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Locally constant crossed field approximation (LCFA) is a powerful tool for theoretical and numerical
studies of various strong field quantum electrodynamical effects. We explore this approximation in detail
for photon emission by a spinless particle in a strong time-dependent electric field. This kind of
electromagnetic fields is of particular interest, because, in contrast to the comprehensively studied case of a
plane wave, they are not crossed. We develop an approach for calculating photon emission probability in a
generic time-dependent electric field, establish the range of applicability of LCFA, and calculate the
corrections to it.
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I. INTRODUCTION

Compton scattering has already been studied for almost
100 years since its discovery in 1923 [1]. However, the
interest in theoretical [2–18], numerical [19–26], and
experimental [27–33] research of this process has lately
significantly increased (see also the recent reviews [34,35]).
The reason is the appearance of a new generation of
powerful laser facilities, such as Astra Gemini [36] in
the UK, Hercules [37] in the USA, Apollon [38] in France,
ELI Beamlines [39,40] in Czech Republic, ELI NP [41,42]
in Romania, CoRELS [43] in Korea, SULF [44] in China,
and PEARL [45] in Russia (see the recent review of the
existing and forthcoming petawatt-class lasers in Ref. [46]).
These lasers are capable of producing strong fields with

dimensionless strength

a0 ¼
eE0

mω
≫ 1; ð1Þ

where −e,m are the electron charge and mass and E0 and ω
are the electric field amplitude and frequency (we use such

units that the speed of light c and Planck constant ℏ are
equal to unity). In such a field an electron absorbs many
photons while it radiates, and this regime is called the
nonlinear Compton scattering (NCS).
Upon the condition (1) NCS can be used as a bright

source of gamma rays [47–53], which have a great number
of potential applications, in particular in nuclear spectros-
copy [50,54] and medicine [55,56]. A fundamental physics
effect based on NCS is QED cascades [57–70], which are
avalanchelike processes developing when hard photons,
recurrently emitted due to NCS, are in turn converted into
electron-positron pairs in the same strong field.
The usualKlein-Nishina descriptionof theCompton effect

[71] is valid only if the electron interacts with a single photon
from the external field, that is, ifa0 ≪ 1 [72]. In the nonlinear
regime (1) one has to take into account the interactionwith an
arbitrary number of photons. This can be accomplished
analytically only if a complete set of analytical solutions to
the Dirac equation in the external field is derivable [73].
This approach has two issues. First, the Dirac equation

admits analytical solutions only in a few particular over-
simplified cases of external electromagnetic fields, such
as the Coulomb, constant uniform, and plane wave fields
[74–76], while the field configurations encountered in
realistic laser-matter interactions are much more intricate.
Second, even if such solutions can be constructed, the photon
emission probability is represented bymultiple-fold integrals
over them, which are very challenging for calculations.
Fortunately, if the field is as strong as in (1) (formulation

of more precise conditions is one of the goals of this paper),
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then both issues can be overcome by using the locally
constant crossed field approximation (LCFA) [72,77]. The
essence of this approximation is that (i) the formation scale
of NCS ∼ 1=a0 is so small that an external field can be
considered as constant over it; (ii) the electron in such a
strong external field is typically ultrarelativistic, so that it
perceives the field in a proper reference frame as almost
crossed (jE2 − B2j ≪ E2, jEBj ≪ E2). Because of (i) and
(ii), the emission probability in an arbitrary strong field is
about the same as in a constant crossed field (CCF) [72,77],
which depends on the Lorentz invariant quantum parameters

χ ¼
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνPνÞ2

q
m3

; χ0 ¼
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνP0νÞ2

q
m3

;

ϰ ¼
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνkνÞ2

q
m3

; ð2Þ

containing the values of the electromagnetic tensor FμνðxÞ
at a local position of the electron. Here Pμ and P0μ are the
kinetic four-momenta of the electron before and after the
emission and kμ is the four-momentum of the emitted
photon.
Photon emission probability in a CCF [72,77] is quite

handy and is implemented in the numerical codes, e.g., in
EPOCH [78], OSIRIS [79], and SMILEI [80] (see also the
review [81] on the numerical implementation of strong field
QED processes). However, this approach relies on LCFA,
which has a limited range of applicability. For example, it
always fails for soft photon emission (small ϰ’s), as well in
the wings of laser pulses (where a0 ≪ 1). Therefore, it is
very important to determine the limits of applicability of
LCFA precisely, as well as the corrections to LCFA when
approaching or even going beyond these limits.
LCFA has been proven to be reliable in a strong field

