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We explore the phase structure of quantum chromodynamics (QCD) with two dynamical quark flavors at
finite temperature and baryon chemical potential, employing the nonperturbative gauge/gravity duality
approach. Our gravitational model is tailored to align with state-of-the-art lattice data regarding the thermal
properties of multiflavor QCD. Following a rigorous parameter calibration to match equations of state and
the QCD trace anomaly at zero chemical potential derived from cutting-edge lattice QCD simulations, we
investigate thermodynamic quantities and order parameters. We predict the location of the critical endpoint
(CEP) at ðμCEP; TCEPÞ ¼ ð219; 182Þ MeV at which a line of first-order phase transitions terminate. We
compute critical exponents associated with the CEP and find that they almost coincide with the critical
exponents of the quantum 3D Ising model.
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I. INTRODUCTION

A thorough understanding of the quantum chromody-
namics (QCD) phase structure at specific temperature and
density regimes is not only essential for elucidating the
formation of matter but also for interpreting and predicting
the wealth of data amassed from ongoing and future
experiments involving heavy-ion collisions. While signifi-
cant progress has been made in elucidating the phase
structure at lower densities using cutting-edge lattice tech-
nology in recent years, challenges persist at higher densities,
including the well-known sign problem [1]. Therefore, a
robust, nonperturbative method is paramount at this juncture.

Numerous effective low-energy models have been
developed to explore the QCD phase diagram under
various nonperturbative conditions. These include the
Dyson-Schwinger equations (DSE) [2–5], the Nambu-
Jona-Lasinio (NJL) model [6–9], the Polyakov-Nambu-
Jona-Lasinio (PNJL) model [10–13], the functional
renormalization group (FRG) [14,15], hadron resonance
gas models [16,17], the coalescence model [18], and a
combination of DSE and fRG [19]. Some of these models
predict the existence of a critical endpoint (CEP) where the
first-order phase transition line terminates and transitions
into a smooth crossover at small chemical potentials μB.
These predictions align well with results from lattice
simulations [20–25].
An increasingly popular nonperturbative approach for

studying QCD involves the application of gauge/gravity
duality [26–29] to construct holographic QCD models that
describe QCD matter. This is achieved through both top-
down [30–34] and bottom-up [35,36] approaches. Notably,
within the bottom-up framework, the Einstein-Maxwell-
Dilaton (EMD) gravity model has been widely employed to
create holographic QCD models that align with state-of-
the-art lattice QCD simulations. Two common methods
have emerged. The first one is the potential reconstruction
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method [37–40], with recent developments discussed
in [41–44]. A limitation of this approach lies in its inability
to quantitatively capture the thermodynamic behavior of
lattice QCD simulations, suggesting potential improvement
via better function configurations for the deformed factor
and gauge coupling function. The second method is the
DeWolfe-Gubser-Rosen (DGR) model [45,46], which
numerically constructs a family of five-dimensional black
holes. This model not only approximately matches equa-
tions of state and baryon susceptibilities with correspond-
ing lattice QCD data [47] at zero chemical potential for
2þ 1 flavor QCD matter but also reveals a line of first-
order phase transitions terminating at a CEP located at
ðμCEP; TCEPÞ ¼ ð783; 143Þ MeV. Recent refinements to
this model [48,49] have enabled quantitative matching
with up-to-date lattice data [50,51] at μB ¼ 0 for 2þ 1
flavor QCD matter, thereby determining the precise coor-
dinates of the critical endpoint at ðμCEP; TCEPÞ ¼
ð555; 105Þ MeV and characterizing the first-order transi-
tion line. The location of CEP in 2þ 1 flavor QCD has
been confirmed in the model-independent approach [52].
Further, the model parameters for pure SU(3) gauge theory
have been determined in [53] through accurate matching
with the latest lattice QCD data [54,55], yielding a strong
first-order confinement/deconfinement phase transition at
Tc ¼ 276.5 MeV, consistent with lattice QCD predictions.
The phase diagram with rotation was examined in [56].
Experimentally, pinpointing the location of the CEP

has been a keen focus. Yet, predicting it theoretically is
challenging due to strong coupling properties in that region
and the limitations of lattice techniques at finite chemical
potential. Therefore, determining the CEP through a
reasonable nonperturbative approach holds significant
value. Furthermore, it is anticipated that the dynamic
characteristics of the CEP, including critical exponents,
align with the universality class of the 3D Ising model or
the liquid/gas transition. Indeed, the critical exponents we
derive for a two-flavor QCD system in the present study
closely match those of the 3D Ising model and the liquid/
gas transition, affirming this correspondence. Additionally,
critical exponents have been calculated using other holo-
graphic models as well [57,58], with outcomes that
approach the predictions of the mean field theory.
In this study, we employ holography to investigate the

