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This paper introduces a transverse-momentum dependent (TMD) factorization scheme designed to unify
both large and small Bjorken-x regimes. We compute the next-to-leading order quantum chromodynamics
(QCD) corrections to the gluon TMD operator for an unpolarized hadron within this proposed scheme. This
leads to the emergence of a new TMD evolution, incorporating those in transverse momentum, rapidity,
and Bjorken-x. When matched to the collinear factorization scheme, our factorization scheme faithfully
reproduces the well-established Dokshitzer-Gribov-Lipatov-Altarelli-Parisi and Collins-Soper-Sterman
(CSS) evolutions. Conversely, matching with high-energy factorization not only yields the Balitsky-Fadin-
Kuraev-Lipatov evolution but also reveals distinctive signatures of CSS logarithms. The development of
this novel TMD factorization scheme, capable of seamlessly reconciling disparate Bjorken-x regimes and
faithfully reproducing established QCD evolution equations, has the potential to significantly advance our
comprehension of high-energy processes and three-dimensional parton structures of hadrons.
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I. INTRODUCTION

Factorization properties of quantum chromodynamics
(QCD), i.e. separation of QCD interactions into distinct
dynamical modes, are essential for understanding high-
energy scattering [1] phenomena. They provide a founda-
tion for the quantitative description of a wide class of
observables. Factorization typically occurs in scattering
problems with a hierarchy of scales. Depending on the
details of this hierarchy, the structure of factorization can be
quite different.
The factorization phenomenon can be formalized in

terms of the so-called factorization theorems. Generally
speaking, these theorems define an observable as a con-
volution of functions, each representing a particular
dynamical mode. Each function depends on a set of
factorization scales, which could be roughly understood

as the boundaries between different modes. The physical
observable, of course, does not depend on these scales.
In the recent decade, the transverse-momentum depen-

dent (TMD) factorization [2–9] has become one of the main
avenues of research in this field. This factorization scheme
can be used in analysis of high-energy scatterings with
productions of a final state with transverse momentum, q⊥,
much smaller than a hard scale of the interaction, Q, i.e.,
q2⊥=Q2 ≪ 1. The approach has been successfully imple-
mented in analysis of a variety of scattering phenomena and
observables; see e.g. Refs. [10–20].
For example, in the TMD factorization approach, the

production of a color-singlet state (Drell-Yan pair, Higgs
and W boson productions etc.) in an unpolarized hadron-
hadron scattering reads

dσ
dQdyd2q⊥

¼
X
ij

HijðQ; μÞ
Z

d2b⊥eiq⊥b⊥fiðxa; b⊥; μ; ζaÞ

× fjðxb; b⊥; μ; ζbÞ þO

�
q2⊥
Q2

�
; ð1Þ

where Q is an invariant mass of the final state, y is its
rapidity, and q⊥ is the measured transverse momentum.1

The variables xaðbÞ and ζaðbÞ are defined as
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1We use the following notation: q⊥b⊥ ≡ qmbm.
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xa ¼
Qey

Ecm
; xb ¼

Qe−y

Ecm
ð2Þ

ζa ¼ 2ðxaP−
a Þ2e−2yn ; ζb ¼ 2ðxbPþ

b Þ2e2yn ;
ζaζb ¼ Q4; ð3Þ

where Pa and Pb are the momenta of the two colliding
hadrons such that the center of mass energy E2

cm ¼ 2P−
aP

þ
b .

A parameter yn encodes scheme dependence and is usually
chosen as yn ¼ 0.
For studies of the power corrections to the TMD

factorization formula (1) see [21–25]. The sum goes over
partons participating in the hard scattering defined by a
hard function Hij. The transverse-momentum dependent
parton distribution functions (TMDPDFs) depend on an
impact parameter variable b⊥, the Fourier conjugate to the
measured transverse momentum q⊥. The xa and xb are the
longitudinal-momentum fractions of the colliding hadrons
carried by the partons involved in the hard scattering.
The functions in Eq. (1) depend on unphysical factori-

zation scales, ζ and μ, defining the separation of the
dynamical modes in the TMD factorization scheme.
Dependence on these parameters can be studied by per-
turbative methods and is governed by the anomalous
dimensions γiμ and γiζ,

d
d ln μ

fiðx; b⊥; μ; ζÞ ¼ γiμðμ; ζÞfiðx; b⊥; μ; ζÞ; ð4Þ

d
d ln ζ

fiðx; b⊥; μ; ζÞ ¼
1

2
γiζðμ; b⊥Þfiðx; b⊥; μ; ζÞ; ð5Þ

where the second equation is known as the Collins-Soper
equation [2,26]. The all-order form of the anomalous
dimensions is given by

γiμðμ; ζÞ ¼ Γi
cusp½αsðμÞ� ln

μ2

ζ
þ γis½αsðμÞ�;

γiζðμ; b⊥Þ ¼ −2
Z

μ

1=b⊥

dμ0

μ0
Γi
cusp½αsðμ0Þ� þ γir½αsð1=b⊥Þ�; ð6Þ

where Γi
cusp is the lightlike cusp anomalous dimension

[27,28], which is known up to three loops in QCD [29].
The soft anomalous dimension γis is known to three
loops [29–34], as well as the rapidity anomalous dimen-
sion γir [35–37].
The evolution equations, Eqs. (4) and (5), can be used to

give phenomenological predictions for TMDPDFs at differ-
ent scales; see e.g. [38]. The solution of these equations can
be constructed, and the TMDPDF can be evolved from
initial scales, ðμ0; ζ0Þ, to final scales, ðμ; ζÞ, using

fiðx; b⊥; μ; ζÞ ¼ exp

�Z
μ

μ0

dμ̃
μ̃
γiμðμ̃; ζ0Þ

�

× exp

�
1

2
γiζðμ; b⊥Þ ln

ζ

ζ0

�
fiðx; b⊥; μ0; ζ0Þ:

ð7Þ

The above evolution resums large logarithms lnðμ2b2⊥Þ and
lnðζb2⊥Þ. As we will discuss later, these logarithms are of
the ultraviolet (UV) origin, and the infrared (IR) structure
of the TMD factorization is encoded in the boundary
term fiðx; b⊥; μ0; ζ0Þ.
The TMDPDF, fiðx; b⊥; μ0; ζ0Þ, is intrinsically non-

perturbative. However, for small values of b⊥ ≪ Λ−1
QCD

the TMDPDF can be expanded around b⊥ ¼ 0 and
matched onto collinear parton distribution functions
(PDFs) [3,39–45]. In this case fiðx; b⊥; μ0; ζ0Þ is repre-
sented as an infinite series of PDFs with growing twists.
These PDFs contain the nonperturbative structure of the
TMDPDF. The coefficients of this expansion encode
the perturbative IR component and give the evolution
kernels for the corresponding collinear PDFs. For
example, the leading twist-2 term of the expansion is
known up to the NNLO [44,46–50] and contains the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution kernel [51–53].
This approach is routinely used in phenomenological

applications. Currently, only the leading term of the expan-
sion is applied; see for details [10,12,54]. However, there is
a place for criticism. The basis of it is that the region of
applicability of the TMD factorization approach is limited
to small values of q⊥, which means that a typical value
of b⊥ ∼ 1=q⊥ is large. This means that the TMDPDFs
genuinely contain contributions from all collinear twists.
Hence, to obtain the correct IR structure of the TMDPDFs
we would need to resum all terms of the collinear
expansion, which is not feasible at the moment. Thus, in
practice, one simply extrapolates the leading twist term,
which dominates in the small b⊥ ≪ Λ−1

QCD region to the
desired region of applicability, by introducing some func-
tions to model the nonperturbative features of TMDPDFs;
see for instance Refs. [55–58].
While the collinear matching approach allows us to

extract some information about the IR structure of
TMDPDFs from the region of large b⊥ ≲ Λ−1

QCD, there is
an alternative approach that aims to look at the x depend-
ence of TMDPDFs, particularly in the region of small x.
It is well known that TMDPDFs are related to the dipole

amplitudes which are the primary objects of consideration
in the small x regime [59–61]. These amplitudes are
analogous to PDFs in the collinear factorization approach,
though their nature is absolutely different. First of all, the
dipole amplitudes are functions of the impact parameter b⊥
and, as a result, they contain contributions from all collinear
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twists. Since collinear PDFs do not have b⊥ dependence,
the dipole amplitudes are more similar to TMDPDFs.
However, the collinear PDFs depend on x variable, while
the dipole amplitudes have no such dependence. They
should instead be understood as the small x limit of
TMDPDFs.
There are well-developed methods for studying the IR

structure of the dipole amplitudes. One might thus consider
instead of matching onto collinear PDFs matching onto
dipole amplitudes. The formalism leading to the dipole
amplitudes is based on the eikonal approximation with
subeikonal corrections, which can be systematically
extracted from expansion in eikonality [21,22,62–77];
computing subeikonal corrections is currently under active
research in the small-x community. Each term of this
expansion contains the contribution of all collinear twists.
The leading term of the expansion contains the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) evolution kernel [78–81],
which is the linear approximation of the Balitsky-
Kovchegov (BK) [82–84] and the Jalilian-Marian-Iancu-
McLerran-Weigert-Leonidov-Kovner [85–92] evolution.
The BFKL kernel is a counterpart of the DGLAP kernel
in the collinear factorization.
However, the matching onto dipole amplitudes is not a

wholly satisfactory approach either. Its main flaw is similar
to the collinear matching procedure. While each expansion
term contains contributions from all twists, the dipole
amplitudes do not depend on x. The eikonal expansion
is effectively an expansion in x; hence, to reconstruct the
full dependence of TMDPDFs on x, one has to resum all
terms of the expansion, which is currently impossible.
Similarly, each term in the collinear matching expansion
contains a full dependence on x but has no dependence
on b⊥. Therefore, to reconstruct the full b⊥ dependence of
TMDPDFs, one has to resum the whole series too.
As a result, we see that neither matching procedure

allows us to reveal the full IR structure of the TMDPDFs.
The main goal of this paper is to propose an alternative
approach. To study the IR structure of the TMDPDFs we
perform a next-to-leading order (NLO) computation of the
TMDPDFs in the background field technique. Instead of
expanding in either b⊥ or x, we perform the calculation in
full kinematics. In general, such calculation is challenging.
To simplify the problem we perform the calculation in the
dilute limit when the NLO correction is calculated in the
background of only two partons. The gauge invariance
provides us with a guiding principle to express our final
result in terms of appropriate gauge links.
An important element of our calculation is the separation

between “quantum” and background field modes, which
appear in the background field method [93,94]. While the
initial TMD operator is constructed from both of these
modes, the perturbative part of the IR structure is defined
by the “quantum” fields. To obtain this structure, we
integrate over “quantum” fields perturbatively at NLO.

At the same time, the nonperturbative part of the IR
structure is encoded in the background fields which are
fixed and give rise to TMD operators at an infrared scale.
It is very important to understand how the modes are

separated. Schematically, the separation in our calculation
is presented in Fig. 1. The colorful regions in Fig. 1
correspond to a couple of TMD distributions in Eq. (1). To
separate these modes from the modes of the hard function
we introduce a cut-off μ2UV scale, which is of ultraviolet
origin. This cutoff sets the μ scale of the TMDPDFs we
start with.
We will be mostly interested in the TMDPDFs of a

hadron with a large Pþ component which are constructed
from the blue and red regions in Fig. 1. We will call these
the collinear modes. Similarly, one could consider a second
TMDPDFs which corresponds to a hadron with a large P−

component. This TMDPDFs is constructed from the modes
of yellow and purple regions to which we will refer to
as anticollinear modes. There is an intersection region
between the collinear and anticollinear modes. This region
is described by the soft modes which are denoted by the
green color. The modes of this sector are parts of the
definition of TMDPDFs. To separate the modes associated
with different hadrons we introduce a cutoff scale ν. This
scale should be understood as an upper cutoff of rapidity for
the collinear modes. In this sense it has UV nature since it
separates the collinear modes from the large k− sector. The
ν variable sets the ζ scale of the TMDPDF we start with.
This corresponds to final scales ðμ; ζÞ in the lhs of Eq. (7).
To calculate the TMDPDFs at the NLO order we need to

split the modes of the collinear sector into the “quantum”

FIG. 1. The new TMD factorization scheme. Green is soft, blue
is collinear. μIR and ρ are IR cutoffs. ν defines the region of
intersection between two collinear modes. The double counting
of this region is removed by inclusion of the soft factor Sðb⊥Þ in
the factorization formula. A mass-shell hyperbolas are defined by
a scale μ2 via 2kþk− ¼ k2⊥ ¼ μ2.
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(blue) and “background” (red) fields. To do that we
introduce a couple of factorization scales ρ and μ2IR. As
we mentioned above, in our calculation we aim to integrate
over “quantum” (blue) fields, keeping the “background”
(red) fields fixed. Note that the operators constructed from
the background fields are at the initial scales ðμ2IR; ρÞ. This
corresponds to initial scales ðμ0; ζ0Þ in the rhs of Eq. (7).
Let us clarify how we introduce the cut-offs for the

regions. Instead of using explicit cutoffs, we apply a
renormalization approach. The separation of modes leads
to unphysical divergences in our perturbative integration
over “quantum” modes. We regulate these divergences by
an appropriate regularization schemes. The associated
scales play the role of the factorization scales in our
calculation.
To regulate the divergences of integrals over transverse

momenta we use the dimensional regularization with
d ¼ 2 − 2ϵ. To regulate the divergences of the integrals
over longitudinal momenta fraction, the so-called rapidity
divergences, we use a regularization scheme proposed in
Refs. [95,96]. In particular, to regulate a divergent integral
over k−, we make the following replacement:

Z
∞

0

dk−

k−
→ νη

Z
∞

0

dk−

k−
jkþj−η; ð8Þ

where the renormalization scale ν plays the role of a cut-off
in rapidity in our calculation, and η is a regulator similar to
ϵ in the dimensional regularization. For applications of this
regulator in the small-x calculations see Refs. [97–100].
In our analysis, we pay close attention to the origin of

divergences and explicitly distinguish the UV and the IR
contributions. To achieve this we associate separate scales
with the UV and IR divergences. Indeed, these scales
should be understood as the upper and the lower cutoffs in
our integrations. In particular, the divergence at k⊥ → ∞ of
the transverse integral corresponds to the μ2UV scale, and the
divergence at k⊥ → 0 with μ2IR. Similarly, we relate the
divergence of the integral over k− coming from the UV
region of k− → ∞ with the ν scale and for the rapidity
divergence at k− → 0 we introduce a new scale ρ, which is
similar to ν in Eq. (8) (the corresponding regulator we
denote as ξ).
In this paper, we consider the case of gluon TMDPDFs,

but this approach can be easily extended to quarks as well.
We find that the dependence of the TMDPDFs on the UV
scales is standard, given by the RGEs (4) and (5). But, we
observe that the IR structure is more involved compared to
the leading order results obtained in the collinear matching
or with the eikonal expansion. In particular, we find a
double logarithmic contribution, in addition to single
logarithmic terms. These terms have not been observed
before. The single logarithmic terms have kernels that are,
in general, different from either the DGLAP or BFKL
evolution kernels.

We also reproduce the finite terms. The role of these
terms should not be underestimated as they become large in
some kinematic limits. For example, to compare our results
with the collinear matching approach, we perform an
expansion onto collinear PDFs and consider the leading
twist contribution. In this case we find that the finite terms
start to diverge and develop a large single logarithmic
contribution. In combination with other terms, this yields a
single logarithmic contribution with the DGLAP evolution
kernel which is in full agreement with the leading twist
term of the collinear matching expansion.
Similarly, to compare our equations to the eikonal

expansion approach, we expand our result in the powers
of x. We consider the leading term of expansion and find
that the finite terms have a large logarithm of rapidity,
which in combination with other terms leads to a single
logarithmic contribution with the BFKL evolution kernel.
This is in agreement with the eikonal expansion approach.
As a result, we find that our approach yields a general

description of the IR structure of the TMDPDFs valid in a
broad kinematic range. At the same time in particular
limits, it is in agreement with the previously obtained
results.
The paper is organized as follows. In Sec. II A, we

review the background field method in the context of the
QCD factorization. After this we focus on the TMD
factorization in Sec. II B where we give the key definitions
and concepts. Section III is the main part of the part. In
Sec. III A we discuss contribution of the real emission
diagrams at the NLO order. This is followed by Sec. III B
where we consider virtual diagrams. In Sec. III C we
provide details on the calculation of the soft factor. Then
in Sec. III D we combine all parts of the NLO calculation to
get our final result. We compare our final result with the
collinear matching approach in Sec. IVA and with the
eikonal expansion in Sec. IV B. We provide the details of
calculation of the real emission diagrams in Appendix A
and virtual emission diagrams in Appendix B.