limit for some specific external field configurations, nota-
bly for a monochromatic plane wave [72,77] and magnetic
fields [82]. It was also investigated for certain fields close to
a plane wave, such as focused laser beams [5,15]. However,
the list of potentially interesting field configurations is much
wider. In particular, colliding laser pulses produce standing-
wave-like fields that are more favorable for QED cascades
onset than a single pulse [57,58,62,64,66,70]. In an electric
field antinode of the standing wave the magnetic field
vanishes, and a purely time-dependent electric field serves
a model capable for quantitative estimates [58,60,63].
The corrections to LCFA in a plane wave were consid-

ered in [8,21,83] (see also [84] for an alternative approach
based on accounting for variation of the curvature of the
classical electron trajectory), and in [85] they were calcu-
lated in a pure magnetic field. Furthermore, since the
corrections were found to diverge in the limit ϰ → 0, the
authors of Refs. [8,21] suggested the extensions of LCFA
for plane-wave-like fields to restore a reasonable agreement
with the exact result in the whole range of the emitted

photon energy. Besides, a recently developed locally
monochromatic approximation [13], which works well
for sufficiently long but not necessarily strong plane wave
pulses, was shown to reduce to LCFA in a strong field limit.
However, it is worth emphasizing that, as of now, a

rigorous derivation of LCFA in a general setting is still
missing. Moreover, sometimes the validity of LCFA for
strong fields is even doubted in general or questioned for
particular configurations of external field (see, e.g., [2,10]).
This is of both fundamental and practical importance, the
latter because of the mentioned extensive implementation
of LCFA in the modern numerical codes.
Here we investigate NCS in a uniform time-dependent

electric field with a focus on the validity of LCFA. The
particular case of such a configuration, a uniformly rotating
electric field, was considered in Refs. [2,7] (see also [3,4]).
Note, however, that the NCS probability in [7] was
considered for a particular initial condition only, which
restricted the analysis in this case. On the contrary, our goal
is the calculation of the NCS probability in a generic time-
dependent electric field and for arbitrary initial conditions.
This allows one to establish a range of applicability for
LCFA, as well as to calculate the corrections to it. Note that,
unlike [83], our approach resolves the corrections to LCFA
over the emission angles.
For the sake of simplicity and clarity, here we restrict our

consideration to a field, which is periodic in time and is
confined to a plane (the uniformly rotating electric field
is a particular example of such a configuration). Also, to
avoid technical complications from the Dirac gamma matri-
ces algebra, we present our method for scalar QED.
Generalization to standard spinor QED is straightforward
and will be reported elsewhere.
We start with a general consideration of the NCS in scalar

QED in Sec. II. Since the Klein-Gordon equation cannot be
solved exactly in an arbitrary external time-dependent
electric field, we focus on Wentzel–Kramers–Brillouin
(WKB) solutions and show their validity for the field strength
of typical interest for this process. Next, we derive the LCFA
probability distribution for photon emission by a scalar
particle in Sec. III and establish its conditions of applicability
in Sec. IV. Section V includes the discussion of the
corrections to LCFA as well as testing our analytical results
against the numerical calculations for the particular case of a
uniformly rotating electric field. The total emission proba-
bility is considered in Sec. VI, and the conclusion is given in
Sec. VII. Technical details are collected in Appendix A, and
the derived analytical expression for the second-order
correction to LCFA is presented in Appendix B.

II. PHOTON EMISSION BY A SCALAR PARTICLE
IN A TIME-DEPENDENT ELECTRIC FIELD

Let us consider a spinless “electron” represented by a
scalar field Φ interacting with an electromagnetic field.
Following [73], we split the total field into Atot

μ ¼ Aμ þ Aμ,
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where AμðxÞ is the quantized radiation field (representing
photons) andAμðωtÞ is a purely time-dependent background,
assumed periodicwith the frequencyω. ScalarQED in such a
background is governed by the Lagrangian [86]

L ¼ ðDμΦÞþðDμΦÞ −m2ΦþΦ −
1

4
F2
μν −

1

4
F 2

μν;

whereDμ ¼ ∂μ − ieAtot
μ is the gauge covariant derivative and

F μν ¼ ∂μAν − ∂νAμ andFμν ¼ ∂μAν − ∂νAμ are the respec-
tive field strength tensors. The interaction with the radiation
field is represented by the part

Lint ¼ ieAμðΦþ∇μΦ − ð∇μΦÞþΦÞ þ e2AμAμΦþΦ; ð3Þ

where ∇μ ¼ ∂μ − ieAμ is the part of the gauge covariant
derivative including the external field only. The photon and
scalar fields are quantized in the Furry picture