thermodynamic properties and dynamics of the CEP in
2-flavor QCD matter. The Einstein-Maxwell-Dilaton
(EMD) gravity framework has been widely utilized in
previous research to explore the QCD phase structure and
other crucial physical quantities, as reviewed in recentworks
[59,60]. By quantitatively aligning the behavior of relevant
thermodynamic parameters with state-of-the-art lattice
QCD data, we determine model parameters. This enables
us to predict the CEP’s location and delve into dynamic
aspects by computing critical exponents near the CEP.

Additionally, we utilize the self-consistent thermodynamic
relations outlined in [48,49] to analyze the variations in
thermodynamic quantities, such as entropy density, pres-
sure, trace anomaly, higher-order baryon number suscep-
tibility, with increasing chemical potential.
The structure of this work is as follows. In Sec. II, we

establish a holographic QCD (hQCD) model featuring
two flavors of light dynamical quarks, with all parameters
determined based on state-of-the-art lattice QCD data at
μB ¼ 0 [20,61]. Section III delves into a detailed analysis
of thermodynamic quantities and certain order parameters
at finite μB, culminating in the construction of the T − μB
phase diagram. We locate the CEP and compare its
position with predictions from other low-energy effective
models of QCD. In Sec. IV, we compute various critical
exponents associated with the CEP and compare them
with experimental results in non-QCD fluids, as well as
with other models, including mean-field (van der Waals)
theory, the full quantum 3D Ising model, and the DGR
model [45,62]. We conclude with some discussion
in Sec. V.

II. HOLOGRAPHIC QCD MODEL

We examine a five-dimensional bulk theory describing
QCD using the EMD gravity framework. The action
governing this system is specified in [49],

SM ¼ 1

2κ2N

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∇μϕ∇μϕ

−
ZðϕÞ
4

FμνFμν − VðϕÞ
�
; ð2:1Þ

In this context, κ2N stands for the effective Newton constant,
while gμν represents the metric of the bulk spacetime. The
field ϕ corresponds to the dilaton, responsible for breaking
the conformal symmetry of the corresponding boundary
theory. Additionally, Fμν denotes the field strength tensor
of the vector field Aμ. This framework introduces two
essential coupling functions, ZðϕÞ and VðϕÞ. The former
captures the equation of state (EOS) and sound velocity
properties at zero chemical potential, while the latter is
solely responsible for the behavior of baryon number
susceptibilities (BNS) under the same conditions.
The hairy black holes take the following form [48,49]:

ds2 ¼ −fðrÞe−ηðrÞdt2 þ dr2

fðrÞ þ r2dx23;

ϕ ¼ ϕðrÞ; Aμdxμ ¼ AtðrÞdt; ð2:2Þ

with dx23 ¼ dx21 þ dx22 þ dx23. The definition range of holo-
graphic radial coordinate r is ½rh;∞Þ, where the position
of event horizon rh is determined by fðrhÞ ¼ 0 and the
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anti–de Sitter (AdS) boundary corresponds to r → ∞. The
Hawking temperature and entropy density are given by

T ¼ 1

4π
f0ðrhÞe−ηðrhÞ=2; s ¼ 2π

κ2N
r3h: ð2:3Þ

In order to obtain the configuration of hairy black holes, we
need to numerically solve the equations of motion given
by the variations of action (2.1) under the ansatz (2.2)
with appropriate boundary conditions (see [48,49] for more
technical details). Then, the related thermodynamic quantities
can be obtained by using the holographic renormalization.
To better match the state-of-the-art lattice data,

the potential and coupling function take the following
structure [49]:

VðϕÞ ¼ −12 cosh½c1ϕ� þ
�
6c21 −

3

2

�
ϕ2 þ c2ϕ6;

