A. The final
result reads

Phϕ2ðxÞiα ¼
Γðd−2

2
Þ2

ð4πÞd−12 Γðd−1
2
Þ

1

rd−2

�
ξc − ξþ 2ðd − 3Þ

ðd − 4Þ2

×

�
ξ −

d − 4

4ðd − 3Þ
�
ðmrÞ2 þ…

�
: ð3:19Þ

In the conformal case ξ ¼ ξc, m ¼ 0 this expression
vanishes. It should be mentioned that this result is expected.
Indeed, by conformal invariance the correlation function
hOðxÞTCFT

μν ðx0Þi vanishes identically and so does the
correlation function of O with operator K0. This happens
because the correlation function ofOwith the improvement
in (3.16) cancels the correlation function with the canonical
energy-momentum tensor.

IV. VACUUM EXPECTATION OF A CONSERVED
VECTOR CURRENT

We can generalize our consideration of the previous
section for the case when the operator which appears in the
perturbation (2.1) is a conserved vector current JμðxÞ,∂μJμðxÞ ¼ 0. The correlation function of this vector current
and the energy-momentum tensor in Minkowski spacetime

hJμðxÞTαβðx0Þi ¼ Pμ;αβðx; x0Þ ð4:1Þ

in general is a combination of terms
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Pμ;αβðx; x0Þ

¼ 1

ðx − x0Þ2k
�
Aδαβðx − x0Þμ þ Bðδαμðx − x0Þβ

þ δβμðx − x0ÞαÞ þ C
ðx − x0Þμðx − x0Þαðx − x0Þβ

ðx − x0Þ2
�

ð4:2Þ

provided the conservation laws

∂μPμ;αβðx; x0Þ ¼ ∂αPμ;αβðx; x0Þ ¼ 0 ð4:3Þ

are satisfied. These conditions happen to be very restrictive.
They fix not only the possible values of constants A, B, C
but also the power k. In fact, we have found only two
possible solutions to these conditions,

PðIÞ
μ;αβðx; x0Þ ¼

ðx − x0Þμðx − x0Þαðx − x0Þβ
ðx0 − xÞdþ2

;

PðIIÞ
μ;αβðx; x0Þ ¼

1

ðx0 − xÞdþ2

�ðx0 − xÞμðx0 − xÞαðx0 − xÞβ
ðx0 − xÞ2

−
1

ðdþ 2Þ ðδαβðx
0 − xÞμ

þ δαμðx0 − xÞβ þ δβμðx0 − xÞαÞ
�
: ð4:4Þ

An interesting property of the solution of type II is that
it is traceless with respect to any pair of indices,

δαβPðIIÞ
μ;αβ ¼ δαμPðIIÞ

μ;αβ ¼ 0.
Respectively, we have two types of conserved currents

which we shall call JðIÞμ ðxÞ and JðIIÞμ ðxÞ. In order to compute
the expectation value of these currents on a conical defect
we shall use our correspondence along the same lines as we
have done for a scalar operator in the previous section. The
results of the calculation can be summarized as follows.
For the vector current of type I we find the expectation

values

PhJðIÞi ðy; x1; x2Þiα ¼ 0; i ∈ Σ;

PhJðIÞ1 ðy; x1; x2Þiα ¼ −
2πΩd−3

dðd − 2Þ x2
�
π

2
þ arctan

x1
x2

�
;

PhJðIÞ2 ðy; x1; x2Þiα ¼ −
2πΩd−3

dðd − 2Þ x2

×

�
1þ x1

x2

�
π

2
þ arctan

x1
x2

��
: ð4:5Þ

For the vector current of type II we find the expectation
values

PhJðIIÞi ðy; x1; x2Þiα ¼ 0; i ∈ Σ;

PhJðIIÞa ðy; x1; x2Þiα ¼ −
2πΩd−3

dðd − 2Þðdþ 2Þ
xa
r2

;

a ¼ 1; 2; ð4:6Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
. We see that in both cases the only

nonvanishing components of hJμi are those lying in the
plane perpendicular to the surface Σ so that the vector
current in this plane is divergence free,

∂ahJðI;IIÞa iα ¼ 0: ð4:7Þ

The result (4.5) for the current I is somewhat puzzling. It is
not obviously rotational invariant and, moreover, it is a
multiple valued function of the angular coordinate in the
plane ðx1; x2Þ. It would be nice to have a better under-
standing of this behavior and compare these results with the
direct calculations for vector currents in a spacetime of
cosmic string. We, however, at the moment are not aware of
any such calculations.