AμðxÞ ¼
Z

dk

ð2πÞ3=2 ffiffiffiffiffi
2k

p ðckϵμe−ikx þ cþk ϵ
�
μeikxÞ; ð4Þ

ΦðxÞ ¼
Z

dp

ð2πÞ3=2 ðapΦp þ bþpΦ�
pÞ; ð5Þ

where kμ ¼ fk;kg and ϵμ are the photon four-momentum
and polarization, respectively, k ¼ jkj;p is the scalar particle
generalized momentum. By ck and cþk we denote the
annihilation and creation operators for photons, while ap,
aþp andbp,bþp stand for such operators for scalar particles and
antiparticles, respectively. The scalar field modes Φp in
Eq. (5) are a complete set of solutions to the Klein-Gordon
equation in the external field Aμ

ð∇μ∇μ þm2ÞΦpðxÞ ¼ 0: ð6Þ

From now on, let us pass to the dimensionless time
variable t without changing the notation, ωt → t. As we
assume the background field is uniform, the gauge is fixed
by AμðtÞ ¼ f0;AðtÞg, so that by substitution ΦpðxÞ ¼
eiprϕpðtÞ Eq. (6) is reduced to

ϕ̈pðtÞ þ
E2ðtÞ
ω2

ϕpðtÞ ¼ 0; ð7Þ

where

EðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ðtÞ þm2

q
; PðtÞ ¼ p − eAðtÞ ð8Þ

represent the energy and the kinetic momentum of the
scalar particle, respectively.
As Eq. (7) cannot be solved exactly in a general

background, we proceed further by applying the WKB
approximation. The WKB solutions read

ϕð�Þ
p;WKB ≈

Cffiffiffiffiffiffiffiffiffiffiffi
2EðtÞp e∓

i
ω

R
t

−∞ Eðt0Þdt0 : ð9Þ

As it is well known, this approximation is valid as long
as E2 ≫ j _Ej, which in our case gives E3 ≫ ejEPj, where
E ¼ −ω _A is the electric field. Taking into account that
E ≳m; jPj, one concludes that the approximation (9) is
justified for arbitrary p if

E ≪ Ecr ≡m2

e
; ð10Þ

where Ecr ≈ 1.32 × 1016 V=cm is the QED critical field
[87,88]. This implies that the external field should not be so
strong as to induce pair production from the vacuum. It is
fair to state that in the context of all practical applications of
NCS this restriction is so weak that it can always be taken
for granted.
Following [72,77], we normalize the wave function (9)

of the incoming particles to a particles density n, so that the
normalization constant C ¼ ffiffiffi

n
p

for an incoming wave
function and C ¼ 1 for an outgoing one.
The scattering matrix element for the NCS to the leading

order reads

iT ¼ h0jap0cki
Z

Lintd4xaþp j0i; ð11Þ

where p and p0 are the generalized momenta of the scalar
particle before and after the photon emission.
Substituting Eqs. (3), (4), (5), and (9) into Eq. (11) and

integrating over d3x, we obtain

T ¼ ð2πÞ3e ffiffiffi
n

p
T δðp − p0 − kÞ; ð12Þ

where

T ¼
Z∞

−∞
e

i
ω½kt−

R
t

−∞ Eðt0Þdt0þ
R

t

−∞ E0ðt0Þdt0�

× ϵ�μ
PμðtÞ þ P0μðtÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðtÞE0ðtÞp dtffiffiffiffiffi

2k
p ð13Þ

is the process amplitude; PμðtÞ ¼ fEðtÞ;PðtÞg, P0μðtÞ ¼
fE0ðtÞ;P0ðtÞg, and the primed quantities differ from Eq. (8)
by replacing p → p0 therein.
We can rearrange Eq. (13) by taking into account the

periodicity of EðtÞ and PðtÞ in time. By introducing the
time-averaged energy

Kp ¼ 1

2π

Z2π

0

Eðt0Þdt0; ð14Þ
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the exponent in the integrand in (13) is cast into the
following form:

i
ω
ðk −Kp þKp0 Þt

þ i
ω

�
−
Zt

−∞
Eðt0Þdt0 þKptþ

Zt

−∞
E0ðt0Þdt0 −Kp0t

�
;

where the term in the square brackets is periodic. Then the
total emission amplitude T is rewritten as a sum of partial
emission amplitudes Ms, each corresponding to an absorp-
tion of s photons from the external field:

T ¼ 2π

ω

X
s

Mμ
sϵ�μδ

�
k
ω
þKp0

ω
−
Kp

ω
− s

�
; ð15Þ

where the periodic part of Eq. (13) was expanded into a
Fourier series. Here,

Mμ
s ¼ 1

2π
ffiffiffiffiffi
2k

p
Z2π

0

dthμðtÞefðtÞ; ð16Þ

and

fðtÞ ¼ i
ω

�
ktþ

Zt

0

ðE0ðt0Þ − Eðt0ÞÞdt0
�
;

hμðtÞ ¼ PμðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðtÞE0ðtÞp ; ð17Þ

where the latter employs the relation ϵμðPμ þ P0μÞ ¼
2ϵμPμ [7].
The total photon emission rate is obtained by integration

and summation of the modulus-squared matrix element
(11) over the final states:

W ¼
X
ϵ

Z
dp0

ð2πÞ3
dk

ð2πÞ3 jTj
2:

Since kμM
μ
s ¼ 0 on-shell, summation over polarization

states of the emitted photon is done by the usual sub-
stitution

P
ϵ ϵμϵ

�
ν → −ημν, where ημν is the Minkowski

metric tensor [86]. Thus we obtain

1

V4

dW
dk

¼ e2n
4π2ω

RðkÞ;

RðkÞ ¼ −
X
s

jMsj2δ
�
k
ω
þKp0

ω
−
Kp

ω
− s

�
; ð18Þ

where V4 is the spacetime interaction volume.

Note that for k;Kp;Kp0 ≫ ω the summation over s in
Eq. (18) can be replaced by integration, which has an effect
of removing the δ function:

RðkÞ ≈ −Mμ
s̃M

�̃
s;μ; s̃ ¼ kþKp0 −Kp

ω
: ð19Þ

Obviously, s̃ ≫ 1 has the meaning of the number of
“photons” absorbed from the external field.

III. LCFA IN A TIME-DEPENDENT
ELECTRIC FIELD

In what follows, we focus on the evaluation of Ms and
RðkÞ. As we discuss below, for a strong field the integrand
in Eq. (16) is a rapidly oscillating function. Therefore,
following the studies of the plane-wave case [72,77], we
calculate the integral over time using the stationary phase
approximation (SPA).
Let us solve the equation

_fðt0Þ ∝ E0ðt0Þ þ k − Eðt0Þ ¼ 0 ð20Þ

for a (complex) stationary point t0 [obviously, Eq. (20)
looks like an energy conservation but not involving the
external field].
To that end it is convenient to decompose P ¼ P⊥ þ Pk,

E ¼ E⊥ þ Ek, where the subscripts ⊥ and k refer to the
components that are transverse and parallel to k, respec-
tively. With this notation Eq. (20) explicitly reads

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðPkðt0Þ − kÞ2 þ P2⊥ðt0Þ

q
þ k

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ P2

kðt0Þ þ P2⊥ðt0Þ
q

¼ 0; ð21Þ

which simplifies to

P2⊥ðt0Þ ¼ −m2: ð22Þ

Let t0 ¼ t1 þ it2 (t1;2 are the real and imaginary parts of
t0, respectively). Then, assuming t2 ≪ 1 (which is justified
a posteriori), we expand

P⊥ðt0Þ ≈ P⊥ðt1Þ þ ieE⊥ðt1Þt2=ω − e _E⊥ðt1Þt22=2ω; ð23Þ

and solve Eq. (22) iteratively by substituting this expan-
sion. At the leading order, the real part of Eq. (22) gives

t2 ¼
ffiffiffi
σ

p
a⊥

; σ ¼ 1þ P2⊥ðt1Þ
m2

; ð24Þ

where

a⊥ ¼ eE⊥ðt1Þ
mω

; ð25Þ
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and t1 can be determined from the imaginary part of the
Eq. (22),

P⊥ðt1ÞE⊥ðt1Þ ≈
t22
2

e
ω
E⊥ðt1Þ _E⊥ðt1Þ: ð26Þ

To evaluate the integral in (16) we first shift the
integration limits (see the details in Appendix A) to get

Mμ
s ¼ 1

2π
ffiffiffiffiffi
2k

p
Zπ

−π
hμðt1 þ tÞefðt1þtÞdt: ð27Þ

Next, let us expand the exponent around the stationary
point t0 (assuming that both t and t2 are small) to the third
order,

fðt1 þ tÞ≈ fðt0Þ þ
f̈ðt0Þ
2

ðt− it2Þ2 þ
f
…
ðt0Þ
6

ðt− it2Þ3: ð28Þ

Up to the leading order in a⊥, we have

f̈ðt0Þ ≈ f2 ¼ −
a2⊥

ffiffiffi
σ

p
ϰ

χχ0
; f

…
ðt0Þ ≈ f3 ¼ i

a3⊥ϰ
χχ0

; ð29Þ

so that [cf. (24)] t2 ¼ −if2=f3. Accounting for this, we can
rearrange the expansion (28) with the same accuracy as
follows:

fðt1 þ tÞ ≈ fð0ÞðtÞ ¼ fðt1Þ −
f22t
2f3

þ f3t3

6
: ð30Þ

The reason we have to keep three terms in the expansions
(28) and (30) is that jf3=f2j ∼ a⊥ ≫ 1, so that the second
and third terms are of the same order. As we show below,
fðIVÞðt0Þ and higher-order derivatives are at most of the
order of ∝ a3⊥, and hence can be omitted in a leading-order
calculation.
Note that in deriving Eq. (29) we assumed that the

radiating scalar particle remains ultrarelativistic both
before and after the photon emission, and that it radiates
closely to the direction of its propagation, i.e., that
Pk ≫ maxfP⊥; mg, P0

k ≫ maxfP0⊥; mg (these conditions

will be analyzed in the next section). It is easy to see that
with such accuracy we also have

χ ≈
Eðt1Þa⊥ω

m2
; χ0 ≈

E0ðt1Þa⊥ω
m2

: ð31Þ

By adjusting the integration contour in the complex
plane (see Appendix A) and expanding hμðt1 þ tÞ around t1
to the second order, the integral in Eq. (27) is evaluated to

Mμ
s ≈ −

1ffiffiffiffiffi
2k

p
�

1

a3⊥
χχ0

ϰ
ḧμðt1ÞyAiðyÞ

þ i
a2⊥

�
2χχ0

ϰ

�2
3 _hμðt1ÞAi0ðyÞ

−
1

a⊥

�
2χχ0

ϰ

�1
3

hμðt1ÞAiðyÞ
�
; ð32Þ

where

y ¼
�

ϰ

2χχ0

�2
3

σ ð33Þ

and AiðyÞ is the Airy function [89].
The resulting leading-order contribution to the squared

emission amplitude [see Eq. (19)] reads

Rð0Þ ¼ ω2

2m2kχχ0

�
−
�
2χχ0

ϰ

�
2=3

Ai2ðyÞ

þ
�
2χχ0

ϰ

�
4=3

ðyAi2ðyÞ þ Ai02ðyÞÞ
�
: ð34Þ

As expected, it coincides with the result in a constant
crossed field [72], which manifests the LCFA.

IV. LIMITS OF APPLICABILITY OF THE LCFA

To establish the limits of applicability of the LCFA, let us
recap and analyze one by one the approximations we had to
make in order to obtain for the squared emission amplitude
the expression Eq. (34).

(i) From the very beginning, we used the WKB
approximation to solve the Klein-Gordon equation
in an external field. As we have seen, this is justified
for subcritical electric fields [see Eq. (10)].

(ii) To evaluate the integral in Eq. (16), we expanded the
exponent fðtÞ (as well as the preexponential hμ)
around the stationary point to the third order [see
Eq. (30)] and used the SPA. To justify this approxi-
mation, one has to check when the contributions
from the fourth and higher orders of such an
expansion are negligible.

The interval Δt (around t0), which contributes
to the integral in Eq. (16), is estimated from
jf3jðΔtÞ3 ∼ 1 as

Δt ∼
1

a⊥

�
χχ0

ϰ

�
1=3

: ð35Þ

Therefore, by considering

fðIVÞðt0Þ ≈ 3ia3⊥
ϰ

χχ0

�
a⊥ _a⊥
a2⊥

−
makðEðt1Þ þ E0ðt1ÞÞ

Eðt1ÞE0ðt1Þ
�
;

ð36Þ
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we conclude that the SPA applicability condition
jfðIVÞðt0ÞjðΔtÞ4 ≪ 1 results in two inequalities:

1

a⊥

�
2χχ0

ϰ

�
1=3 a⊥ _a⊥

a2⊥
≪ 1;

�
2χχ0

ϰ

�
1=3 ak

a⊥
m½Eðt1Þ þ E0ðt1Þ�

Eðt1ÞE0ðt1Þ
≪ 1: ð37Þ

To get an insight into their physical meaning, let
us for a moment set aside the geometrical factors
a⊥ _a⊥=a2⊥ and ak=a⊥. Then the first condition in
Eq. (37) simply reads

ξ1 ¼
1

a⊥

�
2χχ0

ϰ

�
1=3

≪ 1: ð38Þ

Notably, a similar constraint had been obtained in
Ref. [72] for the plane-wave case.1 Since ξ1 co-
incides with Δt [see Eq. (35)], Eq. (38) simply
means that the external field can be considered as
locally constant when the formation scale for the
integral in Eq. (16) is smaller than the field period.
The second condition in Eq. (37) (for now also

with the geometrical factor ak=a⊥ omitted) leads to
the inequalities

ξ2 ¼
m

Eðt1Þ
�
2χχ0

ϰ

�
1=3

≪ 1;