ZðϕÞ ¼ 1

1þ c3
sech½c4ϕ3� þ c3

1þ c3
e−c5ϕ; ð2:4Þ

with c1, c2, c3, c4, c5 are free parameters. All parameters
will be fixed by fitting the state-of-the-art lattice QCD data
to well capture the behavior of thermodynamic quantities
for different physical systems. The values of these free
parameters for different models are summarized in Table I,
including the two-flavor case in the present study.1 One can
find ZðϕÞ ¼ 0 for the pure SU(3) model for which no
quarks means no conserved current. Moreover, the param-
eters ðc1; c4; c5Þ, i.e., the coefficients of odd power of
dialton ϕ, keep unchanged for the finite quark flavor
models. What we need to emphasize is that our current
model mainly focuses on the dynamical properties of
quarks and the quark flavor dynamics are effectively
adopted into our five free parameters in V and Z. All
these parameters will be fixed by matching with cutting-
edge lattice QCD data, for which the quantum character-
istics of u and d quarks (such as isospin, spin, etc.) also are
captured by these parameters.
For the two-flavor model, we compare different thermo-

dynamic quantities from our holographic setup with lattice

simulation2 at μB ¼ 0 in Fig. 1. One can find that the
temperature dependence of those quantities agrees
well with lattice results, where the baryon number suscep-
tibility χB2

3 at vanishing chemical potential is defined as
χB2 ðμB ¼ 0Þ ¼ limμB→0

1
T2

nB
μB

with nB the baryon number
density. In addition, as holographic predictions, we calcu-
late the ratio of pressure and energy density as a function of
energy density at zero chemical potential and the baryon
number densities versus temperature for different μB=T
ratios in Fig. 2. The results show that the holographic
predictions are in quantitative agreement with the lattice
results4 available for small chemical potentials, which
strongly supports our hQCD model, and thus, in terms
of the thermodynamic properties of QCD, our holographic
model surpasses the mean-field level.

III. THERMODYNAMICS QUANTITIES
AND PHASE DIAGRAM

Having established the Nf ¼ 2 holographic model, we
investigate thermodynamic properties and construct the
phase diagram at finite μB. It’s important to note that all
relevant thermodynamic quantities have been rigorously
defined through holographic renormalization, as exten-
sively detailed in [48,49,56], and are not presented here
for brevity.
In Fig. 3, we illustrate the temperature dependence of the

equation of state (EOS) and trace anomaly across various
chemical potentials. As the increase of chemical potential,
these quantities change from a single-valued behavior to a
multivalued one, marking the beginning of a first-order
phase transition and the end of the crossover. In the context

TABLE I. Parameters for the pure SUð3Þ gauge theory [53], two-flavor (this paper) and (2þ 1)-flavor models [49] are obtained by
matching the lattice QCD simulations. ϕs ¼ rϕjr→∞ is the source term that breaks the scale invariance of the dual system to essentially
describe the real QCD dynamics. The parameter b is from the holographic renormalization.

Model c1 c2 c3 c4 c5 κ2N ϕs ðGeVÞ b

Pure SUð3Þ 0.735 0 2πð4.88Þ 1.523 −0.36458
2 flavor 0.710 0.0002 0.530 0.085 30 2πð3.72Þ 1.227 −0.25707
2þ 1 flavor 0.710 0.0037 1.935 0.085 30 2πð1.68Þ 1.085 −0.27341

1The value of c4 for (2þ 1)-flavor model has been made a
slight modification from 0.085 to 0.091 to match the higher-order
baryon number susceptibilities [63].

2The lattice data [20] we used is from the simulations that have
been carried out at the bare quark masses corresponding to pion
masses mπ ∼ 360 MeV and Nt ¼ 12 with Nf ¼ 2 degenerate
quark flavor. In addition, to match the lattice simulation, we take
the pseudocritical temperature of the lattice simulation [61] as
TcðμB ¼ 0Þ ¼ 205 MeV, which is within the deconfinement
range of 219� 3� 14 obtained by [20]. It should be noted that
the simulations from [61] were carried out using two flavors of
dynamical staggered quarks with mπ=mρ ∼ 0.4 and Nt ¼ 8.

3Note that χB2 denoting dimensionless quantity in this paper is
equal to χ2B=T

2 of [61].
4Here we take the pseudocritical temperature of deconfinement

as Tc¼ð204;203;202;200;196ÞMeV, corresponding to μB=T ¼
ð0.25; 0.5; 0.75; 1.00; 1.25Þ, respectively.
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of our study, a first-order phase transition is characterized
by discontinuities in the first derivative of thermodynamic
quantities with respect to a thermodynamic variable. This
phenomenon is represented in our graphical analyze by the
presence of multivalued functions, signifying the coexist-
ence of phases at the transition point. Such multivalued
behaviors in Fig. 3 are indicative of the system’s thermo-
dynamic properties, where different phases have different
thermodynamic behaviors, and the transition between these
phases involves a sudden change in the system’s state.
According to the calculation from holographic renormal-
ization in [48,49], in which the free energy density Ω is
identified as the negative temperature times the renormal-
ized action and the pressure P is read from the energy-
momentum tensor of the dual boundary theory, one
immediately finds Ω ¼ −P. Therefore, the critical temper-
ature of the first-order transition can be determined
from the pressure P, which is nothing but the minus of
the free-energy density of our system. More precisely, the

