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We describe how recent determinations of exclusive-mode contributions to aLO;HVPμ , the leading-order
hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, can be used to
provide, up to small electromagnetic (EM) corrections accessible from the lattice, a data-based dispersive

determination of alqc;ILμ , the isospin-limit, light-quark-connected contribution to aLO;HVPμ . Such a
determination is of interest in view of the existence of a number of lattice results for this quantity,

emerging evidence for a tension between lattice and dispersive determinations of aLO;HVPμ , and the desire to
clarify the source of this tension. Taking as input for the small EM correction that must be applied to the
purely data-driven dispersive determination the result −0.93ð58Þ × 10−10 obtained in a recent BMW lattice

study, we find alqc;ILμ to be 635.0ð2.7Þ × 10−10 if the results of Keshavarzi, Nomura, and Teubner are used
for the exclusive-mode contributions and 638.4ð4.1Þ × 10−10 if instead those of Davier, Höcker, Malaescu,
and Zhang are used.
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I. INTRODUCTION

As is well known, the recent FNAL E989 result [1]
for the anomalous magnetic moment of the muon,
aμ ¼ ðg − 2Þ=2, is in good agreement with the earlier
BNL E821 result [2], producing an updated world average
which is 4.2σ larger than the Standard Model (SM)
expectation detailed in the g − 2 theory initiative assess-
ment [3], and based on the work of Refs. [4–27].
In determining SM contributions to aμ, a particularly

important role is played by the leading-order, hadronic
vacuum polarization contribution, aLO;HVPμ , the uncertainty
on which dominates that on the SM expectation for aμ.
The assessment of aLO;HVPμ arrived at in Ref. [3] is
based on the results of two analyses [10,11] using the
standard dispersive representation [28–30] with current

eþe− → hadrons cross-section data as input, supplemented
by additional input from Refs. [12,13] for ππ contributions
below 1 GeV2 and 3π contributions. The SM expectation
for aLO;HVPμ can, however, also be obtained on the lattice
using the alternate, weighted Euclidean integral represen-
tation [31–33] and there has been intense recent activity in
the lattice community aimed at reducing lattice errors to a
level sufficient to make lattice results competitive with the
dispersive determination [34–61]. The most recent lattice
result from the BMW collaboration [50] comes close to this
goal, reaching, for the first time, subpercent precision. This
result, however, is in tension with the dispersive value for
aLO;HVPμ . This tension is also seen, at an enhanced (up to
3.9σ) level, in comparisons of dispersive [50,62] and lattice
[48,50,51,55–58,60,61] results for the intermediate win-
dow quantity, aWμ , introduced by the RBC/UKQCD col-
laboration [40]. Similar tensions, reaching as much as 3.7σ,
are also found for the one-sided windows considered
in Ref. [59].
Lattice results for aLO;HVPμ are typically quoted as sums

of isospin-limit light-, strange-, charm-, and bottom-quark
connected contributions, the disconnected contribution,
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and strong-isospin-breaking (SIB) and electromagnetic
(EM) contributions, the latter two receiving both
connected and disconnected contributions. By far the
largest of these contributions is the isospin-limit light-
quark-connected one, denoted alqc;ILμ in what follows.
Although continuum/dispersive estimates exist for the
SIB contribution [63,64], and, from our recent work [65],
for the sum of the strange-quark-connected and full
disconnected contributions, no dispersive result exists for
alqc;ILμ . In this paper, we remedy this situation, performing
an almost-completely data-based determination of alqc;ILμ .
Our result confirms the existence of a tension between the
dispersive determination and the most precise of the lattice
determinations [50]. We also indicate how the same
analysis strategy can, in principle, be employed to obtain
isospin-limit, light-quark-connected contributions to analo-
gous reweighted/window observables such as the RBC/
UKQCD intermediate window quantity, aWμ [40], the one-
sided window quantities of Ref. [59], and the window
quantities of Ref. [66], based on s-dependent weights
designed to produce results for the associated dispersive
determinations focused on more limited regions in s. Work
on the reweighted exclusive-mode integrals needed to
complete such analyses is in progress, and will be reported
on elsewhere. In the present paper we focus on the quantity
alqc;ILμ , where existing results for exclusive-mode contribu-
tions to aLO;HVPμ already make a dispersive determination
possible.
The rest of the paper is organized as follows. In Sec. II

we detail how, in the isospin limit, dispersive results for the
exclusive-mode contributions to aLO;HVPμ can be used to
provide a dispersive determination of alqc;ILμ . In Sec. III we
implement this analysis, ignoring for the moment isospin-
breaking (IB) corrections, using as input for the exclusive-
mode contributions those determined in Refs. [10,11]. In
Sec. IV, we discuss (and evaluate) IB corrections to the
results obtained in Sec. III. This section also contains our
final results for alqc;ILμ . Finally, in Sec. V we provide a brief
summary and discuss how, using more detailed exclusive-
mode information, in the form of the s-dependence of
exclusive-mode contributions to the R-ratio, RðsÞ, analo-
gous results for the isospin-limit, light-quark-connected
contributions to differently weighted integrals over RðsÞ,
such as the window quantities noted above, can also be
obtained.

II. BASIC ANALYSIS STRATEGY

A. Notation

We begin with some basic notation and associated
isospin decompositions.
Key objects in the analysis are the two-point functions,

Πab
μνðqÞ, of the flavor-octet, vector currents Va

μ ¼ q̄ λa

2
γμq,

a ¼ 1; � � � 8, (where λa are the usual Gell-Mann matrices)

together with the associated polarizations, ΠabðQ2Þ, sub-
tracted polarizations, Π̂abðQ2Þ, and spectral functions,
ρabðsÞ, defined by

Πab
μνðqÞ ¼ ðqμqν − q2gμνÞΠabðQ2Þ

¼ i
Z

d4xeiq·xh0jTðVa
μðxÞVb

νð0ÞÞj0i; ð2:1Þ

Π̂abðQ2Þ ¼ ΠabðQ2Þ − Πabð0Þ; ð2:2Þ

ρabðsÞ ¼ 1

π
ImΠabðQ2Þ; ðs ¼ −Q2 > 0Þ; ð2:3Þ

where s ¼ q2 and Q2 ¼ −q2.
The decomposition of the u, d, s part of the EM current,

JEMμ , into isovector (a ¼ 3) and isoscalar (a ¼ 8) parts,

JEMμ ¼ V3
μ þ

1ffiffiffi
3

p V8
μ ≡ JEM;3

μ þ JEM;8
μ ; ð2:4Þ

leads to the following decompositions for the subtracted
three-flavor EM vacuum polarization, Π̂EMðQ2Þ, and spec-
tral function, ρEMðsÞ,

Π̂EMðQ2Þ ¼ Π̂33
EMðQ2Þ þ 2ffiffiffi

3
p Π̂38

EMðQ2Þ þ 1

3
Π̂88

EMðQ2Þ

≡ Π̂I¼1
EM ðQ2Þ þ Π̂MI

EMðQ2Þ þ Π̂I¼0
EM ðQ2Þ;

ρEMðsÞ ¼ ρ33ðsÞ þ 2ffiffiffi
3

p ρ38ðsÞ þ 1

3
ρ88ðsÞ

≡ ρI¼1
EM ðsÞ þ ρMI

EMðsÞ þ ρI¼0
EM ðsÞ; ð2:5Þ

with the ab ¼ 33 parts pure isovector, the ab ¼ 88 parts
pure isoscalar and the ab ¼ 38 parts mixed isospin terms
which vanish in the isospin limit. In the isospin limit Π̂33 is
pure light-quark-connected while Π̂88 contains light-quark-
connected, strange-quark-connected and all disconnected
contributions.
The leading-order hadronic contribution to aμ, a