V. VACUUM EXPECTATION OF Tμν IN CFT4

In order to further check our proposed correspondence
(1.2) we shall consider a conformal field theory in four
dimensions and compute the expectation value of the stress
energy tensor in this theory and compare it with the known
results in the literature obtained directly on a conical
spacetime.
Conformal symmetry as is well known [12] fixes

completely the structure of the two-point function for
the energy-momentum tensor,

hTμνðxÞTαβðx0Þi ¼
CTIμν;αβ

ððx − x0Þ2Þ4 ð5:1Þ

with

Iμν;αβ ¼
1

2
ðIμαIνβ þ IμβIναÞ −

1

4
δμνδαβ;

Iμν ¼ δμν − 2
ðx − x0Þμðx − x0Þν

ðx − x0Þ2 : ð5:2Þ

CT is a charge related to the B-type conformal anomaly. As
is seen from the structure of the operator K0 (1.3) we shall
need only component α ¼ β ¼ 2 of (5.1) in order to
compute correlator hTμνðxÞK0i. The integration over
y-variables and over x1 is rather straightforward and we
find that

hTijðx1; x2; yÞK0i ¼
π2

120
CT

δij
r4

; i; j ¼ 3; 4

hTabðx1; x2; yÞK0i ¼
π2

120
CT

4xaxb − 3δabr2

r6
;

a; b ¼ 1; 2 ð5:3Þ
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where r2 ¼ x21 þ x22. These correlation functions do not
depend on the coordinate y as a consequence of the
translation invariance along the planar surface Σ. For a
free field multiplet containing ns conformal scalars, nf
Dirac fermions, and nv gauge vector fields we have

CT ¼ 1

3π4
ðns þ 6nf þ 12nvÞ: ð5:4Þ

The result (5.3) should be compared to thewell-known result
[13] for the expectation value of the energy-momentum
tensor computed directly on a conical spacetime. Written in
polar coordinates it takes the form

hTμ
νiα ¼

fðαÞ
1440π2r4

diagð1;−3; 1; 1Þ; ð5:5Þ

where

fðαÞ ¼ 1

16α4
ð1 − α2Þ

�
2

�
1þ α2

3

�
aþ ð1 − α2Þð2b − cÞ

�
;

ð5:6Þ

with

a ¼ 12ðns þ 6nf þ 12nvÞ;

b ¼ −4
�
ns þ

11

2
nf þ 62nv

�
;

c ¼ −240nv: ð5:7Þ

Applying now operator P (1.1) to correlation function (5.5)
we find a complete agreement with our result (5.3). This is a
rather nontrivial check on our proposed correspondence.

VI. VACUUM EXPECTATION OF Tμν IN A
GENERIC d-DIMENSIONAL

FIELD THEORY

The result of the previous section can be generalized to
any unitary (not necessarily free) field theory by making
use of the spectral representation of the two-point corre-
lation function of energy-momentum tensor. This repre-
sentation was suggested in [14] and it takes the form

hTαβðxÞTρσðx0Þi

¼ Ad

ðd − 1Þ2
Z

∞

0

dμcð0ÞðμÞΠð0Þ
αβ;ρσð∂ÞGdðx − x0; μÞ

þ Ad

ðd − 1Þ2
Z

∞

0

dμcð2ÞðμÞΠð2Þ
αβ;ρσð∂ÞGdðx − x0; μÞ;

ð6:1Þ

where Ad ¼ Ωd−1
ðdþ1Þ2d−1, Ωd−1 ¼ 2πd=2

Γðd=2Þ and we defined
operators

Πð0Þ
αβ;ρσð∂Þ ¼ 1

ΓðdÞ SαβSρσ;

