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Anomalies are a powerful way to gain insight into possible lattice regularizations of a quantum field
theory. In this work, we argue that the continuum anomaly for a given symmetry can be matched by a
manifestly symmetric, local, lattice regularization in the same spacetime dimensionality only if (i) the
symmetry action is offsite, or (ii) if the continuum anomaly is reproduced exactly on the lattice. We
consider lattice regularizations of a class of prototype models of QCD: the (1þ 1)-dimensional
asymptotically free Grassmannian nonlinear sigma model (NLσMs) with a θ term. Using the Grassmannian
NLσMs as a case study, we provide examples of lattice regularizations in which both possibilities are
realized. For possibility (i), we argue that Grassmannian NLσMs can be obtained from SUðNÞ
antiferromagnets with a well-defined continuum limit, reproducing both the infrared physics of θ vacua
and the ultraviolet physics of asymptotic freedom. These results enable the application of new classical
algorithms to lattice Monte Carlo studies of these quantum field theories, and provide a viable realization
suited for their quantum simulation. On the other hand, we show that, perhaps surprisingly, the
conventional lattice regularization of θ vacua due to Berg and Lüscher reproduces the anomaly exactly
on the lattice, providing a realization of the second possibility.
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I. INTRODUCTION

The Standard Model of particle physics, and in particular
the strong sector described by quantum chromodynamics
(QCD), has many physically relevant yet so-far inacces-
sible regimes beyond perturbation theory. While nonper-
turbative methods such as lattice field theory using classical
Monte Carlo (MC) methods have been used with remark-
able success, many problems of interest such as real-
time dynamics, finite-density or nontrivial θ vacua remain
inaccessible. Recently, the growth of quantum technologies
has opened up the possibility of exploring these questions.
However, the infinite-dimensional local Hilbert space of
standard bosonic lattice field theories limits their appli-
cability to near-term quantum platforms with low qubit
counts. This has motivated a search for unconventional

lattice regularizations of quantum field theories (QFTs)
with finite-dimensional local Hilbert spaces. New lattice
regularizations of a given QFT can also provide solutions to
sign problems and enable application of cluster algorithms.
Success in low-dimensional asymptotically free prototypes
of QCD establishes a route toward developing new tools
for lattice studies of QCD, both on classical and quantum
hardware [1–35].
If one goes beyond naïve discretizations of the con-

tinuum Hamiltonian (and perturbative improvements
thereof), then the space of possible lattice regularizations
of a given QFT is immense. In general, a lattice regulari-
zation for a given QFT is any lattice Hamiltonian (or action)
which has the correct quantum critical point and relevant
parameter (in the renormalization group (RG) sense).
We might ask: how do we find new lattice regularizations,
perhaps with unique advantages for quantum and classical
simulations? While it is clear that symmetries are an
important part of this story, the point of view of this work
is that this search can be refined by considerations of
anomalies.
To make this concrete, in this work, we consider lattice

regularizations of a certain class of (1þ 1)-dimensional
nonlinear sigma model (NLσMs) with a θ term, called the
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Grassmannian GrkðNÞ NLσMs, which are well-known
prototypes of QCD. These are NLσMswith the target space

GrkðNÞ ¼ UðNÞ=½UðkÞ × UðN − kÞ�; ð1Þ

formally defined by the continuum action

S ¼ 1

g2

Z
d2xTrð∂μPÞ2 þ

θ

4π

Z
d2xϵμνTrP∂μP∂νP ð2Þ

where Pðt; xÞ ∈ GrkðNÞ is an N × N Hermitian projector
matrix such that P2 ¼ P ¼ P† and TrP ¼ k. Important
examples of this class are the k ¼ 1 models, which are
also known as CPðN − 1Þ models. All these models are
asymptotically-free, have a dynamically generated mass
scale, and admit a θ term. The Gr1ð2Þ ¼ CPð1Þ case, also
called the O(3) NLσM, has been particularly important as a
testbed for developments in lattice QCD.
A majority of the lattice work in understanding these

models has used the lattice formulation which is a
direct discretization of Eq. (2), which we refer to as the
“conventional” lattice regularization. In this regularization,
a satisfactory topological definition of the θ term was
proposed by Berg–Lüscher for the CPðN − 1Þ model.
While it has nice topological properties, a lattice MC study
of general θ vacua has been limited by a severe sign
problem at θ ≠ 0, except in special cases. (It can be
somewhat alleviated for the O(3) model using a meron
cluster formulation [36–38].)
Recently, another type of lattice regularization was

proposed: as an antiferromagnetic model of qubits [31],
such that a controlled continuum limit at arbitrary θ can be
taken by adding a small extra dimension. We call this a
“qubit” regularization. Not only is this a very natural
regularization of the θ vacua on quantum computers, it
also does not suffer from a sign problem at nontrivial θ for
classical MC computations. However, it does not have
manifest topological properties, which only become ap-
parent as one takes the continuum limit. Therefore, both
these types of regularizations have their own advantages.
In this work, we take a step back and attempt to

understand these two types of regularizations from the
point of view of anomalies. In particular, these models
have an ’t Hooft anomaly at θ ¼ π [39], which presents
obstructions for certain kinds of symmetric lattice regula-
rizations. The obstruction from the anomaly can manifest
on the lattice in two ways, and we argue that the two above-
mentioned regulators correspond to precisely these
two ways.
The presence of an anomaly for a given symmetry G

implies that for a G-symmetric lattice regularization, the
symmetry cannot be both manifest and onsite. (We give
a more detailed argument and explain our definitions in
Sec. II.) A G-anomaly in the continuum theory implies that
it should be impossible to gauge G—this should also be

true on the lattice. If the symmetry is offsite, then it cannot
be gauged in the usual manner, and therefore the constraint
is satisfied. On the other hand, if the symmetry is onsite,
then the only way for the lattice regularization to match the
anomaly is to explicitly reproduce the anomaly.
We can now place the two regularizations of the CP(1) or

the O(3) model in this framework. Here the anomaly is
for G ¼ SOð3Þ × C, where C is charge conjugation. This
particular anomaly is especially interesting since an analo-
gous anomaly exists for 3þ 1-dimensional SUðNÞ Yang-
Mills at θ ¼ π [39].
The qubit regularization of the θ term is of the first kind.

Starting from the theory at θ ¼ π, C is realized offsite as a
translation-by-one symmetry. Therefore, we can tune θ
away from π by simply breaking the translation symmetry,
which can be done by introducing staggered couplings.
This generates a θ term for the low-energy effective theory.
On the other hand, the conventional regularization with

the Berg–Lüscher θ term in fact does have an exact G
symmetry with onsite action. As argued above, this should
imply that this regularization exhibits the anomaly exactly
on the lattice. As we show in this work (see Sec. IV), this
is indeed the case. This is perhaps surprising since it is
often assumed that there are no anomalies on the lattice.
A gauging procedure, much like the one used to derive the
anomalies in the continuum, works for the lattice theory
and reproduces the anomaly. In fact, our derivation can also
be thought of as an independent computation of the
anomaly, using a well-defined lattice model. Therefore,
this well-known regularization is an example of the second
possibility.
More recently, another illuminating perspective has come

in the language of symmetry-protected topological (SPT)
phases. ’t Hooft anomalies in a D-dimensional (Euclidean)
theory correspond to SPT phases of a (Dþ 1)-dimensional
theory, which is the so-called bulk/boundary correspondence
[40]. From this point of view, a D-dimensional theory with
an ’t Hooft anomaly can naturally arise on the boundary of a
(Dþ 1)-dimensional nontrivial SPT phase. However, there
are obstructions when trying to formulate theory in a
manifestly D-dimensional setup. References [41–43] have
attempted to formulate the Nielsen–Ninomiya theorem in the
language of SPT phases. Their claim is that it is impossible
to obtain a local, symmetric, manifestly D-dimensional
lattice regularization of the boundary theory. However, as
we argue, their conclusions are somewhat incomplete. It is in
fact not impossible to obtain a manifestly D dimensional
local realization of the boundary of an SPT phase. The
“no-go” theorem can be avoided in a rather direct way: the
lattice theory can manifestly exhibit the anomaly.
In the condensed matter literature, some of this has been

long appreciated in the context of Lieb–Schultz–Mattis–
Oshikawa–Hastings (LSMOH) theorems. In particular,
the connection between LSMOH and anomalies has been
delineated in Refs. [44,45]. It is pointed out in Ref. [45],
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that if a D-dimensional (Euclidean) continuum theory with
a G-anomaly is known to arise as the low-energy effective
theory of a D dimensional lattice model, then either (i) G
must be offsite, or (ii) G must not be an exact symmetry of
the lattice model. This is sometimes phrased as a “no-go”
theorem. Here we show that there is another possibility
which is often missed: the symmetry is both onsite and
exact, but the lattice theory explicitly has the anomaly.
There have been several other recent examples of

anomalies on the lattice. For example, this has been
shown for Kähler–Dirac fermions on triangulated lattices
[46–50]. In the case of chiral fermions, formulations
satisfying the Ginsparg–Wilson relation have been shown
to reproduce the anomaly on the lattice for a modified
chiral symmetry [51–54].
This manuscript is organized as follows. In Sec. II, we

present our general arguments regarding lattice regulariza-
tions for theories with anomalous symmetries, and present
an overview of the two examples of lattice regularizations
which we consider in this work, explaining how they
realize the anomalies in different ways. Then in Sec. III, we
discuss a “qubit” regularization, with finite-dimensional
local Hilbert spaces, of the Grassmannian nonlinear sigma
models. Then in Sec. IV, we discuss lattice regularizations
exhibiting the anomalies explicitly, including a generali-
zation of the well-known regularization of the θ-term in
CPðN − 1Þ models due to Berg–Lüscher to the GrkðNÞ
models. Finally, in Sec. V, we summarize our results and
comment on some future directions.