thermodynamically favored phase has the lowest free-
energy density. Thus, the critical temperature corresponds
to the tip of the swallowtail in the temperature dependence
of P, see the subset of the second plot of Fig. 3.
In the crossover region, there is no unique way to

determine the transition temperature in the literature.
Nevertheless, one can define a pseudotransition temper-
ature to construct a comprehensive QCD phase diagram.
This can be accomplished by identifying key indicators
such as the minimum squared speed of sound, the inflection
point of the second-order baryon number susceptibility, or
the susceptibility of the Polyakov loop. These indicators
capture the pronounced change in degrees of freedom
between the quark-gluon plasma and the hadron resonance
gas. In Fig. 4, we present the behavior of the squared speed
of sound c2sðT; μBÞ ¼ ∂P=∂ϵ (left panel) and the baryon
number susceptibility χB2 ðT; μBÞ ¼ ð∂nB=∂μBÞ=T2 (right
panel) for different μB. At low chemical potentials, the
single-valued behavior indicates a smooth crossover.

200 250 300 350 400
0

2

4

6

8

0 200 400 600 800

0.00

0.05

0.10

0.15

0.20

0.25

FIG. 1. Comparison of thermodynamics at μB ¼ 0 between our hQCD model (solid curves) and the lattice QCD (data with error bars).
Left panel: the energy density ϵ, pressure P and trace anomaly (also called interaction measure) ϵ − 3P, as a function of temperature,
where the lattice data comes from [20]. Right panel: the temperature dependence of baryon number susceptibility χB2 , where the lattice
result is from [61].
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FIG. 2. Left panel: the ratio of pressure and energy density P=ϵ versus energy density ϵ at μB ¼ 0 with the lattice data being from [20].
Right panel: the baryon number density nB as a function of temperature T at fixed μB=T, where the lattice data is from [61]. Our
holographic results are all denoted by solid lines.
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Notably, both c2s and χB2 exhibit enhancement as the
chemical potential increases.
In addition, it is also of great significance to study the

higher-order baryon number susceptibilities defined as the
nth order derivatives of the pressure concerning the baryon
chemical potential.

χBn ¼ ∂
nðP=T4Þ
∂ðμB=TÞn

: ð3:1Þ

The μB dependence of pressure excess ΔPðμB; TÞ ¼
PðμB; TÞ − Pð0; TÞ can easily be represented by a Taylor
series [64],
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FIG. 3. The entropy density s, pressure P, energy density ϵ, and trace anomaly ϵ − 3P as a function of T at different values of μB. These
quantities are all enhanced by increasing the chemical potential.
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FIG. 4. The squared speed of sound c2s and baryon number susceptibility χB2 as a function of temperature at different chemical
potentials. At small μB, there is only a crossover. For sufficiently large μB, a first-order phase transition is triggered.
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ΔPðμB; TÞ=T4 ¼
X∞
n¼1

χB2njμB¼0

ð2nÞ!
�
μB
T

�
2n
: ð3:2Þ

Note that the odd-order baryon number susceptibilities
vanish at μB ¼ 0, i.e., χB2kþ1ðμB ¼ 0; TÞ ¼ 0 due to the CP
symmetry. Moreover, the ratios of baryon number fluctua-
tions [63,65] emerge as a potent tool to probe the phase
transitions. These ratios correspond to the corresponding
ratios of cumulants derived from experimental data acces-
sible through event-by-event analyses of heavy-ion colli-
sions. For example,

χB4
χB2

¼ κBσ
2
B;