LO;HVP
μ ,

is related to RðsÞ ¼ 12π2ρEMðsÞ by the standard “disper-
sive” representation [28–30],

aLO;HVPμ ¼ α2EMm
2
μ

9π2

Z
∞

m2
π

ds
K̂ðsÞ
s2

RðsÞ; ð2:6Þ

with αEM the EM fine-structure constant, RðsÞ determined
from the bare inclusive hadronic electroproduction cross
section, σð0Þ½eþe− → hadronsðþγÞ�, by

RðsÞ ¼ 3s
4πα2EM

σð0Þ½eþe− → hadronsðþγÞ�; ð2:7Þ

and the kernel K̂ðsÞ an exactly known, slowly (and mono-
tonically) increasing function of s (see, e.g., Ref. [3]).
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Dispersive determinations of aLO;HVPμ are typically obtained
by summing (i) exclusive-mode contributions up to just
below s ¼ 4 GeV2, (ii) narrow charm and bottom reso-
nance contributions, and (iii) contributions evaluated using
inclusive RðsÞ data and/or perturbative QCD (pQCD) in
the remainder of the high-s region. The exclusive-mode
regions in the analyses of Refs. [10,11] we employ below
are s ≤ ð1.8 GeVÞ2 ¼ 3.24 GeV2 and s ≤ ð1.937 GeVÞ2 ¼
3.7520 GeV2, respectively.
The isospin decomposition of Π̂EM in Eq. (2.5) leads to

the related decomposition for the three-flavor (u, d, s)
contribution to aLO;HVPμ ,

aLO;HVPμ ¼ a33μ þ 2ffiffiffi
3

p a38μ þ 1

3
a88μ ≡ aI¼1

μ þ aMI
μ þ aI¼0

μ :

ð2:8Þ

To first order in md −mu there are no SIB contributions to
either a33μ or a88μ , while SIB is expected to dominate a38μ .
In what follows, we will also denote contributions from

an individual exclusive mode, X, to aLO;HVPμ , aI¼1
μ , aI¼0

μ

and aMI
μ by ½aLO;HVPμ �X, ½aI¼1

μ �X, ½aI¼0
μ �X, and ½aMI

μ �X,
respectively.

B. The basic idea

The basic idea underlying the analysis is as follows. In
the isospin limit, Π̂I¼1

EM is pure light-quark-connected, while
Π̂I¼0

EM is a sum of light-quark-connected, strange-quark-
connected and all disconnected contributions, with light-
quark-connected contribution

½Π̂I¼0
EM �lqc ¼ 1

9
Π̂I¼1

EM : ð2:9Þ

The full light-quark-connected contribution to Π̂EM is thus

Π̂lqc
EM ≡ 10

9
Π̂I¼1

EM ð2:10Þ

and the corresponding spectral function

ρlqcEMðsÞ ¼
10

9
ρI¼1
EM ðsÞ: ð2:11Þ

The desired light-quark-connected contribution to aLO;HVPμ ,
alqc;ILμ , is then given by the following dispersive integral
involving the I ¼ 1 spectral function:

alqc;ILμ ¼ α2EMm
2
μ

9π2

Z
∞

m2
π

ds
K̂ðsÞ
s2

��
10

9

�
12π2ρI¼1

EM ðsÞ
�
: ð2:12Þ

An accurate determination of alqc;ILμ is thus possible
provided the I ¼ 1 contribution to RðsÞ, or equivalently
ρEMðsÞ, can be identified with sufficient precision.

The separation of I ¼ 1 and I ¼ 0 contributions is
straightforward in the higher-s inclusive region, where
RðsÞ is approximated using pQCD and the I ¼ 1 part
represents 3=4 of the total. In the lower-s region, where
RðsÞ is obtained as a sum over exclusive-mode contribu-
tions, the separation is also straightforward for those
exclusive modes having well-defined G-parity since
states with positive/negative G-parity necessarily have
I ¼ 1=I ¼ 0. This provides unique isospin assignments
for contributions from exclusive modes consisting entirely
of narrow and/or strong-interaction-stable states having
well-defined G-parity (π, η, ω, ϕ), which constitute more
than 93% of the total exclusive-mode-region contribution.
Further input is needed to separate the I ¼ 1 and I ¼ 0
components of contributions from exclusive modes which
are not eigenstates of G-parity, such as those containing at
least one KK̄ pair. We outline in the next section how this
separation is accomplished using experimental input for the
KK̄ and KK̄π exclusive modes. For all other G-parity-
ambiguous exclusive modes, X, we employ a “maximally
conservative” assessment in which the I ¼ 1 contribution,
½aI¼1

μ �X, is taken to be 50� 50% of the total ½aLO;HVPμ �X.
Fortunately, spectral contributions from these additional
G-parity-ambiguous modes lie at higher s and thus have
contributions to aLO;HVPμ , and hence also I ¼ 0=1 separa-
tion uncertainties, which are strongly numerically sup-
pressed, in spite of their 100% uncertainties.
In Sec. III we will implement the above analysis

framework using as input the exclusive-mode results of
Refs. [10,11], neglecting, to begin with, isospin-breaking
(IB) corrections. The resulting nominal alqc;ILμ , which we
will denote by alqcμ , will differ from the desired isospin-limit
value by small IB contributions. These IB contributions are
taken into account and removed in Sec. IV, which contains
our final results for alqc;ILμ .

III. A DATA-BASED IMPLEMENTATION
IGNORING ISOSPIN-BREAKING EFFECTS

In this section we carry out two determinations of alqcμ ,
neglecting IB corrections. These differ in the input used for
the exclusive-mode aLO;HVPμ contributions, one employing
the results of Ref. [11] (KNT19), the other those of Ref. [10]
(DHMZ). The reader is reminded that the KNT19 and
DHMZ exclusive-mode regions are different, the former
extending up to s ¼ 3.7520 GeV2, the latter up to only
s ¼ 3.24 GeV2. Contributions from the region above these
exclusive-mode endpoints will be obtained using pQCD,1

with an error component, to be discussed below, designed to

1The shorthand “pQCD” refers here, and in what follows, to
dimension D ¼ 0, mass-independent perturbative OPE contribu-
tions. For the I ¼ 1 polarization ΠI¼1

EM considered this paper,
mass-dependent D ¼ 2 perturbative corrections are Oðm2

u;dÞ, and
numerically negligible.
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take into account possible small duality-violating (DV)
contributions. The higher onset in s of the inclusive region
for KNT19 increases the expected accuracy of the pQCD
result used to represent ρI¼1

EM ðsÞ in this region and constitutes
an advantage for the determination employingKNT19 input
over that employing DHMZ input. Details of the form of the
pQCD representation used in the inclusive region, together
with our strategy for estimating possible residual DV
corrections, are provided in Sec. III A.
The KNT19- and DHMZ-based analyses are outlined in