II. TMD FACTORIZATION AND THE
BACKGROUND FIELD METHOD

The fundamental approach that we use in our calculation
is the background field method [93,94]. Within this
approach, the QCD factorization can be introduced and
interpreted as the separation of the QCD fields into distinct
dynamical modes interacting with one another. In this
section, we give a short review of the background field
method and introduce the TMD factorization from this
point of view.

A. Background field method

The concept of factorization can be elegantly introduced
within the background field method. Starting with a matrix
element of an arbitrary operator OðĈÞ which depends on
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quark and gluon fields,2 one can write it as a functional
integral over those fields,

hP1jOðĈÞjP2i ¼
Z

DCΨ�
P1

�
C⃗ðtfÞ

�
OðCÞ

×ΨP2

�
C⃗ðtiÞ

�
eiSQCDðCÞ; ð9Þ

whereΨP2
andΨP1

are initial and final state wave functions
at ti → −∞ and tf → ∞.
Evaluation of this functional integral is hard in general.

Hence, we split the field into different components and
rewrite the integral as independent functional integrals over
those components. This is the logic of the background field
method. This separation is arbitrary in general, but in the
context of the QCD factorization, we shall assume that
there is a set of factorization scales σ that separate the
components from each other; see Fig. 2(a).
For example, in the case of deep inelastic scattering

(DIS) in the Bjorken limit, it is sufficient to split the field
into two field modes A and B,

Cμ → Aμ þ Bμ: ð10Þ

The fields are separated by the value of the transverse
momenta; i.e. one can introduce a cutoff for the transverse
momenta σ ¼ μ, such that the fields A are defined as having
k2⊥ > μ2, and fields B are characterized with k2⊥ < μ2. This
is called the collinear factorization scheme which is defined
by a strong ordering of emission in transverse momenta.
Another example where the factorized QCD medium can
be described by splitting the field into two modes is the

high energy rapidity factorization in DIS. In this case, the
field mode A has longitudinal momentum fraction k− > σ
and the modeB has k− < σ. The factorization scale σ in this
case is the rigid cutoff in k−.
For brevity, let us assume that the factorization can be

described with only two modes as in (10). And a scale σ is a
factorization scale separating components A and B. In
general, the structure of dynamical field modes can be more
complicated and depend on the nuances of the factorization
in the process. For example, as we will see in the next
subsection, to describe the TMD factorization one has to
introduce four modes: one hard mode (“quantum”), two
collinear modes (background), and a soft mode for an
intersection between the collinear modes.
We will call the A fields “quantum” to indicate that we

aim to integrate over this mode. The fields B are usually
called the background fields. The functional integral over
this mode contains the nonperturbative part of the scatter-
ing process. One can think about the background fields as
fields associated with the target, and the “quantum” fields
as fields of the hard scattering.
After splitting (10) we can rewrite the functional integral

in Eq. (9) as

hP1jOðĈÞjP2i ¼
Z

DBΨ�
P1

�
B⃗ðtfÞ

�
ÕðB; σÞ

×ΨP2

�
B⃗ðtiÞ

�
eiSQCDðBÞ; ð11Þ

where the integral over “quantum” mode A is

ÕðB; σÞ ¼
Z

DAOðAþ BÞeiSbQCDðA;BÞ: ð12Þ

The integration over A should be performed with the QCD
action in the background field,

(a) (b)

FIG. 2. Schematic representation of the separation of modes in the background field method. (a) The “quantum” fields A are above the
σ cutoff. The background fields B (gray) are below the cutoff. (b) To study the dependence on the factorization scale, we split the
background fields into two components B → Bq þ Bbg. We integrate over Bq (blue) fields in a fixed background of Bbg (red) fields.

2Here we understand C as a general notation for the quark and
gluon fields.
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SbQCDðA; BÞ ¼ SQCDðAþ BÞ − SQCDðBÞ: ð13Þ
In Eq. (11) we assume that due to the factorization

regime in the high-energy scattering, the wave functions
depend only on the B fields, which, as we mentioned
above, should be associated with the fields of the target.
The integral over “quantum” fields A in Eq. (12), i.e. fields

of the projectile, can be evaluated perturbatively. However, it
usually requires some sort of expansion in factorization
scales, e.g. twist expansion in the collinear factorization, etc.
The result of integration has a general form,

ÕðB; σÞ ¼
X
i

HiðσÞ ⊗ ViðB; σÞ: ð14Þ

where Vi are operators constructed from background mode
B. Since the background fieldsB depend on the factorization
scale σ, so do the operators, as we explicitly indicate. HiðσÞ
is a hard function that we obtain after integration over the
“quantum” fields A.
After this, Eq. (11) reads

hP1jOðĈÞjP2i ¼
X
i

HiðσÞ ⊗ hP1jViðσÞjP2i; ð15Þ

where the matrix elements of operators Vi are generated by
the functional integral over background fields B,

hP1jViðσÞjP2i≡
Z

DBΨ�
P1

�
B⃗ðtfÞ

�
ViðB; σÞΨP2

�
B⃗ðtiÞ

�
:

ð16Þ
Here, the index i enumerates different types of operators.
These matrix elements can be further parametrized in terms
of distribution functions. For example, in the collinear
factorization, those are the well-known collinear PDFs.
Equation (15) is a factorization formula that we obtain by

assuming the QCD medium develops different dynamical
modes, so the separation (10) can be done and the integration
over “quantum” modes A can be considered independently
in a fixed configuration of background fields B.
Note that the structure of factorization depends on the

scattering process and kinematics. However, due to a wide
separation of scales, each type of factorization is charac-
terized by a set of large logarithms. These logarithms
should be resummed. This is usually done by solving the
RGEs which are differential equations with respect to the
factorization scales, see for example Eqs. (4) and (5) for
the TMD factorization.
One can use the following approach to extract the

dependence on the factorization scales in the background
field method. Starting with a matrix element (16), we
introduce a new set of factorization scales σ0 and split the
background field B as B → Bq þ Bbg. Here the fields Bq

correspond to dynamical modes between scales σ and σ0,
and Bbg is a new background field corresponding to fields
below the scale σ0; see Fig. 2(b).

Since the cutoffs σ act as upper cutoffs for the field
modes, we will refer to them as the UV scales. Similarly,
since the cutoffs σ0 act as lower cutoffs for the Bq modes,
we will refer to them as the IR scales.
To study the dependence on the set of UV factorization

scales σ, we need to integrate over Bq fields. This
integration is done perturbatively and leads to the answer,

hP1jViðσÞjP2i ¼
X
j

Cijðσ; σ0Þ ⊗ hP1jVjðσ0ÞjP2i; ð17Þ

where coefficients Cijðσ; σ0Þ are obtained by integrating
over the Bq modes and describe dynamics between the
UV scales σ and the IR scales σ0. One can now differentiate
with respect to the UV scales σ and obtain a system of
evolution equations that define the dependence of the
matrix element (16) and the corresponding distribution
functions on the set of factorization scales σ, e.g. Eqs. (4)
and (5) in the TMD factorization.
At the same time, the coefficients Cijðσ; σ0Þ also describe

the perturbative component of the IR structure of the matrix
element through the dependence on the IR cutoff σ0. The
nonperturbative part of the IR structure is encoded in the
matrix element of the operators Vjðσ0Þ.
This paper aims to calculate theCijðσ; σ0Þ coefficients for

the gluon TMDPDFs. The role of the UV scales σ is played
by the cutoffs ðμ2UV; νÞ, while the IR scales σ0 correspond to
the cut-offs ðμ2IR; ρÞ; see Fig. 1. More details can be found
in Secs. I and III.
Another crucial but technical point is how we can

actually introduce different field modes in practice. We
can use rigid cutoffs, for example, as it is done in the high-
energy rapidity factorization approach. These cutoffs
subsequently appear in the perturbative calculation of
functional integrals, e.g. in Eq. (12), as cutoffs in loop
integrals over momenta. These cutoffs regulate all diver-
gences of the loop integrals. However, these rigid cutoffs
are rarely used due to technical difficulties.
We use a different method in this paper, known as the

renormalization approach. In this scheme, each divergent
integral is regulated with a regulator accompanied by a
renormalization scale. This scale plays the role of a cutoff
separating different modes. As mentioned before, we shall
use dimensional regularization to separate the modes in the
transverse momentum. To separate the modes in rapidity,
we will use the regularization of the longitudinal momen-
tum fraction integrals as in Eq. (8).3 Note that in the
renormalization approach, we will find some unphysical
poles which is a consequence of the separation of different
dynamical field modes. These poles need to be removed by
a proper renormalization of operators.

3There is a number of alternative methods: deviation from the
light cone direction [1,7], δ-regulator [101,102], exponential
regulator [35], and analytic regulator [103–105].
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B. TMD factorization

In the previous section, we showed how the background
field method can be used to construct a factorization
scheme. While our discussion was general, different
factorization schemes can be substantially distinct. This
can be most easily seen in the structure of the dynamical
modes, e.g., compare the structure of the high-energy
rapidity factorization in DIS; see Fig. 2, and the TMD
factorization presented in Fig. 1.
In this section, we will give an overview of the transverse

momentum dependent (TMD) factorization. In particular,
we will discuss the structure of modes in Fig. 1 using the
framework of the background field approach and give a
formal definition of the corresponding operators.
The TMD factorization is applied to high-energy scatter-

ing reactions when a final state with a small transverse
momentum q⊥ is measured. The scattering reaction
includes two energetic hadrons moving along nμ ¼
ð1; 0; 0;−1Þ and n̄μ ¼ ð1; 0; 0; 1Þ directions, e.g. two col-
liding hadrons in the Drell-Yan scattering with momenta
P̄μ ¼ P−nμ þM2n̄μ=P− and Pμ ¼ Pþn̄μ þM2nμ=Pþ in
the center of mass frame, where M2 is hadron’s mass.
Let us now introduce the TMD factorization scheme in

the background field approach. Following the logic of the
previous section, we start with the background field B.
Since the scattering process involves two hadrons, we
need to introduce two types of background field modes. We
will refer to the modes associated with the Pμ hadron as
collinear modes and modes of the P̄μ hadron as anticol-
linear. Both of these modes describe the dynamics of the
corresponding hadron.
The hard scattering process is described by the “quan-

tum” mode A. This mode is separated from the background
modes by a factorization scale μ2UV; see Fig. 1. The
integration over fields of this mode yields a hard function
in the factorization formula, cf. Eqs. (1) and (15). In
integration over “quantum” modes collinear and anticol-
linear background modes yield two TMD operators, i.e.
operators Vi in the notation of Eq. (15). The matrix
elements of these operators can be parameterized in terms
of the TMDPDFs; see Eq. (1). For brevity, we refer to these
matrix elements as TMDPDFs.
The resulting matrix element of the TMD operator

constructed from the gluon collinear modes has the form,

BijðxB; b⊥Þ ¼
Z

∞

−∞
dz−e−ixBP

þz−hP;SjT̄fFm
−iðz−; b⊥Þ

× ½z−;∞�ma
b gTf½∞; 0−�an0 Fn

−jð0−; 0⊥ÞgjP;Si:
ð18Þ

Although there is a similar quark TMD operator and our
approach can be applied to it as well in this paper we focus
only on the gluon case. Moreover, one can also write a
similar set of operators for the anticollinear background

modes. Since the analysis is identical, we do not explicitly
present it in this paper. Finally, we will only consider the
unpolarized matrix elements to simplify the discussion.
In Eq. (18), i and j are Lorentz indices. The adjoint

Wilson lines are along the light cone direction,

½x−; y−�z⊥ ¼ P exp

�
ig
Z

x−

y−
dz−A−ðz−; z⊥Þ

�
: ð19Þ

We assume that the Wilson lines are connected at infinity
with a transverse gauge link, which makes the operator
gauge invariant. We choose future-point Wilson lines which
correspond to SIDIS. The T̃ notation is to indicate that the
corresponding operators should be inverse-time ordered. The
Fourier transformation of the matrix element is defined as

BijðxB; p⊥Þ ¼
Z

d2b⊥eip⊥b⊥BijðxB; b⊥Þ: ð20Þ

In the TMD factorization scheme, the collinear and
anticollinear modes are only separated by their rapidity
y ¼ 1=2 lnðk−=kþÞ. There might be an intersection region
depending on how these modes are separated. In the
TMD factorization framework, this is called the soft region.
From the point of view of the background field approach,
the fields of this mode should still be considered as the
background fields.
To resolve the potential double counting in the intersection

region, one must introduce a rapidity cutoff ν and assume
that the collinear fields in Eq. (18) are constructed only from
the modes below this cutoff. In Fig. 1, these fields correspond
to the blue and red regions. Similarly, the anticollinear modes
correspond to the yellow and purple sectors.
To take into account the contribution of the soft region,

we need to multiply (18) with a soft function constructed
from the soft modes. Note that the structure of the soft
factor depends on the details of separation in rapidity
between the fields of the collinear and anticolliner modes.4

We use a renormalization approach and define the collinear
fields using the η regulator; see Eq. (8). In this case the soft
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðb⊥Þ

p
is given by a vacuum matrix element,

Sðb⊥Þ ¼
1

N2
c − 1

h0jTr½S†n̄ðb⊥ÞSnðb⊥ÞS†nð0⊥ÞSn̄ð0⊥Þ�j0i;

ð21Þ

where the Wilson lines,

Snðb⊥Þ ¼ P exp

�
ig
Z

∞

0

dðx · n̄Þn · Aðx · n̄; b⊥Þ
�

ð22Þ

4In principle, one can construct the collinear and anti-collinear
modes to avoid the intersection and thus render the soft factor
trivial; see Refs. [106,107].
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are constructed from soft modes defined by the regulari-
zation,

Z
dkþdk−

kþk−
¼ νη2−η=2

Z
dkþdk−

kþk−
jkþ − k−j−η: ð23Þ

The fields of the soft mode correspond to the green sector
in Fig. 1.
The full matrix element of the background modes is

defined as

fijðxB; b⊥Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðb⊥Þ

p
BijðxB; b⊥Þ: ð24Þ

To study the dependence of this matrix element on the
factorization scales σ ¼ ðμ2UV; νÞ, we implement the
approach discussed in the previous section. We introduce
a new set of factorization scales σ0 ¼ ðμ2IR; ρÞ to split the
background collinear mode into the Bq mode which lies
between the scales σ and σ0, see the blue region in Fig. 1,
and the Bbg mode which lies below the scales σ0, i.e. the red
sector in Fig. 1.
We aim to integrate over Bq and soft modes to obtain a

hard function containing the perturbative structure of the
matrix element (24) [see Eq. (17)]. The nonperturbative
structure is encoded in the matrix element constructed from
the fields of the Bbg mode. The details and results of this
calculation are presented in the next section.
Before moving to the main part of the paper, we would

like to point out that our definition of these modes differs
from the soft collinear effective theory (SCET). The
structure of modes in SCET is summarized in Fig. 3.
The collinear modes are defined to have the following

scaling of momenta: pn ¼ ðpþ
n ; p−

n ; p⃗n⊥Þ ∼Qðλ2; 1; λÞ and

pn̄ ∼Qð1; λ2; λÞ, where λ ∼ q⊥=Q2 ≪ 1. Both collinear
fields are approximately on the mass-shell p2

n ∼ p2
n̄ ∼ q2⊥,

so they lie on the same hyperbola. The hard fields are
defined as having p2 ≥ Q2. The soft emission is defined as
having ps ∼Qðλ; λ; λÞ. The main difference with the back-
ground field approach is that in the latter the field modes
are not necessarily on the mass-shell; thus in principle,
we consider more general kinematics. Also, to define the
modes we do not use any scaling of momenta but rather use
a set of cutoffs to delineate regions in momentum space.

III. CALCULATION OF THE TMDPDF
AT THE NLO ORDER

The calculation of the gluon TMDPDFs, defined by
Eq. (24) at the NLO order contains three parts: calculation
of the real emission diagrams, virtual emission diagrams,
and the soft factor. The details of the calculation of real and
virtual emission diagrams are presented in Appendixes A
and B. In the next two sections, we examine the structure
of singularities of the diagrams involved. While the soft
factor at the NLO order is well known, we discuss it for
completeness in Sec. III C. Finally, we combine all parts of
the calculation in Sec. III D, where we discuss the renorm-
alization of the solution and present our final result.