χB3
χB2

¼ SBσB;
χB1
χB2

¼ MB

σ2B
; ð3:3Þ

where κB, σ2B, SB, and MB denote the kurtosis, variance,
skewness, and mean of the net-baryon distribution, respec-
tively (see [66–68] for more details).
In Fig. 5, we present the numerical results for the higher-

order baryon number susceptibilities at μB ¼ 0. We also

compare these susceptibilities (χB4 and χB6 ) and the out-
comes from state-of-the-art lattice QCD simulations.
Obviously, near the pseudocritical temperature, the values
of these magnetic susceptibilities will increase or decrease
rapidly. It is worth noting that the holographic results for χB4
and χB6 show qualitative consistency with the lattice data,
and any quantitative differences may be attributed to the
factors detailed in footnote 2.
Continuing with the previous content, we further examine

the temperature dependence of the Polyakov loop hPi in the
left panel of Fig. 6. While the Polyakov loop is not an ideal
order parameter for the two-flavor QCD due to the influence
of quark degrees of freedom that disrupt the ZðNcÞ sym-
metry, it could be an effective-order parameter in this case.
One finds that hPi exhibits a nonzero value in the low-
temperature phase, followed by a rapid increase as the
temperature approaches the pseudotransition region. As μB
approaches the critical value μB ¼ 219 MeV from below,
the susceptibility of hPi becomes infinite. Moreover, for
μB > 219 MeV, hPi develops a multivalued behavior,
suggesting a first-order phase transition. The corresponding
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FIG. 5. Higher-order baryon number susceptibilities χB4 (left) and χB6 (right) as a function of temperature at μB ¼ 0. The holographic
results of susceptibilities are qualitatively consistent with the lattice data [61].
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FIG. 6. The Polyakov loop hPi (left) and free-energy density Ω at different μB. The phase transition becomes first order when
μB > 219 MeV.
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behavior of the free energy Ω versus temperature is
presented in the right panel of Fig. 6. The temperature
dependence of Ω decreases smoothly for μB < 219 MeV,
while it becomes a swallowtail for μB > 219 MeV, signaling
a first-order phase transition. The location of the CEP where
the swallowtail terminates is found to be at ðμCEP; TCEPÞ ¼
ð219 MeV; 182 MeVÞ, which is consistent with the result
from the Polyakov-loop analysis.
Having comprehensively examined all thermodynamic

quantities, we construct the phase diagram for two-flavor
QCD matter regarding temperature and baryon chemical
potential, as depicted in Fig. 7. The green curve denotes
the phase boundary for the first-order phase transition,
uniquely determined by the characteristic swallowtail
behavior of the free energy. The blue dashed line represents
the tangent of the first-order phase transition line at the
CEP, which will be called the first-order axis. The location
of the CEP ðμCEP; TCEPÞ ¼ ð219 MeV; 182 MeVÞ is
marked with the red point. Therefore, the smooth crossover
becomes a first-order transition with increasing chemical
potential. Moreover, the critical temperature decreases
as μB is increased. An interesting point is that the
location of the CEP from our holographic theory is at
μCEP=TCEP ¼ 1.2, while the extrapolation of lattice data
yields the CEP in 1.5� 0.2 ≤ μCEP=TCEP ≤ 1.85� 0.04
[61,69]. From the right panel of Fig. 2, it can be observed
that the baryon number densities from holography align
very well with those from lattice calculations when
μB=T < 1. However, above this threshold, differences
are observed between the results obtained from lattice
techniques and those derived from holographic models.
We also include the location of CEP predicted by other
approaches. Our CEP is relatively close to those predicted
by QPM [70], LTE [71], and HB [72]. Specifically, the CEP

predicted by LTE is at μCEP=TCEP ≈ 1.1, which is lower
than our predicted value, μCEP=TCEP ¼ 1.2. Therefore, the
lattice group could easily validate our prediction for CEP
by either employing different methods that work well up to
μB=T < 1.25 or by accumulating a large amount of data
around μB=T ¼ 1.2. Furthermore, we show the location
of the CEP at ðμCEP; TCEPÞ ¼ ð555 MeV; 105 MeVÞ pre-
dicted by our (2þ 1)-flavor holographic model [49].
Notably, the substantial influence of dynamical quark
flavors on the location becomes apparent. The phase
diagram of two-flavor holographic QCD was also qualita-
tively studied in [73,74] using the potential reconstruction
method. There is no first-order deconfinement phase
transition in the T − μB plane, while there develops a
first-order chiral phase transition as μB is increased.