ξ02 ¼
m

E0ðt1Þ
�
2χχ0

ϰ

�
1=3

≪ 1; ð39Þ

which restrict (from below) the Lorentz factors of
the charged particle before and after the emission.
By this, one ensures that the field looks as about
crossed in the reference frame of the particle during
the interaction. Such a condition could not appear in
the plane wave case, for which the field is precisely
crossed in any reference frame.
The geometrical factors a⊥ _a⊥=a2⊥ and ak=a⊥ in

Eq. (37) can be large if _a⊥; ak ≫ a⊥, namely, when
the photon is emitted almost in parallel to the electric
field. In such a case, the original validity conditions,
Eq. (37), might be even stronger than Eqs. (38) and
(39). We will explore the corresponding example in
Sec. V.
One may argue that the terms in square brackets

of Eq. (36) may cancel each other in some special
cases. As a result, the first correction to the phase

fð0Þ might become small even at high values of the
parameters (37). Nevertheless, we still conclude that
LCFA should fail for such cases, as the corrections
to the preexponential factor hμ as well as higher-
order corrections to the phase are large (see the
explicit calculation of the corrections below).

(iii) The derivation assumes that the particle radiates
almost along its propagation direction, i.e., that
jP⊥ðt1Þj ≪ Pkðt1Þ. Let us show that this holds
automatically under the already mentioned assump-
tions. Indeed, since the Airy function vanishes for
large argument, only the values y≲ 1 contribute to
the matrix element in Eq. (32). Therefore, we have

P⊥ðt1Þ
m

≲
�
2χχ0

ϰ

�
1=3

: ð40Þ

By comparing this inequality with Eq. (39), we
arrive at Eðt1Þ ≫ P⊥ðt1Þ. In the ultrarelativistic case
Eðt1Þ ≫ m, this leads to Pkðt1Þ ≫ P⊥ðt1Þ.

V. CORRECTIONS TO THE LCFA

Next we turn to the corrections to the LCFA differential
probability rate. Specifically, let us focus on the squared
photon emission amplitude (19). As shown, in the leading
order the amplitude is given by Eq. (34). To calculate the
corrections, we recast the amplitude into the form

Mμ
s ¼ 1

2π
ffiffiffiffiffi
2k

p
Zπ

−π
hμðt1 þ tÞef̃ðtÞefð0ÞðtÞdt;

f̃ðtÞ ¼ fðt0 − it2 þ tÞ − fð0ÞðtÞ; ð41Þ

and expand hðt1 þ tÞ and exp½f̃ðtÞ� into powers of small t
and t2, this time retaining higher orders. As in Sec. III, we
extend the integration limits to ð−∞;∞Þ (see also
Appendix A), so that the resulting integrals are reduced
to either Airy function or its derivatives (A5). This way the
squared emission amplitude (19) is represented as

RðkÞ ¼ Rð0Þ þRð1Þ þRð2Þ þ � � � ; ð42Þ

where Rð0Þ is the leading-order LCFA term as in Eq. (34)
andRðj≥1Þ are the jth-order corrections in small parameters
ξ1, ξ2, and ξ02.

A. The first-order correction

When calculating the corrections, the stationary point
should also be found from Eq. (22) with higher accuracy.
For example, for the first-order correction, one should
expand P⊥ðt0Þ up to Oða−3⊥ Þ. By doing so, for t2 ¼ Im t0
we get

1The approximation used in Ref. [72] (in fact, the SPA as well)
was valid for β ≫ 1, whereas in our notations β ¼ a30ϰ=ð8χχ0Þ
[see Eq. (40) in p. 512, p. 519, and Appendix B in Ref. [72]].
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t2 ≈
ffiffiffi
σ

p
a⊥

�
1 −

τ _a⊥
2a2⊥

�
; ð43Þ

where τ ¼ P⊥ðt1Þ=m. Notably, t1 ¼ Re t0 remains unaf-
fected to this order. It is worth noting that the first-order
correction to the expressions (31) for χ and χ0 also vanishes.
The second term in Eq. (43) corrects f̈ðt0Þ and f

…
ðt0Þ,

which now read

f̈ðt0Þ ≈
�
1þ ν1

3
þ ν2

2

�
f2;

f
…
ðt0Þ ≈ ð1þ ν1 þ ν2Þf3; ð44Þ

where

ν1 ¼ 6i

�
ξ1

�
ϰ

2χχ0

�
2=3 τa⊥ffiffiffi

y
p −

ak
a⊥

ffiffiffi
y

p
2

ðξ2 þ ξ02Þ
�
;