A. Real emission diagrams

In this section, we present an analysis of the real
emission diagrams. Some typical diagrams are given in
Fig. 4. As per the background field approach, the loop is
constructed from the “quantum” fields Bq, and the calcu-
lation is done in the background field Bbg.
It is convenient to start the derivation with a calculation

of the emission vertex,

Lab
μj ðk; y⊥; xBÞ≡ i lim

k2→0
k2hBqa

μ ðkÞ
Z

∞

−∞
dy−eixBP

þy−

× ½∞; y−�bdy Fqþbg;d
−j ðy−; y⊥ÞiBbg ; ð25Þ

which corresponds to a sum of diagrams in Fig. 5. Once this
vertex is calculated, the sum of real emission diagrams can
be easily obtained by taking a product of two vertices as

hF̃ a
i ðxB; x⊥ÞF a

j ðxB; y⊥Þireal

¼ −
Z

đk−

2k−

Z
đ2k⊥L̃i

μbaðk; x⊥; xBÞLab
μj ðk; y⊥; xBÞ: ð26Þ

The details of the calculation of the emission vertex can
be found in Appendix A. Taking the product, Eq. (26), of
two emission vertices Eqs. (A19) and (A20), it is easy to
obtain an expression for the matrix element in Eq. (18),

FIG. 3. SCET factorization scheme. The collinear (blue) and
soft (green) modes are around the mass-shell parabola
p2 ¼ q2⊥ ∼ 1=b2⊥.
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Bqð1Þþbg;real
ij ðxB; b⊥Þ ¼ −16παsNc

Z
đ2p⊥eip⊥b⊥

Z
đk−

2k−

Z
đ2k⊥

�� ðpþ kÞl
2xBPþk− þ k2⊥

xBPþk−δki − kkki
2xBPþk− þ p2⊥

−
δkl pi þ glikk

2xBPþk− þ p2⊥

�

×

� ðpþ kÞm
2xBPþk− þ k2⊥

xBPþk−gkj − kkkj
2xBPþk− þ p2⊥

−
gmkpj þ gmjkk
2xBPþk− þ p2⊥

�
þ gil
k2⊥

� ðpþ kÞm
2xBPþk− þ k2⊥

xBPþk−kj þ k2⊥kj
2xBPþk− þ p2⊥

−
kmpj − gmjk2⊥
2xBPþk− þ p2⊥

�
þ
� ðpþ kÞl
2xBPþk− þ k2⊥

xBPþk−ki þ k2⊥ki
2xBPþk− þ p2⊥

−
klpi − glik2⊥

2xBPþk− þ p2⊥

�
gmj

k2⊥
−
gilgmj

k2⊥

�

×
Z

d2z⊥eiðk−pÞ⊥z⊥Bbg
lm

�
xB þ k2⊥

2Pþk−
; z⊥

�
; ð27Þ

where we indicate that the matrix element on the right has operators constructed from Bbg fields, but the one on the left has
contributions from both Bbg and Bq. Superscript qð1Þ indicates that “quantum” fields are evaluated at order αs.
To separate the rapidity divergences appearing in the integral over k− from the divergences in the transverse integral over

k⊥, it is convenient to introduce the variable,

z≡ xB

xB þ k2⊥
2Pþk−

: ð28Þ

In terms of this variable, the equation can be re-written in a compact form,

Bqð1Þþbg;real
ij ðxB; b⊥Þ ¼ −4αsNc

Z
đ2p⊥eip⊥b⊥

Z
1

0

dz
zð1 − zÞ

Z
đ2k⊥½Ra

ij;lmðz; p⊥; k⊥Þ þRb
ij;lmðz; p⊥; k⊥Þ þRc

ij;lmðk⊥Þ�

×
Z

d2z⊥eiðk−pÞ⊥z⊥Bbg
lm

�
xB
z
; z⊥

�
; ð29Þ

where the real emission kernels are coming from Eq. (27),

FIG. 4. Real emission diagrams.

(a) (b) (c)

FIG. 5. Diagrams contributing to the emission vertex Lμjðk; y⊥; xBÞ.
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Ra
ij;lmðz; p⊥; k⊥Þ≡ ð1 − zÞ2

�
1

2

ðpþ kÞl
k2⊥

zk2⊥δki − 2ð1 − zÞkkki
zk2⊥ þ ð1 − zÞp2⊥

−
δkl pi þ glikk

zk2⊥ þ ð1 − zÞp2⊥

�

×
�
1

2

ðpþ kÞm
k2⊥

zk2⊥gkj − 2ð1 − zÞkkkj
zk2⊥ þ ð1 − zÞp2⊥

−
gmkpj þ gmjkk
zk2⊥ þ ð1 − zÞp2⊥

�
; ð30Þ

Rb
ij;lmðz; p⊥; k⊥Þ≡ ð1 − zÞ gil

k2⊥

�ðpþ kÞm
2

zkj þ 2ð1 − zÞkj
zk2⊥ þ ð1 − zÞp2⊥

−
kmpj − gmjk2⊥

zk2⊥ þ ð1 − zÞp2⊥

�

þ ð1 − zÞ
�ðpþ kÞl

2

zki þ 2ð1 − zÞki
zk2⊥ þ ð1 − zÞp2⊥

−
klpi − glik2⊥

zk2⊥ þ ð1 − zÞp2⊥

�
gmj

k2⊥
; ð31Þ

Rc
ij;lmðk⊥Þ≡ −

gilgmj

k2⊥
: ð32Þ

The above kernels are generated by different real emission
diagrams. Specifically, the functions Ra and Rb represent
diagrams with the same topology as the first two diagrams
in Fig. 4.
It is straightforward to see that these terms do not contain

any singularities. In particular, a potential rapidity diver-
gence at z → 0 is regulated by a nonzero value of xB.
Therefore, these terms do not provide any logarithmic
contribution and yield finite terms in our final result.
Yet, in Sec. IV, we will find that although these terms are

finite for a generic kinematics, in the collinear limit (when
k⊥ − p⊥ → 0), they become large and diverge logarithmi-
cally. These terms ultimately generate a part of the DGLAP
splitting function.
At the same time, we find that the last term in Eq. (29),

i.e.Rc, contains divergences. This term is given by the last
diagram in Fig. 4.5 The singularities are regulated by the
factorization cutoffs. As discussed in the Sec. I, we
introduce these cutoffs using the renormalization approach.
Now, let us understand how this procedure works.
The contribution of the last term in Eq. (29) has a simple

form,

Bqð1Þþbg;real;c
ij ðxB; b⊥Þ ¼ 4αsNc

Z
đ2p⊥eip⊥b⊥

Z
1

0

dz
zð1 − zÞ

×
Z

đ2k⊥
k2⊥

Z
d2z⊥eiðk−pÞ⊥z⊥

× Bbg
ij

�
xB
z
; z⊥

�
: ð33Þ

Consider with the rapidity divergence first. While the
contribution does not contain a divergence as z → 0, which

is regulated by a nonzero value of xB, there is a divergence
as z → 1. In terms of the k− variable, this divergence
corresponds to k− → ∞. To separate this divergence, we
rewrite the contribution as

Bqð1Þþbg;real;c
ij ðxB;b⊥Þ

¼ 4αsNc

Z
đ2k⊥
k2⊥

eik⊥b⊥
�Z

1

0

dz
ð1− zÞþ

Bbg
ij

�
xB
z
;b⊥

�

þ
Z

1

0

dz
z
Bbg
ij

�
xB
z
;b⊥

�
þ
Z

1

0

dz
1− z

Bbg
ij ðxB;b⊥Þ

�
; ð34Þ

where the plus distribution is defined in the usual way,

ðfðzÞÞþ ≡ fðzÞ − δð1 − zÞ
Z

1

0

dz0fðz0Þ: ð35Þ

Now, the rapidity divergence is in the last term of
Eq. (34), which we regulate by making the replacement (8).
In terms of the z variable, this corresponds to

Z
1

0

dz
1 − z

→

�
ν

xBPþ

�
η
Z

1

0

dz
1 − z

�
1 − z
z

�
−η
; ð36Þ

where the factorization scale ν should be understood as the
upper cutoff in rapidity. Performing integration over z we
obtain

Bqð1Þþbg;real;c
ij ðxB; b⊥Þ

¼ 4αsNc

Z
đ2k⊥
k2⊥

eik⊥b⊥
�Z

1

0

dz
ð1 − zÞþ

Bbg
ij

�
xB
z
; b⊥

�

þ
Z

1

0

dz
z
Bbg
ij

�
xB
z
; b⊥

�
−
�

ν

xBPþ

�
η

Γð1 − ηÞΓðηÞ

× Bbg
ij ðxB; b⊥Þ

�
: ð37Þ

Now we notice that apart from the rapidity divergence,
there is a divergence in the integral over transverse momenta.
We regulate it using the dimensional regularization,

5Note that we perform the calculation in the axial gauge. In
other gauges, the distribution of terms between diagrams can
differ, but the sum of diagrams should not change. In particular,
we also calculated the background Feynman gauge with the same
result; see Appendix C.
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Bqð1Þþbg;real;c
ij ðxB;b⊥Þ¼

αsNc

π

�
μ2b2⊥
4e−2γE

�
ϵ

e−ϵγEΓð−ϵÞ

×

�Z
1

0

dz
ð1−zÞþ

Bbg
ij

�
xB
z
;b⊥

�

þ
Z

1

0

dz
z
Bbg
ij

�
xB
z
;b⊥

�
−
�

ν

xBPþ

�
η

×Γð1−ηÞΓðηÞBbg
ij ðxB;b⊥Þ

�
; ð38Þ

where μ is the MS scale,

μ2 ≡ 4π

eγE
μ20: ð39Þ

Expanding in powers of ϵ and introducing the notation,

Lμ
b ≡ ln

�
b2⊥μ2
4e−2γE

�
; ð40Þ

one can easily obtain

Bqð1Þþbg;real;c
ij ðxB;b⊥Þ¼−

αsNc

π

�
1

ϵ
þLμ

b

�

×

�Z
1

0

dz
ð1−zÞþ

Bbg
ij

�
xB
z
;b⊥

�

þ
Z

1

0

dz
z
Bbg
ij

�
xB
z
;b⊥

�
−
�

ν

xBPþ

�
η

×Γð1−ηÞΓðηÞBbg
ij ðxB;b⊥Þ

�
: ð41Þ

Also expanding in η, the equation reads

Bqð1Þþbg;real;c
ij ðxB; b⊥Þ ¼ −

αsNc

π

�
1

ϵ
þ Lμ

b

�

×

�Z
1

0

dz
ð1− zÞþ

Bbg
ij

�
xB
z
; b⊥

�

þ
Z

1

0

dz
z
Bbg
ij

�
xB
z
; b⊥

�

−
�
1

η
þ ln

�
ν

xBPþ

��
Bbg
ij ðxB; b⊥Þ

�
:

ð42Þ

While the origin of the pole 1=η is obvious, i.e. it
corresponds to the contribution of the UV modes k− → ∞
with ν to be interpreted as a corresponding UV cutoff, the

1=ϵ pole requires some explanation. Looking at the integral
over transverse momentum k⊥, in Eq. (29), one initially
concludes that it is of the IR origin since the UV part of the
integral is regulated by a nonzero value of b⊥. This is
indeed the case for the first two terms in Eq. (42). However,
this is not correct for the last term.
In the next section, we will see that the virtual correction

[check Eq. (47)] contains a similar contribution,

−4αsNc

Z
1

0

dz
1 − z

Z
đ2k⊥
k2⊥

Bbg
ij ðxB; b⊥Þ; ð43Þ

which should be set to zero in the dimensional regulari-
zation, because it contains a scaleless integral. In other
words, the UV and IR regions in this integral cancel each
other 1=ϵUV − 1=ϵIR ¼ 0.
However, while being zero, this term of the virtual

emission plays an important role. Taking the sum of this
term with the last term of Eq. (34), which contains the
rapidity divergence, we get the contribution,

4αsNc

Z
1

0

dz
1 − z

Z
đ2k⊥
k2⊥

ðeik⊥b⊥ − 1ÞBbg
ij ðxB; b⊥Þ: ð44Þ

We see that two terms of this equation cancel each other in
the IR region and the integral is defined by the UV part of
the virtual term (43).
Having this in mind, we relate the 1=ϵ singularity in the

last term of Eq. (42) with the UV contribution and set
the corresponding factorization scale to μUV, which
should be interpreted as a UV cutoff of the transverse
momentum integral. At the same time, the 1=ϵ singularity
in the first two terms is of IR origin, so we set the
corresponding scales to the factorization scale μIR, which
should be interpreted as the lower cutoff of the transverse
momentum integral.
As a result, the equation reads

Bqð1Þþbg;real;c
ij ðxB; b⊥Þ

¼ −
αsNc

π

�
1

ϵIR
þ LμIR

b

�Z
1

0

dz
�

1

ð1 − zÞþ
þ 1

z

�

× Bbg
ij

�
xB
z
; b⊥

�
þ αsNc

π

�
1

ϵUV
þ LμUV

b

�

×

�
1

η
þ ln

�
ν

xBPþ

��
Bbg
ij ðxB; b⊥Þ: ð45Þ

Finally, summing all real emission diagrams, we get
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Bqð1Þþbg;real
ij ðxB; b⊥Þ ¼ −4αsNc

Z
đ2p⊥eip⊥b⊥

Z
1

0

dz
zð1 − zÞ

Z
đ2k⊥½Ra

ij;lmðz; p⊥; k⊥Þ þRb
ij;lmðz; p⊥; k⊥Þ�

×
Z

d2z⊥eiðk−pÞ⊥z⊥Bbg
lm

�
xB
z
; z⊥

�
−
αsNc

π

�
1

ϵIR
þ LμIR

b

�Z
1

0

dz

�
1

ð1 − zÞþ
þ 1

z

�
Bbg
ij

�
xB
z
; b⊥

�

þ αsNc

π

�
1

ϵUV
þ LμUV

b

��
1

η
þ ln

�
ν

xBPþ

��
Bbg
ij ðxB; b⊥Þ: ð46Þ

B. Virtual emission diagrams

The virtual emission contribution consists of diagrams
presented in Fig. 6 and their complex conjugates. The
details of the calculation of these diagrams are presented in
Appendix B. Let us consider the final form of the one-loop
correction to the matrix element, see Eq. (B8),

Bqð1Þþbg;virt
ij ðxB; b⊥Þ

¼ −2αsNc

Z
1

0

dz
z

Z
đ2p⊥eip⊥b⊥

Z
đ2k⊥e−ik⊥b⊥

× Vij;lmðz; p⊥ − k⊥; k⊥Þ

×
Z

d2z⊥eiðk−pÞ⊥z⊥Bbg
lmðxB; z⊥Þ − 4αsNc

×
Z

1

0

dz
1 − z

Z
đ2k⊥
k2⊥

Bbg
ij ðxB; b⊥Þ; ð47Þ

where

Vij;lmðz; l⊥; k⊥Þ≡ gilð2ljkm − lmkjÞ þ ð2likl − llkiÞgmj

k2⊥ðzk2⊥ þ ð1 − zÞðlþ kÞ2⊥Þ
:

ð48Þ

Note that the last term of Eq. (47) contains a scaleless
integral which in the dimensional regularization should be
replaced with zero. However, as we discussed in the
previous section, this term, while being zero, plays an
important role and generates a UV singularity in a sum with
the real emission diagrams. Considering this, we drop this
term and consider only the first one. It is convenient to
make the shift, p⊥ → p⊥ þ k⊥, which yields

Bqð1Þþbg;virt
ij ðxB; b⊥Þ ¼ −2αsNc

Z
1

0

dz
z

Z
đ2p⊥eip⊥b⊥

×
Z

đ2k⊥Vij;lmðz; p⊥; k⊥Þ

×
Z

d2z⊥e−ip⊥z⊥Bbg
lmðxB; z⊥Þ: ð49Þ

(a) (b) (c)

(d) (e) (f)

FIG. 6. Virtual emission diagrams.
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It is easy to see that the equation contains a rapidity divergence at z → 0. This divergence corresponds to the emission of
gluons with longitudinal momentum fraction k− → 0. According to our factorization scheme, we regulate this divergence
by modifying the integral over k− as

Z
∞

0

đk−

k−
→ ρξ

Z
∞

0

đk−

k−
jkþj−ξ; ð50Þ

where ξ is the regulator of this divergence, and ρ is the corresponding scale, which should be understood as the lower cutoff
in rapidity. We interpret ρ as an IR cutoff. In terms of the z variable, this corresponds to the replacement,

Z
1

0

dz
z
→

�
ρ

xBPþ

�
ξ
Z

1

0

dz
z

�
1 − z
z

�
−ξ
: ð51Þ

Making this replacement in Eq. (47) and integrating over z, we write

Bqð1Þþbg;virt
ij ðxB; b⊥Þ ¼ −2αsNcΓð1 − ξÞΓðξÞ

�
ρ

xBPþ

�
ξ
Z

đ2p⊥eip⊥b⊥
Z

đ2k⊥
gilð2pjkm − pmkjÞ þ ð2pikl − plkiÞgmj

k2⊥ðpþ kÞ2⊥
×

�
k2⊥

ðpþ kÞ2⊥

�
−ξ Z

d2z⊥e−ip⊥z⊥Bbg
lmðxB; z⊥Þ: ð52Þ

The integral over transverse momentum k⊥ contains a divergence of the IR origin corresponding to p⊥ þ k⊥ → 0.6

The integration can be performed using the dimensional regularization,

Z
đ2−2ϵk⊥

km
k2⊥ðpþ kÞ2⊥

�
k2⊥

ðpþ kÞ2⊥

�
−ξ

¼ −
1

ð4πÞ1−ϵ
Γðξ − ϵÞΓð1 − ξ − ϵÞΓð1þ ϵÞ
Γð1þ ξÞΓð1 − ξÞΓð1 − 2ϵÞ

pm

ðp2⊥Þ1þϵ ; ð53Þ

which yields the following form of the matrix element:

Bqð1Þþbg;virt
ij ðxB; b⊥Þ ¼

2αsNc

ð4πÞ1−ϵ
�

ρ

xBPþ

�
ξ
�
μ2eγE

4π

�
ϵ ΓðξÞΓðξ − ϵÞΓð1 − ξ − ϵÞΓð1þ ϵÞ

Γð1þ ξÞΓð1 − 2ϵÞ
×
Z

đ2p⊥eip⊥b⊥
gilpjpm þ piplgmj

ðp2⊥Þ1þϵ

Z
d2z⊥e−ip⊥z⊥Bbg

lmðxB; z⊥Þ: ð54Þ

Expanding first in ξ,

Bqð1Þþbg;virt
ij ðxB; b⊥Þ ¼

2αsNc

ð4πÞ1−ϵ
�
μ2eγE

4π

�
ϵ Γð1þ ϵÞΓð1 − ϵÞΓð−ϵÞ

Γð1 − 2ϵÞ
�
1

ξ
þ ln

�
ρ

xBPþ

�
þ ψ ð0Þð−ϵÞ − ψ ð0Þð1 − ϵÞ

�

×
Z

đ2p⊥eip⊥b⊥
gilpjpm þ piplgmj

ðp2⊥Þ1þϵ

Z
d2z⊥e−ip⊥z⊥Bbg

lmðxB; z⊥Þ; ð55Þ

and then in ϵ, we find

Bqð1Þþbg;virt
ij ðxB; b⊥Þ ¼ −

αsNc

2π

�
1

ϵ2IR
þ 1

ϵIR

�
1

ξ
þ ln

�
ρ

xBPþ

��
−
π2

12

�Z
d2z⊥

Z
đ2p⊥eip⊥ðb−zÞ⊥

�
μ2IR
p2⊥

�
ϵIR

×
gilpjpm þ piplgmj

p2⊥
Bbg
lmðxB; z⊥Þ; ð56Þ

where we indicate that the divergence in ϵ is of the IR origin. As we mentioned above, we also interpret the 1=ξ pole as
originating from the IR region of k− → 0.