II. OBSTRUCTIONS TO LATTICE
REGULARIZATIONS FROM ANOMALIES

One of the aims of this work is to emphasize how
obstructions to regulating a theory on the lattice arising
from anomalies guide us in constructing new lattice
regularizations.
In this work, we always refer to “anomaly” in the sense

of an ’t Hooft anomaly: a symmetry G is said to be ’t Hooft
anomalous if it cannot be consistently gauged. We empha-
size that G is a genuine symmetry of the theory, and that
the presence of an ’t Hooft anomaly does not indicate an
inconsistency of the theory. We shall also confine our
attention to internal symmetries.
In many cases of interest, the G anomaly has a bit more

structure. If G is generated by two subgroups G1, G2 such
that there is no obstruction to gauging G1 or G2 indi-
vidually, but gauging G1 breaks G2, or vice versa, then
we say there is a mixed anomaly between G1 and G2. In
other words, G1 and G2 cannot be gauged simultaneously.
In all the cases we consider in this work, we always have
a mixed anomaly, although the arguments apply more
generally.
From the point of view of lattice regularizations, the

presence of an ’t Hooft anomaly shows up as an obstruction
to constructing certain type of lattice regularizations: an

anomaly in G for a D-dimensional continuum theory
implies that we cannot have a D-dimensional G-symmetric
lattice regularization with G both manifest and onsite.
By a “manifest” symmetry, we mean an exact symmetry

of the theory which is also an invariance of the action. In
contrast, a nonmanifest symmetry is one where the action is
noninvariant, but all correlation functions are invariant. We
emphasize that in both cases, we are referring to an exact
symmetry of the theory.
By an “onsite” symmetry, we mean that the symmetry

group acts on the full Hilbert space as a tensor product of
representations on the local Hilbert spaces. (In bosonic
field theories, the full Hilbert space of a lattice model
naturally admits a factorization as a tensor product of
Hilbert spaces at each lattice site, which we call the local
Hilbert space.) We shall also say that a non–onsite
symmetry is “offsite.”
If the symmetry G were manifest and onsite, then we

could trivially gauge them both on the lattice by introduc-
ing appropriate link variables, and this would violate the
anomaly. Therefore, a local G-symmetric D-dimensional
lattice regulator for a theory with a G anomaly must

(i) realize G offsite, or
(ii) realize G onsite but nonmanifestly.
Another widely-appreciated possibility is that the

D-dimensional theory arises as the boundary theory of
a (Dþ 1)-dimensional lattice model in a SPT phase
[40,43,55]. In such cases, it is possible to obtain a lattice
regulator with an exact onsite symmetry, albeit at the cost of
introducing an extra dimension. Yet another possibility is to
consider lattice regulators in which G is not a symmetry
microscopically but arises at large distances. In this work,
we only consider symmetric lattice regulators in D space-
time dimensions, in which case we have only the two
possibilities listed above.
As mentioned in the introduction, while possibility (i) is

well known, especially in the context of the LSMOH
theorem in condensed-matter literature [44,45], possibility
(ii) is often missed. Indeed, the anomaly implies that there
must somehow be an obstruction to gauging G, while if G
acts onsite, there seems to be no obstruction to turning on a
background gauge field for it. The only possibility, there-
fore, seems to be that the dependence on the background
gauge field cannot be gauge invariant, which is to say that
the lattice regulator must
(ii*) explicitly exhibit the anomaly.
Indeed, this will be the case in the examples discussed
in Sec. IV. (It is also the case in the modified Villain
models [56–59].) We should also note that it may be
possible for a lattice regulator with offsite symmetry to also
explicitly exhibit an anomaly, such as Ginsparg–Wilson
fermions [43,52].
In this work, we provide examples for both scenarios (i)

and (ii), using the (1þ 1)-dimensional GrkðNÞ NLσM as a
case study.
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A. O(3) nonlinear sigma model

To simplify the discussion a bit, let us first consider the
case of Gr1ð2Þ ¼ CPð1Þ, or the O(3) model with a θ term.
This model can be formulated in terms of a unit 3-vector
field n⃗ðxÞ with Euclidean action

S ¼ 1

2g2

Z
d2xð∂μn⃗Þ2 þ

iθ
8π

Z
d2xϵμνn⃗ · ð∂μn⃗ × ∂νn⃗Þ: ð3Þ

At any θ, the theory has a global SO(3) symmetry. At
θ ¼ 0; π it also has a charge conjugation symmetry,

C∶n⃗ðxÞ ↦ −n⃗ðxÞ: ð4Þ

At θ ¼ π, this theory has a mixed anomaly between
SO(3) and C symmetries [39]. The above argument then
implies that a lattice regularization of the θ ¼ πOð3Þ
NLσM must either realize SOð3Þ × C offsite, or it must
explicitly exhibit the anomaly.
One lattice regularization of the O(3) NLσM is provided

by the spin-1
2
Heisenberg antiferromagnet

H ¼ J
X
hiji

S⃗i · S⃗j; ð5Þ

where S⃗i are spin-12 operators and the sum runs over nearest
neighbor sites i, j. In one spatial dimension, this is
famously known to be described by the O(3) NLσM at
θ ¼ π at low energies [60–62]. Interestingly, this can be
thought of as not just a low-energy effective field theory
(EFT) but also a genuine lattice regularization by adding a
small extra dimension of size L0 (odd) in the D-theory
formulation [5,6,14,15]. As shown in Refs. [31,63], the
continuum limit of the O(3) model at θ ¼ π can be obtained
by taking L0 → ∞ (odd). This not only reproduces the
physics of θ ¼ π in the infrared (IR), but also the asymptotic
freedom in the ultraviolet (UV).
In this regularization, the SO(3) symmetry is clearly

manifest and onsite, and therefore can be gauged easily.
However, the continuum charge conjugation symmetry acts
on the lattice as translation by one unit [64]

C∶S⃗i ↦ S⃗iþ1 ð6Þ

and therefore realizes possibility (i) of the above theorem.
It is especially interesting to consider the case of a

widely-used lattice regularization of the Oð3Þ NLσM on a
two-dimensional Euclidean spacetime lattice, given by the
following action at θ ¼ π:

S0½n⃗� ¼ −
1

g2
X
hiji

n⃗i · n⃗j ð7Þ

where the n⃗i are real unit 3-vectors and the sum runs over
nearest neighbor sites i, j on a square lattice. In the g → 0
limit, this defines a lattice regularization for the θ ¼ 0
theory. This has a manifest onsite G ¼ SOð3Þ × C sym-
metry, with C∶n⃗i ↦ −n⃗i.
Let us now assume that there is a local G symmetric

deformation of the action in Eq. (7) which allows us to
switch on θ ¼ π,

Sθ¼π½n⃗� ¼ S0½n⃗� þ S1½n⃗�: ð8Þ

But if this were the case, we would be able to gauge G,
violating the constraint from the anomaly. Therefore, we
conclude that it is impossible to obtain the θ ¼ π from
Eq. (7) in this manner.
The above argument might at first glance lead one to

think that there simply cannot be a lattice regularization of
the θ ¼ π theory with onsite SOð3Þ × C symmetry, but this
would be too hasty. Indeed, there is a well-known con-
struction of the θ term on the lattice for the CPðN − 1Þ
models, due to Berg and Lüscher [65,66], which is
SOð3Þ × C symmetric at θ ¼ 0; π. In their formulation,
the action of SOð3Þ × C symmetry is onsite. The reason
their formulation avoids the “no-go theorem” is that while
the Boltzmann weight expð−SÞ is invariant under C, the
action itself is not. In this sense, the C invariance is not
manifest in their formulation. (A similar point has been
made by Ref. [57] in the context of modified Villain
models.) Indeed, the same is true in the continuum
formulation (7). A “no-go theorem” for this case can be
therefore be phrased as
There cannot be a lattice regulator for the θ ¼ πOð3Þ

NLσM with manifest onsite SOð3Þ × C symmetry.
On the other hand, there is no obstruction to gauging

SO(3). And if SOð3Þ × C is an exact onsite symmetry of
lattice theory such that SO(3) can be gauged, then the only
way out is if the lattice theory explicitly produces the
anomaly. As wewill show in Sec. IV, this is indeed the case,
giving us an example of possibility (ii) above.

B. Generalization to GrkðNÞ models

The previous discussion about the O(3) model can be
generalized neatly to the general class of asymptotically
free GrkðNÞ models with a θ term, given by the continuum
action in Eq. (2). The P field transforms under the action of
PSUðNÞ symmetry, as well as charge conjugation

C∶ PðxÞ ↦ PðxÞ�: ð9Þ

PSUðNÞ symmetry is present at any θ, while C symmetry is
present only at θ ¼ 0; π. As discussed in Appendix C, a
continuum analysis of mixed anomalies between PSUðNÞ
and C symmetries reveals [67]:
(1) N ¼ even, k ¼ odd: At θ ¼ π, there is a mixed

anomaly between PSUðNÞ and C symmetries.
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(2) Otherwise: There is a “global inconsistency” be-
tween the θ ¼ 0 and θ ¼ π theories.

For the first case, we have an immediate generalization
of the above argument for the O(3) model. However, the
second case results in a more subtle type of obstruction to
lattice regularization.
A “global inconsistency” [39,68,69] between the

θ ¼ 0; π continuum theories says that the action cannot
be modified by a local symmetric counterterm such that
both points are anomaly free. In other words, unlike the
case ðN; kÞ ¼ ðeven; oddÞ, we can remove the anomaly at
θ ¼ π, but at the cost of introducing an anomaly at θ ¼ 0.
From the point of view of a lattice regularization, this
suggests an interesting type of constraint. While, in
principle, it is possible to have lattice regulators with
manifest onsite PSUðNÞ⋊C symmetry at both θ ¼ 0; π
points, we have the following obstruction:
There cannot be a lattice regulator which allows one to

continuously tune θ from 0 to π, such that at θ ¼ 0; π there
is manifest onsite PSUðNÞ⋊C symmetry.
To see this, let us assume that we have a lattice action S0

which furnishes a lattice regularization of the θ ¼ 0 theory
with a manifest onsite PSUðNÞ⋊C symmetry. Now, let us
further assume that there is a local PSUðNÞ symmetric
perturbation Kγ parametrized by a continuously tunable
parameter γ ∈ ½0; 1�,

Sγ ¼ S0 þ Kγ ð10Þ

The perturbation Kγ is such that K0 ¼ 0, and S1 furnishes a
regularization for the θ ¼ π theory. If K1 is invariant under
the onsite C action, then we can gauge PSUðNÞ symmetry
such that C symmetry survives at both θ ¼ 0; π. This
contradicts global inconsistency, which requires that C be
explicitly broken at either θ ¼ 0 or θ ¼ π. Therefore, such a
regulator cannot exist.
We present two kinds of regularizations in this work,

generalizing the previous discussion of the CP(1) model
to GrkðNÞ models. The first kind is based on SUðNÞ
antiferromagnets, and realizes possibility (i), with an
offsite implementation of the C symmetry. As in the CP(1)
case [31], a θ term can be introduced by staggering the
couplings, and continuum limit can be taken with the
D-theory prescription. We discuss the details in Sec. III.
In the second kind, we consider models on Euclidean

spacetime lattices, such as the conventional lattice regu-
larization of the GrkðNÞ models, with the θ ¼ 0 theory
given by the lattice action

S0½P� ¼ −
1

g2
X
hiji

TrPiPj ð11Þ

where Pi ∈ GrkðNÞ are N × N Hermitian projector matri-
ces with P2 ¼ P and TrP ¼ k. We generalize the con-
struction of Berg–Lüscher and construct a lattice θ term for

this model. This model has an exact onsite PSUðNÞ⋊C
symmetry. Therefore, this model must exhibit the anomaly
explicitly on the lattice. Using a method very analogous to
the continuum, we indeed find that this model reproduces
the continuum anomaly exactly, and therefore provides
an example of possibility (ii) of the no-go theorem. We
provide details on the construction and the computation of
the anomaly in Sec. IV.

