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We calculate in a general background gauge, to one-loop order, the leading logarithmic contribution
from the graviton self-energy at finite temperature T, extending a previous analysis done at T ¼ 0.
The result, which has a transverse structure, is applied to evaluate the leading quantum correction of the
gravitational vacuum polarization to the Newtonian potential. An analytic expression valid at all
temperatures is obtained, which generalizes the result obtained earlier at T ¼ 0. One finds that the
magnitude of this quantum correction decreases as the temperature rises.
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I. INTRODUCTION

Classical general relativity is a successful theory that
provides a very good description of the gravitational
interactions that occur at low energies. There have been
many attempts to quantize gravity along the lines of other
field theories, and it was recognized that general relativity
is not renormalizable [1–6]. The contributions generated by
Feynman loop diagrams to all orders require an infinite
number of counterterms to cancel all ultraviolet divergen-
ces, which leads to a lack of predictability of such a theory
at high energies. A point of view now well established in
many areas of physics is that physical predictions at low
energies that are well verified experimentally can be made
in nonrenormalizable theories. The key ingredient of such
predictions is the fact that these must be made within the
context of an effective low energy theory, in powers of the
energy divided by some characteristic heavy mass. Much
work has been done to treat general relativity as an effective
field theory [7–10], which upon quantization may lead to
predictive quantum corrections at low energies. A special
class of low-energy corrections, involving nonlocal effects,
appears to be quite important. The nonlocality is manifest

by a nonanalytic behavior due, for example, to the presence
of logarithmic corrections of the form logð−k2Þ, where k is
some typical momentum transfer. Because these terms
become large for small enough k2, they will yield the leading
quantum corrections in the limit k2 → 0. Such terms arise
from long distance propagations of massless gravitons. As
shown in Refs. [11,12], these effects lead to calculable finite
quantum corrections to the classical gravitational potential.
For an alternative treatment see Ref. [13].
In this framework, the background field method [14–19]

has been much employed in the computation of quantum
corrections in quantum gravity since this procedure pre-
serves the gauge invariance of the background field. It has
first been shown by ’t Hooft and Veltman [1] that on mass
shell, pure gravity is renormalizable to one-loop order. This
analysis has been done in a particular background gauge,
obtained by setting the gauge parameter equal to 1. In a
previous work [20], we have examined this calculation in a
general background gauge and deduced the corresponding
effective Lagrangian. This result was then applied to
evaluate, in this class of gauges, the quantum corrections
generated by the gravitational vacuum polarization to the
Newtonian potential at zero temperature.
A useful extension of this approach is the calculation of

graviton amplitudes at finite temperature T. These are of
interest in quantum gravity in their own right as well as for
their cosmological applications [21,22]. It has been shown
that the logðT2Þ contributions at high temperature have the
same Lorentz covariant form as the logð−k2Þ terms at zero
temperature [23–25]. The purpose of this work is to extend
these results to obtain the logarithmic contributions of the
graviton self-energy at any temperature. We find an analytic
expression that smoothly interpolates between the zero and
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the high temperature limits [Eq. (3.10)]. We use this form in
the static case k0 ¼ 0 to calculate the thermal corrections
to the gravitational potential in a general background
gauge. The corresponding result given in Eq. (4.9) general-
izes the one previously obtained at zero temperature.
In Sec. II we outline the properties of thermal quantum

gravity in a general background gauge. In Sec. III we
evaluate, to one-loop order, the leading logarithmic contri-
butions of the graviton self-energy at finite temperature. As
an application, we calculate in Sec. IV the corresponding
quantum correction to the classical gravitational potential.
We conclude the paper with a brief discussion in Sec. V.
Some details of the computations are given in the Appendix.

II. QUANTIZATION IN A GENERAL
BACKGROUND GAUGE

The theory of quantum gravity is based on the Einstein-
Hilbert Lagrangian

Lg ¼
ffiffiffiffiffiffi
−g

p 2

κ2
R; ð2:1Þ

where R is the curvature scalar and κ2 ¼ 32πG (G is
Newton’s constant). The metric tensor gμν is divided into a
classical background field ḡμν and a quantum field hμν so
that

gμν ¼ ḡμν þ κhμν; ð2:2Þ

where the background field vanishes at infinity, but is
arbitrary elsewhere. Expanding the Lagrangian (2.1) in
powers of the quantum field, one obtains for the quadratic
part the contribution [20]