6Note the shift of variables that we did after Eq. (47).
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Finally, adding the contribution of diagrams in Figs. 6(e) and 6(f)7 we obtain

Bqð1Þþbg;virt
ij ðxB; b⊥Þ ¼ −

αsNc

2π

�
1

ϵ2IR
þ 1

ϵIR

�
1

ξ
þ ln

�
ρ

xBPþ

��
−
π2

12

�Z
d2z⊥

Z
đ2p⊥eip⊥ðb−zÞ⊥

�
μ2IR
p2⊥

�
ϵIR

×
gilpjpm þ piplgmj

p2⊥
Bbg
lmðxB; z⊥Þ þ

αsNc

2π

�
1

ϵUV

β0
2Nc

þ 67

18
−
5Nf

9Nc

�

×
Z

d2z⊥
Z

đ2p⊥eip⊥ðb−zÞ⊥
�
μ2UV
p2⊥

�
ϵUV

Bbg
ij ðxB; z⊥Þ; ð57Þ

where

β0 ¼
11Nc

3
−
2Nf

3
: ð58Þ

Note that in the collinear approximation often used in
NLO calculations of TMDPDFs, if the transverse momen-
tum of background gluons is much smaller than the
transverse momentum inside the loop, the virtual correction
in dimensional regularization should be set to zero. Indeed,
replacing Bbg

lmðxB; z⊥Þ → Bbg
lmðxB; 0⊥Þ in the first term of

Eq. (47) we obtain a scaleless integral over k⊥, which is
zero in the dimensional regularization. We will use this
observation later when we compare our result with the
collinear matching procedure. However, as found in our
calculation, the virtual correction generally has a non-
trivial form.

C. Calculation of the soft factor

To calculate the TMDPDF (24), we also need to find
the soft function. Expanding the soft function (21) in the
coupling constant, it is straightforward to see that
Sð0Þðb⊥Þ ¼ 1.
At the order αs, the contributing diagrams are given in

Fig. 7. It is easy to calculate these diagrams in the Feynman
gauge. In this gauge, the diagram in Fig. 7(c) and its
complex conjugate do not contribute.

Let us start with a diagram in Fig. 7(a). Expanding the
soft Wilson lines in Eq. (21) to the g2 order we get

Sð1Þ
a ðb⊥Þ ¼ g2Nc

Z
đ4k2πδðk2Þ

�
1

kþ − iϵ
1

k− þ iϵ

þ 1

k− − iϵ
1

kþ þ iϵ

�
eik⊥b⊥ ; ð59Þ

where the second term corresponds to the conjugated
diagram.
The equation contains a rapidity divergence, which we

regulate by inserting νη2−η=2jkþ − k−j−η. Note that this
regularization differs from the rapidity regularization of
the matrix element. Using the delta function to evaluate the
integral over kþ and the dimensional regularization for the
transverse momentum integral we rewrite the equation as

Sð1Þ
a ðb⊥Þ ¼ 4αsNcν

η2−η=2
�
μ2eγE

4π

�
ϵ
Z

∞

0

dk−

k−

×
Z

đ2−2ϵk⊥
				k− −

k2⊥
2k−

				
−η 1

k2⊥
eik⊥b⊥ : ð60Þ

Integrating over the longitudinal momentum k−,

Sð1Þ
a ðb⊥Þ ¼ 4αsNcν

η

�
μ2

4πe−γE

�
ϵ

2−η
Γ
�
1
2
− η

2

�
Γ
�η
2

�
ffiffiffi
π

p

×
Z

đ2−2ϵk⊥
1

ðk2⊥Þ1þη=2 e
ik⊥b⊥ ; ð61Þ

(a) (b) (c)

FIG. 7. The soft function at the NLO order. It is understood that there are also conjugated diagrams that we do not draw explicitly.

7See also Refs. [108,109].
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and the transverse momentum k⊥, we obtain

Sð1Þ
a ðb⊥Þ ¼

αsNcν
η

π3=2

�
μ2b2⊥
4e−γE

�
ϵ

2−2η

×
Γ
�
1
2
− η

2

�
Γ
�η
2

�
Γ
�
−ϵ − η

2

�
Γ
�
1þ η

2

� ðb2⊥Þ
η
2: ð62Þ

Expanding first in η

Sð1Þ
a ðb⊥Þ ¼

αsNc

π

�
μ2b2⊥
4e−2γE

�
ϵ

e−ϵγEΓð−ϵÞ
�
2

η
þ ln

�
μ2b2⊥
4e−2γE

�

þ 2 ln

�
ν

μ

�
− γE − ψ ð0Þð−ϵÞ

�
; ð63Þ

and second in ϵ, we write

Sð1Þ
a ðb⊥Þ ¼

αsNc

2π

�
2

ϵ2
þ 4

�
1

ϵ
þ Lb

�

×

�
−
1

η
þ ln

μ

ν

�
− L2

b −
π2

6

�
: ð64Þ

Now let us discuss the origin of the poles in Eq. (64).
From Eq. (60) one may initially conclude that the UV
region of integration is regulated by the b⊥ variable, and the
integral over transverse momentum is divergent in the IR
region; hence one may associate 1=ϵ divergence with the IR
contribution.
However, there is another diagram and its complex

conjugate, presented in Fig. 7(b). The sum of these
diagrams has the following expression:

Sð1Þ
b ðb⊥Þ ¼ −ig2Nc

Z
∞

0

dxþ
Z

∞

0

dx−

×

�

x−; b⊥j

1

p2 þ iϵ
jxþ; b⊥

�

þ


x−; 0⊥j

1

p2 þ iϵ
jxþ; 0⊥

��
; ð65Þ

which can be rewritten as

Sð1Þ
b ðb⊥Þ ¼ −2ig2Nc

Z
∞

−∞

dkþ

2π

Z
∞

−∞

dk−

2π

Z
đ2k⊥

×
1

k− þ iϵ
1

kþ − iϵ
1

2kþk− − k2⊥ þ iϵ
: ð66Þ

Taking a pole in the kþ variable, we get the result,

Sð1Þ
b ðb⊥Þ ¼ −4αsNc

Z
∞

0

dk−

k−

Z
đ2k⊥
k2⊥

; ð67Þ

which contains a scaleless integral over transverse momen-
tum. In the dimensional regularization, this integral should
be set to zero, which corresponds to a cancellation between
the UV and IR regions: 1=ϵUV − 1=ϵIR ¼ 0.
However, the role of this contribution is not trivial.

Taking a sum of diagrams in Figs. 7(a) and 7(b) we obtain

Sð1Þ
aþbðb⊥Þ ¼ 4αsNc

Z
∞

0

dk−

k−

Z
đ2k⊥
k2⊥

�
eik⊥b⊥ − 1

�
: ð68Þ

We see that in the IR region, two contributions cancel each
other. The only surviving piece is the UV part of the
diagram in Fig. 7(b).
Hence, we find that the singularity in Eq. (64) should be

associated with the UV region. As a result, we get the
following final result for the soft function at the NLO order:

Sð1Þðb⊥Þ ¼
αsNc

2π

�
2

ϵ2UV
þ 4

�
1

ϵUV
þ Lb

�

×

�
−
1

η
þ ln

μUV
ν

�
− L2

b −
π2

6

�
: ð69Þ

D. Gluon TMDPDFs at the NLO order

Taking a sum of the real (46) and virtual (57) contribu-
tions we obtain the following form of the matrix element
(18) at NLO:

Bqð1Þþbg
ij ðxB; b⊥Þ ¼ −4αsNc

Z
đ2p⊥eip⊥b⊥

Z
1

0

dz
zð1 − zÞ

Z
đ2k⊥

�
Ra

ij;lmðz; p⊥; k⊥Þ þRb
ij;lmðz; p⊥; k⊥Þ




×
Z

d2z⊥eiðk−pÞ⊥z⊥Bbg
lm

�
xB
z
; z⊥

�
þ αsNc

π

�
1

ϵUV
þ Lb

��
1

η
þ ln

�
ν

xBPþ

��
Bbg
ij ðxB; b⊥Þ

−
αsNc

π

�
1

ϵIR
þ Lb

�Z
1

0

dz

�
1

ð1 − zÞþ
þ 1

z

�
Bbg
ij

�
xB
z
; b⊥

�
−
αsNc

2π

�
1

ϵ2IR
þ 1

ϵIR

�
1

ξ
þ ln

�
ρ

xBPþ

��
−
π2

12

�

×
Z

d2z⊥
Z

đ2p⊥eip⊥ðb−zÞ⊥
�
μ2

p2⊥

�
ϵIR gilpjpm þ piplgmj

p2⊥
Bbg
lmðxB; z⊥Þ þ

αsNc

2π

�
1

ϵUV

β0
2Nc

þ 67

18
−
5Nf

9Nc

�

×
Z

d2z⊥
Z

đ2p⊥eip⊥ðb−zÞ⊥
�
μ2UV
p2⊥

�
ϵUV

Bbg
ij ðxB; z⊥Þ: ð70Þ
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The matrix element contains different types of divergences. Let us first consider the 1=η divergence, which is generated
with the emission at k− → ∞. This divergence appears due to factorization between the soft function and the matrix
element. To remove this divergence, we consider the TMDPDF (24), which at NLO takes the form,

fð1Þij ðxB; b⊥Þ ¼ Bqð1Þþbg
ij ðxB; b⊥Þ þ

1

2
Sð1Þðb⊥ÞBqð0Þþbg

ij ðxB; b⊥Þ; ð71Þ

where we have taken into account that the soft factor is trivial in the leading order in the coupling constant.
Combining Eqs. (69) and (70) we find that the 1=η poles cancel between the soft function and the matrix element,

fð1Þij ðxB; b⊥Þ ¼ −4αsNc

Z
đ2p⊥eip⊥b⊥

Z
1

0

dz
zð1 − zÞ

Z
đ2k⊥

�
Ra

ij;lmðz; p⊥; k⊥Þ þRb
ij;lmðz; p⊥; k⊥Þ




×
Z

d2z⊥eiðk⊥−p⊥Þz⊥fð0Þlm

�
xB
z
; z⊥

�
þ αsNc

4π

�
2

ϵ2UV
þ 4

�
1

ϵUV
þ LμUV

b

�
ln

μUV
xBPþ − ðLμUV

b Þ2 − π2

6

�
fð0Þij ðxB; b⊥Þ

−
αsNc

π

�
1

ϵIR
þ LμIR

b

�Z
1

0

dz

�
1

ð1 − zÞþ
þ 1

z

�
fð0Þij

�
xB
z
; b⊥

�
−
αsNc

2π

�
1

ϵ2IR
þ 1

ϵIR

�
1

ξ
þ ln

�
ρ

xBPþ

��
−
π2

12

�

×
Z

d2z⊥
Z

đ2p⊥eip⊥ðb−zÞ⊥
�
μ2IR
p2⊥

�
ϵIR gilpjpm þ piplgmj

p2⊥
fð0Þlm ðxB; z⊥Þ þ

αsNc

2π

�
1

ϵUV

β0
2Nc

þ 67

18
−
5Nf

9Nc

�

×
Z

d2z⊥
Z

đ2p⊥eip⊥ðb−zÞ⊥
�
μ2UV
p2⊥

�
ϵUV

fð0Þij ðxB; z⊥Þ; ð72Þ

where we have taken into account that both the soft function and contribution of the “quantum” fields Bq in the matrix
element (18) are trivial at the leading order in the coupling constant, so the TMDPDF (24) at this order

is fð0Þij ðxB; b⊥Þ ¼ Bbg
ij ðxB; b⊥Þ.

The UV divergences can be removed by performing the UV renormalization with the universal UV renormalization
factor for the TMDPDFs,

ZUV ¼ 1 −
αsNc

2π

�
1

ϵ2UV
þ 1

ϵUV
ln

�
μ2UV

ðxBPþÞ2
�
þ 1

ϵUV

β0
2Nc

�
: ð73Þ

The equation reads

fð1Þij ðxB; b⊥Þ ¼ −4αsNc

Z
đ2p⊥eip⊥b⊥

Z
1

0

dz
zð1 − zÞ

Z
đ2k⊥

�
Ra

ij;lmðz; p⊥; k⊥Þ þRb
ij;lmðz; p⊥; k⊥Þ




×
Z

d2z⊥eiðk⊥−p⊥Þz⊥fð0Þlm

�
xB
z
; z⊥

�
þ αsNc

2π

�
−
1

2
ðLμUV

b Þ2 þ LμUV
b ln

μ2UV
ζ2

−
π2

12

�
fð0Þij ðxB; b⊥Þ

−
αsNc

π

�
1

ϵIR
þ LμIR

b

�Z
1

0

dz

�
1

ð1 − zÞþ
þ 1

z

�
fð0Þij

�
xB
z
; b⊥

�
−
αsNc

2π

�
1

ϵ2IR
þ 1

ϵIR

�
1

ξ
þ ln

�
ρ

xBPþ

��
−
π2

12

�

×
Z

d2z⊥
Z

đ2p⊥eip⊥ðb−zÞ⊥
�
μ2IR
p2⊥

�
ϵIR gilpjpm þ piplgmj

p2⊥
fð0Þlm ðxB; z⊥Þ þ

αsNc

2π

Z
d2z⊥

Z
đ2p⊥eip⊥ðb−zÞ⊥

×

�
β0
2Nc

ln
μ2UV
p2⊥

þ 67

18
−
5Nf

9Nc

�
fð0Þij ðxB; z⊥Þ; ð74Þ

where we introduced a scale ζ ¼ xBPþ, following the prescription of the TMD factorization.
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The remaining IR divergences and the rapidity pole 1=ξ are of no concern since they should be associated with the initial
operator constructed from background fields. Absorbing these poles into the initial distribution, we obtain

fijðxB;b⊥;μ2UV;ζÞ ¼ fijðxB;b⊥;μ2IR;ρÞ− 4αsNc

Z
đ2p⊥eip⊥b⊥

Z
1

0

dz
zð1− zÞ

Z
đ2k⊥

�
Ra

ij;lmðz;p⊥; k⊥Þ þRb
ij;lmðz;p⊥; k⊥Þ




×
Z

d2z⊥e−iðp⊥−k⊥Þz⊥flm

�
xB
z
; z⊥;μ2IR;ρ

�
þ αsNc

2π

�
−
1

2
ðLμUV

b Þ2 þLμUV
b ln

μ2UV
ζ2

−
π2

12

�

× fijðxB;b⊥;μ2IR;ρÞ−
αsNc

π
LμIR
b

Z
1

0

dz

�
1

ð1− zÞþ
þ 1

z

�
fij

�
xB
z
;b⊥;μ2IR;ρ

�
−
αsNc

2π

Z
d2z⊥

×
Z

đ2p⊥eip⊥ðb−zÞ⊥
�
1

2
ln2

μ2IR
p2⊥

þ ln
μ2IR
p2⊥

ln
ρ

xBPþ −
π2

12

�
gilpjpm þpiplgmj

p2⊥
flmðxB; z⊥;μ2IR;ρÞ

þ αsNc

2π

Z
d2z⊥

Z
đ2p⊥eip⊥ðb−zÞ⊥

�
β0
2Nc

ln
μ2UV
p2⊥

þ 67

18
−
5Nf

9Nc

�
fijðxB; z⊥;μ2IR;ρÞ þOðα2sÞ: ð75Þ

Equation (75) is our final result for the NLO correction to
the TMD distribution obtained in our factorization scheme.
In the next section, we will discuss how our factorization
scheme reduces to other factorization schemes in certain
kinematic regions.