III. A QUBIT REGULARIZATION OF
GRASSMANNIAN MODELS

In this section, we propose a lattice regularization for the
Grassmannian nonlinear sigma models with a θ term using
SUðNÞ antiferromagnets with staggered couplings, gener-
alizing recent results for the CP(1) model [31].
The model is defined on a two-dimensional LX × LY

square bipartite lattice. We denote the two sublattices as Λ
and Λ̄. On sublattice Λ, we place SUðNÞ spins in the
representation R ¼ ðk; pÞ given by the rectangular Young
tableau with k rows and p columns. On sublattice Λ̄,
we place SUðNÞ spins in the conjugate representation
R̄ ¼ ðN − k; pÞ, as shown in Fig. 1. Different choices of
the bipartitions can be considered. We show two such
choices in Fig. 2. Given a choice of the bipartition
and representations, we write the nearest-neighbor
SUðNÞ symmetric Heisenberg Hamiltonian with staggered
couplings

H ¼
X
ðx;yÞ

Jx;yTα
x;yTα

xþ1;y þ J0
X
ðx;yÞ

Tα
x;yTα

x;yþ1 ð12Þ

where Tα are the SUðNÞ generators (α ¼ 1;…; N2 − 1) in
representation R or R̄ depending on the site ðx; yÞ, Jx;y are
the couplings along the x direction, J0 is the coupling along
the y direction. As shown in Fig. 2, we consider the two
configurations for staggering the couplings:

Alternating∶ J0 > 0; Jx;y ¼ J½1þ ð−1Þxþyγ�; ð13Þ

FIG. 1. Young tableau for the representations each sublattice
of the SUðNÞ Heisenberg antiferromagnet on a bipartite lattice.
On the sublattice A, we choose the representation R ¼ ðk; pÞ
given by a Young tableau of p columns and k rows, while on
the sublattice B, we choose the conjugate representation
R̄ ¼ ðN − k; pÞ.
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Columnar∶ J0 < 0; Jx;y ¼ J½1þ ð−1Þxγ�; ð14Þ

where J > 0 is always antiferromagnetic, and γ is the
staggering parameter. Given a choice of bipartition Λ; Λ̄,
the couplings J; J0; γ are chosen such that interactions
within the sublattice are ferromagnetic, while the inter-
actions between different sublattices are antiferromagnetic.
The representations R; R̄ and the couplings are chosen

such that the two-dimensional model is in the massless
broken phase in the LX; LY → ∞ limit. (We discuss this in
more detail below.) With this choice of representations, a
continuum limit can be defined on a LX × LY spatial lattice,
in the regime LX ≫ LY ≫ 1. More precisely, the con-
tinuum limit can be taken by considering LY even or odd,
and taking LY → ∞with fixed γLY , resulting in the GrkðNÞ
NLσM with

θ ¼ πpLYð1þ γfÞ ð15Þ

where f is a nonuniversal parameter.

A. Low-energy physics and θ vacua

It was shown by Read and Sachdev [70] using coherent-
state formalism that in the large-p limit, the two-
dimensional SUðNÞ antiferromagnet with the above choice
of representations results in a GrkðNÞ NLσM at low
energies. For a one-dimensional SUðNÞ antiferromagnetic
chain, it can also be easily shown that a θ term is induced at
low energies by staggering the couplings (see Appendix D).
This can be understood by the fact that the C symmetry is
realized offsite as a translation by one site, and therefore a
staggered coupling breaks the C symmetry, which should
generically induce a θ term in the NLσM. For SUðNÞ
ladders with LY fixed, we can argue that the model is
effectively a one-dimensional NLσM [71,72] and similar
considerations apply. Indeed, in Refs. [71–73] a semi-
classical analysis in the large-ðSLYÞ limit was performed
for the spin-S SU(2) ladders with staggered couplings, and
it was shown that the long-distance physics is that of a

(1þ 1)-dimensional Oð3Þ NLσM with θ ¼ πSLYð1þ cγÞ,
where γ determines the strength of staggering and c is a
nonuniversal parameter.
As we have argued above, the low-energy physics of the

SUðNÞ model of Eq. (12) is given by the GrkðNÞ NLσM
with a θ term. However, to claim that we have a lattice
regularization of a QFT, this is not enough—we must have
a prescription for taking the continuum limit.

B. Continuum limit and asymptotic freedom

An elegant prescription for taking the continuum-limit
is provided by the D-theory approach [5,14,15]. In this
approach, a (dþ 1)-dimensional asymptotically-free
theory can be obtained from a system in Dþ 1 spacetime
dimensions with D ¼ dþ 1, where the extra spatial
dimension is taken to be small in physical units. There
are two ingredients for this to work. The first one is that the
(Dþ 1)-dimensional model should be in a massless phase,
and the second is dimensional reduction.
Let us assume that the two-dimensional model is in

broken phase with massless Goldstone modes. (We will
discuss the conditions for this in more detail below.) We
take the extent in the extra spatial dimension to be LY . The
low-energy continuum action (without the θ term) is

S0 ¼
1

2g2

Z
LY

0

dy
Z

dxdtTr½ð∂xPÞ2 þ ð∂tPÞ2 þ ð∂yPÞ2�

ð16Þ

where y is the extra dimension. When LY is infinite, the
system is ordered and the correlation length ξ is infinite
(Goldstone modes are massless). Now, if LY is reduced
and made finite, a new length scale ξSRðLYÞ appears in the
system, which we may call the symmetry restoration
scale. For scales smaller than ξSRðLYÞ, the system is
ordered (symmetry broken), while for scales larger that
ξSRðLYÞ, the system is disordered by the fluctuations
of the massive Goldstone modes and the symmetry is
restored.

FIG. 2. Viable lattice regularizations of the GrkðNÞNLσMwith a θ term using SUðNÞ antiferromagnets. The red and blue dots indicate
sites at different sublattices, with representations given by the rectangular Young tableaux shown in Fig. 1. The interactions within the
same sublattice are always ferromagnetic, while interactions between different sublattices are always antiferromagnet. The thickness of
the bonds indicates alternating strength of the interactions. The continuum limit of the GrkðNÞ NLσM at nontrivial θ is obtained in the
LY → ∞ limit with fixed γLY .
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For LY finite, ξSRðLYÞmust be finite. This is because, if it
were infinite, then for any finite LY , the system would be
ordered along the y direction, and would therefore effec-
tively become (1þ 1)-dimensional. But this would imply
that the (1þ 1)-dimensional system is ordered and has a
broken continuous symmetry, which is impossible due to
the Coleman–Mermin–Wagner theorem. In other words, as
LY is reduced from being infinite to finite, the Goldstone
modes pick up a mass ∼ξ−1SR, which determines the scale at
which the system disorders.
Let us assume that we can make LY small enough such

that ξSRðLYÞ ≫ LY . Again, the physics is effectively frozen
in the y direction and it can be explicitly integrated over in
the low-energy effective action to obtain

S0 ¼
LY

2g2

Z
dxdtTrð∂μPÞ2

We see that the (1þ 1)-dimensional theory has an effective
coupling g2eff ¼ g2=LY . Now, we can use knowledge of
the (1þ 1)-dimensional theory. Asymptotic freedom in
the (1þ 1)-dimensional Grassmannian models implies
that the system develops an exponentially large length
scale ξSR ∝ eLY=ðβ0g2Þ, where β0 is the leading β function
coefficient. Therefore, for small enough LY , we get
ξSRðLYÞ ≫ LY , validating the dimensional reduction
scenario.
In the above argument, we assumed that ξSRðLYÞ ≫ LY

by starting from LY large. In principle, it possible that this is
not valid for some regime of LY and dimensional reduction
does not occur. However, an independent argument can be
given by considering LY ¼ Oð1Þ very small. A nonlinear
sigma model analysis of the spin ladders with finite LY
shows that ξSR is finite (in lattice units) and grows
exponentially in LY , and therefore we can always ensure
that ξSRðLYÞ ≫ LY [72].
We note that the above discussion is valid for any θ, since

the UV physics of asymptotic freedom is the same in all
cases. For θ ¼ 0, there is only one length scale in the
system, and therefore the symmetry restoration length scale
ξSR and the correlation length ξ coincide. However, for
θ ≠ 0, ξSR and ξ are different, due to nonperturbative effects
from the θ term. ξSR sets the UV scale of asymptotic
freedom, while ξ sets the scale for IR physics. In general, we
have the following hierarchy of length scales

ξðθÞ≳ ξSR ≫ LY ≫ a ð17Þ

where a is the lattice spacing. Indeed, for the θ ¼ πCPð1Þ
theory, the nonperturbative effects are strong enough that
the system becomes gapless with ξ ¼ ∞.
Choice of representations. We emphasize this approach

strongly depends the representations at each site. While in
principle, for a given GrkðNÞ, we can choose any p to get a
lattice model, not every such model will have a continuum

limit in the above prescription. For the alternating con-
figuration, the representations R; R̄ needs to be sufficiently
large. This is because for the D-theory prescription to work,
we need the two-dimensional (LX; LY → ∞) theory to be
in massless symmetry-broken phase. Read and Sachdev
[70,74,75] studied the two-dimensional model at large-N
and large-p limits, and obtained the result that the system is
in the Néel phase for p ≥ κN, where κ is a constant of
order 1. These semiclassical arguments suggest that as long
as we choose n ≥ κN, we are guaranteed the right con-
tinuum limit as LY → ∞. For example, for k ¼ 1, it has
been numerically shown that it suffices to choose the
fundamental representation for N ¼ 2, 3, 4, while larger
p representations are needed to obtain a Néel ordered
ground state in two spatial dimensions for N ≥ 5 [76].

IV. LATTICE FORMULATIONS OF THE
GRASSMANNIAN MODELS WITH ANOMALIES

In this section, we discuss lattice regularizations of the
GrkðNÞ models in which both C and PSUðNÞ act onsite.
As mentioned above, this can only be compatible with the
anomaly of the continuum theory if the anomaly is present
on the lattice.
In the continuum, the charge conjugation symmetry at

θ ¼ π is not manifest in the sense that the action is not
invariant but is shifted by 2πiQ. It is thanks to the integer
quantization of Q that the integrand expð−SÞ of the path
integral is preserved by C.
The statement of the mixed anomaly between the

PSUðNÞ symmetry and C is that when background gauge
fields for the former are present, the partition function is
no longer invariant under the latter [39,67,77–79]. At a
technical level, this is due to the fact that the presence of
such background fields replaces the topological charge
quantization in units of 1, which as we just said was
necessary for C invariance at θ ¼ π, by quantization in
units of 1=N. This anomaly can therefore be regarded as a
consequence of the more basic fact that in the presence of
background fields for the PSUðNÞ symmetry, the period of
the θ dependence should become 2πN so that the partition
function fails to be 2π periodic in θ once the PSUðNÞ
symmetry is gauged. We may describe this more basic
situation as a mixed anomaly between PSUðNÞ symmetry
and 2π periodicity in θ.
All this is equally true in the lattice models we shall

describe below. As a consequence, the continuum limits of
these models will automatically exhibit the same anomaly,
and moreover the IR physics on the lattice is therefore
subject to the same constraints as in the continuum.