Sec. III B below. In both cases we take advantage of results
already worked out in Ref. [65]. This includes results for
the data-based I ¼ 0=1 separation of KK̄ and KK̄π con-
tributions. For the reader’s benefit, the paragraphs which
follow briefly review the treatment of the contributions
from these modes. Further details may be found in
Secs. IV.B and IV.C of Ref. [65].
KK̄ contributions to aLO;HVPμ are expected to be dominated

by the I ¼ 0 contribution of the ϕ resonance, with a much
smaller I ¼ 1 contribution. This qualitative expectation can
be quantified by combining the electroproduction-
based result for the sum of I ¼ 1 and 0 contributions
with recent BABAR results [67] for the differential
τ− → K−K0ντ decay distribution, which provides an exper-
imental determination of the charged I ¼ 1 vector current
spectral function, and, via the conservedvector current (CVC)
relation, up to numerically negligible IB corrections, an
experimental determination of the I ¼ 1 KK̄-mode contri-
bution to ρEMðsÞ. In the regionwhere it is rather precise (up to
s ¼ 2.7556 GeV2, well above theϕ peak), the BABAR τ data
can thus be used to provide a direct determination of the I ¼ 1

KK̄ contribution to aLO;HVPμ . For the contributions from the
parts of the KNT19 and DHMZ exclusive-mode regions
above 2.7556 GeV2, we employ the maximally conservative
separation treatment of KNT19 results for the KK̄ contribu-
tions to RðsÞ. The contributions from this region turn out to
be much smaller than those from the region covered by the
BABAR τ data. Note that KNT19 KK̄ input is used for the
determination of this higher-s KK̄ exclusive-mode contribu-
tion for both the KNT19- and DHMZ-based versions of the
analyses. The reason is that the fullKK̄ exclusive-mode data
and covariances are publicly available only in the KNT19
case. Numerical details for the KNT19- and DHMZ-based
analyses are provided below.
The exclusive-mode-region, I ¼ 1, KK̄π-mode contri-

butions to aLO;HVPμ are obtained using the Dalitz-plot-based
I ¼ 1=0 separation of KK̄π cross-sections performed by
BABAR [68], an analysis made possible by the observed
saturation of the cross sections in the region of interest for
this paper by KK� contributions.

A. pQCD and DV corrections in the inclusive region

For the pQCD expression used to represent ρI¼1
EM ðsÞ in the

inclusive region, we employ the standard five-loop, nf ¼ 3

pQCD result [69,70] with PDG2020 input for αs [71].
D ¼ 2, perturbative quark-mass-squared corrections are
completely negligible. In the region from just below

ffiffiffi
s

p ¼
2 GeV up to charm threshold, nf ¼ 3 perturbative expect-
ations for RðsÞ are compatible within errors with the
experimental determinations of BES [72,73] and KEDR
[74] (especially those of KEDR [74]), but lie slightly below
recent BESIII results [75]. Small residual DV contributions
to ρEMðsÞmay thus be present even in this relatively large-s
region, making it important to estimate the impact of
possible DV corrections to ρI¼1

EM ðsÞ in the inclusive region
of our analyses as well. While the whole of the KNT19
inclusive region lies in the region of agreement with BES
and KEDR, the lower part of the DHMZ inclusive region
extends to lower s, where the deviation of the perturbative
expectation for RðsÞ from the experimental sum-of-
exclusive-mode-contributions determination is larger. An
estimate of possible DV corrections to the pQCD approxi-
mation is thus of even more importance for the DHMZ-
based analysis.
We investigate possible DV corrections using recent

results for DV contributions to the charged I ¼ 1 vector
current spectral function, ρud;VðsÞ, measured in hadronic τ
decays. ρud;VðsÞ is related to the conventionally normalized
EM isovector spectral function, ρI¼1

EM ðsÞ by the CVC
relation, ρI¼1

EM ðsÞ ¼ 1
2
ρud;VðsÞ. In Ref. [76], finite-energy

sum rule (FESR) analyses of weighted integrals of a
recently improved version of ρud;VðsÞ were carried out
using the large-s ansatz

½ρud;V�DVðsÞ ¼ exp ð−δ1 − γ1sÞ sin ðα1 þ β1sÞ; ð3:1Þ

for the DV contribution to ρud;VðsÞ. As detailed in
Ref. [77], this ansatz follows for massless quarks from
large-Nc and Regge arguments. The DV parameters δ1, γ1,
α1, and β1, were obtained as part of the FESR fits. A range
of different fits was considered, characterized by the choice
of smin, the minimum s for which the DV ansatz was to be
employed. Of these, ten, with smin lying between 1.4251
and 1.7256 GeV2, show excellent p-values, good stability
of the DV parameter results between the different fits, and
reasonably controlled DV parameter errors. With all these
smin lying below the onset of both the KNT19 and DHMZ
inclusive regions, it is thus possible to consider integrated
DV contributions to alqcμ in the inclusive region using any of
these fits. We evaluate the DV contributions and associated
errors for each of these fits. We then take as the central
value of our estimate of the DV contribution the midpoint
of the range spanned by these results and their errors, and as
the uncertainty on that estimate half of that range.
Numerical details for the KNT19 and DHMZ cases are
provided below.
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B. alqcμ using KNT19 or DHMZ exclusive-mode input

We now turn to KNT19- and DHMZ-based determina-
tions of alqcμ , neglecting small IB corrections, which will be
dealt with in the next section.
We begin with the KNT19-based analysis.

Reference [65] provides the following results for the
various KNT19-based contributions to aI¼1

μ .
The sum of all KNT19G-parity-positive exclusive-mode

contributions to aLO;HVPμ from the region s ≤ 3.7520 GeV2

is

½aI¼1
μ �G¼þ ¼ 543.21ð2.09Þ × 10−10: ð3:2Þ

The breakdown, showing the modes which contribute and
the KNT19 contribution from each, may be found in Table I
of Ref. [65].
The I ¼ 1 part of the G-parity-ambiguous KK̄ contri-

bution from threshold to 3.7520 GeV2 is

½aI¼1
μ �KK̄ ¼ 0.85ð9Þ × 10−10: ð3:3Þ

The I ¼ 1 part of the G-parity-ambiguous KK̄π con-
tribution from threshold to 3.7520 GeV2 is

½aI¼1
μ �KK̄π ¼ 0.74ð12Þ × 10−10: ð3:4Þ

The I ¼ 1 KK̄2π mode contribution is obtained by first
subtracting from theKNT19 I ¼ 1þ 0 total, ½aLO;HVPμ �KK̄2π ¼
1.93ð8Þ × 10−10, the purely I ¼ 0 component, 0.159ð10Þ×
10−10, resulting from eþe− → ϕππ with the ϕ subsequently
decaying toKK̄, and then applying themaximally conservative
50� 50% assessment of the I ¼ 1 contribution to the resulting
still-ambiguous difference. The result is

½aI¼1
μ �KK̄2π ¼ 0.89ð89Þ × 10−10: ð3:5Þ

The I ¼ 0 ϕππ subtraction was evaluated using the eþe− →
ϕππ cross sections reported in Ref. [78].
The sum of the total (I ¼ 1þ 0) contributions to aLO;HVPμ

from all remaining G-parity ambiguous KNT19 modes, as
detailed in the Appendix of Ref. [65], is 0.23ð3Þ × 10−10,
leading to a maximally conservative estimate of the
corresponding I ¼ 1 contribution

½aI¼1
μ �other ¼ 0.12ð12Þ × 10−10: ð3:6Þ

TheKNT19 inclusive region I ¼ 1 pQCDcontribution is a
factor 9=2 times the corresponding strange-connected-plus-
disconnected contribution reported in Ref. [65], and hence

½aI¼1
μ �pQCD ¼ 28.27ð2Þ × 10−10: ð3:7Þ

The uncertainty reflects that on the input value of αs and the
estimated impact of 5-loop truncation and is much smaller

than the size of the estimated DV contribution, obtained as
discussed above,2

½aI¼1
μ �DV ¼ 0.26ð12Þ × 10−10: ð3:8Þ

The total KNT19 inclusive region contribution, including this
estimate of the DV correction, is thus