IV. CRITICAL PHENOMENA NEAR THE CEP

Near the vicinity of CEP, the behavior of thermodynamic
quantities usually follows the power laws characterized by
critical exponents. These exponents are universal, meaning
they show the same values in different physical systems
undergoing phase transitions, regardless of the details of
the system. They are at the heart of the study of critical
phenomena. Among the six widely recognized thermody-
namic critical exponents, α; β; γ; δ; ν; η, the present study
focuses on α, β, γ, δwhich will be discussed in detail below.
The remaining two, ν and η, require spatial correlation
functions and are not discussed here.
To determine the value of a critical exponent, it is

necessary to determine the axis of interest near the CEP.
This axis is commonly defined as the first-order line,
the first-order axis, or the critical isotherm. Because the
thermodynamic quantities near the CEP follow some power

FIG. 7. The phase diagram of QCD matter in our two-flavor holographic model. The green curve shows the phase boundary for the
first-order phase transition, and the blue dash line denotes the first-order axis. The green first-order line terminates at the CEP
ðμCEP; TCEPÞ ¼ ð219 MeV; 182 MeVÞ (red point). The locations of CEP predicted by other approaches are presented as well, including
FRG, DSE, the combination of FRG and DSE, NJL effective chiral model coupled to the PNJL, quasiparticle model (QPM), lattice
taylor expansion (LTE), hadronic bootstrap (HB), and the coalescence model for light nuclei production. FRG-1 is from [14]. DSE and
FRG is from [19]. Coalescence model is from [18]. DSE is from [2]. PNJL-1 is from [11] and PNJL-2 is from [12]. QPM is from [70].
LTE is from [71]. HB is from [72]. The magenta star represents the CEP of (2þ 1)-flavor QCD obtained by our previous model in [49].
We also indicate the directions of approach of the various critical exponents.
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law behavior, a log-log plot is employed for analysis. The
critical exponents can be deduced from the slope of the
straight-line approximation. In practice, linear regression
via least squares will be used to determine these slopes
consistently throughout this section.
To calculate the critical exponents, a thorough exami-

nation of thermodynamic quantities in different transition
regions is necessary. Entropy density serves as an example
here. In Fig. 8, we show the behavior of entropy density
with temperature for three cases: μB < μCEP (left panel),
μB ¼ μCEP (middle panel), and μB > μCEP (right panel). For
the first case with a constant chemical potential μB < μCEP,
the isopotential line avoids the first-order line depicted
by the green curve of Fig. 7, yielding a unique value of
entropy density s at each temperature. In contrast, when
μB > μCEP, the isopotential intersects the first-order line,
resulting in a multivalued entropy density. This behavior
resembles an “S”-curve as T increases, characterized by the
existence of three branches of states at the same point in the
phase diagram. As visible from the right panel of Fig. 8,
there are two inflection points T< and T>, i.e., the locations
of the local minimum and maximum of the isopotential
curve sðTÞ. The critical temperature Tc ≈ ðT< þ T>Þ=2 as
the critical point is approached. It is manifest that the middle
branch lying in between the upper and lower branches has a
negative specific heat Cv ¼ Tð∂s=∂TÞjμB and thus corre-
sponding to thermodynamically unstable states. For later
convenience, we denote s> and s< as the value of entropy
density at Tc for the upper and lower branches, respectively.
When μB ¼ μCEP, these three branches merge into one,
casing the infinite slope of the curve sðTÞ on the critical
isopotential (see the middle panel of Fig. 8). This suggests
the divergence of specific heat Cv at the CEP. In practice, we
obtain the entropy density at the CEP sCEP as the converging
point of both s> and s< as they approach the CEP, which will
be discussed further in Sec. IV B.

A. Critical exponent-α along first order axis

The first-order line ends at the CEP. Near the critical
endpoint along the axis defined by the first-order axis,
the exponent α characterizes the power law pattern of the
specific heat at constant nB,

Cn ≡ T

�
∂s
∂T

�
nB

¼ −T
�
∂
2Ω
∂T2

−
ð∂2Ω=∂T∂μÞ2
ð∂2Ω=∂μ2Þ

�
∼ jT − TCEPj−α: ð4:1Þ

To sidestep the intricacies of the first-order line, we opt
to approach the CEP from the crossover region where
μB < μCEP. A benefit in computation is that the constant nB
line nearly aligns with the first-order axis, which has been
used in holography to calculate the critical exponents α
and γ, see e.g., [45].
In Fig. 9, we show the temperature dependence of Cn

near the CEP along the first-order axis. The power law (4.1)
is manifest in the log-log plot. It shows a weak divergence
with

α ¼ 0.113þ0.010
−0.010 : ð4:2Þ

Our holographic result is very close to that of the experi-
ments in non-QCD fluids and the full quantum 3D Ising
model quantitatively [45,62].
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FIG. 8. The entropy density s as a function of T for several values of μB near the CEP. For μB < μCEP, the curve sðTÞ is single-valued
(left), while for μB > μCEP it becomes multivalued (right). At μB ¼ μCEP and T ¼ TCEP, the slope is infinite (middle).
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FIG. 9. The dimensionless specific heat Ĉn ¼ Cn=T3 in a log-
log plot with T̂ ¼ T−TCEP