A. Berg–Lüscher θ term

We begin with a discretization on a two-dimensional
triangular Euclidean spacetime lattice based on the con-
tinuum action (2) [80]:
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S½P� ¼ −
1

g2
X
hxyi

TrPxPy − iθ
X
p

qp; ð18Þ

where the first sum runs over all nearest-neighbor bonds
hxyi on the triangular lattice, the second sum runs over
all positively oriented triangular plaquettes p. The fields
Px are Hermitian N × N projection matrices such that
TrPx ¼ k, and qp is the topological charge density to be
defined below. The choice of a triangular lattice is moti-
vated by the definition of the topological charge density. At
g → 0 with a fixed θ, the lattice action in Eq. (18) defines a
continuum limit of the GrkðNÞ NLσM. For θ ¼ 0, this
model has been extensively studied for various N. There is
a symmetry of the action under Px ↦ vPxv†, for v an
element of SUðNÞ. Note that since the Px do not transform
under the center of SUðNÞ, the correct (faithful) symmetry
group of the action is SUðNÞ=ZN ≅ PSUðNÞ. Charge
conjugation acts by sending Px ↦ Px

�, and so clearly
preserves the action at θ ¼ 0.
For Gr1ðNÞ ¼ CPðN − 1Þ, Berg and Lüscher [65] have

defined 4πqp to be the minimal signed area spanned by the
geodesic triangle in the CPðN − 1Þ manifold with vertices
Px, Py, Pz, where x, y, z are the vertices of the plaquette p
in counterclockwise order. Explicitly,

expð2πiqpÞ ¼
TrPxPyPz

jTrPxPyPzj
: ð19Þ

The branch ambiguity implied by this equation is fixed by
requiring that qp lie in the interval ð− 1

2
; 1
2
Þ. (The same

should be understood in similar formulas below.) The total
topological charge Q ¼ P

p qp is obtained by summing
over all positively oriented plaquettes. By construction
it is an integer for periodic boundary conditions (see
Appendix B). Notice that C∶ qp ↦ −qp. Therefore, the
C symmetry at θ ¼ π here is not manifest, just as in the
continuum.
We shall generalize this definition of the topological

charge for GrkðNÞ fields below. But let us first demonstrate
the existence of the anomaly in CPðN − 1Þ model.
Our strategy is to background-gauge the PSUðNÞ sym-

metry (see Fig. 3), and then examine the θ dependence of

the partition function. We start by introducing an external
link field Vl ∈ SUðNÞ. The action should incorporate it in
such a way that it be invariant under the local SUðNÞ
transformations

Px ↦ vxPxvx†; Vxy ↦ vxVxyvy†: ð20Þ

This can be achieved by modifying the kinetic part of the
action in Eq. (18) to

S̃0½P;V�≡ −β
X
hxyi

TrPxVxyPyVyx: ð21Þ

and the topological charge density in Eq. (19) to

expð2πiq̂pÞ≡ TrPxVxyPyVyzPzVzx

jTrPxVxyPyVyzPzVzxj
: ð22Þ

We note that Q̂ ¼ P
q̂p is still an integer (see Appendix B).

However, we are gauging not SUðNÞ but PSUðNÞ. Two
elements of the former that differ from each other only by
an Nth root of unity are identified as elements of the latter.
In view of this fact, we postulate a gauge invariance under
local ZN transformations of the link fields,

Vl ↦ Vl expð2πinl=NÞ ð23Þ

with nl ∈ ZN . The new kinetic term is already invariant
under this gauge transformation. The topological term,
however, is not; it transforms as

expð2πiq̂pÞ ↦ expð2πiq̂pÞ
Y
l∈p

expð2πinl=NÞ: ð24Þ

To fix this, we further introduce an external plaquette
field bp ∈ ZN with a gauge transformation rule chosen to
precisely compensate for the noninvariance of q̂p. Thus, if
instead of (23) we postulate a gauge invariance under the
combined transformations

Vl ↦ Vl expð2πinl=NÞ;
bp ↦ bp þ

X
l∈p

nl; ð25Þ

then the topological charge density can be made invariant
by modifying it to

expð2πiq̃pÞ≡ expð2πiq̂pÞ expð−2πibp=NÞ ð26Þ

Thus, with the action S̃ ¼ S̃0 − iθ
P

q̃p we have suc-
ceeded in coupling the theory to background fields for the

FIG. 3. The Berg–Lüscher θ term is defined on a triangulated
lattice such that the GrkðNÞ field lives on the nodes x, y, z. The θ
term is defined on the triangular plaquette p ¼ hxyzi. To gauge
the PSUðNÞ symmetry, we activate a SUðNÞ link field Vl as well
as a ZN plaquette field bp.
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PSUðNÞ symmetry in a totally gauge invariant manner.
The question now is whether the partition function

Z̃½V; b; θ� ¼
Z

DP expð−S̃0½P;V� þ iθQ̃½P; V; b�Þ ð27Þ

is still 2π periodic in θ.
The answer is no. This is because in the presence of

the PSUðNÞ background gauge field, the gauge-invariant
topological charge Q̃ ¼ P

p q̃p is in general quantized not
in units of 1 but in units of 1=N, so that the period of the θ
dependence is in general enlarged to 2πN. More precisely,
we have

expð2πiQ̃Þ ¼ expð2πiQ̂Þ expð−2πiB=NÞ
¼ expð−2πiB=NÞ; ð28Þ

(we have written B≡P
p bp) and this phase factor, which

for arbitrary bp can be anyNth root of unity, is precisely the
factor by which the partition function is changed upon a
shift of θ by 2π:

Z̃½V; b; θ þ 2π�
Z̃½V; b; θ� ¼ expð−2πiB=NÞ: ð29Þ

As already mentioned, the C invariance at θ ¼ π depends
crucially on the topological charge being an integer, and
so gauging PSUðNÞ, which fractionalizes the topological
charge, explicitly breaks C invariance at θ ¼ π.
A nearly verbatim discussion applies to the

Grassmannian model, to which we now return. However,
the topological charge is not simply given by the Berg–
Lüscher formula (19). In this case, it is convenient to write
the projector valued field as Px ¼ ϕxϕx

†, where ϕx are
N × k complex matrices, such that ϕx

†ϕx ¼ 1k. The k
columns of ϕ specify a k-dimensional subspace onto which
Px projects. In this notation, the natural generalization of
the Berg–Lüscher θ term to this case is given by

expð2πiqpÞ ¼
Y

hxyi∈p

detϕx
†ϕy

j detϕx
†ϕyj

: ð30Þ

(See Appendix B for a derivation.) Note that for k ¼ 1, the
determinant is the same as the trace, and therefore this
reduces to Eq. (19) for CPðN − 1Þ.
With the correct definition of the topological charge in

hand, we can now detect the mixed anomaly between 2π
periodicity in θ and PSUðNÞ symmetry as before. We
introduce an SUðNÞ link field Vl and a ZN plaquette field
bp and modify the kinetic term to (21), and the topological
charge density to

expð2πiq̃pÞ≡ expð2πiq̂pÞ expð−2πikbp=NÞ; ð31Þ

where

expð2πiq̂pÞ≡
Y

hxyi∈p

detϕx
†Vxyϕy

j detϕx
†Vxyϕyj

ð32Þ

We note that in the last exponent of (31), the factor of k
appears because of the determinant of k × k matrices
in (30). After literal repetition of the preceding argument,
we find

Z̃½V; b; θ þ 2π�
Z̃½V; b; θ� ¼ expð−2πikB=NÞ: ð33Þ

We note that the anomalous phase for the GrkðNÞmodels is
k times that of the CPðN − 1Þ model.

B. Lattice gauge theory formulation

We have given one lattice formulation of the two-
dimensional GrkðNÞ model that explicitly exhibits the
anomaly, but we wish to emphasize that the anomaly
was inevitable given that the symmetries were realized
onsite. Thus, in this subsection, we present a different
lattice regularization in which the same is true. It is based
on the continuum action

S ¼
Z

d2xj∂μϕ − ϕAμj2 þ
θ

2π

Z
TrdA; ð34Þ

where ϕ is a N × k complex matrix–valued scalar field
satisfying ϕ†ϕ ¼ 1k, Aμ is a UðkÞ gauge field and we use
the notation jMj2 ≡ TrM†M for matrices M. (The gauge
field is auxiliary and can be trivially integrated out to
write the action entirely in terms of ϕ.) The relation to the
projector-valued field P is simply P ¼ ϕϕ†.
The standard discretization1 on a square lattice gives

S ¼ −β
X
hxyi

Trϕx
†ϕyUyx − iθ

X
p

qp; ð35Þ

where the ϕx are complex N × k matrices defined onsites
such that ϕx

†ϕx ¼ 1k, the Ul are elements of UðkÞ defined
on links, and the topological charge qp in a plaquette p is
defined by

expð2πiqpÞ≡
Y
l∈p

detUl ð36Þ

By taking the product of this last equation over all
plaquettes, we clearly see that Q ¼ P

qp is an integer.
Moreover, it is clear that qp has the right continuum limit,

1For CPðN − 1Þ an alternative discretization via the modified
Villain formalism was given in Ref. [56], which can be shown to
also explicitly exhibit the anomaly.
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using the correspondence detUμðxÞ → expðaTrAμðxÞÞ
(a is the lattice spacing). For CPðN − 1Þ, this reduces to
the definition used in [81]. The lattice action has a gauge
symmetry under

ϕx ↦ ϕxux; Uxy ↦ ux†Uxyuy; ð37Þ

where ux ∈ UðkÞ. It also has a global symmetry under

ϕx ↦ vϕx; Ul ↦ Ul; ð38Þ

for v ∈ SUðNÞ. But for v in the center of SUðNÞ, i.e.,
v ¼ expð2πin=NÞ1N , this transformation is equivalent to a
gauge transformation with ux ¼ expð2πin=NÞ1k, so as
before the true symmetry group is PSUðNÞ. Finally, we
have charge conjugation, which acts as

C∶ ϕx ↦ ϕx
�; Ul ↦ U�

l: ð39Þ

In particular, we have C∶qp ↦ −qp so C invariance is
manifest at θ ¼ 0 but not at θ ¼ π, as before.
The demonstration of the anomaly here more or less

follows the same lines as the above. We introduce an
external gauge field for the PSUðNÞ symmetry via a pair
consisting of a link-field Vl ∈ SUðNÞ and a plaquette-field
bp ∈ ZN with the gauge transformation rule

Vxy ↦ vxVxyvy† expð2πinxy=NÞ;
bp ↦ bp þ

X
l∈p

nl; ð40Þ

where vx ∈ SUðNÞ and nl ∈ ZN . These background fields
may be coupled to the dynamical fields in a gauge-invariant
fashion as follows. We replace the kinetic term by

X
hxyi

Trϕx
†VxyϕyUyx; ð41Þ

which is invariant under the transformation (40) of the
background fields combined with the following transfor-
mation of the dynamical fields:

ϕx ↦ vxϕx; Ul ↦ Ul expð2πinl=NÞ: ð42Þ

The nontrivial transformation rule for Ul then forces us to
replace the topological charge density by

expð2πiq̃pÞ≡ expð−2πikbp=NÞ
Y
l∈p

detUl: ð43Þ

Taking the product of the last equation over all plaquettes,
we get

expð2πiQ̃Þ ¼ expð−2πikB=NÞ; ð44Þ

from which the same anomaly (33) follows.