½aI¼1
μ �incl ¼ 28.53ð26Þ × 10−10; ð3:9Þ

where, to be conservative, we have assigned the full central
value of the estimated DV correction as an expanded
uncertainty.
Adding the above contributions yields the following

interim result, prior to applying IB corrections, for the
I ¼ 1 contribution

aI¼1
μ ¼ 574.34ð2.29Þ × 10−10 ð3:10Þ

and hence the associated interim light-quark-connected
result

alqcμ ¼ 638.16ð2.55Þ × 10−10: ð3:11Þ

Turning now to the analogous DHMZ-based analysis,
once more relying heavily on results already detailed in
Ref. [65], we find the following results for the components
of the DHMZ-based determination of aI¼1

μ .
The sum of all DHMZ G-parity positive exclusive-mode

contributions to aLO;HVPμ from the region s ≤ 3.24 GeV2 is

½aI¼1
μ �G¼þ ¼ 542.74ð3.39Þð1.12Þlin × 10−10; ð3:12Þ

where the first error is the quadrature sum of the statistical
and mode-specific, mode-to-mode-uncorrelated systematic
errors of Ref. [10], and the second is the 100%-correlated
common systematic error. The subscript “lin” is a reminder
of the fact that, as specified in Ref. [10], this error is
obtained by summing linearly the corresponding errors on
the individual DHMZ exclusive-mode contributions.
The DHMZ contributions from G-parity-ambiguous

exclusive modes in the region s ≤ 3.24 GeV2 are

½aI¼1
μ �KK̄ ¼ 0.83ð8Þ × 10−10; ð3:13Þ

½aI¼1
μ �KK̄π ¼ 0.66ð11Þ × 10−10; ð3:14Þ

½aI¼1
μ �KK̄2π ¼ 0.37ð37Þ × 10−10: ð3:15Þ

2The DV contributions to aI¼1
μ obtained from the ten fits noted

above lie between 0.21ð8Þ × 10−10 and 0.26ð12Þ × 10−10, and
hence cover the range from 0.13 × 10−10 to 0.38 × 10−10. The
central value and error of the result quoted in Eq. (3.8) represent,
respectively, the midpoint and half the extent of this range.
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½aI¼1
μ �other ¼ 0.00ð1Þ × 10−10; ð3:16Þ

with all results, with the exception of that from the KK̄2π
mode, given previously in Sec. VI of Ref. [65]. The
additional information needed to obtain the KK̄2π result
is as follows. First, the DHMZ result for the total I ¼ 1þ 0

contribution to aLO;HVPμ is 0.85ð2Þð5Þð1Þlin × 10−10.
Second, the s ≤ 3.24 GeV2, I ¼ 0 ϕð→ KK̄Þππ contribu-
tion implied by BABAR eþe− → ϕππ cross-sections [78] is
0.117ð8Þ × 10−10. The G-parity ambiguous KK̄2π remain-
der is thus 0.73ð5Þð1Þlin × 10−10 and the maximally
conservative assessment of the I ¼ 1 component thereof
0.37ð37Þ × 10−10, where we have ignored all error com-
ponents other than the strongly dominant maximally
conservative separation uncertainty.
Finally, for the DHMZ inclusive region pQCD, DV and

total contributions, we find

½aI¼1
μ �pQCD ¼ 32.74ð3Þ × 10−10; ð3:17Þ

½aI¼1
μ �DV ¼ −0.19ð31Þ × 10−10; ð3:18Þ

½aI¼1
μ �incl ¼ 32.55ð31Þ × 10−10: ð3:19Þ

We note that the uncertainty on the DV contribution in this
case is significantly larger than that obtained for the KNT19
case above.3

Adding the above contributions yields the following
interim DHMZ-based result

aI¼1
μ ¼ 577.15ð3.43Þð1.12Þlin × 10−10 ð3:20Þ

and hence the associated interim light-quark-connected
result

alqcμ ¼ 641.28ð3.81Þð1.24Þlin × 10−10: ð3:21Þ

The final step required to obtain the desired isospin-limit
version, alqc;ILμ , of alqcμ is to apply EM and SIB corrections
to the interim results (3.11) and (3.21). This step is
discussed in the next section.

IV. EM AND SIB CORRECTIONS

In this section we consider EM and SIB corrections to
the results above. In assessing EM corrections, we will take
advantage of the results of the recent BMW lattice study
[50], which provides the first determination of all EM
aLO;HVPμ contributions on the lattice. We consider use of the

lattice determination unavoidable at present since, while a
number of contributions to the total EM correction can be
reliably estimated using dispersive/data-driven approaches
(see, e.g., Ref. [79]), there are other, potentially non-
negligible contributions for which no reliable methods of
obtaining a data-driven estimate are currently known. The
existence of strong cancellations in the sum of currently
known contributions [79], moreover, enhances the potential
numerical importance of such yet-to-be-evaluated contri-
butions. An example of such a potentially important
“missing” contribution is the EM component of the
ρ-region ππ contribution to aLO;HVPμ . EM effects will be
present at some level in the physical ρ0 decay constant, the
ρππ coupling, the ρ0 width and even the ρ0 mass [80].
Given the failure, to date, of attempts to reproduce the
observed difference between EM and τ-decay-based deter-
minations of the ρ-region ππ contribution to the I ¼ 1
vector current spectral function,4 it is clear that no reliable
data-driven method is currently available for estimating the
combination of these EM effects. It is very unlikely, given
the size of the ρ region contribution to aLO;HVPμ , that this
combined EM contribution can be safely neglected. Data-
driven results for the subset of EM contributions that can
be reliably estimated do, however, provide some useful
information which we discuss briefly in the Appendix.
We note finally that, although currently unavoidable, the
introduction of lattice EM input into an otherwise purely
dispersive determination of alqc;ILμ represents a rather minor
“deviation,” since the lattice result for the EM correction is,
in fact, rather small.
The separation of the IB sum of EM and SIB contribu-

tions into separate EM and SIB parts is, as is well known,
ambiguous at OðαEMðmd þmuÞÞ.5 The separation scheme
used by BMW [50] in determining the EM corrections we
employ below is defined such that the EM contributions to
the masses of the purely connected neutral pseudoscalar
mesons are zero, i.e., such that all such EM contributions
are absorbed into the definitions of the quark masses. It is
numerically very similar to the widely used GRS scheme
[82]. By using BMW EM results, we are working in the
BMW separation scheme.6

To perform the desired EM and SIB corrections, one
needs to identify and subtract EM and SIB contributions
present in the experimental versions of the nominal I ¼ 1

contribution aI¼1
μ determined in the previous section. These

3The DV contributions to aI¼1
μ here lie between −0.34ð16Þ ×

10−10 and −0.04ð16Þ × 10−10, covering the range from −0.50 ×
10−10 to 0.12 × 10−10. The central value and error of the result
quoted in Eq. (3.18) represent, respectively, the midpoint and half
the extent of this range.

4See, e.g., the discussion of Sec. 2.2.6 of Ref. [3], and Figs. 20
and 22 therein.

5For an expanded discussion, see, e.g., Secs. 3.1.1 and 3.1.2 of
Ref. [81].