IV. MATCHING TO OTHER FACTORIZATION
SCHEMES

In the previous section, we derived the gluon TMDPDFs
at NLO in the TMD factorization scheme defined by a
set of factorization scales introduced in Fig. 1. These scales
define the factorization in both the rapidity and trans-
verse momentum. However, there are kinematical regions
where the factorization is dominated by either a wide
separation in the transverse momenta or longitudinal
momenta (rapidity). In these regions, our factorization
effectively matches other schemes. We will explore this
matching in this section.
In particular, we will consider two scenarios. Firstly,

we will look at the limit of large xB and small b⊥ ≪ Λ−1
QCD,

and relate our TMD factorization scheme to the collinear
factorization through the so-called collinear matching pro-
cedure. In this procedure, we will expand the TMDPDFs in
terms of the collinear PDFs. As we will see, this implies
that the TMD factorization is dominated by a wide
separation in transverse momentum and thus reduces to
collinear factorization.
Secondly, we will consider an opposite kinematic limit

of small xB and large b⊥ ≲ Λ−1
QCD in which the TMDPDFs

can be expanded in terms of the unintegrated gluon
distributions. We will show that in this limit, the TMD
factorization scheme matches the small-x rapidity factori-
zation, which is characterized by a wide separation in
rapidity.

A. Matching onto the collinear factorization scheme

Our result (75) for the gluon TMDPDFs is applicable in a
wide range of kinematic variables xB and b⊥. In particular,
it describes the perturbative structure of the TMDPDFs for
large values of b⊥ ≲ Λ−1

QCD. In this limit, the transverse
momenta inside the “quantum” loops of Bq fields are of the
order of the transverse momenta of the background fields
Bbg. For example, in the real emission diagrams, see Fig. 4,
in this kinematic limit we have p⊥ ∼ b−1⊥ ≳ l⊥ ¼ k⊥ − p⊥,
where l⊥ ∼ μIR is a transverse momentum of the back-
ground fields. In this case, the transverse logarithms LμIR

b
are not large. Similarly, the transverse integrals in the finite
terms do not generate a large contribution.
In this section, we consider an opposite case, when the

kinematic variable b⊥ ≪ Λ−1
QCD is very small. In this case,

the transverse momenta in the “quantum” loops are much
larger than the typical transverse momenta of the back-
ground fields: p⊥ ∼ b−1⊥ ≫ l⊥ ∼ μIR. So, the corresponding
transverse logarithms are large, and the transverse integrals
in the finite terms provide a large contribution. This is a
consequence of a wide separation in the transverse momen-
tum between the Bq and Bbg fields. This separation
dominates our TMD factorization scheme in this particular
kinematic limit. As a result, we conclude that our factori-
zation matches the collinear factorization scheme which is
defined by the same wide separation in the transverse
momentum.
To formalize this statement, let us perform the collinear

matching procedure in Eq. (74) by expanding the
TMDPDFs in terms of the collinear PDFs. This expansion
enforces the transverse momenta of the background gluons
to be exactly zero, which reflects a strict ordering in the
transverse momenta. One consequence of this procedure,
see discussion after Eq. (57), is that the virtual emission

UNIFIED DESCRIPTION OF DGLAP, CSS, AND BFKL … PHYS. REV. D 109, 034035 (2024)

034035-17



diagrams don’t contribute. In this case, the TMDPDFs at the NLO order take the form,

fð1Þij ðxB; b⊥Þ ¼ −4αsNc

Z
1

0

dz
zð1 − zÞ

Z
đ2k⊥eik⊥b⊥ ½Ra

ij;lmðz; k⊥; k⊥Þ þRb
ij;lmðz; k⊥; k⊥Þ�fð0Þlm

�
xB
z
; 0⊥

�

−
αsNc

π

�
1

ϵIR
þ LμIR

b

�Z
1

0

dz

�
1

ð1 − zÞþ
þ 1

z

�
fð0Þij

�
xB
z
; 0⊥

�
−

1

ϵIR

αsβ0
4π

fð0Þij ðxB; 0⊥Þ

þ αsNc

2π

�
−
1

2
ðLμUV

b Þ2 þ LμUV
b ln

μ2UV
ζ2

−
π2

12

�
fð0Þij ðxB; 0⊥Þ þ � � � ; ð76Þ

where the ellipsis stands for the higher twist contributions,
and

Ra
ij;lmðz; k⊥; k⊥Þ

¼ ð1 − zÞ2
�
kl
k2⊥

zk2⊥δki − 2ð1 − zÞkkki
k2⊥

−
δkl ki þ glikk

k2⊥

�

×

�
km
k2⊥

zk2⊥gkj − 2ð1 − zÞkkkj
k2⊥

−
gmkkj þ gmjkk

k2⊥

�
; ð77Þ

and

Rb
ij;lmðz;k⊥; k⊥Þ ¼ ð1− zÞ gil

k2⊥

�
ð1− zÞkmkj

k2⊥
þ gmj

�

þð1− zÞ
�
ð1− zÞkikl

k2⊥
þ gli

�
gmj

k2⊥
: ð78Þ

As we mentioned above, at small values of b⊥ the
transverse integrals in the finite terms, i.e. terms with
kernels Ra and Rb, provide a large contribution. In the
limit b⊥ → 0, these terms become logarithmically diver-
gent. This is a consequence of an additional factorization
condition, i.e. the strict ordering of the transverse

momenta, which is imposed by the collinear matching
procedure.
At this point, it is convenient to introduce a parametri-

zation of the TMDPDFs (matrix elements) in terms of the
distribution functions,

fijðxB; b⊥Þ ¼ xBPþ
�
−
gij
2
f1ðxB; b⊥Þ

þ
�
gij
2
þ bibj

b2⊥

�
h1ðxB; b⊥Þ

�
; ð79Þ

which in the momentum space takes the form,

fijðxB; p⊥Þ ¼ xBPþ
�
−
gij
2
f̃1ðxB; p⊥Þ

þ
�
gij
2
þ pipj

p2⊥

�
h̃1ðxB; p⊥Þ

�
: ð80Þ

Let us consider a projection onto the unpolarized TMDPDF
f1ðxB; b⊥Þ and neglect mixing with the h1ðxB; b⊥Þ dis-
tribution. In this case, the equation reads

fð1Þ1 ðxB; b⊥Þ ¼ 4αsNc

Z
1

0

dz
z
ð−2þ z − z2Þ

Z
đ2k⊥
k2⊥

eik⊥b⊥fð0Þ1

�
xB
z
; 0⊥

�
−
αsNc

π

�
1

ϵIR
þ LμIR

b

�

×
Z

1

0

dz
z

�
1

ð1 − zÞþ
þ 1

z

�
fð0Þ1

�
xB
z
; 0⊥

�
−

1

ϵIR

αsβ0
4π

fð0Þ1 ðxB; 0⊥Þ

þ αsNc

2π

�
−
1

2
ðLμUV

b Þ2 þ LμUV
b ln

μ2UV
ζ2

−
π2

12

�
fð0Þ1 ðxB; 0⊥Þ þ � � � ð81Þ

Performing the integration over transverse momentum k⊥ in the first term and expanding in ϵ we obtain

fð1Þ1 ðxB; b⊥Þ ¼ −
αsNc

π

�
1

ϵIR
þ LμIR

b

�Z
1

0

dz
z
ð−2þ z − z2Þfð0Þ1

�
xB
z
; 0⊥

�
−
αsNc

π

�
1

ϵIR
þ LμIR

b

�

×
Z

1

0

dz
z

�
1

ð1 − zÞþ
þ 1

z

�
fð0Þ1

�
xB
z
; 0⊥

�
−

1

ϵIR

αsβ0
4π

fð0Þ1 ðxB; 0⊥Þ

þ αsNc

2π

�
−
1

2
ðLμUV

b Þ2 þ LμUV
b ln

μ2UV
ζ2

−
π2

12

�
fð0Þ1 ðxB; 0⊥Þ þ � � � ð82Þ
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Note that the first term in Eq. (82) corresponds to the
finite terms in our result (74). In Eq. (74) these terms are
finite because the corresponding transverse integrals are
regularized by a nonzero value l⊥ ¼ k⊥ − p⊥ of the trans-
verse momentum of the background fields. In the small b⊥
limit the transverse momentum in the “quantum” loop
becomes large. In this case, the dominant contribution to
the integral over k⊥ in the finite terms corresponds to the
ordering k⊥ ∼ p⊥ ≫ l⊥. Hence, in this regime, our fac-
torization matches with the collinear factorization, which is
defined by the strict ordering k⊥ ¼ p⊥ ≫ l⊥ ¼ 0. With this
condition the integral over k⊥ becomes divergent and thus
gives a pole 1=ϵIR in the first term of the Eq. (82). We
emphasize again that this pole is a consequence of the
matching procedure with the collinear factorization, which
dominates the solution at small b⊥.
Absorbing the infrared poles into the distribution con-

structed from the background fields, we finally obtain

f1ðxB; b⊥; μ2UV; ζÞ

¼ f1ðxB; 0⊥; μ2IRÞ −
αsNc

π
LμIR
b

Z
1

0

dz
z
PggðzÞ

× f1

�
xB
z
; 0⊥; μ2IR

�
þ αsNc

2π

�
−
1

2
ðLμUV

b Þ2

þ LμUV
b ln

μ2UV
ζ2

−
π2

12

�
f1ðxB; 0⊥; μ2IRÞ þ � � � ; ð83Þ

where

PggðzÞ ¼
1

ð1 − zÞþ
þ 1

z
− 2þ z − z2 ð84Þ

is the DGLAP splitting function. Note that the dependence
on the IR scale ρ disappears. The matching equation (83)
is a well-known result; see e.g. [96]. We conclude that
our calculation provides the correct IR structure of the
TMDPDFs in the large xB and small b⊥ approximation.

B. Matching onto the high-energy rapidity
factorization scheme

In this section, we will study a kinematic limit that is
opposite to the one considered in the previous section.
We will consider a limit of a small value of the xB variable
and a large value of the b⊥ ≲ Λ−1

QCD. We will demonstrate
that in this kinematic limit, our TMD factorization scheme
matches the high-energy rapidity factorization, which is
characterized by a strong ordering of the longitudinal
momenta p− ≫ l−, where p− is a typical longitudinal
momentum of the “quantum” fields Bq and l− is a
corresponding momentum of the background fields Bbg.
Firstly, since the value of the b⊥ variable is large, it is

easy to see that the transverse integrals and logarithms in
Eq. (74) do not acquire large values, which is opposite to

the collinear limit explored in the previous section. At the
same time, the integrals over z variable contain a potential
divergence at z → 0. Though this divergence is regulated
by a nonzero value of xB, in the limit of small xB, it leads to
a large value of the corresponding integrals. The xB variable
effectively plays the role of a cutoff in rapidity between the
“quantum” and collinear modes. When xB → 0, the typical
value of the background momenta l− → 0 as well, leading
to a wide separation in the longitudinal momenta between
the modes, i.e. p− ≫ l− → 0, where l− ≠ 0. As a result,
with these kinematical approximations, the TMD factori-
zation scheme can be matched onto the high-energy
rapidity factorization which is characterized by a strict
ordering p− ≫ l− ¼ 0.
The matching procedure can be easily constructed by the

eikonal expansion of the matrix element in Eq. (75), which
is effectively an expansion in powers of xB. In this section,
we will consider only the leading term of the expansion;
it can be obtained by neglecting the xB dependence in the
matrix element (75). Note that by introducing a strict
ordering p− ≫ l− ¼ 0, we effectively impose an additional
factorization condition between the kinematical modes,
which leads to the appearance of some new unphysical
poles in the finite terms, which are supposed to be absorbed
into the matrix element of the background fields.
To understand the structure of Eq. (75) in the limit of

small xB let us first consider the matrix element of the TMD
operator. Taking a limit xB → 0, and assuming that at small-
xB the background fields are dominated by a classical
configuration with the only nonzero component A−, we can
rewrite the matrix element of the TMD operator as

lim
xB→0

BijðxB; b⊥Þ ∝ hpjTrðUb∂iU
†
bÞðU0∂jU

†
0Þjpi; ð85Þ

where the infinite Wilson line Ux ≡ ½∞;−∞�x.
Comparing (85) with the decomposition (80) we find

that in the limit xB → 0 two unpolarized TMD distributions
coincide,

lim
xB→0

f̃1ðxB; p⊥Þ ¼ lim
xB→0

h̃1ðxB; p⊥Þ: ð86Þ

As a result, in this limit, the matrix element can be
parametrized as

lim
xB→0

fijðxB; p⊥Þ ¼
pipj

p2⊥
H1ðp⊥Þ; ð87Þ

whereH1 is a dipole amplitude defined by a matrix element
of a product of two Wilson lines.
As a result, after the eikonal expansion, Eq. (74) in the

momentum space reads
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fð1Þij ðxB; p⊥Þ ¼ −4αsNc
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1 ðp⊥Þ þ � � � ; ð88Þ

where ellipsis stands for the higher order terms of expansion in eikonality.
From Eq. (88), one can see that the leading term of expansion contains a rapidity divergent term which has an integralR

1
0

dz
z with a divergence at z → 0. We need to regulate this divergence using a replacement (51). For brevity, let’s focus on a

projection onto the unpolarized TMD distribution f̃1ðxB; p⊥Þ,8,9

fð1Þ1 ðxB; p⊥Þ ¼ −4αsNc

Z
1
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dz
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Note that since

lim
z→0

½Ra
ii;lmðz; p⊥; k⊥Þ þRb

ii;lmðz; p⊥; k⊥Þ�
ðp − kÞlðp − kÞm

ðp − kÞ2⊥
¼ 0; ð90Þ

the integral over z in the first term is finite and doesn’t require any regularization.
Equation (89) contains IR poles which should be absorbed into the distribution constructed from the background fields.

As a result, we finally obtain

f1ðxB; p⊥; μ2UV; ζÞ ¼ H1ðp⊥; μ2IR; ρÞ þ ln
ρ

xBPþ

Z
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�
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−
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�
H1ðp⊥; μ2IR; ρÞ þ � � � ; ð91Þ

8Similarly, one can consider a projection onto the h̃1ðxB; p⊥Þ distribution.
9Here we use a notation f1ðxB; p⊥Þ≡ xBPþf̃1ðxB; p⊥Þ.
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where

KBFKLðp⊥; k⊥Þ ¼ −
αsNc

π

Z
d2b⊥eik⊥b⊥LμIR

b

þ αsNc

π
ð2πÞ2δ2ðk⊥Þ ln

μ2IR
p2⊥

ð92Þ

is the BFKL evolution kernel. Note that the last term of the
kernel originates from the virtual emission.

Equation (91) contains a double logarithmic term
ln2ðμ2IR=p2⊥Þ. Since we assume that b⊥ ∼ 1=p⊥ ≲ Λ−1

QCD,
we expect that the IR scale μ2IR is chosen in a way that
μ2IR ∼ p2⊥, and the logarithm does not take large values. This
is different from the first term in Eq. (91), which, for
ρ ≫ xBPþ → 0, has a large rapidity logarithm lnðρ=xBPþÞ.
As a result, we can, in a practical manner, neglect the IR
double logarithmic term, as well as the μIR dependence of
the dipole amplitude. Removing the double logarithmic
term, along with some finite terms, we write

f1ðxB; p⊥; μ2UV; ζÞ ≃H1ðp⊥; ρÞ þ ln
ρ

xBPþ

Z
đ2k⊥KBFKLðp⊥; k⊥ÞH1ðp⊥ − k⊥; ρÞ

þ αsNc

2π

Z
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1

2
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b ln
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12

�Z
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2π

�
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2Nc

ln
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þ 67

18
−
5Nf

9Nc

�
H1ðp⊥; ρÞ: ð93Þ

Equation (93) has a form similar to Eq. (83), where the
first term describes the IR structure of the TMD distribu-
tion, and the rest of the terms describe its UV content. From
Eq. (93), we find that in the limit of large b⊥ ≲ Λ−1

QCD and
small xB the IR structure of the distribution is dominated
by the rapidity logarithm and is described by the BFKL
kernel. At the same time, the UV part is governed by the
CSS evolution. This structure is consistent with a form of
the cross section of the back-to-back inclusive dijets
production in DIS calculated in the small x framework;
see [61,110–115].