V. CONCLUSION

Anomalies have long been a powerful way to probe
nonperturbative aspects of QFTs. For lattice regularizations,
they imply constraints on the way anomalous symmetries
may be realized. Indeed, a QFT with an anomalous sym-
metry G is such that G cannot be gauged; the same must be
true for any symmetric lattice regulator thereof.
In this work, we have explored the connection

between discrete anomalies and lattice regularizations
for a class of NLσMs with target space given by the
Grassmannian manifold GrkðNÞ, which includes the well-
known CPðN − 1Þ models as the case with k ¼ 1. These
models have a mixed anomaly between PSUðNÞ and C
symmetries. [39,67,77–79].
The question we have tried to address in this work is:

What do these anomalies imply for constructing a sym-
metric lattice regulator? Generally, it is thought that an
anomaly in a symmetry implies that on the lattice the
symmetry cannot be realized onsite, because then one could
always gauge the symmetry by introducing appropriate link
variables. However, this is incorrect—there is also the
possibility that the anomaly is explicitly reproduced on the
lattice. This can be surprising, since it is often remarked
that “there are no anomalies on the lattice.” Indeed, one of
the most well-known early constructions of the θ term in
the (1þ 1)-dimensional CPðN − 1ÞNLσM due to Berg and
Lüscher [65], already exhibits this mixed anomaly between
PSUðNÞ and C, as we have demonstrated in this work.
We also noted that in some cases, strictly speaking, there

is no anomaly but a more subtle scenario referred to as a
“global inconsistency” [39,68,69]. In such cases, we argued
that the usual no-go theorem gets modified and presents a
new kind of obstruction, which prevents us from finding
lattice regulators with manifest onsite symmetry for the two
points of global inconsistency that can be continuously
connected to each other.
Of course, it is possible that the anomalous symmetry is

realized offsite, in which case it is not possible to gauge it in
the usual way. This is another way that an anomaly may be
reflected in a lattice regularization. We demonstrated
this possibility by constructing a new regularization for
the GrkðNÞ NLσM with a θ term, using the D-theory
formulation. This regularization uses SUðNÞ spins as
fundamental degrees of freedom with local antiferromag-
netic interactions on a two-dimensional spatial LX × LY
lattice. In the large-representation limit, the low-energy
limit can be shown to be that of (1þ 1)–dimensional
GrkðNÞ NLσM for a fixed LY . Extending on recent work
for the O(3) NLσM [31], we argued that a similar con-
struction allows us to obtain the obtain continuum limit of
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the GrkðNÞ NLσM at arbitrary nonzero θ, by keeping γLY
fixed as we take the LY → ∞ limit.
For the CPðN − 1Þ models, this provided the first

completely sign-problem free lattice regularization of the
θ vacua [7,31]. In the case of SUðNÞ antiferromagnets in
the ðk; pÞ representation with k ≠ 1, efficient sign-problem
free algorithms are not known. Even though a direct
numerical confirmation of our regularization is currently
limited due to this, it is interesting to note that the sign-
problem in SUðNÞ ðk; pÞ antiferromagnets in general is of a
totally different character than the conventional Berg–
Lüscher θ term. After all, ðk; pÞ SUðNÞ antiferromagnets
have a sign problem even at θ ¼ 0. Changing θ by adding
staggered couplings does not make it more severe. This
suggests that if an efficient algorithm for SUðNÞ antiferro-
magnets with k ≠ 1 representations can be found at θ ¼ 0,
we would also automatically have a sign-problem free
approach to arbitrary nontrivial θ for the entire class of
GrkðNÞ NLσM.
The discussion of anomalies and lattice regularizations

presented in this work is especially relevant in the context
of four-dimensional Yang–Mills theories. Indeed, at
θ ¼ π, pure SUðNÞ Yang–Mills theory exhibits a
mixed anomaly involving time-reversal and center sym-
metry [39] that is quite analogous to the anomaly studied
here. There already exist proposals for qubit regulariza-
tions for Yang–Mills as quantum link models [6,15],
while the conventional lattice regularization admits a
topological construction for the θ term [66]. There seems
to be a parallel discussion to be had in these cases. We
leave this for a future publication.
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APPENDIX A: PARAMETRIZATIONS OF THE
GRASSMANNIAN MANIFOLD

The Grassmannian GrkðNÞ is the manifold parametrizing
k-dimensional subspaces of a N-dimensional complex

vector space. Operationally, it can be defined as follows.
On an N-dimensional complex vector space, we pick a
reference k-dimensional hyperplane K0. Let the hyperplane
K0 be represented by k-orthonormal complex vectors
K0 ¼ ½z⃗1;…; z⃗k�. We may then denote the k-dimensional
plane with the projector matrix

P0 ¼ jz⃗1ihz⃗1j þ � � � þ jz⃗kihz⃗kj: ðA1Þ

Now, we may get any other k-dimensional hyperplane by
performing an arbitrary UðNÞ rotation,

P0 ↦ P ¼ UP0U† ¼
Xk
i¼1

jUziihUzij: ðA2Þ

However, note that any unitary performed in the subspace
K⊥

0 orthogonal to K0 will not yield a new hyperplane.
That’s UðN − kÞ worth of unitaries which leave P0 invari-
ant. Moreover, any unitary in the subspace K0 will only
change our choice of reference vectors z⃗1;…; z⃗k, but will
not change the hyperplane they define. That is another UðkÞ
worth of unitaries. We say that UðkÞ × UðN − kÞ is the
isotopy group (or the little group) of the reference
vector P0. The elements of UðNÞ that actually generate a
new hyperplane are

UðNÞ
UðkÞ × UðN − kÞ ; ðA3Þ

which is the precisely Grassmanian manifold GrkðNÞ.
We can easily see from (A1) and (A2) that P satisfies

P2 ¼ P ¼ P†, and TrP ¼ k. Therefore, the Grasmannian
manifold can also be defined as the set of N × N complex
matrices such that

GrkðNÞ ¼ fP ∈ MNðCÞ∶P2 ¼ P ¼ P†;TrP ¼ kg: ðA4Þ

We note that Read and Sachdev [70] use the parametriza-
tion in terms of Q variables, where P ¼ 1

2
ð1þQÞ, such

that Q is a Hermitian N × N matrix with Q2 ¼ 1 and
TrQ ¼ N − 2k.
We can also represent the k vectors z⃗i as the columns of a

N × k complex matrix ϕ matrix such that ϕ†ϕ ¼ 1k, which
allows us to rewrite Eq. (A1) as P ¼ ϕϕ†. Note that if the
GrkðNÞ field theory is written in terms of the ϕ (or z⃗i) fields,
we must add a UðkÞ gauge field to account for the
redundancy in the choice of reference vectors z⃗i:

Z ¼
Z

DPe−S½P� ¼
Z

DϕDϕ†DAe−S
0½ϕ;ϕ†;A�: ðA5Þ

It may also be useful to point out that the conventional
formulation of the Gr1ð2Þ ¼ CPð1Þ or the Oð3Þ model in
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terms a real unit vector n⃗ [as in Eq. (7)] is related to the
projector formalism by

P ¼ 1

2
ð12 þ n⃗ · σ⃗Þ; or n⃗ ¼ TrðPσ⃗Þ: ðA6Þ

Note that charge conjugation P ↦ P� sends

ðn1; n2; n3Þ ↦ ðn1;−n2; n3Þ; ðA7Þ

which differs from the given in Eq. (4) ðn⃗ ↦ −n⃗Þ by an
additional π-rotation about the second axis.

APPENDIX B: SOME PROPERTIES OF THE
BERG-LÜSCHER LATTICE θ TERM

In this section, we discuss some properties of the Berg–
Lüscher lattice θ term and provide its generalization for
GrkðNÞ fields.
It will be convenient to use the redundant parametriza-

tion of GrkðNÞ by N × k complex matrices ϕ satisfying
ϕ†ϕ ¼ 1k. In this notation, the Berg–Lüscher θ term for
CPðN − 1Þ ¼ Gr1ðNÞ reads

expð2πiqpÞ ¼
Y

hxyi∈p

ðϕx;ϕyÞ
jðϕx;ϕyÞj

; ðB1Þ

where in this section we use the notation (.,.) for the
Hermitian scalar product of vectors. We see that
expð2πiqpÞ takes the form of a product of link variables
in U(1) around the boundary of p. Thus, in taking the
product of this equation over all positively oriented pla-
quettes, the link variables cancel in pairs, so that

expð2πiQÞ ¼
Y
p

expð2πiqpÞ ¼ 1: ðB2Þ

Hence, the total topological charge Q is an integer.
We can now easily address an issue which was elided in

Sec. IV. There, background SUðNÞ link variables Vl were
introduced, and the topological charge qp got replaced by
q̂p which depends on the Vl as in (22). An important
property of q̂p (which was not explained in the main text)
is that Q̂ ¼ P

p q̂p be integer-quantized. We can now
clearly see that this is so, as we can rewrite (22) in the
new notation as

expð2πiq̂pÞ ¼
Y

hxyi∈p

ðϕx; VxyϕyÞ
jðϕx; VxyϕyÞj

: ðB3Þ

Let us now find the generalization of (B1) for the GrkðNÞ
model. We first note that it is possible to realize GrkðNÞ as a

submanifold of the complex projective space Pð∧k CNÞ ≅
CPðNk − 1Þ via the Plücker embedding, which is given by

GrkðNÞ → Pð∧k CNÞ
½z1;…; zk� ↦ ½z1 ∧ � � � ∧ zk� ðB4Þ

Here z1;…; zk is a set of orthonormal column vectors in
CN , so ½z1;…; zk� denotes the k-dimensional subspace of
CN generated by these vectors, and ½z1 ∧ � � � ∧ zk� denotes
the 1-dimensional subspace in ∧k CN generated by
z1 ∧ � � � ∧ zk.
This embedding is helpful here because it allows us to

define the topological charge of a GrkðNÞ field by mapping
it to a Pð∧k CNÞ field and then using the definition of the
topological charge for Pð∧k CNÞ fields. To see the validity
of this claim, consider a Pð∧k CNÞ field Φ of the form
Φ ¼ z1 ∧ � � � ∧ zk with ðzi; zjÞ ¼ δij, which by the Plücker
embedding corresponds to a GrkðNÞ field ϕ ¼ ðz1;…; zkÞ.
Then the topological charge Q of Φ as a Pð∧k CNÞ field is
given by