6This is, for our purposes, a somewhat academic point since
md þmu is only a factor of ∼3 greater than md −mu, making the
OðαEMðmd þmuÞÞ separation ambiguity comparable in size to
contributions of OðαEMðmd −muÞÞ which, being second order in
IB, we are neglecting throughout.
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are of two types: those present in the physical aI¼1
μ

contribution itself, and those associated with nominally
G-parity positive contributions which are actually part of
the mixed-isospin contribution, aMI

μ , and which hence
“contaminate” the nominal aI¼1

μ results obtained above.
The correction for the mixed-isospin contamination cannot
be done inclusively since ρMI

EMðsÞ receives contributions
from both nominally G-parity positive and nominally
G-parity negative exclusive modes, with, e.g., ρ − ω mix-
ing inducing both mixed-isospin πþπ− and mixed-isospin
πþπ−π0 contributions, via, respectively, the processes
eþe− → ω → ρ → πþπ− and eþe− → ρ → ω → πþπ−π0.
To first order in IB, SIB contributions to Π̂EMðQ2Þ and

ρEMðsÞ occur only in the mixed-isospin parts, while EM
contributions are present in all of the I ¼ 1, I ¼ 0 and
mixed-isospin components. It follows that, to this order, the
correction required to convert the physical version of
a33μ ¼ aI¼1

μ to the corresponding isospin-limit version is
purely EM in nature. We denote the associated contribution
to alqcμ , to be subtracted from the nominal alqcμ obtained in
the previous section, by δEMa

lqc
μ . There is no need for a

breakdown of this correction into components associated
with individual exclusive modes, and we take as input
for this contribution the inclusive lattice result quoted
in Ref. [50],

δEMa
lqc
μ ¼ −0.93ð34Þð47Þ × 10−10; ð4:1Þ

where the first error is statistical and the second systematic.
As noted above, the associated correction represents a very
small fraction of the nominal alqcμ results above.
We now address the mixed-isospin-contamination cor-

rection. Evaluating this correction requires identifying and
subtracting mixed-isospin contaminations present in each
of the individual exclusive-mode contributions summed to
obtain the nominal alqcμ results of the previous section. In
contrast to aI¼1

μ , which, to first order in IB, receives no SIB
contribution, both EM and SIB contributions are present
in aMI

μ , with SIB expected to dominate. In what follows,
we rely on experimental input to quantify what should
be the dominant exclusive-mode correction and provide
conservative bounds on the remaining subdominant con-
tributions. In relying on experimental input, the results for
the mixed-isospin corrections are, of course, those for the
sum of EM and SIB effects.
As is well known, the strong low-s enhancement

produced by the dispersive weight K̂ðsÞ=s2 is such that
the dispersive determination of aLO;HVPμ is dominated by
contributions from the region of the lowest-lying (espe-
cially ρ and ω) resonances. A similar low-s, resonance-
region dominance is expected for aMI

μ , doubly so since IB
contributions in this region are subject to enhancements
generated by the impact of the very small ρ − ω mass

difference on contributions induced by ρ − ω mixing. In
this region, the mixed-isospin spectral contribution,
ρMI
EMðsÞ, will appear essentially entirely in the 2π and 3π
exclusive modes. Prior to implementing the mixed-isospin
correction, the IB 2π and 3π components appear, respec-
tively, in the nominal I ¼ 1 and I ¼ 0 sums, and hence
represent mixed-isospin contaminations of those sums. In
this study, we are interested only in carrying out the mixed-
isospin correction for the nominal I ¼ 1 sum, and hence
focus on the IB contribution to the 2π distribution. Note
that more than 90% of the full exclusive-mode-region
contribution to alqcμ , in fact, comes from ππ contributions
in the region below s ¼ 1 GeV2.
The presence of the obvious ρ − ω interference

“shoulder” in the eþe− → πþπ− cross section makes
possible an experimental determination of the IB ρ − ω-
region contribution from the ππ exclusive-mode. To first
order in IB, the associated low-s (s < 1 GeV2) contribution
to aLO;HVPμ lies entirely in aMI

μ . This contribution, which
should strongly dominate ½aMI

μ �ππ, has recently been deter-
mined using the results of a fit to the eþe− → πþπ− cross
sections based on a dispersively constrained representation
of the timelike π form factor incorporating the IB ρ − ω
interference effect [64]. The use of rigorous dispersive
constraints turns out to produce a rather tightly constrained
result,

½aMI
μ �ππ ¼ 3.68ð14Þð10Þ × 10−10; ð4:2Þ

where the first error is the fit uncertainty and the second the
combination of systematic uncertainties. The associated
mixed-isospin ππ contamination of the nominal alqcμ

obtained in the last section, which we denote ½δMIa
lqc
μ �ππ ,

is thus

½δMIa
lqc
μ �ππ ¼ 4.09ð16Þð11Þ × 10−10: ð4:3Þ

This contribution must be subtracted from the nominal aI¼1
μ

(i.e., alqcμ ) results of the previous section.
Note that, in spite of the strong, narrow resonance

enhancement, the IB contribution in Eq. (4.2) represents
only 0.7%of the full exclusive-mode-region ππ contribution
½aLO;HVPμ �ππ . Since contributions to the nominal aI¼1

μ total
from exclusive modes other than ππ are dominated by
regions in s for which no analogous narrow interfering
resonance enhancements are possible, it should be
extremely conservative to assume the magnitudes of con-
tributions to aMI

μ from all non-ππ exclusive modes are also
less than∼1% of the corresponding nominal aI¼1

μ exclusive-
region contributions. The non-ππ exclusive-mode-region
contributions to the nominal I ¼ 1 sum aI¼1

μ total 41.6 ×
10−10 in the KNT19 case and 36.7 × 10−10 in the DHMZ
case. We thus expect the sum of exclusive-mode-region
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contributions to aMI
μ from all exclusive modes in that sum

other than ππ to be less than 0.42 × 10−10 and 0.38 × 10−10

in magnitude, respectively, for the KNT19 case and DHMZ
cases. Unsurprisingly, these bounds are much smaller than
the accurately determined ππ contribution given in Eq. (4.2).
We thus take, as our estimate of the full mixed-isospin
contamination present in the nominal aI¼1

μ sums of the
previous section, the result of Eq. (4.2), adding the
non-ππ exclusive-mode bounds as additional systematic
uncertainties.
Adding the results of Eqs. (4.1) and (4.3), we find,

for the sum of EMþ SIB contributions, δEMþSIBa
lqc
μ ≡

δEMa
lqc
μ þ ½δMIa

lqc
μ �ππ , to be subtracted from the nominal

light-quark-connected results, Eqs. (3.11) and (3.21), to
convert to the corresponding isospin-limit values, alqc;ILμ ,
the results δEMþSIBa

lqc
μ ¼ 3.16ð37Þð48Þð46Þ × 10−10 and

3.16ð37Þð48Þð41Þ × 10−10 for the KNT19 and DHMZ
cases, respectively, where the first errors are statistical,
the second are systematic, and the third are the uncertainties
estimated above for missing mixed-isospin contributions
from non-ππ exclusive modes. Combining, for simplicity
of presentation, all errors in quadrature, we obtain the
following final results for alqc;ILμ :