Πð2Þ
αβ;ρσð∂Þ ¼ d − 1

2Γðd − 1Þ
�
SαρSβσ þ SασSβρ −

2

d − 1
SαβSρσ

�
;

ð6:2Þ

whereas Sαβ ¼ ∂α∂β − δαβ∂2 and

Gdðx − x0; μÞ ¼
Z

ddp
ð2πÞd

eip·ðx−x0Þ

p2 þ μ2
ð6:3Þ

is Green’s function of a massive scalar field in d dimen-
sions. The representation (6.1) is general and it is valid for
any unitary theory. The information about the concrete
quantum field theory is encoded in the spectral function
cð0ÞðμÞ and cð2ÞðμÞ.
This spectral representation of the correlation function

is helpful and we can now compute the correlation function
of the product of the energy-momentum tensor and
operator K0,

hTαβðx1; x2; yÞK0i

¼ −
2πAd

ðd − 1Þ2
Z

∞

0

dμðc0ðμÞΠð0Þ
αβ;22ð∂Þ þ cð2ÞðμÞΠð2Þ

αβ;22ð∂ÞÞ

×
Z

dd−2y0
Z

∞

0

dx01x1
0Gdðx1 − x10; x2; y − y0; μÞ:

ð6:4Þ

First we notice that the integration over y0 in (6.4) produces
a two-dimensional Green’s function,

Z
dd−2y0Gdðx1 − x10; x2; y − y0; μÞ

¼ G2ðx1 − x10; x2; μÞ ¼
1

2π
K0

�
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x10Þ2 þ x22

q �
:

ð6:5Þ

In fact, it is not surprising that we get a two-dimensional
Green’s function. This is a well-known method, called the
descent method, to get a lower dimensional Green’s
function from a higher dimensional one by integrating
over a subset of variables.
The function (6.5) does not depend on coordinates y.

Therefore the derivatives with respect to y in (6.4) give the
vanishing results when they act on (6.5). This indicates that
the operators Sαβ reduce to purely two-dimensional oper-
ators acting in the transverse subspace,

Sαβ →

	 ∂a∂b − δabΔð2Þ for α; β ¼ a; b ¼ 1; 2;

−δijΔð2Þ for α; β ¼ i; j;
ð6:6Þ
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where Δð2Þ ¼ ∂2
1 þ ∂2

2 is the two-dimensional Laplacian in
the transverse space to surface Σ. Due to this the operators
(6.2) are simplified,

Πð0Þ
ij;22 ¼

δij
ΓðdÞΔ

ð2Þ∂2
1; Πð2Þ

ij;22 ¼ −
δij

Γðd − 1ÞΔ
ð2Þ∂2

1;

Πð0Þ
ab;22 ¼ −

1

ΓðdÞ Sab∂
2
1; Πð2Þ

ab;22 ¼ −
d − 2

Γðd − 1Þ Sab∂
2
1:

ð6:7Þ

On the other hand, since G2 is a solution to equation
Δð2ÞG2 ¼ μ2G2 one can replace Δð2Þ by μ2. What is left is
the integration over x01 in (6.4). This can be easily done by
integrating twice by parts and we arrive at a simple
expression,

Z
∞

0

dx01x
0
1

∂2

∂x21G2ðx1 − x01; x2; μÞ

¼ G2ðx1; x2; μÞ ¼
1

2π
K0

�
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q �
: ð6:8Þ

We pause here to appreciate this little magic. Indeed, we
have started with expression (6.4) in whichOð2Þ symmetry
in ðx1; x2Þ subspace was not evident at all but then after
performing all integrations we arrive at an expression
which is clearly Oð2Þ invariant. From the conical space
point of view this is of course expected due to the rotational
symmetry around the tip of the cone.
The final result for the correlation function (6.4) can be

now represented in a form of the integral over the spectral
parameter μ,

hTijðx1; x2; yÞK0i ¼ −
Adδij

ðd − 1Þ2ΓðdÞ
Z

∞

0

dμðcð0ÞðμÞ − ðd − 1Þcð2ÞðμÞÞμ2K0ðμrÞ;