Lð2Þ
g ¼ ffiffiffiffiffiffi

−ḡ
p �

1

2
D̄αhμνD̄αhμν −

1

2
D̄αhD̄αhþ D̄αhD̄βhαβ

− D̄αhμβD̄βhμα þ R̄
�
1

4
h2 −

1

2
hμνhμν

�

þ R̄μνð2hαμhνα − hhμνÞ
�
; ð2:3Þ

where h ¼ hλλ, D̄α is the covariant derivative with respect to
the background field, and R̄μν is the Ricci tensor associated
with the background field.
To quantize this theory one must fix the gauge of the

quantum field in a way that preserves the gauge invariance
under the background field transformation

δḡμν ¼ ωγ
∂γ ḡμν þ ḡμγ∂νωγ þ ḡνγ∂μωγ

¼ D̄μων þ D̄νωμ: ð2:4Þ

This can be accomplished by introducing the gauge-fixing
Lagrangian

Lgf ¼
1

ξ

ffiffiffiffiffiffi
−ḡ

p ��
D̄νhμν−

1

2
D̄μh

��
D̄σhμσ−

1

2
D̄μh

��
; ð2:5Þ

where ξ is a generic gauge parameter. When ξ ¼ 1, the
above Lagrangian reduces to the background harmonic
gauge-fixing Lagrangian used in [1].
The corresponding ghost Lagrangian may be written in

the form

Lgh ¼
ffiffiffiffiffiffi
−ḡ

p
c�μ½D̄λD̄λḡμν − R̄μν�cν: ð2:6Þ

We note that the above expressions are invariant under the
background field transformation (2.4). The Feynman rules
for propagators and interaction vertices are given in
Appendix A of Ref. [20].
To extend this theory at finite temperature,wewill employ

the imaginary time formalism introduced by Matsubara and
developed by several authors [26–29]. The calculation of an
amplitude in this formulation is rather similar to that at zero
temperature. The only difference is that the energy, instead
of taking continuous values, takes discrete values, which
ensures the correct periodic boundary conditions for bosonic
amplitudes (and antiperiodic for fermionic amplitudes).
For example, in the case of graviton self-energy, one
has p0 ¼ 2πinT, n ¼ 0;�1;�2;…. Consequently, when
evaluating Feynman loops, the loop energy variable, rather
than being integrated, is summed over all possible discrete
values. This sum, to one loop, gives rise to a single Bose-
Einstein statistical factor

N

�jp⃗j
T

�
¼ 1

expðjp⃗jT Þ − 1
: ð2:7Þ

The amplitude naturally separates into a zero-temperature
and a temperature dependent part. The thermal part can be
represented as a forward scattering amplitude, where the
internal line is cut open to be on-shellwith the corresponding
statistical factor [30–32]. The real-time result can be
obtained by an analytical continuation of the external energy
k0 → ð1þ iϵÞk0. This method is calculationally convenient,
as will be illustrated in the next section for the graviton self-
energy at finite temperature.

III. THE THERMAL GRAVITON SELF-ENERGY

The Feynman diagrams contributing at one loop to
the graviton self-energy are indicated in Fig. 1. As shown
in [20], at zero temperature the singular terms for
d ¼ 4 − 2ϵ may be written in the transverse form

Πdiv
μν;αβðkÞ¼

κ2

32π2

�
1

ϵ
− logð−k2Þ

�
k4
n
4c1ðξÞLμνLαβ

þc2ðξÞ
h
LμνLαβþ

1

2
ðLαμLβνþLανLβμÞ

io
; ð3:1Þ
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where Lμν¼ kμkν
k2 −ημν and c1ðξÞ, c2ðξÞ are gauge-dependent

constants given by

c1ðξÞ ¼
�

1

120
þ ðξ − 1Þ2

6

�
;

c2ðξÞ ¼
�
7

20
þ ξðξ − 1Þ

3

�
: ð3:2Þ

This expression has been obtained by using the fact that in a
general background gauge, the result can be expressed in
terms of combinations of the following three types of
integrals (with a; b ¼ 1; 2):

IabðkÞ≡
Z

ddp
ið2πÞd

1

ðp2Þa½ðpþ kÞ2�b

¼ ð−k2Þd=2−a−b
ðð4πÞd=2

Γðaþ b − d=2Þ
ΓðaÞΓðbÞ

×
Γðd=2 − aÞΓðd=2 − bÞ

Γðd − a − bÞ ð3:3Þ

and by noticing that their singular contributions may be
related in the following way:

Idiv12 ðkÞ ¼ Idiv21 ðkÞ ¼
k2

2
Idiv22 ðkÞ ¼ −

1

k2
Idiv11 ðkÞ: ð3:4Þ

Thus, the singular coefficient in Eq. (3.1) can be expressed
just in terms of Idiv11 , where

Idiv11 ðkÞ ¼
1

16π2

�
1

ϵ
− logð−k2Þ

�
: ð3:5Þ

To extend these results at finite temperature, we will
express the corresponding contributions from the diagrams
in Fig. 1 in terms of the forward scattering amplitudes
shown in Fig. 2. These thermal contributions may be
similarly evaluated in terms of the following three types
of temperature dependent integrals (a; b ¼ 1; 2)

ITabðkÞ ¼ −
Z

d3−2ϵp
ð2πÞ3−2ϵ

�
1

ða− 1Þ!
∂
a−1

∂pa−1
0

×

�
Nðp0=TÞ
ðp0 þ jp⃗jÞa

1

½ðpþ kÞ2�b
�

þ 1

ðb− 1Þ!
∂
b−1

∂pb−1
0

�
Nðp0=TÞ
ðp0 þ jp⃗jÞb

1

½ðpþ kÞ2�a
��

p0¼jp⃗j
þ ðk→ −kÞ: ð3:6Þ

It is possible to evaluate exactly these integrals in terms
of logarithmic functions and of Riemann’s zeta functions
[33,34]. Here, our basic interest is to determine the leading
thermal logarithmic contribution which reduces in the
zero temperature limit to the logð−k2Þ term in Eq. (3.1).
As shown in the Appendix, it turns out that for such a
contribution one finds analogous relations to those given in
Eq. (3.4), namely

IlogT12 ðkÞ ¼ IlogT12 ðkÞ ¼ k2

2
IlogT22 ðkÞ ¼ −

1

k2
IlogT11 ðkÞ; ð3:7Þ

where

FIG. 1. One-loop contributions to hh̄ h̄i. The curly, wavy, and dashed lines are associated with the background fields, the quantum
fields, and the ghost fields, respectively. The arrows indicate the direction of momenta.

FIG. 2. Forward scattering amplitudes corresponding to Fig. 1. Crossed graphs (k → −k) are to be understood.
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IlogT11 ðkÞ¼−
2

ð2πÞ3−2ϵ
Z

d3−2ϵp
2jp⃗j

×
�

1

k2þ2k ·p
þ 1

k2−2k ·p

�
p0¼jp⃗j

N
�jp⃗j
T

�
: ð3:8Þ

This shows that in a general background gauge, the leading
thermal logarithmic contribution of the graviton self-energy
may be expressed just in terms of that arising from
IlogT11 . After a straightforward calculation, outlined in the
Appendix, we obtain for the corresponding contribution the
result

IlogT11 ðkÞ ¼ 1

16π2
½logð−k2Þ− logð−k2− 8πik0Tþ 16π2T2Þ�:

ð3:9Þ

We note that the expression (3.9) vanishes in the zero
temperature limit, as expected due to the behavior of the
statistical factor in Eq. (3.8).
Adding the contributions from Eqs. (3.5) and (3.9), one

can see that the logð−k2Þ terms cancel out since this thermal
logarithmic contribution has the same Lorentz form as the
one at T ¼ 0 [23–25]. This property, together with the
relations (3.4) and (3.7), lead to the conclusion that the total
leading logarithmic contribution coming from the graviton
self-energy can be directly obtained by the following
extension of the zero-temperature result (3.1):

ΠlogT
μν;αβðkÞ ¼ −

G
π
logð−k2 − 8πik0T þ 16π2T2Þ

× k4
�
4c1ðξÞLμνLαβ

þ c2ðξÞ
�
LμνLαβ þ

1

2
ðLαμLβν þ LανLβμÞ

��
;

ð3:10Þ

where we have used that κ2 ¼ 32πG. This expression has
been explicitly verified for the logT2 contribution which
arises at high temperatures.