TCEP
near the critical endpoint along the first-

order axis. The slope of the best-fit line to our data (blue line)
yields α ¼ 0.113þ0.010

−0.010 at a 95% confidence level with the
coefficient of determination R2 ¼ 0.98705, indicating a very
high level of fit between the linear model and the data.
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B. Critical exponent-β along first-order line

For the first-order transition case, the true minimum of
the free energy jumps from the lower to the upper branch at
Tc and s is discontinuous (see the right plot of Fig. 8). The
discontinuity of entropy density s across the first-order line
gives rise to the critical exponent β,

Δs ¼ s> − s< ∼ ðTCEP − TÞβ: ð4:3Þ
At any generic point on the first-order line, Δs is finite but
reduces to zero when approaching the CEP along that line.
The data is visualized using a log-log plot in Fig. 10. The
slope of a best-fit line yields

β ¼ 0.322þ0.000
−0.000 : ð4:4Þ

This holographic outcome quantitatively agrees with exper-
imental data and the 3D Ising model [45,62]. Moreover,
as we approach the critical endpoint, the entropy density at
CEP, denoted as sCEP, can be deduced from the converging
values of s< and s>. We then obtain

ŝCEP ¼
sCEP
T3
CEP

¼ 0.8106; ð4:5Þ

which will be used to compute the critical exponent δ along
the critical isotherm.

C. Critical exponent-γ along first order axis

The exponent γ is defined by the power law behavior of
the baryon number susceptibility as the critical endpoint is
approached along the tangent of the first-order line.

χB2 ¼ 1

T2

�
∂nB
∂μB

�
T
∼ jT − TCEPj−γ: ð4:6Þ

Presenting the value of χB2 in a log-log plot with
T̂ ¼ ðT − TCEPÞ=TCEP in Fig. 11, we find

γ ¼ 1.243þ0.008
−0.008 : ð4:7Þ

Once again, our holographic prediction is consistent with
both the experimental measurement in fluids and the 3D
Ising model [45,62].

D. Critical exponent-δ along critical isotherm

Now, let us calculate the last critical exponent δ. The
definition of δ is based on the relationship between s − sCEP
and μB − μCEP at the critical isotherm with T ¼ TCEP,

s − sCEP ∼ jμB − μCEPj1=δ; ð4:8Þ
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FIG. 11. The baryon number susceptibility χB2 as a function of
temperature T as the CEP is approached on a log-log plot. We
obtain the value of γ from the slope at a 95% confidence level,
i.e., γ ¼ 1.243þ0.008

−0.008 . The coefficient of determination R2 is
0.99945, illustrating a very tight fit.
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FIG. 10. The discontinuity in the dimensionless entropy
density ŝ ¼ s=T3 as one approaches the CEP on a log-log
plot. The value of β obtained from the slope is β ¼ 0.322þ0.000

−0.000
with a 95% confidence interval and the coefficient of deter-
mination R2 ¼ 0.99785.
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FIG. 12. The trajectory of s nearing sCEP is plotted as μB
approaches μCEP on the critical isotherm. The derived slope from
this plot gives us δ ¼ 4.854þ0.455

−0.383 with a 95% confidence interval
and a coefficient of determination R2 at 0.98502, denoting a very
high degree of fit to the data.
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where the value of sCEP has been given in Eq. (4.5). Plotting
s − sCEP in a log-log plot with μ̂ ¼ μB−μCEP

μCEP
in Fig. 12,

we obtain,

δ ¼ 4.854þ0.455
−0.383 : ð4:9Þ

The value of δ is once again in close alignment with
experimental findings and the 3D Ising model [45,62].
The four critical exponents from our two-flavor holo-

graphic model are summarized in Table II. Following
from the scaling behavior of the free energy at the critical
endpoint, these thermodynamic exponents are not all
independent. One should have the following scaling
relations:

αþ 2β þ γ ¼ 2; αþ βð1þ δÞ ¼ 2: ð4:10Þ

One can check that the values of our critical exponents
quantitatively agree with the above scaling relations,
providing a self-consistency check of our results.5