2πQ ¼
Z

dðΦ; dΦÞ

¼
Z

dðz1 ∧ � � � ∧ zk; dfz1 ∧ � � � ∧ zkgÞ

¼
Z

d
Xk
j¼1

ðz1 ∧ … ∧ zk; z1 ∧ � � � ∧ dzj ∧ … ∧ zkÞ

¼
Z

d
Xk
j¼1

ðzj; dzjÞ

¼
Z

dTrϕ†dϕ: ðB5Þ

In the fourth line, we have used the formula for the scalar
product in ∧k CN induced by the standard scalar product
in CN :

ðz1 ∧ � � � ∧ zk; w1 ∧ � � � ∧ wkÞ ¼ detijðzi; wjÞ: ðB6Þ

The last line is just the topological charge of ϕ as a GrkðNÞ
field. Our claim is thus proved.
Back to the lattice, we see with the help of formula (B6)

that the Berg–Lüscher definition (B1) (replacing there
CPðN − 1Þ by Pð∧k CNÞ and ϕx by Φx) gives the desired
definition of the topological charge for lattice GrkðNÞ
fields ϕx as

expð2πiqpÞ ¼
Y

hxyi∈p

detϕx
†ϕy

j detϕx
†ϕyj

: ðB7Þ
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For completeness, we note that it is possible to give an
expression in terms of the projector-valued field Px:

expð2πiqpÞ ¼
Tr ∧k Px· ∧k Py· ∧k Pz

jTr ∧k Px· ∧k Py· ∧k Pzj
; ðB8Þ

where ∧k Px is the operator on ∧k CN induced by the
operator Px on CN .

APPENDIX C: CONTINUUM PRESENTATION OF
THE GrkðNÞ MODEL ANOMALIES

This appendix reviews the continuum presentation of
the mixed anomaly in the two-dimensional GrkðNÞ model
between PSUðNÞ symmetry and charge conjugation C [67],
which the lattice presentation in the main text mirrors
closely. The analysis is very similar to that of the two-
dimensional CPðN − 1Þ model [39,77–79].
We shall work with the continuum action

S ¼
Z

jdϕ − ϕaj2 þ θ

2π

Z
Trda: ðC1Þ

To detect the mixed anomaly, we shall need to activate a
background gauge field for the PSUðNÞ symmetry, which
can be regarded as a pair of fields consisting of a UðNÞ
gauge field A and a U(1) 2-form gauge field B that satisfy
the constraint NB ¼ TrdA [82]. (In our conventions, B is
pure imaginary.) This pair transforms under a generalized
gauge transformation of the form

A ↦ gAg−1 þ gdg−1 þ λ1N; B ↦ Bþ dλ ðC2Þ

where g is a UðNÞ-valued function and λ is a U(1) 1-form
gauge field. To couple these background fields to the
dynamical fields in a gauge invariant fashion, we replace
the action by

S̃ ¼
Z

jdϕþ Aϕ − ϕaj2 þ θ

2π

Z
Trðda − B1kÞ: ðC3Þ

This is invariant under the transformation (C2) of the
background fields provided we also make the following
transformation on the dynamical fields:

ϕ ↦ gϕ; a ↦ aþ λ1k: ðC4Þ

It is now straightforward to find that the partition function
in the presence of the background fields satisfies

Z̃½A; B; θ þ 2π� ¼ Z̃½A; B; θ� expðkZ
BÞ; ðC5Þ

which indicates a mixed anomaly between the PSUðNÞ
symmetry and the 2π-periodicity in θ. An important

dynamical consequence of this result is that the theory
cannot be trivially gapped for all values of θ ∈ ½0; 2π�.
To go further, we consider the charge conjugation

symmetry at θ ¼ 0; π. Charge conjugation acts by complex
conjugating all fields:

C∶ϕ↦ϕ�; a↦a�; A↦A�; B↦B�: ðC6Þ

But in the action, complex conjugating the fields is
equivalent to reversing the sign of θ; i.e.,

S̃½ϕ�; a�; A�; B�; θ� ¼ S̃½ϕ; a; A; B;−θ� ðC7Þ

Thus, at θ ¼ 0, charge conjugation leaves the partition
function invariant, while at θ ¼ π, it is equivalent to
shifting θ by −2π, which by (C5) causes the partition
function to pick up the phase factor expð−k R BÞ:

C∶
�
Z̃½A;B; θ ¼ 0� ↦ Z̃½A;B; θ ¼ 0�;
Z̃½A;B; θ ¼ π� ↦ Z̃½A; B; θ ¼ π� expð−k R BÞ: ðC8Þ

From this, we see that at θ ¼ 0, there is no anomaly, while
at θ ¼ π, there may or may not be an anomaly. The reason
we cannot yet conclude that there is an anomaly at θ ¼ π is
that we have not yet considered the most general procedure
of gauging PSUðNÞ. Said differently, we are free to add to
the action any gauge-invariant local “counterterm” depend-
ing only on the background fields. To have a genuine
anomaly, it must be impossible to choose a counterterm that
restores the symmetry.
Suffice it to say, the only candidate for such a counter-

term is of the form p
R
B with p ∈ ZN . If we therefore take

for the partition function

Z̃0 ≡ Z̃ expðpZ
BÞ; ðC9Þ

then we shall have

C∶
�
Z̃0½A;B;0�↦ Z̃0½A;B;0�expf−2pR Bg;
Z̃0½A;B;π�↦ Z̃0½A;B;π�expf−ð2pþkÞR Bg: ðC10Þ

Now, if there were a choice of p such that C invariance held
at both θ ¼ 0 and θ ¼ π, that is, if there were an integer p
such that 2p ¼ 0 mod N and 2pþ k ¼ 0 mod N, then
we would have k ¼ 0 mod N, which is a contradiction
(1 ≤ k ≤ N − 1). In fact, with a slightly more detailed
argument [67], we find the following cases:
(1) If N is even and k is odd, there is no p that can

restore C invariance at θ ¼ π, so we have a genuine
anomaly. To see this, note that if there were such a p
with 2pþ k ¼ 0 mod N, then since N is even, we
would have 2pþ k even. But this would then imply
that 2p was odd, since k is odd—contradiction.
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(2) Otherwise, it is possible to choose p such that C
invariance is restored at θ ¼ π. Indeed,
(i) for N even and k even, choose p ¼ N − 1

2
k,

(ii) for N odd and k even, choose p ¼ N − 1
2
k,

(iii) for N odd and k odd, choose p ¼ 1
2
ðN − kÞ.

But as we have already seen, we cannot repair C invariance
at θ ¼ π without spoiling it at θ ¼ 0. In these cases,
therefore, while we do not have a genuine anomaly, we
do have a global inconsistency [39,68,69].
From this, we can make the following inferences about the
dynamics: In the cases with a genuine anomaly, the theory
cannot be trivially gapped at θ ¼ π. In the cases with global
inconsistency, there must exist some value of θ ∈ ½0; π� at
which the theory is not trivially gapped.

APPENDIX D: THE GrkðNÞ MODEL FROM
AN SUðNÞ SPIN CHAIN

In this appendix, we show that the two-dimensional
GrkðNÞ model with a θ term arises as the large distance
effective field theory of the antiferromagnetic SUðNÞ spin
chain (see Fig. 4) given by the Hamiltonian

H ¼ J−
X
n

SβαðnÞS̄αβðnÞ þ Jþ
X
n

S̄αβðnÞSβαðnþ 1Þ: ðD1Þ

where the Sβα and S̄αβ are the SUðNÞ spin operators in the

ðk; pÞ and ðk; pÞ representations, respectively. (By the
ðk; pÞ representation, we mean the representation corre-
sponding to the rectangular Young tableau with k rows and
p columns.)
For Jþ ¼ J−, this was studied in Ref. [70], and in

particular the result θ ¼ πp was found. Our goal here is to
show that by staggering the couplings, one should be able
to achieve arbitrary values of θ. This derivation generalizes
a similar derivation for the CPðN − 1Þmodel in appendix B
of Ref. [83].

1. Coherent states

Introduce N × k harmonic oscillators

½aαi; a†jβ� ¼ δαβδ
i
j; ðD2Þ

where α; β ¼ 1;…; N, i; j ¼ 1;…; k, to represent the
SUðNÞ spin operators by

Sβα ¼ a†iαa
βi: ðD3Þ

The ðk; pÞ representation of SUðNÞ is given by the sub-
space on which

Nj
i ≡ a†iαa

αj ¼ pδji : ðD4Þ

For any N × k complex matrix ϕ ¼ ðϕαiÞ, the operator

Φ≡ ðk!Þ−1
2a†i1α1 � � � a†ikαkϵi1���ikϕα11 � � �ϕαkk

¼ ðk!Þ−1
2 detða†ϕÞ: ðD5Þ

satisfies ½Nj
i ;Φ� ¼ δji , so that Φj0i belongs to ðk; 1Þ. More

generally, we have

½Nj
i ;Φp� ¼ pδjiΦp; ðD6Þ

so that Φpj0i is in the representation ðk; pÞ.
We define coherent states for the representation ðk; pÞ by

jϕi≡ ðp!Þ−1
2Φpj0i; ðD7Þ

where ϕ is required to satisfy ϕ†ϕ ¼ 1k. It can be verified
that these satisfy the following properties:

hϕjϕ0i ¼ detðϕ†ϕ0Þp; ðD8Þ

hϕjSβαjϕi ¼ p
k
ðϕϕ†Þβα ðD9Þ

Z
dΩϕjϕihϕj ¼ I: ðD10Þ

Let us now compute the coherent state path integral
representation for a single spin ðk; pÞ with Hamiltonian
H ¼ JαβS

β
α. The transition amplitude for infinitesimal

imaginary time interval δτ in the coherent state basis is
given by

hϕðτÞjðI − δτHÞjϕðτ − δτÞi
¼ hϕðτÞjϕðτ − δτÞi − δτhϕðτÞjHjϕðτ − δτÞi: ðD11Þ

The second term simply gives p
k J

α
βðϕϕ†Þβα, while the first

term gives

hϕðτÞjϕðτ − δτÞi ¼ det½ϕðτÞ†ϕðτ − δτÞ�p
≈ det½1 − δτϕðτÞ†∂τϕðτÞ�p
≈ ½1 − δτTrϕðτÞ†∂τϕðτÞ�p
≈ 1 − pδτTrϕðτÞ†∂τϕðτÞ: ðD12Þ

FIG. 4. One-dimensional SUðNÞ Heisenberg antiferromagnetic
chain with staggered couplings. The even and odd sites have
conjugate representations of SUðNÞ as shown in Fig. 1, and the
bonds have alternating strength J� ¼ Jð1� γÞ.
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We thus find the coherent state path integral Tre−βH ¼R
e−SDϕDϕ† where

L ¼ pTrðϕ†
∂τϕÞ þ

p
k
Jαβðϕϕ†Þβα: ðD13Þ

We will also need the coherent states for the conjugate
representation ðk; pÞ. Thus, we introduce an additional set
of N × k harmonic oscillators,

½ā†iα; āβj� ¼ δαβδ
i
j; ðD14Þ

in terms of which SUðNÞ spin operators may be given by

S̄αβ ¼ −ā†iαāβi: ðD15Þ

The corresponding coherent states jχ̄i are defined analo-
gously to (D7) and they satisfy the properties

hχ̄jχ̄0i ¼ detðχ̄†χ̄0Þp; ðD16Þ

hχ̄jS̄αβjχ̄i ¼ −
p
k
ðχχ†Þαβ; ðD17Þ

Z
dΩχ jχ̄ihχ̄j ¼ I on ðk; pÞ: ðD18Þ

The coherent state path integral for the single spin
Hamiltonian H ¼ JβαS̄αβ is obtained in the same way as
before, and one finds the Euclidean Lagrangian

L ¼ −pTrðχ†∂τχÞ −
p
k
Jβαðχχ†Þαβ: ðD19Þ

Note that this is simply the negative of (D13).