ν2 ¼ ξ1
τ _a⊥
a⊥

�
ϰ

2χχ0

�
1=3

: ð45Þ

By noting that fðIVÞðt0Þ ≈ ν1f23=f2 and

Re f̃ð0Þ ¼ Re½fðt1Þ − fð0Þð0Þ� ≈ ν2y3=2

3
; ð46Þ

we further obtain

f̃ðtÞ ≈ y3=2

12
½ν1ðr2 − 1Þ2 þ 4ν2r3�; ð47Þ

where r ¼ ðf3=f2Þt ¼ −it=ðξ1 ffiffiffi
y

p Þ.
After substituting the following expansions:

ef̃ðtÞ ≈ 1þ f̃ðtÞ; hμðt1 þ tÞ ≈
X3
j¼0

djhμðt1Þ
dtj

tj

j!
;

into Eq. (41), one is in a position to calculate the integral
over t. By modulus squaring the resulting expression, we
finally extract the first-order correction:

Rð1Þ ¼ ν2
3

ω2

2m2kχχ0

�
2χχ0

ϰ

�
4=3

×

�
5yAi2ðyÞ þ 4y2AiðyÞAi0ðyÞ þ 4Ai02ðyÞ

−2
�

ϰ

2χχ0

�
2=3

ðAi2ðyÞ þ yAiðyÞAi0ðyÞÞ
�
: ð48Þ

Note thatRð1Þ is proportional to the small parameter ξ1 but
does not contain ξ2 and ξ02, which, however, appear in the
higher-order corrections, starting with Rð2Þ.
The above-described approach can be continued to

obtain systematically the corrections of any demanded

order. However, the resulting expressions (not to say, the
intermediate steps) turn out progressively more lengthy. For
this reason we only include final expressions for the second-
order correction Rð2Þ relegating them to Appendix B. Note
that it is quadratic in ξ1, ξ2, and ξ02, thus substantiating themas
a complete set of expansion parameters in the problem.

B. Emission in a uniformly rotating electric field

Let us test the squared LCFA amplitude (34) and the
corrections to it, given by (42) and (48), against the
numerically evaluated initial semiclassical expression,
the latter obtained by inserting Eq. (16) into Eq. (19).
For brevity, we refer to the latter as the “exact” calculation.
To that end, we consider a particular case of the electric
field uniformly rotating in the xy plane:

aðtÞ ¼ eEðtÞ
mω

¼ a0fcos t; sin t; 0g;

and several cases of parameter selection. The results of the
calculations are presented in Figs. 1–3.
First, we set p oblique with respect to the xy plane (for

definiteness, let it lie in the xz plane) and assume p > ma0.
Notably, the kinetic momentum PðtÞ of the emitting particle
covers a conelike surface during the field rotation period.We
consider the emission probability rate of a photon with the
wave vector k ¼ kfsin θ cosφ; sin θ sinφ; cos θg and ana-
lyze the dependence ofR on the azimuthal angle θ forφ ¼ 0
(i.e., assuming that k also lies in the xz plane) and k is fixed.
Figure 1 provides such a dependence for different values of
a0. The particular choice of the parameters is given in the
caption to Fig. 1.
It follows from the numerical calculations that param-

eters ξ1 and ξ2, ξ02 are almost constant in the range of each
plot in Fig. 1. Moreover, for these plots ξ2 and ξ02 are small,
so we actually track the value of ξ1 only.
In the case of the largest a0 [a0 ¼ 200; see Fig. 1(a)] the

LCFA result Rð0Þ (almost) coincides with the exact
calculation. Here, one has ξ1 ≈ 0.046, so that the LCFA
works precisely as expected. For a0 ¼ 10 one has ξ1 ≈ 0.26
and Rð0Þ deviates from the exact calculation as seen in
Fig. 1(b). However, with an account for the first-order
correction Rð1Þ a perfect agreement between the analytical
approach and the exact result is restored.
The case of a0 ¼ 3 [see Fig. 1(c)] corresponds to

ξ1 ≈ 0.56. One can observe some discrepancies between
the exact calculation and the first-order result. But upon
including the second-order correctionRð2Þ, the shape of the
curve converges to the exact distribution.
Finally, for a0 ¼ 1 [Fig. 1(d)], ξ1 ≈ 1.17. In this case

accounting for even higher-order corrections is mandatory
to accurately reproduce the exact result.
It is interesting to note that, unlike Rð1Þ, the distribution

of Rð0Þ in Fig. 1 is symmetric. From a physical point of
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view, the symmetry of the LCFA expression Rð0Þ with
respect to θ (for a given fixed φ) can be understood as
follows. The essence of LCFA is that the photon emission
is formed at a small time interval centered at t1, so that
variation of the vectors PðtÞ and EðtÞ is negligible. Under
such conditions the vectors Pðt1Þ and Eðt1Þ are the only
ones specific for the problem. If so, then radiation should be
symmetric with respect to the plane spanned by these
vectors.
When LCFA is violated, a broad interval of t contributes