hTabðx1; x2; yÞK0i ¼ −
Ad

ðd − 1Þ2ΓðdÞ
Z

∞

0

dμðcð0ÞðμÞ þ ðd − 1Þðd − 2Þcð2ÞðμÞÞ

×

�
μ2K0ðμrÞ

�
δab −

xaxb
r2

�
þ μK1ðμrÞ

r

�
δab −

2xaxb
r2

��
: ð6:9Þ

This represents the general result valid for arbitrary (free or
interacting) field theory. By our proposed correspondence
(1.2) this expression is our prediction for the leading order
contribution to the expectation value of energy-momentum
tensor on a planar conical defect in such a generic
d-dimensional theory.
We now consider some particular case.
Conformal field theory limit.
Conformal field theory is a particular example for the

theory considered above. As argued in [14], in this case we
have

cð0ÞðμÞ ∝CFTμd−2δðμÞ; cð2ÞðμÞ ¼CFT d − 1

d
CTμ

d−3; ð6:10Þ

where CT is the charge which appears in the two-point
correlation function of energy-momentum tensor in d-
dimensional CFT, similarly to the four-dimensional case
(5.1). Performing the integration over μ we obtain

PhTijðx1; x2; yÞiα ¼ hTijðx1; x2; yÞK0i

¼CFTCTπ
d=2Γðd

2
Þ

Γðdþ 2Þ
δij
rd

; i; j ¼ 3;…; d

PhTabðx1; x2; yÞiα ¼ hTabðx1; x2; yÞK0i

¼CFTCTπ
d=2Γðd

2
Þ

Γðdþ 2Þ
�
d
xaxb
r2

− ðd − 1Þδab
�
;

a; b ¼ 1; 2. ð6:11Þ

In four dimensions we again reproduce (5.3). We are not
aware of any previous results in higher dimensions.
Therefore, (6.11) is our prediction for the expectation value
of a CFT energy-momentum tensor on a conical defect.

VII. FINITE INTERVAL IN A
TWO-DIMENSIONAL CFT

In this section we want to test our correspondence
for more general geometries. Let us consider a two-
dimensional conformal field theory living in R2. By
assumption, the theory resides in a vacuum state and we
choose some interval of finite lengthl to represent subsystem
B. This setup is probably the simplest examplewhereΣ is not
rotationally symmetric in the transverse space and both sides
of the correspondence can still be explicitly evaluated.
We parametrize an α-folded cover ofR2 by w and denote

the end points of the interval by u and v. Now the
conformal transformation z ¼ ððw − uÞ=ðw − vÞÞ1=α maps
the α-sheeted Riemann surface to the ordinary complex
plane C [15], and the holomorphic components of the
energy-momemntum tensor are related by [16]

TðwÞ ¼ ðdz=dwÞ2TðzÞ þ c
12

�
z000z0 −

3

2
z002

�
=z02; ð7:1Þ

where TðwÞ ¼ −2πTwwðwÞ has support on one of the α
sheets and the second term on the right-hand side is
the Schwartzian derivative. In particular, the vacuum
expectation value reads [15]
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hTðwÞiα ¼
cð1 − ð1=αÞ2Þ

24

l2

ðw − uÞ2ðw − vÞ2 ; ð7:2Þ

where hTðzÞiC ¼ 0 has been used. Given the above general
formula one can readily evaluate

PhTðwÞiα ¼ −
c
12

l2

ðw − uÞ2ðw − vÞ2 : ð7:3Þ

On the other hand, the modular Hamiltonian associated
with a finite interval in two-dimensional conformal field
theory is given by [17]

K0 ¼
2π

l

Z
l

0

dx1x1ðx1 − lÞT22ðx1Þ; ð7:4Þ

where for simplicity we chose u ¼ l and v ¼ 0. Using now

hTðwÞTð0ÞiC ¼ c
2w4

; hT̄ðwÞTð0Þi ¼ 0; ð7:5Þ

and substituting

T22 ¼
1

2π
ðT þ T̄Þ þ 2Tww̄; ð7:6Þ

yields4

hTðwÞK0iC ¼ −
c

12π

l2

ðw − uÞ2ðw − vÞ2 : ð7:7Þ

As expected by the correspondence (1.2), this expression is
in accord with (7.3).