V. CONCLUSIONS

In this paper, we study the IR structure of the gluon
TMDPDFs. We go beyond the standard collinear matching
procedure, which is performed in the b⊥ ≪ Λ−1

QCD approxi-
mation, and develop a new approach that is valid in a wide
region of xB and b⊥ ≲ Λ−1

QCD. To do that, we employ the
background field method and perform the calculation of the
TMDPDFs in the dilute limit at the NLO order.
We find that at this order the perturbative structure of the

TMDPDFs is described by Eq. (75). The equation describes
the dependence of the TMDPDFs on various factorization
scales. In our approach, we explicitly distinguish the scales
corresponding to the UV and IR physics. In particular, our
approach yields the standard dependence on the UV scales,
described by the UV logarithms that can be resummed into
the CSS evolution.
At the same time, the dependence on the IR scales is a

new result. In particular, apart from the transverse loga-
rithm lnðb2⊥μ2IRÞ, our result contains a rapidity logarithm

lnðρ=xBPþÞ, which dependence on a factorization scale ρ
of the IR origin. This dependence comes from the virtual
emission diagrams, which are not trivial in our approach.
In general, the IR part is not dominated by a single

logarithm. As a result, the corresponding kernels are neither
the DGLAP nor the BFKL ones. We also keep finite
nonlogarithmic terms. Again, in our general kinematics
the contribution of these terms can be comparable with the
logarithmic contribution. As is evident from our result, the
IR dynamics of the TMDPDFs is governed by an interplay
between the aforementioned terms.
We also demonstrate that our result is consistent with the

collinear matching procedure. We argue that in the kin-
ematic limit of b⊥ ≪ Λ−1

QCD our result is dominated by the
transverse logarithm lnðb2⊥μ2IRÞ. We also observe that
nonlogarithmic terms play an important role in this limit.
These terms are enhanced, and in the collinear matching,
they are described by the same transverse logarithm. At the
same time, the virtual correction is trivial. Combining all
terms we find that the IR structure is governed by the
DGLAP kernel; we then recover the standard collinear
matching formula for the gluon TMDPDFs.
Meanwhile, our result is derived in general kinematics,

so it describes the IR physics of the TMDPDFs in the
region of large b⊥ ≲ Λ−1

QCD as well. To better understand
this structure, we particularly consider a limit of small
values of xB. We argue that in this limit, the IR physics is
dominated by a rapidity logarithm lnðρ=xBPþÞ, while the
transverse integral is suppressed. At the same time, some
finite terms are enhanced in this limit and are described
by the same rapidity logarithm. In analogy to the collinear
matching, one can perform a matching procedure
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expanding the TMDPDFs in terms of dipole amplitudes.
The expansion converges at small values of the xB variable.
Combining all terms we find that the dominant contribution
in the IR sector is described by the BFKL kernel. This is
evident from the matching equation (93), which is also a
new result. Wewant to emphasize the critical role played by
the virtual emission, which, as we argue, is not trivial at any
finite value of b⊥, and is essential for reproducing the
BFKL kernel at small values of xB.
As a result, we conclude that the TMD factorization

provides a unified description of the CSS, DGLAP, and
BFKL evolutions.
The possibility to construct such formalism has been

explored before in the color glass condensate (CGC)
effective field theory [61,110–116], high-energy rapidity
factorization [66,68,117,118], high-energy factorization
[119–123], and SCET framework [97,98,124,125]. The
main difference between all methods is essentially how the
QCD medium is factorized into different dynamic modes
and what types of modes are taken into account.
Our calculation shares some similarities with the afore-

mentioned works. For example, in Refs. [61,110,119,
121,122] the authors use the operator definition of the
gluon TMD distribution, and in Refs. [119,121,122] the
calculation is done in the dilute limit. However, in
Refs. [61,110–116,119,121,122] the form of the back-
ground field is circumscribed to the small-x partons. As
a result, the authors recovered the CSS evolution scheme in
combination with the BFKL evolution. It was also observed
that CSS and BFKL evolutions correspond to distinct
regions of phase space. This is consistent with our results
described in Sec. IV B, where we consider the limit of small
values of the xB variable.
However, our form of the background field is more

general. It is defined by a system of UVand IR factorization
scales, which we introduced in Sec. II. The proposed
scheme allows us to link not only the CSS and BFKL
evolution but also include the DGLAP evolution; in our
calculations, the latter dominates the IR structure of the
TMDPDFs in the b⊥ ≪ Λ−1

QCD limit. This is in full agree-
ment with the well-known results obtained in the collinear
matching procedure, see discussion in Sec. IVA. Hence,
our scheme is more general than previously proposed
methods.
A calculation with a general form of the background field

was previously done in the high-energy rapidity factorization
approach [66,68,117,118]. However, this approach is differ-
ent from the TMD factorization we use in this paper.
Essentially, the TMDPDFs that we study, which are the
standard TMDPDFs [1–9], are completely different from
the distributions considered in Refs. [66,68,117,118].
These two types of the TMD distributions cannot be
directly compared. Indeed, while the TMDPDFs in the

rapidity factorization approach depend only on a single
rapidity factorization scale, the TMDPDFs in the standard
TMD factorization scheme contain dependence on two
scales, which we study in detail in this paper.
A somewhat alternative approach to constructing a gen-

eral formalism was also proposed in SCET [97,98,124,125].
Apart from many technical differences, the main distinction
with our approach comes from the fact that in the SCET
framework, different dynamical modes are, by construc-
tion, well separated from each other, which is done using
momentum scaling. In particular, the small-x effects are
associated with the contribution of the so-called Glauber
mode; see for instance, Ref. [98]. This significantly differs
from our approach based on the background field method.
The background field method allows us to consider
scattering in a general background field, which we define
using a set of factorization scales. This general field does
not necessarily correspond to a particular kinematic mode
in SCET. However, as one can conclude from Sec. IV,
the field effectively reduces to the SCET modes when a
particular kinematic limit is imposed. As a result, our
calculation in a general background field allows us to
describe a smooth transition between different momenta
regions, which seems rather challenging in the SCET
framework.
In this paper, we relate the BFKL and DGLAP evolution

using the TMD factorization approach. An alternative
method, which is based on the analysis of the parton
emission in the kT-factorization [126–128] was presented
in Refs. [129–139]. In this method, a collinear resummation
of the DGLAP terms is performed using analysis of the
behavior of the anomalous dimensions in Mellin space.
While at first sight this is quite different from our approach,
it would be interesting to investigate a potential link to our
method. We leave this analysis for the future.
Though in this paper, we mainly study the gluon

TMDPDFs, our formalism can be easily applied to the
case of quark distributions. We plan to do that in the future.
This will allow us to implement the formalism in phenom-
enological applications. Since our formalism provides a
general description of the IR structure of the TMDPDFs,
including the region of large b⊥ ≲ Λ−1

QCD, which dominates
the TMD factorization, it would be necessary and interest-
ing to see how this effects the global analysis of data
compared with the solution based on the collinear matching
technique.
Another obvious extension of our formalism is the study

of the IR structure of the quasi-TMDPDFs [140–151]. We
plan to perform this analysis and implement it in lattice
computations of the TMDPDFs.
The latter would be especially beneficial for the small-x

physics. Indeed, our result demonstrates a deep relation
between the TMD and small-x physics. In particular,
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it suggests that our solution for the TMDPDFs can be used
to construct an initial condition (defined at large x) for the
small-x evolution. Currently, the initial condition used in
phenomenological applications is model-dependent, so the
possibility of constraining it using lattice computations is of
great interest.
Finally, since our approach bridges different types of

kinematic effects, it can be applied in a variety of problems
where the interplay between small- and large-x physics is
important, e.g. spin effects at small-x [64,67,76,152–154].
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APPENDIX A: CALCULATION OF THE REAL
EMISSION VERTEX

In this appendix we present details of the calculation of
the emission vertex (25) which corresponds to resummation
of diagrams presented in Fig. 5. We will perform our
derivation in the background field method. As we men-
tioned before, one of the big advantages of the background
field method is the ability to independently choose gauges
of the background Bbg

μ and “quantum” field Bq
μ. In

particular, in our calculation, we will use an axial gauge
for the “quantum” field Bq

μ, and choose the background
field to be of a form Bbg

μ ðx−; x⊥Þ with a gauge fixed
condition,

Bbg
þ ¼ 0; ðA1Þ

supplemented by a boundary condition for the transverse
component of the field,

lim
x−→∞

Bbg
i ¼ 0: ðA2Þ

To determine the operator structure of the background
fields, we will use the following approach. We will work in
the dilute regime assuming that there are only two gluons in
the background (i.e. g2 order in the coupling constant).
Some typical diagrams contributing to the NLO correction
to the TMD operator are presented in Fig. 4. We will find
that a background field representing each gluon combines

into an operator structure ∂μB
bg
ν − ∂νB

bg
μ . This structure is

nothing else but the Abelian part of the strength tensor
Fμν ≡ Fbg

μν, constructed from the background field Bbg
μ ,

which is a proper gauge covariant representation of a single
gluon insertion. As a result, in our dilute approximation, it
is sufficient, without any loss of generality, to replace this
operator structure with a full non-Abelian strength tensor
Fμν. To restore gauge invariance we will also insert gauge
links connecting the two strength tensors. It is important to
emphasize that the background field method allows us to
restore the non-Abelian part of the strength tensor and
Wilson lines as well. However, to do that one has to
consider diagrams beyond the g2 order in the coupling
constant. To simplify our discussion, we do not do it
explicitly. Indeed, this is sufficient in the dilute limit since
the Abelian part of the strength tensors is unambiguously
defined by the leading order diagrams in the coupling
constant, and the higher order diagrams merely restore the
non-Abelian parts of the strength tensors or gauge links.
However, we should mention that this is not the case in

general when multiple gluon insertions become important
(i.e. in the dense limit). In this case, corresponding
operators of the background fields might contain, in
contrast to the dilute limit, more than two strength tensors.
The main difficulty, in this case, is that a given gluon
insertion might correspond either to a strength tensor or a
gauge link, so the operator structure in general cannot be
found. The standard approach to overcome this difficulty is
to expand all background fields onto a given direction
defined by the kinematics of the problem (e.g. the light
cone direction). After this expansion, the structure of the
strength tensors and gauge links can be unambiguously
restored. However, this choice of direction is not universal.
In particular, it is different in the Bjorken and Regge limits.
At this point, it is not clear whether a universal expansion
can be constructed. We leave this problem for future
research.
First, we rewrite the emission vertex (25) using the

following equations for derivatives of the Wilson lines
constructed from the field Bqþbg

μ ¼ Bq
μ þ Bbg

μ :

∂−½∞; y−�y ¼ −ig½∞; y−�yBqþbg
− ðy−; y⊥Þ; ðA3Þ

and

∂i½∞; y−�y ¼ −ig½∞; y−�yBqþbg
i ðy−; y⊥Þ − ig

Z
∞

y−
dz−

× ½∞; z−�yFqþbg
−i ðz−; y⊥Þ½z−; y−�y: ðA4Þ

Taking into account these equations, the emission
vertex reads
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Lab
μj ðk;y⊥; xBÞ ¼ i lim

k2→0
k2

Z
∞

−∞
dy−eixBP

þy−
�
−ixBPþ½∞; y−�bdy hBqa

μ ðkÞBqd
j ðy−;y⊥ÞiBbg − ∂jð½∞; y−�bdy hBqa

μ ðkÞBqd
− ðy−;y⊥ÞiBbgÞ

− ig
Z

∞

y−
dz−ð½∞; z−�yF−jðz−; y⊥Þ½z−; y−�yÞbdhBqa

μ ðkÞBqd
− ðy−; y⊥ÞiBbg

þ ig
Z

∞

y−
dz−ð½∞; z−�Te½z−; y−�Þbmy⊥ Fm

−jðy−; y⊥ÞhBqa
μ ðkÞBqe

− ðz−;y⊥ÞiBbg

�
; ðA5Þ

where the last term corresponds to an emission from the Wilson line, see Fig. 5(c), and the strength tensor Fμν ≡ Fbg
μν is

constructed from the background field Bbg
μ . Now we need to substitute here a contraction of two “quantum fields” Bq

μ in a
background Bbg

μ . This contraction in the axial gauge of the field Bq
μ has the form,

hBqa
μ ðxÞBqb

ν ðyÞiBbg ¼ ðxj−idμνðp̂Þδ
ab

p̂2
jyÞ þ ð−igÞðxj−idμρðp̂Þ

p̂2

�
gρσfp̂α; Bbgαg þ 2ið∂ρBbgσ − ∂

σBbgρÞ − p̂ρBbgσ − Bbgρp̂σ



×
−idσνðp̂Þ

p̂2
jyÞab þOðg2Þ; ðA6Þ

where the expression in squared brackets is the standard three-gluon vertex. In the axial gauge the numerator of each free
quantum propagator is

dμνðp̂Þ ¼ gμν −
n̄μp̂ν þ p̂μn̄ν

n̄ · p̂
; ðA7Þ

where we choose a light cone vector n̄þ ¼ 1.
In Eq. (A6) we use the Schwinger’s notation; see Ref. [155]. We consider a coherent state jxÞ which is an eigenvector of

the position operators. For an arbitrary function of the momentum operator, we have

ðxjfðp̂ÞjyÞ ¼
Z

d4p
ð2πÞ4 e

−ipðx−yÞfðpÞ: ðA8Þ

For brevity, in the following discussion we neglect the “hat” notation for the operators.
Taking into account that the background field satisfies Bbg

þ ¼ 0, we can rewrite the contraction in the following form:

ihBqa
μ ðxÞBqb

ν ðyÞiBbg ¼ ðxj
�
gμl −

n̄μ
n̄ · p

pl

�
1

p2

�
δlν − pl n̄ν

n̄ · p

�
−

n̄μn̄ν
ðn̄ · pÞ2 jyÞ

ab þ gðxj
�
−

n̄μ
n̄ · p

Bbg
l

�
1

p2

�
δlν − pl n̄ν

n̄ · p

�
jyÞab

þ gðxj
�
gμl −

n̄μ
n̄ · p

pl

�
1

p2

�
−Bbgl n̄ν

n̄ · p

�
jyÞab − gðxj

�
gμl −

n̄μ
n̄ · p

pl

�
1

p2
fpα; Bbgαg 1

p2

×

�
δlν − pl n̄ν

n̄ · p

�
jyÞab − 2igðxj 1

p2

�
gμl −

n̄μ
n̄ · p

pl

�
ð∂lBbgm − ∂

mBbglÞ

×

�
gmν − pm

n̄ν
n̄ · p

�
1

p2
jyÞab þOðg2Þ; ðA9Þ

which we are going to use in our calculation.
It is instructive to note that this form of the contraction suggests the following general expression:

ihBqa
μ ðxÞBqb

ν ðyÞiBbg ¼ ðxj
�
gμl −

n̄μ
n̄ · p

Pl

�
1

P2

�
δlν − Pl n̄ν

n̄ · p

�
−

n̄μn̄ν
ðn̄ · pÞ2 jyÞ

ab

− 2igðxj
�
gμl −

n̄μ
n̄ · p

Pl

�
1

P2
Flm 1

P2

�
gmν − Pm

n̄ν
n̄ · p

�
jyÞab þ � � � ; ðA10Þ

where Pμ ¼ pμ þ gBbg
μ and an ellipsis stands for terms nonlinear in a fully transverse strength tensor Flm.
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To calculate the emission vertex we need a contraction in the mixed representation,

i lim
k2→0

k2hBqa
μ ðkÞBqb

ν ðyÞiBbg ¼
�
gμl −

n̄μ
k−

kl

��
δlν − kl

n̄ν
k−

�
eik·yδab − g

�
gμl −

n̄μ
k−

kl

�
ðkjBbgl n̄ν

p− jyÞab

− g
�
gμl −

n̄μ
k−

kl

�
ðkjfpα; Bbgαg 1

p2

�
δlν − pl n̄ν

p−

�
jyÞab − 2ig

�
gμl −

n̄μ
k−

kl

�

× ðkjð∂lBbgm − ∂
mBbglÞ

�
gmν − pm

n̄ν
p−

�
1

p2
jyÞab

				
kþ¼ k2⊥

2k−

þOðg2Þ: ðA11Þ

Taking poles in 1=p2 we can further rewrite this equation as

i lim
k2→0

k2hBqa
μ ðkÞBqb

ν ðyÞiBbg ¼
�
δlμ −

n̄μ
k−

kl
���

glν − kl
n̄ν
k−

�
δab − gBbgab

l ðy−; y⊥Þ
n̄ν
k−

�
eik·y

				
kþ¼ k2⊥

2k−

þ ig
2k−

�
δlμ −

n̄μ
k−

kl
�

× ðk⊥j
�Z

∞

y−
dz−ei

k2⊥
2k−z

−
Bbgab
α ðz−Þe−i

p2⊥
2k−z

−

�
ei

p2⊥
2k−y

−ðkþ pÞα
�
glν − pl

n̄ν
k−

�
jy⊥Þeik−yþ

−
g
k−

�
δlμ −

n̄μ
k−

kl
�
ðk⊥j

�Z
∞

y−
dz−ei

k2⊥
2k−z

−ð∂lBab
m − ∂mBab

l Þbgðz−Þe−i
p2⊥
2k−z

−

�

× ei
p2⊥
2k−y

−

�
δmν − pm n̄ν

k−

�
jy⊥Þeik−yþ þOðg2Þ: ðA12Þ

Substituting this contraction into the emission vertex (A5) and performing integration over y− we obtain