2. Large distance effective field theory

Returning now to the spin chain (D1), we obtain via the
coherent state path integral the Euclidean Lagrangian

L ¼
X
n

Trðpϕn
†
∂τϕn − pχn†∂τχnÞ

−
p2

k2
J−

X
n

jϕn
†χnj2 −

p2

k2
Jþ

X
n

jχn†ϕnþ1j2 ðD20Þ

We note that for Jþ ¼ J− this Lagrangian is invariant under
the offsite transformation

ϕn ↦ χn
�; χn ↦ ϕnþ1

�; ðD21Þ

which we shall later interpret as charge conjugation. To
obtain the large-distance effective field theory, we expand
about a slowly varying Néel configuration by writing

ϕn ¼ ϕðxÞ; ðD22Þ

χn ¼
�
1þ 1

k
jϵðxÞj2

�1
2

ϕðxÞ þ ϵðxÞ: ðD23Þ

Here, ϕðxÞ is taken to be a slowly varying background, ϵðxÞ
a rapidly varying fluctuation, and we have introduced the
continuum coordinate x ¼ an, a being the lattice spacing.
Inserting this into the Lagrangian, and keeping only terms
at most second order in ϵ and ∂, we find

aL ¼ p2

k2
a2JþjDxϕj2 þ

p2

k2
ðJ− þ JþÞjϵj2

− Tr

�
ϵ†
�
p2

k2
aJþDxϕþ pDτϕ

��

− Tr

��
p2

k2
aJþDxϕ

† − pDτϕ
†
�
ϵ

�
; ðD24Þ

where Dμϕ≡ ∂μϕ − ϕðϕ†
∂μϕÞ. Integrating out the fluc-

tuation field ϵ yields

L ¼ a
p2

k2
J−Jþ

J− þ Jþ
jDxϕj2 þ

1

a
k2

J− þ Jþ
jDτϕj2

þ p
Jþ

J− þ Jþ
ϵμνTrðDμϕ

†DνϕÞ: ðD25Þ

This is the continuum Lagrangian of the GrkðNÞ model
with coupling given by

1

g2
¼ p

ðJ−JþÞ12
J− þ Jþ

¼ 1

2
p½ð1 − γÞð1þ γÞ�12 ðD26Þ

with a θ parameter given by

θ ¼ 2πp
Jþ

J− þ Jþ
¼ πpð1þ γÞ; ðD27Þ

where we have introduced the staggering parameter γ
by Jþ=J− ¼ ð1þ γÞ=ð1 − γÞ. For γ ¼ 0, we recover the
result θ ¼ πp obtained in Ref. [70]. Thus the presence of
the lattice symmetry (D21) exactly coincides with the
presence of charge conjugation symmetry in the effective
field theory.

LATTICE REGULARIZATIONS OF θ VACUA: … PHYS. REV. D 107, 014507 (2023)

014507-15



[1] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum com-
putation of scattering in scalar quantum field theories,
Quantum Inf. Comput. 14, 1014 (2014).

[2] S. P. Jordan, K. S. Lee, and J. Preskill, Quantum algorithms
for quantum field theories, Science 336, 1130 (2012).

[3] K. Yeter-Aydeniz, E. F. Dumitrescu, A. J. McCaskey, R. S.
Bennink, R. C. Pooser, and G. Siopsis, Scalar quantum field
theories as a benchmark for near-term quantum computers,
Phys. Rev. A 99, 032306 (2019).

[4] N. Klco and M. J. Savage, Digitization of scalar fields for
quantum computing, Phys. Rev. A 99, 052335 (2019).

[5] S. Chandrasekharan, B. Scarlet, and U. J. Wiese, From spin
ladders to the 2D O(3) model at non-zero density, Comput.
Phys. Commun. 147, 388 (2002).

[6] R. Brower, S. Chandrasekharan, S. Riederer, and U. J.
Wiese, D-theory: Field quantization by dimensional reduc-
tion of discrete variables, Nucl. Phys. B693, 149 (2004).

[7] B. B. Beard, M. Pepe, S. Riederer, and U.-J. Wiese, Efficient
cluster algorithm for CP(N-1) models, Comput. Phys.
Commun. 175, 629 (2006).

[8] C. Laflamme, W. Evans, M. Dalmonte, U. Gerber, H. Mejía-
Díaz, W. Bietenholz, U. J. Wiese, and P. Zoller, CP(N-1)
quantum field theories with alkaline-earth atoms in optical
lattices, Ann. Phys. (Amsterdam) 370, 117 (2016).

[9] W. Evans, U. Gerber, M. Hornung, and U. J. Wiese, SU(3)
quantum spin ladders as a regularization of the CP(2) model
at non-zero density: From classical to quantum simulation,
Ann. Phys. (Amsterdam) 398, 94 (2018).

[10] F. Bruckmann, K. Jansen, and S. Kühn, O(3) nonlinear
sigma model in $1þ 1$ dimensions with matrix product
states, Phys. Rev. D 99, 074501 (2019).

[11] NuQS Collaboration, A. Alexandru, P. F. Bedaque, H.
Lamm, and S. Lawrence, σModels on Quantum Computers,
Phys. Rev. Lett. 123, 090501 (2019).

[12] A. Alexandru, P. F. Bedaque, A. Carosso, and A. Sheng,
Universality of a truncated sigma-model, Phys. Lett. B 832,
137230 (2022).

[13] A. Alexandru, P. F. Bedaque, R. Brett, and H. Lamm,
Spectrum of digitized QCD: Glueballs in a sð1080Þ gauge
theory, Phys. Rev. D 105, 114508 (2022).

[14] S. Chandrasekharan and U. J. Wiese, Quantum link models:
A discrete approach to gauge theories, Nucl. Phys. B492,
455 (1997).

[15] R. Brower, S. Chandrasekharan, and U. J. Wiese, QCD as a
quantum link model, Phys. Rev. D 60, 094502 (1999).

[16] I. Raychowdhury and J. R. Stryker, Solving Gauss’s law on
digital quantum computers with loop-string-hadron digiti-
zation, Phys. Rev. Res. 2, 033039 (2020).

[17] R. Anishetty, M. Mathur, and I. Raychowdhury, Prepotential
formulation of SUð3Þ lattice gauge theory, J. Phys. A 43,
035403 (2009).

[18] D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler,
U.-J. Wiese, and P. Zoller, Atomic Quantum Simulation of
u (n) and su (n) Non-Abelian Lattice Gauge Theories, Phys.
Rev. Lett. 110, 125303 (2013).

[19] E. Zohar, J. I. Cirac, and B. Reznik, Quantum simulations
of lattice gauge theories using ultracold atoms in optical
lattices, Rep. Prog. Phys. 79, 014401 (2015).

[20] M. C. Banuls, K. Cichy, J. I. Cirac, K. Jansen, and S. Kühn,
Efficient Basis Formulation for (1þ 1)-Dimensional

su (2) Lattice Gauge Theory: Spectral Calculations with
Matrix Product States, Phys. Rev. X 7, 041046 (2017).

[21] C. Muschik, M. Heyl, E. Martinez, T. Monz, P. Schindler, B.
Vogell, M. Dalmonte, P. Hauke, R. Blatt, and P. Zoller, U (1)
wilson lattice gauge theories in digital quantum simulators,
New J. Phys. 19, 103020 (2017).

[22] T. V. Zache, F. Hebenstreit, F. Jendrzejewski, M. Oberthaler,
J. Berges, and P. Hauke, Quantum simulation of lattice
gauge theories using Wilson fermions, Quantum Sci.
Technol. 3, 034010 (2018).

[23] A. Alexandru, P. F. Bedaque, S. Harmalkar, H. Lamm, S.
Lawrence, and N. C. Warrington, N. Collaboration et al.,
Gluon field digitization for quantum computers, Phys. Rev.
D 100, 114501 (2019).

[24] J. Bender and E. Zohar, Gauge redundancy-free formulation
of compact qed with dynamical matter for quantum and
classical computations, Phys. Rev. D 102, 114517 (2020).

[25] Z. Davoudi, M. Hafezi, C. Monroe, G. Pagano, A. Seif,
and A. Shaw, Towards analog quantum simulations of lattice
gauge theories with trapped ions, Phys. Rev. Res. 2, 023015
(2020).

[26] N. Klco, M. J. Savage, and J. R. Stryker, Su (2) non-Abelian
gauge field theory in one dimension on digital quantum
computers, Phys. Rev. D 101, 074512 (2020).

[27] A. F. Shaw, P. Lougovski, J. R. Stryker, and N. Wiebe,
Quantum algorithms for simulating the lattice Schwinger
model, Quantum 4, 306 (2020).

[28] V. Kasper, T. V. Zache, F. Jendrzejewski, M. Lewenstein,
and E. Zohar, Non-abelian gauge invariance from dynamical
decoupling, arXiv:2012.08620.

[29] A. J. Buser, H. Gharibyan, M. Hanada, M. Honda, and
J. Liu, Quantum simulation of gauge theory via orbifold
lattice, J. High Energy Phys. 01 (2021) 34.

[30] J. F. Haase, L. Dellantonio, A. Celi, D. Paulson, A. Kan, K.
Jansen, and C. A. Muschik, A resource efficient approach
for quantum and classical simulations of gauge theories in
particle physics, Quantum 5, 393 (2021).

[31] S. Caspar and H. Singh, From Asymptotic Freedom to θ
Vacua: Qubit Embeddings of the o(3) Nonlinear σ Model,
Phys. Rev. Lett. 129, 022003 (2022).

[32] H. Singh, Qubit regularized OðNÞ nonlinear sigma models,
Phys. Rev. D 105, 114509 (2022).