The general OðNÞ-symmetric universality classes are
studied in [75–77]. For a QCD system, the critical
exponents strictly depend on the mass of quark flavors
and the number of quark flavors. According to the
“Columbia plot” (refer to Fig. 3 of [78]), in the chiral
limit of two quark flavors, where the masses of up (u) and
down (d) quarks are zero and the mass of the strange (s)
quark is very large (the left-upper corner), the critical
exponents belong to the Oð4Þ universality class [76]
(β ¼ 0.38, γ ¼ 1.4668, δ ¼ 4.86). Conversely, when the
masses of the u, d, and s quarks are relatively small (the
left-lower corner), the critical exponents follow the Zð2Þ
symmetric Ising universality class [78–80] for which α¼
0.1096ð5Þ;β¼ 0.32653ð10Þ;γ¼ 1.2373ð2Þ;δ¼ 4.7893ð8Þ.
In this work, we consider a finite-mass quark system
where the critical exponents are very close to the lattice
results [69], leading us to results that are closer to the Zð2Þ
universality class.

In Table II we also compare our critical exponents with
those from the experiments in non-QCD fluids, the full
quantum 3D Ising model, the mean-field (van der Waals)
theory, and the DGR model [45,62]. The results show that
the critical exponents from Nf ¼ 2 holographic model
closely align with experimental measurements in liquid/
gas transition and the 3D Ising model’s estimations. It
suggests that the critical behaviors of thermodynamic
quantities near the CEP fall into the universality class of
the 3D Ising model or the liquid/gas transition, and this
result indirectly indicates that our holographic model
surpasses the mean-field level. Due to the finite mass
effects of the u and d quarks, compared to the Oð4Þ
universality class, they are closer to the Zð2Þ universal-
ity class.

V. CONCLUSIONS

We have employed a holographic EMD theory to study
the phase structure of Nf ¼ 2 QCD matter at finite
temperature and baryon chemical potential, where all
thermodynamic quantities are computed directly from
the holographic renormalization. The model parameters
are fixed completely by matching with the lattice QCD
simulation at μB ¼ 0 (see the EOS and second-order baryon
susceptibility in Fig. 1). Moreover, the baryon number
density nB versus T at small μB also quantitatively agree
with the lattice data. Notably, we have computed higher-
order baryon number susceptibilities χBn which show a rapid
increase in their magnitudes near the pseudocritical temper-
ature and qualitatively agree with the available lattice data.
We have used the Polyakov loop as an effective probe
characterizing the phase transition.
Through a thorough analysis of the behaviors of the

free energy and the Polyakov loop, we have constructed
the phase diagram in terms of T and μB. As visible from
Fig. 7, as μB increases, the crossover on the T-axis is
sharpened into a first-order line at the critical endpoint.
We have managed to give the exact location of the CEP,
ðμCEP; TCEPÞ ¼ ð219 MeV; 182 MeVÞ, and the phase
boundary for the first-order phase transition. To obtain
the critical exponents associated with the CEP, we have
systematically studied the approach of various thermody-
namic quantities to criticality. We have found that α¼
0.113þ0.010

−0.010 ;β¼0.322þ0.000
−0.000 ;γ¼1.243þ0.008

−0.008 ;δ¼4.854þ0.455
−0.383 ,

TABLE II. Critical exponents from experiments in non-QCD fluids, the full-quantum 3D Ising model, mean-field
(van der Waals) theory, the DGR model and our two-flavor holographic model.

Experiment 3D Ising Mean field DGR model Ours

α 0.110–0.116 0.110(5) 0 0 0.113þ0.010
−0.010

β 0.316–0.327 0.325� 0.0015 1=2 0.482 0.322þ0.000
−0.000

γ 1.23–1.25 1.2405� 0.0015 1 0.942 1.243þ0.008
−0.008

δ 4.6–4.9 4.82(4) 3 3.035 4.854þ0.455
−0.383

5In practice, it is more difficult to obtain α and δ as they require
the location of CEP and numerical partial derivation with high
precision. Nevertheless, one can use the scaling relations (4.10) to
compute them since we know the values of β and γ. The two
approaches yield almost the same results.
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consistent with the scaling relations (4.10). These
critical exponents are in sharp contrast to mean-field
theory, but they are quantitatively agree with the
experimental measurements in liquid/gas transition
and the theoretical computation from 3D Ising model.
Therefore, the critical behavior of the CEP should fall
into the universality class of the 3D Ising model (or the
liquid/gas transition).
We have limited to the EOS and critical phenomena in

the present study, it will be interesting to consider the
spectra and transport by considering the fluctuations
around our hairy black hole backgrounds. One could also
introduce the chiral symmetry in addition to the baryon
number and compute the quark condensates. The gener-
alization of our discussions to real-time dynamics far from

equilibrium would be also very interesting. We hope to
study these issues in the future.
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