Lab
μj ðk; y⊥; xBÞ ¼

�
δlμ −

n̄μ
k−

kl
�
ðk⊥j − ixBPþ

�
glj2πδ

�
xBPþ þ k2⊥

2k−

�
δab − g

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−Bbgab
− ðz−Þ

�

×

�
2k−glj

2xBPþk− þ k2⊥
−

2k−glj
2xBPþk− þ p2⊥

�
þ g

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−Bbgab
m ðz−Þ

� ðkþ pÞm
2k−

2k−glj
2xBPþk− þ p2⊥

þ ig

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ð∂lBab
m − ∂mBab

l Þbgðz−Þ
�

1

k−
2k−δmj

2xBPþk− þ p2⊥

�

− ∂j

�
−
kl
k−

2πδ

�
xBPþ þ k2⊥

2k−

�
δab þ g

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−Bbgab
− ðz−Þ

��
2kl

2xBPþk− þ k2⊥

−
2pl

2xBPþk− þ p2⊥

�
þ g

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−Bbgab
m ðz−Þ

� ðkþ pÞm
2k−

−2pl

2xBPþk− þ p2⊥

− g

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−Bbgab
l ðz−Þ

�
1

k−
þ ig

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ð∂lBab
m − ∂mBab

l Þbgðz−Þ
�

×
1

k−
−2pm

2xBPþk− þ p2⊥

�
− g

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ð∂−Bab
j − ∂jBab

− Þbgðz−Þ
�

2kl
2xBPþk− þ k2⊥

þ g

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ð∂−Bab
j − ∂jBab

− Þbgðz−Þ
�
2kl
k2⊥

jy⊥Þ þOðg2Þ: ðA13Þ

For an arbitrary operatorO we can commute the transverse momentum operator as piO ¼ Opi þ i∂iO. Using this, we can
further rewrite the vertex as

UNIFIED DESCRIPTION OF DGLAP, CSS, AND BFKL … PHYS. REV. D 109, 034035 (2024)

034035-25



Lab
μj ðk; y⊥; xBÞ ¼

�
δlμ −

n̄μ
k−

kl
�
ðk⊥j − ixBPþ

�
glj2πδ

�
xBPþ þ k2⊥

2k−

�
δab

− ig

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ð∂−Bab
m − ∂mBab

− Þbgðz−Þ
� ðpþ kÞm
2xBPþk− þ k2⊥

2k−glj
2xBPþk− þ p2⊥

þ ig

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ð∂lBab
m − ∂mBab

l Þbgðz−Þ
�

1

k−
2k−δmj

2xBPþk− þ p2⊥

�

− ∂j

�
−
kl
k−

2πδ

�
xBPþ þ k2⊥

2k−

�
δab − ig

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ð∂−Bab
l − ∂lBab

− Þbgðz−Þ
�

2

2xBPþk− þ p2⊥

þ ig

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ð∂−Bab
m − ∂mBab

− Þbgðz−Þ
� ðpþ kÞm
2xBPþk− þ k2⊥

2kl
2xBPþk− þ p2⊥

− ig

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ð∂lBab
m − ∂mBab

l Þbgðz−Þ
� ðpþ kÞm − 2pm

2k−
2

2xBPþk− þ p2⊥

�

− g

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ð∂−Bab
j − ∂jBab

− Þbgðz−Þ
�

2kl
2xBPþk− þ k2⊥

þ g

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ð∂−Bab
j − ∂jBab

− Þbgðz−Þ
�
2kl
k2⊥

jy⊥Þ þOðg2Þ: ðA14Þ

Following our strategy we replace ∂μB
bg
ν − ∂νb

bg
μ → Fbg

μν ≡ Fμν and restore gauge covariance by inserting appropriate
gauge factors.10 As a result, after some reorganization of terms, we obtain the following expression for the emission vertex
in the dilute limit:

Lab
μj ðk; y⊥; xBÞ ¼

�
δlμ −

n̄μ
k−

kl
�
ðk⊥j

�
−ixBPþglj þ

iklkj
k−

�
2πδ

�
xBPþ þ k2⊥

2k−

�
δab − g

�Z
∞

−∞
dz−

× eiðxBPþþ k2⊥
2k−Þz− ½∞; z−�aeFeb

−mðz−Þ
�� ðpþ kÞm

2xBPþk− þ k2⊥
2xBPþk−glj − 2klkj
2xBPþk− þ p2⊥

−
2gmlpj þ 2gmjkl
2xBPþk− þ p2⊥

þ 2gmjkl
k2⊥

�

− g

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz− ½∞; z−�aeFeb
smðz−Þ

��
2δsl
2k−

2xBPþk−gmj − 2pmpj

2xBPþk− þ p2⊥

þ ðpþ kÞm
2k−

2δslpj þ 2δsjkl
2xBPþk− þ p2⊥

�
jy⊥Þ: ðA15Þ

Note that

kμLab
μj ðk; y⊥; xBÞ ¼ 0 ðA16Þ

as required by gauge invariance. It is also easy to see that in
a product of two vertexes (A15), see Eq. (26), only
transverse indexes μ contribute. For this reason it is
sufficient to consider only transverse components of the
vertex Lan

kj ðk; y⊥; xBÞ.
We find that the emission vertex (A15) is in agreement

with a linearized version of the emission vertex constructed
in Refs. [66,68]. This is up to the fully transverse strength
tensor Fsm which was not included in [66,68]. In
Refs. [66,68] the emission vertex was constructed as an

interpolating solution between the light cone expansion
technique and the shock wave approximation. From our
calculation it is evident that the vertex can be derived by an
explicit calculation in a general background field.
The emission vertex (A15) introduces a mixing between

the initial operator, cf. Eq. (25),

Z
∞

−∞
dy−eixBP

þy− ½∞; y−�F−jðy−Þ; ðA17Þ

and an operator constructed from the fully transverse
strength tensor,

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz− ½∞; z−�Fsmðz−Þ: ðA18Þ

Such an operator doesn’t contribute to the DGLAP evo-
lution since it is associated with higher-twist effects at

10This can be done explicitly by calculation in the next to
leading order in the coupling constant.

MUKHERJEE, SKOKOV, TARASOV, and TIWARI PHYS. REV. D 109, 034035 (2024)

034035-26



large-x. It is also neglected in the small-x formalism, e.g. does not contribute to the BFKL evolution, since it represents
highly suppressed corrections. However, this operator is of leading order for spin effects at small-x which are of subeikonal
nature, see Refs. [64,67,76]. Since in this paper we aim to build a bridge between leading order large-x and small-x effects,
we leave the study of mixing with this operator for future publications.
Finally, assuming that xB > 0 we can also neglect a delta-function in the first term of (A15). As a result, we obtain the

following form of the vertex:

Lab
kj ðk; y⊥; xBÞ ¼ −2gðk⊥j

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz− ½∞; z−�aeFeb
−mðz−Þ

�

×

� ðpþ kÞm
2xBPþk− þ k2⊥

xBPþk−gkj − kkkj
2xBPþk− þ p2⊥

−
gmkpj þ gmjkk
2xBPþk− þ p2⊥

þ gmjkk
k2⊥

�
jy⊥Þ: ðA19Þ

A similar calculation can be done for the conjugated vertex with a result,

L̃kba
i ðk; x⊥; xBÞ ¼ −2gðx⊥j

� ðpþ kÞl
2xBPþk− þ k2⊥

xBPþk−δki − kkki
2xBPþk− þ p2⊥

−
δkl pi þ glikk

2xBPþk− þ p2⊥
þ gilkk

k2⊥

�

×

�Z
∞

−∞
dz−e−iðxBPþþ k2⊥

2k−Þz− ½∞; z−�beF̃ea
−lðz−Þ

�
jk⊥Þ: ðA20Þ

APPENDIX B: CALCULATION OF THE VIRTUAL DIAGRAMS

The calculation of the virtual emission diagrams is similar to the calculation of the real emission diagrams presented in
the previous section. Let us first calculate the emission diagrams presented in Figs. 6(a)–6(d) We start with the
corresponding amplitude,

�Z
∞

−∞
dy−eixBP

þy− ½∞; y−�any Fqþbg;n
−j ðy−; y⊥Þ

�
Bbg

¼
Z

∞

−∞
dy−eixBP

þy−h½∞; y−�any ðδnd∂− − igBbgnd
− ðy−; y⊥ÞÞBqd

j ðy−; y⊥ÞiBbg

−
Z

∞

−∞
dy−eixBP

þy−h½∞; y−�any ðδnd∂j − igBbgnd
j ðy−; y⊥ÞÞBqd

− ðy−; y⊥ÞiBbg

þ
Z

∞

−∞
dy−eixBP

þy−h½∞; y−�any iBbgFn
−jðy−; y⊥Þ

þ
Z

∞

−∞
dy−eixBP

þy− ½∞; y−�any hFn
−jðy−; y⊥ÞiBbg ; ðB1Þ

where we need to substitute propagator (A9), which, assuming x− > y−, we rewrite in a form,

ihBqa
μ ðxÞBqb

ν ðyÞiBbg

			
x−>y−

¼ −
i
2π

Z
∞

0

dp−

2p− e
−ip−ðx−yÞþðx⊥j

�
gμl −

n̄μ
p−pl

�
e−i

p2⊥
2p−ðx−yÞ−

�
δlν −pl n̄ν

p−

�
jy⊥Þδab − ðxj n̄μn̄νðp−Þ2 jyÞδ

ab

þ ig
2π

Z
∞

0

dp−

2p− e
−ip−ðx−yÞþðx⊥j

n̄μ
p−B

bgab
l ðx−; x⊥Þe−i

p2⊥
2p−ðx−yÞ−

�
δlν −pl n̄ν

p−

�
jy⊥Þ þ

ig
2π

×
Z

∞

0

dp−

2p− e
−ip−ðx−yÞþðx⊥je−i

p2⊥
2p−ðx−yÞ−

�
δlμ −

n̄μ
p−p

l

�
Bbgab
l ðy−; y⊥Þ

n̄ν
p− jy⊥Þ

þ g
2π

Z
∞

0

dp−

ð2p−Þ2 e
−ip−ðx−yÞþ

Z
x−

y−
dz−ðx⊥j

�
gμl −

n̄μ
p−pl

�
e−i

p2⊥
2p−ðx−−z−Þfpα;Bbgab

α ðz−Þg

× e−i
p2⊥
2p−ðz−−y−Þ

�
δlν −pl n̄ν

p−

�
jy⊥Þ þ

ig
π

Z
dp−

ð2p−Þ2 e
−ip−ðx−yÞþ

Z
x−

y−
dz−ðx⊥j

�
δlμ −

n̄μ
p−p

l

�

× e−i
p2⊥
2p−ðx−zÞ−ð∂lBab

m − ∂mBab
l Þbgðz−Þe−i

p2⊥
2p−ðz−yÞ−

�
δmν −pm n̄ν

p−

�
jy⊥Þ þOðg2Þ: ðB2Þ

UNIFIED DESCRIPTION OF DGLAP, CSS, AND BFKL … PHYS. REV. D 109, 034035 (2024)

034035-27



Performing calculation in the single gluon approximation and neglecting the contribution of a fully transverse strength
tensor we arrive at the following result:

�Z
∞

−∞
dy−eixBP

þy− ½∞; y−�any Fqþbg;n
−j ðy−; y⊥Þ

�
Bbg

¼ g2Nc

2π

�Z
∞

0

dk−

k−
ðy⊥j

2xBPþk−

p2⊥ð2xBPþk− þ p2⊥Þ
jy⊥Þ

�Z
∞

−∞
dz−eixBP

þz−ð∂jBa
− − ∂−Ba

j Þbgðz−; y⊥Þ
�
− i

Z
∞

0

dk−

k−

× ðy⊥j
ps

p2⊥
ð2δkjδms − gsjgmkÞ∂k

�Z
∞

−∞
dz−eixBP

þz−ð∂mBa
− − ∂−Ba

mÞbgðz−Þ
�

1

2xBPþk− þ p2⊥
jy⊥Þ

�
þOðg3Þ: ðB3Þ

In the dilute limit, this result can be generalized to

�Z
∞

−∞
dy−eixBP

þy− ½∞; y−�any Fqþbg;n
−j ðy−; y⊥Þ

�
Bbg

¼ −
g2Nc

2π

Z
∞

0

dk−

k−
ðy⊥j

2xBPþk−

p2⊥ð2xBPþk− þ p2⊥Þ
jy⊥Þ

�Z
∞

−∞
dz−eixBP

þz− ½∞; z−�any Fn
−jðz−; y⊥Þ

�

þ ig2Nc

2π

Z
∞

0

dk−

k−
ðy⊥j

ps

p2⊥
ð2δkjδms − gsjgmkÞ∂k

�Z
∞

−∞
dz−eixBP

þz− ½∞; z−�anFn
−mðz−Þ

�
1

2xBPþk− þ p2⊥
jy⊥Þ; ðB4Þ

which we can rewrite as

�Z
∞

−∞
dy−eixBP

þy− ½∞; y−�any Fqþbg;n
−j ðy−; y⊥Þ

�
Bbg

¼ −
g2Nc

2π

Z
∞

0

dk−

k−

Z
đ2k⊥

2xBPþk−

k2⊥ð2xBPþk− þ k2⊥Þ
Z

∞

−∞
dz−eixBP

þz− ½∞; z−�any Fn
−jðz−; y⊥Þ þ

g2Nc

2π

Z
∞

0

dk−

k−

Z
đ2p⊥

×
Z

đ2k⊥eiðp⊥−k⊥Þy⊥ ks

k2⊥
ð2δkjδms − gjsgmkÞ ðk − pÞk

2xBPþk− þ p2⊥

Z
d2z⊥eiðk⊥−p⊥Þz⊥

×
Z

∞

−∞
dz−eixBP

þz− ½∞; z−�anz Fn
−mðz−; z⊥Þ: ðB5Þ

A similar result can be obtained for the diagrams conjugated to the diagrams presented in Figs. 6(a)–6(d). Taking a sum of
these virtual diagrams we obtain

Z
∞

−∞
dz−e−ixBP

þz−hpjF̃m
−iðz−; b⊥Þ½z−;∞�ma

b ½∞; 0−�an0 Fn
−jð0−; 0⊥Þjpivirt

¼ −
g2Nc

2π

Z
∞

0

dk−

k−

�
−
Z

đ2p⊥eip⊥b⊥
Z

đ2k⊥e−ik⊥b⊥
ks

k2⊥
ð2δkjδms − gjsgmkÞ ðk − pÞk

2xBPþk− þ p2⊥

×
Z

d2z⊥eiðk⊥−p⊥Þz⊥
Z

∞

−∞
dz−e−ixBP

þz−hpjF̃m
−iðz−; z⊥Þ½z−;∞�ma

z ½∞; 0−�an0 Fn
−mð0−; 0⊥Þjpi

þ
Z

đ2k⊥
2xBPþk−

k2⊥ð2xBPþk− þ k2⊥Þ
Z

∞

−∞
dz−e−ixBP

þz−hpjF̃m
−iðz−; b⊥Þ½z−;∞�ma

b ½∞; 0−�an0 Fn
−jð0−; 0⊥Þjpi

�

−
g2Nc

2π

Z
∞

0

dk−

k−

�Z
đ2p⊥eip⊥b⊥

Z
đ2k⊥e−ik⊥b⊥

ðp − kÞk
2xBPþk− þ p2⊥

ð2δki δls − gisgklÞ
ks

k2⊥

×
Z

d2z⊥eiðk⊥−p⊥Þz⊥
Z

∞

−∞
dz−e−ixBP

þz−hpjF̃m
−lðz−; z⊥Þ½z−;∞�ma

z ½∞; 0−�an0 Fn
−jð0−; 0⊥Þjpi

þ
Z

đ2k⊥
2xBPþk−

k2⊥ð2xBPþk− þ k2⊥Þ
Z

∞

−∞
dz−e−ixBP

þz−hpjF̃m
−iðz−; b⊥Þ½z−;∞�ma

b ½∞; 0−�an0 Fn
−jð0−; 0⊥Þjpi

�
: ðB6Þ
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Introducing the variable z, see Eq. (28), we rewrite this equation in the following form:

Z
∞

−∞
dz−e−ixBP

þz−hpjF̃m
−iðz−; b⊥Þ½z−;∞�ma

b ½∞; 0−�an0 Fn
−jð0−; 0⊥Þjpivirt

¼ g2Nc

2π

Z
1

0

dz
z

Z
đ2p⊥eip⊥b⊥

Z
đ2k⊥e−ik⊥b⊥ ½δliksð2δkjδms − gjsgmkÞðk − pÞk þ ðk − pÞkð2δki δls − gisgklÞδmj ks�

×
1

k2⊥ðzk2⊥ þ ð1 − zÞp2⊥Þ
Z

d2z⊥eiðk⊥−p⊥Þz⊥
Z

∞

−∞
dz−e−ixBP

þz−hpjF̃m
−lðz−; z⊥Þ½z−;∞�ma

z ½∞; 0−�an0 Fn
−mð0−; 0⊥Þjpi

−
g2Nc

π

Z
1

0

dz
1 − z

Z
đ2k⊥
k2⊥

Z
∞

−∞
dz−e−ixBP

þz−hpjF̃m
−iðz−; b⊥Þ½z−;∞�ma

b ½∞; 0−�an0 Fn
−jð0−; 0⊥Þjpi: ðB7Þ

The last line of this equation contains a scaleless integral over transverse momentum which is set to be zero in the
dimensional regularization. However, as we discuss in the main text, the role of this contribution is nontrivial, and we keep it
for now. As a result, the equation reads

Z
∞

−∞
dz−e−ixBP

þz−hpjF̃m
−iðz−; b⊥Þ½z−;∞�ma

b ½∞; 0−�an0 Fn
−jð0−; 0⊥Þjpivirt

¼ g2Nc

2π

Z
1

0

dz
z

Z
đ2p⊥eip⊥b⊥

Z
đ2k⊥e−ik⊥b⊥ ½δliksð2δkjδms − gjsgmkÞðk − pÞk þ ðk − pÞkð2δki δls − gisgklÞδmj ks�

×
1

k2⊥ðzk2⊥ þ ð1 − zÞp2⊥Þ
Z

d2z⊥eiðk⊥−p⊥Þz⊥
Z

∞

−∞
dz−e−ixBP

þz−hpjF̃m
−lðz−; z⊥Þ½z−;∞�ma

z ½∞; 0−�an0 Fn
−mð0−; 0⊥Þjpi

−
g2Nc

π

Z
1

0

dz
1 − z

Z
đ2k⊥
k2⊥

Z
∞

−∞
dz−e−ixBP

þz−hpjF̃m
−iðz−; b⊥Þ½z−;∞�ma

b ½∞; 0−�an0 Fn
−jð0−; 0⊥Þjpi: ðB8Þ

APPENDIX C: CALCULATION USING BACKGROUND-FEYNMAN GAUGE

In this section, we shall repeat the above calculation with the choice of “quantum” field gauge to be

DμBq
μðx−; x⊥Þ ¼ 0; ðC1Þ

where the covariant derivative is constructed from the background field Bbg
μ . This gauge is called the background-Feynman

gauge. For this gauge choice, the propagator takes the form,

ihBqa
μ ðxÞBqb

ν ðyÞiBbg ¼ ðxj 1

P2gμν þ 2iFμν þ iϵ
jyÞab; ðC2Þ

where Pμ ¼ pμ þ gBbg
μ . To simplify the calculation, in this section we will also assume that the background field has only

Bbg
− ðx−; x⊥Þ nonzero component.
Up to two gluon accuracy, the propagator can be written in the following form:

ihBqa
μ ðxÞBqb

ν ðyÞiBbg

			
x−>y−

¼ −
1

2π

Z
∞

0

dp−

2p− e
−ip−ðx−yÞþðx⊥je−i

p2⊥
2p−x

−
�
igμν − ggμν

Z
x−

y−
dz−ei

p2⊥
2p−z

−
Bbg
− ðz−Þe−i

p2⊥
2p−z

−

−
ig
p−

Z
x−

y−
dz−ei

p2⊥
2p−z

−
Fμνðz−Þe−i

p2⊥
2p−z

− þ ggμþgνþ
2ðp−Þ2

Z
x−

y−
dz−ei

p2⊥
2p−z

−
∂
kF−ke

−i
p2⊥
2p−z

−
�
ei

p2⊥
2p−y

− jy⊥Þab;

ðC3Þ

where the third term with gμþ gνþ is the contribution from the quark background fields ∂kFa
−k ¼ gψ̄γþtaψ . The propagator

which shall be used for real emissions takes the form,
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i lim
k2→0

k2hBqa
μ ðkÞBqb

ν ðyÞi ¼ −ieik−yþðk⊥j
�
igμν − ggμν

Z
∞

y−
dz−ei

p2⊥
2k−z

−
Bbg
− ðz−Þe−i

p2⊥
2k−z

−

−
ig
k−

Z
∞

y−
dz−ei

p2⊥
2k−z

−
Fμνðz−Þe−i

p2⊥
2k−z

− þ ggμþgνþ
2ðk−Þ2

Z
∞

y−
dz−ei

p2⊥
2k−z

−
∂
kF−ke−i

p2⊥
2k−z

−

�
ei

p2⊥
2k−y

− jy⊥Þab: ðC4Þ

First, we will compute the real emission vertex, see Fig. 5, using the above gauge and match it with (A19). Apart for the
gauge condition (A1), we will also fix Bbg

i ¼ 0, which means that in this calculation we only track the ∂iBbg
− component of

the F−i strength tensor, which is sufficient to obtain the final result (A19).
Writing (A5) slightly differently, we have

Lab
μj ðk;y⊥;xBÞ¼

Z
∞

−∞
dy−eixBP

þy−
�
−ixBPþ½∞;y−�bdi lim

k2→0
k2hBqa

μ ðkÞBqd
j ðy−;y⊥ÞiBbg − ½∞;y−�bdi lim

k2→0
k2hBqa

μ ðkÞ

×∂jBqd
− ðy−;y⊥ÞiBbg þ ig

Z
∞

y−
dz−ð½∞;z−�Td½z−;y−�ÞbmFm

−jðy−;y⊥Þi lim
k2→0

k2hBqa
μ ðkÞBqd

− ðz−;y⊥Þi
�
; ðC5Þ

where the last propagator is free, without any background fields.
Substituting (C4) into the expression (C5), we have

Lab
μj ðk; y⊥; xBÞ ¼ −ixBPþ

Z
∞

−∞
dy−eixBP

þy−ðk⊥j
�
gμj þ iggμj

Z
∞

y−
dz−ei

p2⊥
2k−z

−
Bbg
− ðz−Þe−i

p2⊥
2k−z

−

−
g
k−

Z
∞

y−
dz−ei

p2⊥
2k−z

−
Fμjðz−Þe−i

p2⊥
2k−z

−

�
ei

p2⊥
2k−y

− jy⊥Þab þ ggμjxBPþ
Z

∞

−∞
dy−eixBP

þy−

×
Z

∞

y−
dz−Bbgba

− ðz−Þei
k2⊥
2k−y

−
e−ik⊥y⊥ −

Z
∞

−∞
dy−eixBP

þy−ðk⊥j
�
gμ− þ iggμ−

Z
∞

y−
dz−ei

p2⊥
2k−z

−
Bbg
− ðz−Þe−i

p2⊥
2k−z

−

−
g
k−

Z
∞

y−
dz−ei

p2⊥
2k−z

−
Fμ−ðz−Þe−i

p2⊥
2k−z

− −
iggμþ
2ðk−Þ2

Z
∞

−∞
dy−eixBP

þy−
Z

∞

y−
dz−ei

p2⊥
2k−z

−
∂
kF−kðz−Þe−i

p2⊥
2k−z

−

�

× ei
p2⊥
2k−y

−ðipjÞjy⊥Þab − iggμ−

Z
∞

−∞
dy−eixBP

þy−
Z

∞

y−
dz−Bbgab

− ðz−Þei
k2⊥
2k−y

−
e−ik⊥y⊥ðikjÞ

þ iggμ−

Z
∞

−∞
dy−eixBP

þy−
Z

∞

y−
dz−Fab

−jðy−; y⊥Þei
k2⊥
2k−z

−
e−ik⊥y⊥ : ðC6Þ

Carrying out the integral over y− and simplifying, we have

Lab
μj ðk; y⊥; xBÞ ¼ −iggμj

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ðk⊥jBbg
− ðz−Þ 2xBPþk−

2xBPþk− þ p2⊥
jy⊥Þab þ

g
k−

×
Z

∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ðk⊥jFμjðz−Þ
2xBPþk−

2xBPþk− þ p2⊥
jy⊥Þab − iggμj

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−Bbgab
− ðz−Þ

×
2xBPþk−

2xBPþk− þ k2⊥
e−ik⊥y⊥ − iggμ−

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ðk⊥jBbg
− ðz−Þ 2k−pj

2xBPþk− þ p2⊥
jy⊥Þab

þ g
k−

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ðk⊥jFμ−ðz−Þ
2pjk−

2xBPþk− þ p2⊥
jy⊥Þab þ

iggμþ
2ðk−Þ2

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−

× ðk⊥j∂kF−kðz−Þ
2pjk−

2xBPþk− þ p2⊥
jy⊥Þab þ iggμ−

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−Bbgab
− ðz−Þ 2k−kj

2xBPþk− þ k2⊥
e−ik⊥y⊥

−
2ggμ−k−

k2⊥

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−Fab
−jðz−Þe−ik⊥y⊥ : ðC7Þ
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Using piO ¼ i∂iOþOpi to simplify further,

Lab
μj ðk; y⊥; xBÞ ¼ g

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ðk⊥j
2xBPþk−gμj þ 2gμ−k−kj

2xBPþk− þ k2⊥
∂kBbg

− ðz−Þ pk þ kk
2xBPþk− þ p2⊥

jy⊥Þab

þ g
k−

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ðk⊥jFμjðz−Þ
2xBPþk−

2xBPþk− þ p2⊥
jy⊥Þab − ggμ−ðk⊥j

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−

× ∂jBbg
− ðz−Þ 2k−

2xBPþk− þ p2⊥
jy⊥Þab þ

ggμþ
2ðk−Þ2

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ðk⊥jðkkF−kðz−Þ − F−kðz−ÞpkÞ

×
2pjk−

2xBPþk− þ p2⊥
jy⊥Þab þ

g
k−

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−ðk⊥jFμ−ðz−Þ
2pjk−

2xBPþk− þ p2⊥
jy⊥Þab

−
2ggμ−k−

k2⊥
ðk⊥j

Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz−F−jðz−Þjy⊥Þab: ðC8Þ

Now, replacing ∂jBbg
− → −F−j and restoring the Wilson lines, we obtain

Lab
μj ðk; y⊥; xBÞ ¼ −gðk⊥j

2xBPþk−gμj þ 2gμ−k−kj
2xBPþk− þ k2⊥

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz− ½∞; z−�aeFeb
−kðz−Þ

�
pk þ kk

2xBPþk− þ p2⊥
jy⊥Þ

þ ggμþ
k−

ðk⊥j
�Z

∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz− ½∞; z−�aeFeb
−jðz−Þ

�
2k−xBPþ

2xBPþk− þ p2⊥
jy⊥Þ

þ ggμ−ðk⊥j
�Z

∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz− ½∞; z−�aeFeb
−jðz−Þ

�
2k−

2xBPþk− þ p2⊥
jy⊥Þab

þ ggμþ
2ðk−Þ2 ðk⊥j

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz− ½∞; z−�aeFeb
−kðz−Þ

�
2pjk−ðkk − pkÞ
2k−xBPþ þ p2⊥

jy⊥Þ

−
g
k−

ðk⊥j
�Z

∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz− ½∞; z−�aeFeb
−μðz−Þ

�
2pjk−

2k−xBPþ þ p2⊥
jy⊥Þ

−
2ggμ−k−

k2⊥
ðk⊥j

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz− ½∞; z−�aeFeb
−jðz−Þ

�
jy⊥Þ: ðC9Þ

The above expression can be checked to be gauge covariant. As a result, since we aim to calculate a product (26), we can
make a replacement,

gμ−k− → gμ−k− − kμ ¼ −kþgμþ − k⊥μ ; ðC10Þ

since one can add a term proportional to kμ without any cost. We also notice that the terms proportional to gμþ do not
contribute to the square of two emission vertex (26). Removing such terms, we get

Lab
kj ðk; y⊥; xBÞ ¼ −2gðk⊥j

�Z
∞

−∞
dz−eiðxBPþþ k2⊥

2k−Þz− ½∞; z−�aeFeb
−mðz−Þ

�

×

�
xBPþk−gkj − kkkj
2xBPþk− þ k2⊥

pm þ km
2xBPþk− þ p2⊥

−
kkgmj þ pjgmk

2xBPþk− þ p2⊥
þ kkgmj

k2⊥

�
jy⊥Þ; ðC11Þ

which is same as (A19).
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Now we calculate the virtual correction. To do that, we start with

�Z
∞

−∞
dy−eixBP

þy− ½∞; y−�any Fqþbg;n
−j ðy−; y⊥Þ

�
Bbg

¼ gxBPþ
Z

∞

−∞
dy−eixBP

þy−
Z

∞

y−
dz−ð½∞; z−�Te½z−; y−�ÞanhBqe

− ðz−ÞBqn
j ðy−; y⊥ÞiBbg

− ig
Z

∞

−∞
dy−eixBP

þy−
Z

∞

y−
dz−ð½∞; z−�Te½z−; y−�ÞanhBqe

− ðz−Þ∂jBqn
− ðy−; y⊥ÞiBbg : ðC12Þ

Note, that a diagram in Fig. 6(c) does not contribute in the background-Feynman gauge.
The explicit propagators (C3) which contribute are

ihBqe
− ðz−; y⊥ÞBqn

j ðy−; y⊥ÞiBbg ¼ ig
2π

Z
∞

0

dp−

2ðp−Þ2 ðy⊥je
−i

p2⊥
2p−z

−
�Z

z−

y−
dx−ei

p2⊥
2p−x

−
F−jðx−Þe−i

p2⊥
2p−x

−
�
ei

p2⊥
2p−y

− jy⊥Þen; ðC13Þ

ihBqe
− ðz−; y⊥Þ∂jBqn

− ðy−; y⊥ÞiBbg ¼ −
g
2π

Z
∞

0

dp−

4ðp−Þ3 ðy⊥je
−i

p2⊥
2p−z

−
�Z

z−

y−
dx−ei

p2⊥
2p−x

−
∂
kF−kðx−Þe−i

p2⊥
2p−x

−
�
ei

p2⊥
2p−y

−
ipjjy⊥Þen:

ðC14Þ

Integrating over y− and z−, we get

�Z
∞

−∞
dy−eixBP

þy− ½∞; y−�any Fqþbg;n
−j ðy−; y⊥Þ

�
Bbg

ðC15Þ

¼ −
g2Nc

2π

Z
∞

0

dp−

p− ðy⊥j
1

p2⊥

Z
∞

−∞
dx−eixBP

þx−Fn
−jðx−Þ

2xBPþp−

2xBPþp− þ p2⊥
jy⊥Þ

−
ig2Nc

2π

Z
∞

0

dp−

p− ðy⊥j
1

p2⊥

Z
∞

−∞
dx−eixBP

þx−
∂
kFn

−kðx−Þ
pj

2xBPþp− þ p2⊥
jy⊥Þ: ðC16Þ

Again using the operator relation piO ¼ i∂iOþOpi, and restoring the Wilson lines, we rewrite the equation in the
following form:

�Z
∞

−∞
dy−eixBP

þy− ½∞; y−�any Fqþbg;n
−j ðy−; y⊥Þ

�
Bbg

¼ −
g2Nc

2π

Z
∞

0

dp−

p−

�Z
∞

−∞
dy−eixBP

þy− ½∞; y−�any Fn
−jðy−; y⊥Þ

�

× ðy⊥j
2xBPþp−

p2⊥ð2xBPþp− þ p2⊥Þ
jy⊥Þ þ

ig2Nc

2π

Z
∞

0

dp−

p−

× ðy⊥j
psð2δms δkj − gjsgkmÞ

p2⊥
∂k

�Z
∞

−∞
dy−eixBP

þy− ½∞; y−�any Fn
−mðy−; y⊥Þ

�

×
1

2xBPþp− þ p2⊥
jy⊥Þ; ðC17Þ

which is same as (B4). Note that in this derivation we ignore the fully transverse strength tensor.
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