IV. QUANTUM CORRECTIONS TO THE
NEWTONIAN POTENTIAL

As an application of the above result, we will evaluate
the corrections generated by the thermal graviton self-
energy to the classical gravitational potential. To this end,
we will proceed similarly to the method used at zero
temperature in Ref. [20]. Thus, we couple the external
background field to the energy-momentum tensor Tμν of
the matter fields as

LI ¼ −
κ

2
h̄μνTμν; ð4:1Þ

where we have defined ḡμν ¼ ημν þ κh̄μν. For scalar fields
described by the Lagrangian

LM ¼
ffiffiffiffiffiffi−gp
2

ðgμν∂μϕ∂νϕ −M2ϕ2Þ; ð4:2Þ

the energy-momentum tensor is given by

Tμν ¼ ∂μϕ∂νϕ −
1

2
ημνð∂λϕ∂λϕ −M2ϕ2Þ: ð4:3Þ

Using this result in Eq. (4.1), we obtain in momentum
space the graviton-matter coupling

Vμνðp;p0Þ ¼−
κ

2
½pμp0

νþp0
μpν−ημνðp ·p0−M2Þ�: ð4:4Þ

We can now calculate the quantum correction coming from
the diagram shown in Fig. 3(a) This graph yields the
contribution [compare with Eq. (3.10) in [20]]

ΔVT
selfðkÞ ¼

Vμνðp; p0Þ
2p0

D̄μν;ρσΠlogT
ρσ;λδD̄

λδ;αβ Vαβðq; q0Þ
2q0

¼ G
π
lnð−k2 − 8πik0T þ 16π2T2ÞVμνðp; p0Þ

2p0

×

�
c1ðξÞημνηαβ þ c2ðξÞ

ηαμηβν þ ηανηβμ

2

�

×
Vαβðq; q0Þ

2q0
; ð4:5Þ

FIG. 3. Examples of Feynman diagrams which yield corrections to the gravitational potential.
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where D̄μν;ρσ is the background field propagator, p0 and q0
are normalization factors, and we have used the trans-
versality of the graviton self-energy. The thermal part of
this propagator involves a Nðjk⃗j=TÞδðk2Þ term which yields
a vanishing contribution because ΠlogT

ρσ;λδ is proportional
to ðk2Þ2.
We will evaluate the above quantity in the case involving

two heavy particles with mass M, by taking the non-
relativistic static limit p ≈ p0 ≈ ðM; 0Þ in Eq. (4.5). We
then get

ΔVT
selfðkÞ≈G2M2 lnðk⃗ 2þ16π2T2Þ

�
43

15
þ4

3
ðξ−1Þð3ξ−1Þ

�
;

ð4:6Þ

where we used Eq. (4.4) and the constants c1ðξÞ and c2ðξÞ
given in Eq. (3.2), and we have set k0 ¼ 0. This can be
transformed to coordinate space by using the relation [35]

Z
d3k
ð2πÞ3 e

−ik⃗·r⃗ lnðk⃗2 þ 16π2T2Þ

¼ −
1

2π

1

r3
ð1þ 4πrTÞ expð−4πrTÞ: ð4:7Þ

We thus obtain for the correction generated by the graviton
self-energy, the result (reinstating factors of ℏ and c)

ΔVT
selfðrÞ ¼ −

�
43

30
þ 2

3
ðξ − 1Þð3ξ − 1Þ

�
GM2

r
Gℏ
πc3r2

×

�
1þ 4πrT

ℏc

�
exp

�
−
4πrT
ℏc

�
; ð4:8Þ

which generalizes Eq. (3.13) obtained at zero temperature
in Ref. [20]. As explained in this reference, the correction
given by the graviton self-energy in the special gauges
ξ¼ð2� ffiffiffiffiffi

13
p Þ=3matches, at zero temperature, the complete

result obtained in the gauge ξ ¼ 1 in Refs. [11,12]. The full
correction to the gravitational potential is a physical quantity
which is necessarily gauge independent. Moreover, the
Fourier transform (4.7) is, as in the case at T ¼ 0, common
to all diagrams contributing to the full result. Thus, in these
special gauges, the thermal contribution (4.8) generated by
the graviton self-energy yields

ΔVTðrÞ ¼ −
41

10

GM2

r
Gℏ
πc3r2

�
1þ 4πrT

ℏc

�
exp

�
−
4πrT
ℏc

�
;

ð4:9Þ

which gives the complete leading thermal correction to the
Newtonian potential. We note that, in a general background
gauge, the physical result obtained in Eq. (4.9) arises only by
taking into account the contributions coming from a large
number of Feynman diagrams.