[33] J. Zhou, H. Singh, T. Bhattacharya, S. Chandrasekharan,
and R. Gupta, Spacetime symmetric qubit regularization of
the asymptotically free two-dimensional $Oð4Þ$ model,
Phys. Rev. D 105, 054510 (2022).

[34] T. Bhattacharya, A. J. Buser, S. Chandrasekharan, R. Gupta,
and H. Singh, Qubit Regularization of Asymptotic Freedom,
Phys. Rev. Lett. 126, 172001 (2021).

[35] H. Singh and S. Chandrasekharan, A qubit regularization of
the Oð3Þ sigma model, Phys. Rev. D 100, 054505 (2019).

[36] W. Bietenholz, A. Pochinsky, and U.-J. Wiese, Testing
Haldane’s conjecture in the O(3) model by a meron cluster
simulation, Nucl. Phys. B, Proc. Suppl. 47, 727 (1996).

[37] P. de Forcrand, M. Pepe, and U. J. Wiese, Walking near a
conformal fixed point: The 2-d oð3Þ model at θ ≈ π as a test
case, Phys. Rev. D 86, 075006 (2012).

[38] M. Bögli, F. Niedermayer, M. Pepe, and U.-J. Wiese, Non-
trivial ϑ-vacuum effects in the 2-d O(3) model, J. High
Energy Phys. 04 (2012) 117.

MENDEL NGUYEN and HERSH SINGH PHYS. REV. D 107, 014507 (2023)

014507-16

https://doi.org/10.26421/QIC14.11-12-8
https://doi.org/10.1126/science.1217069
https://doi.org/10.1103/PhysRevA.99.032306
https://doi.org/10.1103/PhysRevA.99.052335
https://doi.org/10.1016/S0010-4655(02)00311-9
https://doi.org/10.1016/S0010-4655(02)00311-9
https://doi.org/10.1016/j.nuclphysb.2004.06.007
https://doi.org/10.1016/j.cpc.2006.06.007
https://doi.org/10.1016/j.cpc.2006.06.007
https://doi.org/10.1016/j.aop.2016.03.012
https://doi.org/10.1016/j.aop.2018.09.002
https://doi.org/10.1103/PhysRevD.99.074501
https://doi.org/10.1103/PhysRevLett.123.090501
https://doi.org/10.1016/j.physletb.2022.137230
https://doi.org/10.1016/j.physletb.2022.137230
https://doi.org/10.1103/PhysRevD.105.114508
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1103/PhysRevD.60.094502
https://doi.org/10.1103/PhysRevResearch.2.033039
https://doi.org/10.1088/1751-8113/43/3/035403
https://doi.org/10.1088/1751-8113/43/3/035403
https://doi.org/10.1103/PhysRevLett.110.125303
https://doi.org/10.1103/PhysRevLett.110.125303
https://doi.org/10.1088/0034-4885/79/1/014401
https://doi.org/10.1103/PhysRevX.7.041046
https://doi.org/10.1088/1367-2630/aa89ab
https://doi.org/10.1088/2058-9565/aac33b
https://doi.org/10.1088/2058-9565/aac33b
https://doi.org/10.1103/PhysRevD.100.114501
https://doi.org/10.1103/PhysRevD.100.114501
https://doi.org/10.1103/PhysRevD.102.114517
https://doi.org/10.1103/PhysRevResearch.2.023015
https://doi.org/10.1103/PhysRevResearch.2.023015
https://doi.org/10.1103/PhysRevD.101.074512
https://doi.org/10.22331/q-2020-08-10-306
https://arXiv.org/abs/2012.08620
https://doi.org/10.1007/JHEP09(2021)034
https://doi.org/10.22331/q-2021-02-04-393
https://doi.org/10.1103/PhysRevLett.129.022003
https://doi.org/10.1103/PhysRevD.105.114509
https://doi.org/10.1103/PhysRevD.105.054510
https://doi.org/10.1103/PhysRevLett.126.172001
https://doi.org/10.1103/PhysRevD.100.054505
https://doi.org/10.1016/0920-5632(96)00160-0
https://doi.org/10.1103/PhysRevD.86.075006
https://doi.org/10.1007/JHEP04(2012)117
https://doi.org/10.1007/JHEP04(2012)117


[39] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg,
Theta, time reversal, and temperature, J. High Energy Phys.
05 (2017) 091.

[40] X.-G. Wen, Classifying gauge anomalies through symmetry-
protected trivial orders and classifying gravitational anoma-
lies through topological orders, Phys. Rev. D 88, 045013
(2013).

[41] S. M. Kravec and J. McGreevy, Gauge Theory Generaliza-
tion of the Fermion Doubling Theorem, Phys. Rev. Lett.
111, 161603 (2013).

[42] S. Kravec, J. McGreevy, and B. Swingle, All-fermion
electrodynamics and fermion number anomaly inflow,
Phys. Rev. D 92, 085024 (2015).

[43] J. Wang and X.-G. Wen, Non-Perturbative Regularization of
1þ 1D Anomaly-Free Chiral Fermions and Bosons: On the
equivalence of anomaly matching conditions and boundary
gapping rules, arXiv:1307.7480.

[44] C.-M. Jian, Z. Bi, and C. Xu, Lieb-Schultz-Mattis theorem
and its generalizations from the perspective of the symmetry
protected topological phase, Phys. Rev. B 97, 054412
(2018).

[45] G. Y. Cho, C.-T. Hsieh, and S. Ryu, Anomaly manifestation
of Lieb-Schultz-Mattis theorem and topological phases,
Phys. Rev. B 96, 195105 (2017).

[46] S. Catterall, J. Laiho, and J. Unmuth-Yockey, Topological
fermion condensates from anomalies, J. High Energy Phys.
10 (2018) 013.

[47] S. Catterall and A. Pradhan, Induced topological gravity
and anomaly inflow from Kähler-Dirac fermions in odd
dimensions, Phys. Rev. D 106, 014509 (2022).

[48] S. Catterall, J. Laiho, and J. Unmuth-Yockey, Kähler-Dirac
fermions on Euclidean dynamical triangulations, Phys. Rev.
D 98, 114503 (2018).

[49] N. Butt, S. Catterall, A. Pradhan, and G. C. Toga, Anomalies
and symmetric mass generation for Kähler-Dirac fermions,
Phys. Rev. D 104, 094504 (2021).

[50] S. Catterall, ’t Hooft anomalies for staggered fermions,
arXiv.2209.03828.

[51] H. Neuberger, Exactly massless quarks on the lattice,
Phys. Lett. B 417, 141 (1998).

[52] M. Lüscher, Exact chiral symmetry on the lattice and the
Ginsparg-Wilson relation, Phys. Lett. B 428, 342 (1998).

[53] P. Hasenfratz, V. Laliena, and F. Niedermayer, The index
theorem in QCD with a finite cut-off, Work supported in
part by Schweizerischer Nationalfonds, by Iberdrola, Cien-
cia y Tecnologia, España and by the Ministerio de Educa-
cion y Cultura, España.1, Phys. Lett. B 427, 125 (1998).

[54] D. B. Kaplan, Chiral symmetry and lattice fermions, arXiv.
0912.2560.

[55] D. B. Kaplan, A method for simulating chiral fermions on
the lattice, Phys. Lett. B 288, 342 (1992).

[56] T. Sulejmanpasic and C. Gattringer, Abelian gauge theories
on the lattice: θ-Terms and compact gauge theory with(out)
monopoles, Nucl. Phys. B943, 114616 (2019).

[57] P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, A
modified Villain formulation of fractons and other exotic
theories, J. Math. Phys. (N.Y.) 62, 102301 (2021).

[58] M. Anosova, C. Gattringer, and T. Sulejmanpasic, Self-dual
U(1) lattice field theory with a θ-term, J. High Energy Phys.
04 (2022) 120.

[59] M. Anosova, C. Gattringer, N. Iqbal, and T. Sulejmanpasic,
Phase structure of self-dual lattice gauge theories in 4d,
J. High Energy Phys. 06 (2022) 149.

[60] F. D. M. Haldane, Nonlinear Field Theory of Large Spin
Heisenberg Antiferromagnets. Semiclassically Quantized
Solitons of the One-Dimensional Easy Axis Neel State,
Phys. Rev. Lett. 50, 1153 (1983).

[61] F. D. M. Haldane, Continuum dynamics of the 1-D Heisen-
berg antiferromagnetic identification with the O(3) non-
linear sigma model, Phys. Lett. 93A, 464 (1983).

[62] I. Affleck and F. D. M. Haldane, Critical theory of quantum
spin chains, Phys. Rev. B 36, 5291 (1987).

[63] B. B. Beard, M. Pepe, S. Riederer, and U.-J. Wiese,
Study of CPðn − 1Þ θ-Vacua by Cluster Simulation of
SUðnÞ Quantum Spin Ladders, Phys. Rev. Lett. 94, 010603
(2005).

[64] I. Affleck, Field Theory Methods and Quantum Critical
Phenomena, in Les Houches Summer School in Theoretical
Physics: Fields, Strings, Critical Phenomena (1988),
https://inspirehep.net/literature/265102.

[65] B. Berg and M. Lüscher, Definition and statistical distri-
butions of a topological number in the lattice O(3) σ-model,
Nucl. Phys. B190, 412 (1981).

[66] M. Lüscher, Topology of lattice gauge fields, Commun.
Math. Phys. 85, 39 (1982).

[67] G. V. Dunne, Y. Tanizaki, and M. Ünsal, Quantum distil-
lation of Hilbert spaces, Semi-classics and anomaly match-
ing, J. High Energy Phys. 08 (2018) 068.

[68] Y. Kikuchi and Y. Tanizaki, Global inconsistency, ’t Hooft
anomaly, and level crossing in quantum mechanics, Prog.
Theor. Exp. Phys. 2017, 113B05 (2017).

[69] Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifunda-
mental gauge theories at finite topological angles, J. High
Energy Phys. 06 (2017) 102.

[70] N. Read and S. Sachdev, Some features of the phase
diagram of the square lattice SU(N) antiferromagnet,
Nucl. Phys. B316, 609 (1989).

[71] G. Sierra, On the application of the nonlinear sigma model
to spin chains and spin ladders, Lect. Notes Phys. 478, 137
(1997).

[72] G. Sierra, The nonlinear sigma model and spin ladders,
J. Phys. A 29, 3299 (1996).

[73] M. A. Martín-Delgado, R. Shankar, and G. Sierra, Phase
Transitions in Staggered Spin Ladders, Phys. Rev. Lett. 77,
3443 (1996).

[74] N. Read and S. Sachdev, Large-N Expansion for Frustrated
QuantumAntiferromagnets, Phys. Rev. Lett. 66, 1773 (1991).

[75] N. Read and S. Sachdev, Valence-Bond and Spin-Peierls
Ground States of Low-Dimensional Quantum Antiferro-
magnets, Phys. Rev. Lett. 62, 1694 (1989).

[76] K. Harada, N. Kawashima, and M. Troyer, Néel and
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