alqc;ILμ ¼ 635.0ð2.7Þ × 10−10 ðKNT19Þ ð4:4Þ

alqc;ILμ ¼ 638.1ð4.1Þ × 10−10 ðDHMZÞ: ð4:5Þ

V. CONCLUSIONS AND DISCUSSION

We have shown how recent dispersive results for
exclusive-mode contributions to aLO;HVPμ can be used to
provide a determination of the corresponding isospin-limit,
light-quark-connected contribution, alqc;ILμ , the precision of
which turns out to be of order 0.5%. The determination
employs lattice input for a small, 0.15%, EM correction,
but is otherwise purely dispersive. The result, of course,
depends on the choice of exclusive-mode input, and small
differences in the KNT19 and DHMZ assessments of
individual exclusive-mode contributions lead to an asso-
ciated ∼0.5% difference between the alqc;ILμ results obtained
using KNT19 and DHMZ input, given in Eqs. (4.4) and
(4.5), respectively. This difference is similar in size to the
errors on the individual KNT19- and DHMZ-based deter-
minations, and sufficiently small to allow meaningful
conclusions to be drawn from a comparison of our
dispersive results to those of recent lattice analyses. This
comparison is summarized in Table I and Fig. 1. Our
dispersive results lie lower than the majority of central
lattice values, though some variability, at the roughly 2σ
level, remains in the lattice results. Among the lattice
results, that of Ref. [50] (BMW 2020) has, at present, by far
the smallest error, and would strongly dominate any

putative lattice average. Our KNT19- and DHMZ-based
dispersive results are in 3.2 and 2.4σ tension, respectively,
with the BMW 2020 result. Other lattice results, from
multiple groups, with similar or smaller errors, are antici-
pated in the near future, and our dispersive results provide
a useful comparison target for such future lattice
determinations.
The analysis strategy employed above, though applied

there only to the dispersive determination of alqc;ILμ , is
readily adapted to determinations of other quantities of
interest also having a dispersive representation. One well-
known example is the standard intermediate window
quantity, aWμ , introduced by RBC/UKQCD [40], and
constructed, by design, to be rather precisely determinable
on the lattice. The isospin-limit, light-quark-connected
component of aWμ , a

W;lqc;IL
μ , has now been determined by

FIG. 1. Comparison of lattice determinations and our dispersive
results for alqc;ILμ . Lattice results superseded by those from later
publications by the same collaboration are plotted in gray. See
Table I for the corresponding numerical values and references.

TABLE I. Comparison of our dispersive results with recent
lattice results for alqc;ILμ . The latter are listed above the internal
horizontal line, the former below it.

alqc;ILμ × 1010 Reference

647.6(19.3) BMW [38]
649.7(15.0) RBC/UKQCD [40]
629.1(13.7) ETMC [41,49]
673(14) PACS [45]
637.8(8.8) FHM [46]
674(13) Mainz [47]
659(22) ABGP [48]
654.5(5.5) BMW [50]
657(29) LM [51]
646(14) ABGP [56]
635.0(2.7) This work (KNT19-based)
638.1(4.0) This work (DHMZ-based)
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a number of lattice groups [40,48,50,51,53,55–58,60,61],
with updates of earlier ABGP [48], ETMc [53] and RBC/
UKQCD [40] results, reported in Refs. [56,58,60], bringing
results from all groups into excellent agreement. These
results are also found to lie significantly higher than
alternate mixed “R-ratioþ lattice” estimates obtained by
subtracting from R-ratio-based dispersive determinations of
aWμ contributions for all non-light-quark-connected com-
ponents evaluated on the lattice. Of course, in view of other
signs of tension between lattice and dispersive results, one
would prefer to compare the rather precise lattice results
with a dispersive, rather than mixed lattice-dispersive
expectation. This is not currently possible because no
purely dispersive aW;lqc;IL

μ determination exists.
Weighted exclusive-mode and inclusive-region integrals

are, however, equally easy to evaluate for any dispersive
weight as they are for the weight K̂ðsÞ=s2 which enters the
determinations of the exclusive-mode aLO;HVPμ contributions
of Refs. [10,11], provided, that is, the relevant exclusive-mode
distributions, ½ρEMðsÞ�X, required to perform these reweighted
integrals, are publicly available. This information is available
for the distributions underlying the KNT19 exclusive-mode
results of Ref. [11], and KNT19-based dispersive determi-
nations of, not just aW;lqc;IL

μ , but also other dispersive integral
quantities, involving different dispersiveweights, are thus also
possible using the analysis strategy above.
Quantities of this type likely to be of interest for future

investigation include both those naturally formulated in terms
of their Euclidean-time (t) weightings and those naturally
formulated in terms of their dispersive s-weightings.
Examples of the former include the additional intermediate
window quantities of Ref. [40], the one-sided window
quantities of Ref. [59], the linear-combinations-of-
Euclidean-window quantities of Ref. [62], and the window
quantity, aW2

μ , introduced in Ref. [56], designed to more
strongly weight higher-t lattice contributions and improve
the reliability of ChPT-based estimates of lattice finite-
volume effects. Examples of the latter are dispersive
integrals involving s-dependent weights of the type intro-
duced in Ref. [66], designed to emphasize contributions
from more limited regions in s and potentially help in
obtaining a more detailed understanding of the source of the
current dispersive-lattice tensions. Since the sum of isospin-
limit strange-quark-connected and full-disconnected con-
tributions to ρEMðsÞ also has a representation as an
appropriately weighted difference of nominally I ¼ 0 and
nominally I ¼ 1 exclusive-mode contributions [65], the
current analysis strategy can be employed to determine
isospin-limit versions of not just light-quark-connected,
but also strange-connected-plus-full-disconnected, contri-
butions to all such window quantities. We plan to imple-
ment such dispersive determinations of these various
window quantities and will report on the results of this
work in a future paper.
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APPENDIX: IMPLICATIONS OF RECENT
RESULTS FOR EM CONTRIBUTIONS FOR
WHICH DATA-DRIVEN DETERMINATIONS

CURRENTLY EXIST

While at present no data-driven methods are known for
determining all EM contributions to aLO;HVPμ , the physics
underlying a number of such contributions is well under-
stood, making reliable, data-driven determinations pos-
sible. Several such EM (and/or SIB) contributions are, in
addition, numerically enhanced, again for well understood
reasons. The question of whether such enhanced IB effects
might account for some of the current tension between
lattice and data-driven determinations of aLO;HVPμ was
recently addressed in Ref. [79], which reviewed results
for a set of IB contributions for which improved data-driven
determinations are currently available.7 The results for these
contributions, detailed in Ref. [79], are reproduced in
Table II. All entries are in units of 10−10.
The first row of the table lists the IB contribution

resulting from the impact of the π� − π0 mass difference
on the aLO;HVPμ -kernel-enhanced near-threshold-region ππ
contribution. Since the pion mass difference is essentially
entirely EM in origin, this is, to a good approximation, also
a purely EM effect. It results from the fact that the physical
ππ threshold, s ¼ 4m2

π� , lies higher than it would in the
isospin limit (where, in the usual definition of the isospin
limit, the threshold would be s ¼ 4m2

π0
). This effect makes

the near-threshold ππ contribution larger in the isospin
limit. The effect is magnified by the form of the aLO;HVPμ

kernel, which strongly enhances contributions from the
low-s ππ threshold region. The negative sign of the result
reflects the fact that the IB contributions tabulated in
Ref. [79] are those contained in the physical result, with