VIII. CONCLUSION: FURTHER DIRECTIONS

In this paper we have suggested a certain correspondence
between the correlation functions in a spacetime with
conical defect and the correlation functions defined on a
regular manifold. This correspondence is rather general.
It is supposed to hold for any singular codimension two
surface. However, since it involves the insertion of a
modular Hamiltonian which is not known in general, the
efficiency of our proposal reduces to those cases when the
modular Hamiltonian can be constructed either explicitly or
perturbatively. This still includes a wide class of physical
setups and models. To conclude we list some interesting
directions for further research.
(1) Higher point functions. In this paper we mostly

considered the expectation values, or the one-point
functions, of certain operators on a spacetime with
conical defect. Their calculation reduces to analysis
of the two-point functions in a regular Minkowski

spacetime. However, this restriction is not essential;
it is dictated by our motivation to illustrate the
correspondence using relatively simple examples
which allow comparison with existing results in
the literature. In fact, extension of our method to
higher point functions is rather straightforward.
It would be interesting to compute, for instance,
the two-point function of scalar operators on a
conical defect in a conformal field theory using
the exact expressions for the correlation functions in
Minkowski spacetime found in [12]. It is one of the
problems which we plan to study in the future.
One of the interesting related problems is to

uncover a precise way, conjectured in [8], in which
the conformal a-anomaly appears in the two-point
function of the energy-momentum tensor evaluated
on a conifold. This is considered in the accompany-
ing paper [18].

(2) Twist operators. In [15] it was shown that compu-
tation of the field theory partition function on an
α-folded cover of R2 is the same as the correlation
function arising from insertion of twist operators,
Φα, into each of the α decoupled sheets. In particular,
it was shown that in the two-dimensional spacetime,
Φα is a local primary operator with a certain scaling
dimension. It allows us to reduce a given compu-
tation on the replicated geometry to a correlator on a
regular manifold with insertion of the twist oper-
ators. However, the higher dimensional counterpart
of a two-dimensional twist operator is not local. In
d > 2 it is supported on a codimension two entan-
gling surface which is not pointlike anymore. As of
today, understanding of the higher dimensional twist
operators is very much limited. Our proposal (1.2)
suggests a possible tool for studies of Φα in general
dimension. In particular, it suggests the following
operatorial identity:

PΦα ¼ K0: ð8:1Þ
This identity emphasizes that the problems of find-
ing a twist operator and modular Hamiltonian are
equivalent to a certain extent. This allows us to
conjecture a particular relation

Φα ¼ eð1−αÞK0 ð8:2Þ
which expresses the twist operator in terms of the
modular Hamiltonian.
Yet, a word of caution about Eqs. (8.1)–(8.2)

should be said.While by definition the twist operators
on the left-hand side of these expressions are sup-
ported on a codimension two entangling surface,
operators on the right-hand side are associated with a
codimension one submanifold. Hence, these conjec-
tures should be taken with a big grain of salt, and we
find it interesting to check our proposal in the cases

4Recall that tracelessness of the energy-momentum tensor is
equivalent to Tww̄ ¼ 0.
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when both the twist operator and the modular
Hamiltonian are explicitly known. More arguments
in favor of this conjecture have been given in [19].

(3) More general surfaces and quantum field theory
(QFTs). The computations presented in this work are
mainly focused on a planar entangling surface in
Minkowski space. Hence, we find it instructive to
generalize our findings by including into consider-
ation curved geometries. Of course, the absence of a
known modular Hamiltonian is one of the main
obstacles that must be confronted in an attempt to
pursue such an endeavor. Perhaps the best point of
departure would be to start these studies from
spherical regions in Minkowski space, for which
the modular Hamiltonian is known [17], and then
proceed perturbatively to study more complicated

geometries [1]. It would also be interesting to test
our correspondence in the case of nonconformal
interacting field theories such as ϕ4 [20].
We plan to explore these and other possible

directions in the future.
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