A plot of the ratio R between the finite temperature and
the zero temperature corrections is shown in Fig. 4, as a
function of the variable x ¼ 4πrT=ℏc.

V. DISCUSSION

We extended the work done to one-loop order in
Ref. [20] at zero temperature in a general background
gauge, to any finite temperature. We obtained for the
leading logarithmic contribution of the thermal graviton
self-energy the result given in Eq. (3.10), which reduces to
that found earlier for the graviton self-energy at T ¼ 0. The
transversality of this term is a consequence of the invari-
ance of the theory under background field transformations.
We note that the logarithmic factor in this equation is
gauge-independent, which indicates that its branch cuts
may correspond to physical processes that occur at finite
temperatures.
We have applied Eq. (3.10) to evaluate the leading

correction to the Newtonian potential generated by the
gravitational vacuum polarization at all temperatures. In the
special background gauges ξ ¼ ð2� ffiffiffiffiffi

13
p Þ=3, we obtained

the analytic expression (4.9) which generalizes the full
result previously obtained at T ¼ 0. The quantum factor
Gℏ=c3r2 is usually very small being about 10−38 at
r ¼ 10−15 m, but may become appreciable at much shorter
distances. One can see from Eq. (4.9) and from Fig. 4 that
the quantum correction lessens as the temperature
increases. This behavior may be understood by adapting
an argument given by Feynman [36]. As the temperature
rises, the field lines connecting the two particles spread out,
because the entropy increases. This broadening of the field
configuration reduces the gravitational force between the
particles, which leads to a decrease of the magnitude of
such corrections.
Thus, in spite of the lack of predictability of quantum

gravity at high energy, due to higher-order loops, one can
make in this theory calculable physical predictions at low
energies. This confirms the general effective low energy

FIG. 4. The dependence of the ratio R on the parameter
x ¼ 4πrT=ℏc.
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strategy implemented in the literature [7–10,37]. (We note
parenthetically that there is a proposal for an alternative
method of quantizing general relativity that leads to a
renormalizable and unitary theory [38,39]. This approach
employs a Lagrange multiplier field which restricts the
radiative corrections in pure quantum gravity to one-loop
order. Some aspects of thermal quantum gravity have been
examined in this context in [40]).
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APPENDIX: THE TEMPERATURE-DEPENDENT
INTEGRALS ITabðkÞ

We examine here the behavior of the integrals ITabðkÞ
defined in Eq. (3.6). We begin by considering the integral
IT11ðkÞ given in Eq. (3.8). In terms of x ¼ cos θ, where θ is

the angle between k⃗ and p⃗, we find by setting ϵ ¼ 0 and
p≡ jp⃗j that

IT11ðkÞ ¼
k2

16π2

Z
1

−1

dx

ðk0 − jk⃗jxÞ2
Z

∞

0

dpp
NðpTÞ

p2 − 1
4
ð k2

k0−jk⃗jx
Þ2 :

ðA1Þ

It is now convenient to make the change of variable

KðxÞ¼ 1

4πi
k2

k0− jk⃗jx
; Kþ≡k0þjk⃗j

4πi
; K−≡k0− jk⃗j

4πi
ðA2Þ

so that the above integral may be written in the form

IT11ðkÞ ¼ −
1

2πijk⃗j

Z
Kþ

K−
dK

Z
∞

0

dpp
NðpTÞ

p2 þ 4π2K2
: ðA3Þ

Performing the p integration [35] leads to the expression

IT11ðkÞ ¼ −
1

4πijk⃗j

Z
Kþ

K−
dK

�
log

�
K
T

�
þ T
2K

− ψ

�
1þK

T

��
;

ðA4Þ

where ψðxÞ ¼ d logΓðxÞ=dx is the digamma function. The
K integration may be done by noticing that the ψ function
leads to a surface term. We thus obtain the result

IlogT11 ðkÞ ¼ −
1

16π2
log

�
T2

−k2

�
þ T

4πijk⃗j
log

Γð1þ Kþ=TÞ
Γð1þ K−=TÞ

:

ðA5Þ

We next consider the integral IT12ðkÞ [see Eq. (3.6)]

IT12ðkÞ ¼
1

ð2πÞ3−2ϵ
Z

d3−2ϵp
4p2

��
NðpTÞ
p

−
dNðpTÞ
dp

�
1

k2 þ 2k · p

þ 4k0NðpTÞ
ðk2 þ 2k · pÞ2

�
þ ðk → −kÞ: ðA6Þ

It turns out that the leading logarithmic contribution arises
only from the first term in Eq. (A6). This may be evaluated
in a similar way to that employed above, which leads to the
following equation:

IlogT12 ðkÞ ¼ 1

8πijk⃗j

Z
Kþ

K−

dK

×
Z

∞

0

dpp−1−2ϵ NðpTÞ
p2 þ 4π2K2

: ðA7Þ

This expression is infrared divergent. Such a divergence
arises due to the use of the integral reduction method,
which allows one to express the tensor integrals in terms of
the scalar integrals IabðkÞ. These divergences cancel in the
final result since the graviton self-energy is infrared finite.
Thus, we subtract and add to the last term in Eq. (A7) the
part with p ¼ 0 in the denominator that leads to an infrared
divergence, which will be disregarded due to the above
consideration. In the remaining part, we can set ϵ ¼ 0,
getting

IlogT12 ðkÞ ¼ −
1

32π3ijk⃗j

Z
Kþ

K−

dK
K2

×
Z

∞

0

dpp
NðpTÞ

p2 þ 4π2K2
: ðA8Þ

Performing the p integration, we then obtain [35]

IlogT12 ðkÞ ¼ −
1

64π3ijk⃗j

Z
Kþ

K−

dK
K2

×

�
log

�
K
T

�
þ T
2K

− ψ

�
1þ K

T

��
: ðA9Þ

We can no longer integrate the last term in this equation in
closed form. But it turns out that the leading logarithmic
contribution comes, similar to the previous case, from the
surface term which arises from an integration by parts.
Thus, we obtain

IlogT12 ðkÞ ¼ 1

k2

�
1

16π2
log

�
T2

−k2

�
−

T

4πijk⃗j
log

Γð1þKþ=TÞ
Γð1þK−=TÞ

�
:

ðA10Þ

We finally consider the integral IT22ðkÞ in Eq. (3.6) which
leads to
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IT22ðkÞ¼
1

ð2πÞ3−2ϵ
Z

d3−2ϵp
2p2

��
NðpTÞ
p

−
dNðpTÞ
dp

�
1

ðk2þ2k ·pÞ2

þ4ðk0þpÞNðpTÞ
ðk2þ2k ·pÞ3

�
þðk→−kÞ: ðA11Þ

As in Eq. (A6), only the first term turns out to be relevant
for our purpose. This can be computed in a similar way to
that used above. After some calculation, we obtain for the
leading logarithmic contribution

IlogT22 ðkÞ ¼ 2

k4

�
1

16π2
log

�
T2

−k2

�
−

T

4πijk⃗j
log

Γð1þKþ=TÞ
Γð1þK−=TÞ

�
:

ðA12Þ

From Eqs. (A5), (A10), and (A12), one can verify the
relation given in Eq. (3.7). Thus, we can write the relevant
logarithmic contributions just in terms of those appearing
in IlogT11 ðkÞ.
To proceed, we express the log Γð1þKþ=TÞ

Γð1þK−=TÞ term using the
series representation [35]

logΓðzÞ¼ z logz− z−
1

2
logzþ log

ffiffiffiffiffiffi
2π

p

þ1

2

X∞
m¼1

m
ðmþ1Þðmþ2Þ

X∞
n¼1

1

ðzþnÞmþ1
; ðA13Þ

where z ¼ 1þ K�=T. This yields the following logarith-
mic contributions:

1

2

�
1þ k0

2πiT

�
log

�
Kþ þ T
K− þ T

�

þ jk⃗j
4πiT

log

��
1þ Kþ

T

��
1þ K−

T

��
: ðA14Þ

Substituting this expression in Eq. (A5), we obtain for the
leading logarithmic term

IlogT11 ðkÞ ≈ −
1

16π2
log

−k2 − 8πik0T þ 16π2T2

−k2
: ðA15Þ

We note that this expression vanishes in the zero temper-
ature limit, as expected for the purely thermal contributions
due to the statistical factor (2.7). This term yields the
contribution shown in Eq. (3.9). After the cancellation of
the logð−k2Þ with that present in Eq. (3.5), the remaining
logð−k2 − 8πik0T þ 16π2T2Þ term can become very large
for very small values of k2 and T2. In the static limit,
ko ¼ 0, such a contribution would dominate over the other
contributions arising from Eqs. (A13) and (A14).
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