7The EM/SIB separation convention implicit in Ref. [79] (that
in which the EM π0 and K0 self-energies are zero) is, as the
authors themselves note, close to the convention employed in
recent lattice analyses.
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the isospin limit defined such that the isospin-limit value of
the pion mass is mπ0 .
The second and third rows of the table give the analogous

effects of the EM and SIB contributions to the K� and K0

masses, the kinematic effects of which are enhanced by the
proximity of the physical KþK− and K0K̄0 thresholds to
the large ϕ peak in the eþe− → KK̄ cross-sections. The
signs again reflect the fact that the table entries represent
the IB contributions present in the physical result, with the
corresponding isospin limit defined as noted above.
The fourth row of the table contains the sum of

contributions associated with ππ final state radiation
(FSR). This sum is strongly dominated by the 4.24ð2Þ ×
10−10 πþπ− Born-term contribution [79], which is, in turn,
dominated by the near-threshold region. The remainder of
the quoted total comes from dispersive evaluations [83] of
subleading non-Born πþπ−γ and π0π0γ contributions,
which contribute 0.15 × 10−10 and 0.03 × 10−10, respec-
tively. The fifth line of the table gives the analogous KþK−

FSR contribution.
The sixth row of the table gives the result of the

dispersive analysis of Ref. [64] for the IB ππ contribution
induced by ρ − ωmixing. This is “booked” in Ref. [79] as a
purely SIB effect, though with a caveat acknowledging the
difficulty of reliably breaking down the combined exper-
imental effect into its EM and SIB components at present.
Finally, the seventh and eighth rows of the table give the

contributions to aLO;HVPμ associated with the exclusive π0γ
and ηγ final states. These contributions are dominated by
the large radiative ω and ϕ decay peaks in the eþe− → π0γ
and eþe− → ηγ cross sections and would, of course, vanish
in the absence of EM. The π0γ contribution is numerically
enhanced by the sizeable 8.35(27)% ω → π0γ branching
fraction [71]. The ωð→ π0γÞ contribution is, of course,
not the only exclusive-mode EM contribution enhanced
by the sizeable branching fraction for ω decays to π0γ
and other “nonpurely pionic” (npp) EM-induced modes.

Reference [11], for example, lists contributions of
0.88ð2Þ × 10−10, 0.13ð1Þ × 10−10 and 0.17ð3Þ × 10−10

from the π0ωð→ π0γÞ, ωð→ nppÞ2π and ωð→ nppÞ3π
exclusive modes. The sum of these contributions,
1.18ð4Þ × 10−10, though only ∼27% of the larger of the
two radiative-resonance-decay-enhanced contributions
listed in the table (that for π0γ), is ∼69% larger than the
other listed (ηγ) contribution.
As noted in Ref. [79], there is a very strong cancellation

(by more than an order of magnitude relative to the largest
of the individual contributions) in the sum of the tabulated
EM contributions. This means that nominally subleading
contributions for which no current estimates exist, e.g., the
contributions from the ρ peak region discussed in the main
text above, or those in the 3π channel discussed in foot-
note 1 of Ref. [79], are of potential numerical relevance if
one’s goal is to obtain a data-driven determination of the
sum of all EM contributions. The sum, −0.68ð29Þ × 10−10,
of the data-driven EM contributions tabulated in Ref. [79]
should thus not be interpreted as providing a controlled
estimate of the full EM contribution, in spite of the
compatibility of that sum, within errors, with the BMW
lattice result [50], −1.45ð63Þ × 10−10, for the full EM
contribution. That compatibility would, in any case, be
considerably degraded were one to add the further
1.18ð4Þ × 10−10 in additional, well-quantified, radiative-
resonance-decay-enhanced contributions noted above to
the Ref. [79] data-driven total. That modified data-driven
total would, however, be similarly incomplete.
While, for the reasons given above, we conclude that a

controlled data-driven estimate of the full EM contibution
is not feasible at present, and hence have chosen to rely on
the BMW lattice result for the EM total of interest to us, the
determinations of the individual data-driven contributions
discussed above do provide some useful, highly nontrivial
information. In particular, one learns that, in spite of the
existence of a number of individual EM contributions
considerably larger in magnitude than the BMW lattice
EM result, the scale of the BMW result is “natural,” in the
sense that the cancellations among these numerically
enhanced contributions leave an (albeit incomplete) residue
comparable in size to the much smaller BMW result. Such
a qualitative conclusion is of use while awaiting results
for the full EM total from other lattice groups. The level of
this cancellation, which is responsible for the potential
numerical relevance of nominally subleading contributions
for which no data-driven estimates currently exist, also
makes clear the advantage of the lattice determination,
which automatically includes all contributions, whether
amenable to a data-driven estimate or not, subject to
standard, controllable lattice statistical and systematic
uncertainties.

TABLE II. Data-driven results from Ref. [79] for various EM
and SIB contributions to aLO;HVPμ , in units of 10−10.

Source EM SIB

mπþ vs. mπ0 kinematic (ππ) −7.67ð22Þ � � �
Kaon mass kinematic (KþK−) −3.24ð17Þ 4.98(26)
Kaon mass kinematic (K0K̄0) −0.02ð0Þ −4.62ð23Þ
FSR (ππ) 4.42(4) � � �
FSR (KþK−) 0.75(4) � � �
ρ − ω mixing � � � 3.68(17)
π0γ 4.38(6) � � �
ηγ 0.70(2) � � �
Totals −0.68ð29Þ 4.04(39)
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[57] M. Cè, A. Gérardin, G. von Hippel, R. J. Hudspith, S.
Kuberski, H. B. Meyer, K. Miura, D. Mohler, K. Ottnad, S.
Paul et al. Window observable for the hadronic vacuum
polarization contribution to the muon g − 2 from lattice
QCD, Phys. Rev. D 106, 114502 (2022).

[58] C. Alexandrou, S. Bacchio, P. Dimopoulos, J. Finkenrath,
R. Frezzotti, G. Gagliardi, M. Garofalo, K. Hadjiyiannakou,
B. Kostrzewa, K. Jansen et al., Lattice calculation of the
short and intermediate time-distance hadronic vacuum
polarization contributions to the muon magnetic moment
using twisted-mass fermions, arXiv:2206.15084.

[59] C. T. H. Davies, C. DeTar, A. X. El-Khadra, S. Gottlieb, D.
Hatton, A. S. Kronfeld, S. Lahert, G. P. Lepage, C. McNeile,
E. T. Neil et al., Windows on the hadronic vacuum polari-
zation contribution to the muon anomalous magnetic mo-
ment, Phys. Rev. D 106, 074509 (2022).

[60] T. Blum, P. A. Boyle, M. Bruno, D. Giusti, V. Gülpers, R. C.
Hill, T. Izubuchi, Y. C. Jang, L. Jin, C. Jung et al., An update
of Euclidean windows of the hadronic vacuum polarization,
arXiv:2301.08696.

[61] A. Bazavov, C. Davies, C. De Tar, A. X. El-Khadra, E.
Gamiz, S. Gottlieb, W. I. Jay, H. Jeong, A. S. Kronfeld, S.
Lahert et al., Light-quark connected intermediate-window
contributions to the muon g − 2 hadronic vacuum polari-
zation from lattice QCD, arXiv:2301.08274.

[62] G. Colangelo, A. X. El-Khadra, M. Hoferichter, A.
Keshavarzi, C. Lehner, P. Stoffer, and T. Teubner, Data-
driven evaluations of Euclidean windows to scrutinize
hadronic vacuum polarization, Phys. Lett. B 833, 137313
(2022).

[63] C. L. James, R. Lewis, and K. Maltman, ChPT estimate of
the strong-isospin-breaking contribution to the anomalous
magnetic moment of the muon, Phys. Rev. D 105, 053010
(2022).

[64] G. Colangelo, M. Hoferichter, B. Kubis, and P. Stoffer,
Isospin-breaking effects in the two-pion contribution to
hadronic vacuum polarization, J. High Energy Phys. 10
(2022) 032.

[65] D. Boito, M. Golterman, K. Maltman, and S. Peris,
Evaluation of the three-flavor quark-disconnected contribu-
tion to the muon anomalous magnetic moment from
experimental data, Phys. Rev. D 105, 093003 (2022).

BOITO, GOLTERMAN, MALTMAN, and PERIS PHYS. REV. D 107, 074001 (2023)

074001-12

https://doi.org/10.1103/PhysRevD.96.034516
https://doi.org/10.1103/PhysRevD.96.034516
https://doi.org/10.1007/JHEP04(2017)063
https://doi.org/10.1007/JHEP04(2017)063
https://doi.org/10.1007/JHEP05(2017)034
https://doi.org/10.1103/PhysRevLett.121.022002
https://doi.org/10.1007/JHEP10(2017)157
https://doi.org/10.1103/PhysRevLett.121.022003
https://doi.org/10.1103/PhysRevLett.121.022003
https://doi.org/10.1103/PhysRevD.98.114504
https://doi.org/10.1103/PhysRevD.98.114504
https://doi.org/10.1103/PhysRevD.99.114502
https://doi.org/10.1103/PhysRevD.99.114502
https://doi.org/10.1103/PhysRevD.100.034517
https://doi.org/10.1103/PhysRevD.101.034512
https://doi.org/10.1103/PhysRevD.101.034512
https://doi.org/10.1103/PhysRevD.100.014510
https://doi.org/10.1103/PhysRevD.101.014503
https://doi.org/10.1103/PhysRevD.101.014503
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1103/PhysRevD.101.074515
https://doi.org/10.1103/PhysRevD.107.034513
https://doi.org/10.1103/PhysRevD.106.054503
https://doi.org/10.1103/PhysRevD.106.114502
https://arXiv.org/abs/2206.15084
https://doi.org/10.1103/PhysRevD.106.074509
https://arXiv.org/abs/2301.08696
https://arXiv.org/abs/2301.08274
https://doi.org/10.1016/j.physletb.2022.137313
https://doi.org/10.1016/j.physletb.2022.137313
https://doi.org/10.1103/PhysRevD.105.053010
https://doi.org/10.1103/PhysRevD.105.053010
https://doi.org/10.1007/JHEP10(2022)032
https://doi.org/10.1007/JHEP10(2022)032
https://doi.org/10.1103/PhysRevD.105.093003


[66] D. Boito, M. Golterman, K. Maltman, and S. Peris, Spectral
weight sum rules for the hadronic vacuum polarization,
Phys. Rev. D 107, 034512 (2023).

[67] J. P. Lees et al. (BABAR Collaboration), Measurement of the
spectral function for the τ− → K−KSντ decay, Phys. Rev. D
98, 032010 (2018).

[68] B. Aubert et al. (BABAR Collaboration), Measurements of
eþe− → KþK−η, KþK−π0 and K0

sK�π∓ cross sections
using initial state radiation events, Phys. Rev. D 77,
092002 (2008).

[69] P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Order α4s
QCD Corrections to Z and τ Decays, Phys. Rev. Lett. 101,
012002 (2008).

[70] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A.
Vogt, The five-loop beta function of Yang-Mills theory with
fermions, J. High Energy Phys. 02 (2017) 090.

[71] P. A. Zyla et al. (Particle Data Group), Review of
particle properties, Prog. Theor. Exp. Phys. 2020, 083C01
(2020).

[72] J. Z. Bai et al. (BES Collaboration), Measurements of the
Cross-Section for eþe− → Hadrons at Center-of-Mass En-
ergies from 2 GeV to 5 GeV, Phys. Rev. Lett. 88, 101802
(2002).

[73] M. Ablikim et al. (BES Collaboration), R value measure-
ments for eþe− annihilation at 2.60 GeV, 3.07 GeV and
3.65 GeV, Phys. Lett. B 677, 239 (2009).

[74] V. V. Anashin et al. (KEDR Collaboration), Precise meas-
urement of Ruds and R between 1.84 and 3.72 GeV at the
KEDR detector, Phys. Lett. B 788, 42 (2019).

[75] M. Ablikim et al. (BESIII Collaboration), Measurement of
the Cross Section for eþe− → Hadrons at Energies from
2.2324 to 3.6710 GeV, Phys. Rev. Lett. 128, 062004 (2022).

[76] D. Boito, M. Golterman, K. Maltman, S. Peris, M. V.
Rodrigues, and W. Schaaf, Strong coupling from an
improved τ vector isovector spectral function, Phys. Rev.
D 103, 034028 (2021).

[77] D. Boito, I. Caprini, M. Golterman, K. Maltman, and S.
Peris, Hyperasymptotics and quark-hadron duality viola-
tions in QCD, Phys. Rev. D 97, 054007 (2018).

[78] J. P. Lees et al. (BABAR Collaboration), Cross sections for
the reactions eþe− → KþK−πþπ−; KþK−π0π0, and
KþK−KþK− measured using initial-state radiation events,
Phys. Rev. D 86, 012008 (2012).

[79] M. Hoferichter, G. Colangelo, B.-L. Hoid, B. Kubis, J. R. de
Elvira, D. Stamen, and P. Stoffer, Chiral extrapolation of
hadronic vacuum polarization and isospin-breaking correc-
tions, Proc. Sci. LATTICE2022 (2022) 316.

[80] J. Bijnens and P. Gosdzinsky, Electromagnetic contributions
to vector meson masses and mixings, Phys. Lett. B 388, 203
(1996).

[81] S. Aoki et al. (Flavor Lattice Averaging Group), FLAG
review 2019: Flavour Lattice Averaging Group (FLAG),
Eur. Phys. J. C 80, 113 (2020).

[82] J. Gasser, A. Rusetsky, and I. Scimemi, Electromagnetic
corrections in hadronic processes, Eur. Phys. J. C 32, 97 (2003).

[83] B. Moussallam, Unified dispersive approach to real and
virtual photon-photon scattering at low energy, Eur. Phys. J.
C 73, 2539 (2013).

DATA-BASED DETERMINATION OF THE ISOSPIN-LIMIT … PHYS. REV. D 107, 074001 (2023)

074001-13

https://doi.org/10.1103/PhysRevD.107.034512
https://doi.org/10.1103/PhysRevD.98.032010
https://doi.org/10.1103/PhysRevD.98.032010
https://doi.org/10.1103/PhysRevD.77.092002
https://doi.org/10.1103/PhysRevD.77.092002
https://doi.org/10.1103/PhysRevLett.101.012002
https://doi.org/10.1103/PhysRevLett.101.012002
https://doi.org/10.1007/JHEP02(2017)090
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevLett.88.101802
https://doi.org/10.1103/PhysRevLett.88.101802
https://doi.org/10.1016/j.physletb.2009.05.055
https://doi.org/10.1016/j.physletb.2018.11.012
https://doi.org/10.1103/PhysRevLett.128.062004
https://doi.org/10.1103/PhysRevD.103.034028
https://doi.org/10.1103/PhysRevD.103.034028
https://doi.org/10.1103/PhysRevD.97.054007
https://doi.org/10.1103/PhysRevD.86.012008
https://doi.org/10.1016/0370-2693(96)01147-1
https://doi.org/10.1016/0370-2693(96)01147-1
https://doi.org/10.1140/epjc/s10052-019-7354-7
https://doi.org/10.1140/epjc/s2003-01383-1
https://doi.org/10.1140/epjc/s10052-013-2539-y
https://doi.org/10.1140/epjc/s10052-013-2539-y