to the emission amplitude (16). Its central point t1 may also
essentially vary with respect to the angles θ and φ. Due to
both reasons the mirror symmetry may break, as is seen in
the figures. We come back to this property in Sec. VI.
Now let us illustrate the accuracy of LCFAwith regard to

the remaining parameters ξ2 and ξ02. As already mentioned,
they are missing in the leading-order correction (48), but
show up in the expansion (42) starting from the second-
order correction Rð2Þ onward.
Note that ξ02 > ξ2 due to energy conservation, so that

smallness of ξ02 should be enough to ensure the validity of
LCFA. Conversely, ξ02 ≳ 1 should be enough for the LCFA
to fail. Let us consider the latter criterion in two particular
cases: (i) hard photon emission, when the emitted photon
carries away almost the entire energy of the radiating

particle, i.e., ϰ ≈ χ ≫ χ0; (ii) emission of softer photon, for
which ϰ ≲ χ0 ∼ χ.
In case (i) we have χ0 ≪ χ and the criterion ξ02 ≳ 1 can be

reformulated as

1

χ0

�
a⊥
acr

�
3=2 ≳ 1; ð49Þ

where

acr ¼
m
ω

ð50Þ

corresponds to a0 for the critical field [see Eq. (10)].
In case (ii), χ0 ∼ χ, large ξ02 is achieved with

1

χ0

�
a⊥
acr

�
3 ≳ ϰ; ð51Þ

or equivalently

m
E0ðt1Þ

a⊥
acr

≳ k
m
: ð52Þ

In Fig. 2 we show an example of the first case, namely,
hard photon emission violating the LCFA due to that the

FIG. 1. Squared emission amplitude R vs emission azimuthal angle θ for various values of the field strength: (a) a0 ¼ 200,
(b) a0 ¼ 10, (c) a0 ¼ 3, and (d) a0 ¼ 1. In all plots: p ¼ 200mf1; 0; 1g, ω ¼ 10−5m, k ¼ m, emission polar angle φ ¼ 0.
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particle loses almost the entire energy so that the field
cannot be considered as almost crossed in the rest frame of
the particle after the emission. Here both parameters ξ1 ≈
ξ2 ≈ 3 × 10−4 are small, but ξ02 ≈ 0.13 is such that the
corrections to LCFA are considerable. As previously, by
taking into account the corrections up to the second order,
we reinstate a good agreement with the exact calculation.
It is worth noting that the emission probability of such a

hard photon is small (see Fig. 2). Indeed, given that Eq. (49)
holds and χ ∼ ϰ, the argument of the Airy functions inRðjÞ

[see Eq. (33)] can be estimated as y≳ acr=a⊥ ≫ 1, mean-
ing that the probability is exponentially suppressed.
Next consider the emission of a softer photon correspond-

ing to the condition in Eq. (52), which restricts from below
the energy E0 ∼ E of the particle. To illustrate this condition,
we choose p directed along x axis, so that it now lies in the
plane of the field. We set jpj ≈ma0 and vary E from the
values satisfying Eq. (52) downward, so that Eðt1Þ ∼m for
certain emission directions k ¼ kfsin θ cosφ; sin θ sinφ;
cos θg.
First, let us consider the photon emission in the plane

θ ¼ π=2 of the rotating electric field [see Fig. 3(a)]. If the
photon is emitted along p (small polar angles φ), then both
the particle energy Eðt1Þ and the transverse component
a⊥ðt1Þ of the field are large. Consequently, all the expan-
sion parameters ξ1, ξ2, ξ02 are small [see Fig. 3(b)], and
therefore the LCFA result coincides with the exact
calculation.
Next, let us study the case when the photon is emitted

transversely to p (φ ¼ π=2). The dependence of R on θ is
given in Fig. 3(c). It shows that the LCFA notably deviates
from the exact values. While all the parameters ξ1, ξ2, ξ02
remain relatively small, the geometrical factors in Eq. (37),
namely, ak=a⊥ and ja⊥ _a⊥j=a2⊥, appear to be large [see
Fig. 3(b)], as k is almost parallel to the electric field a. Note

FIG. 2. Squared emission amplitudeR vs azimuthal angle θ for
a0 ¼ 2000, p ¼ 0, ω ¼ 10−5m, k ¼ 1996m, polar angle φ ¼ 0.

FIG. 3. (a) Squared emission amplitudeR vs polar angle φ at θ ¼ π=2 for the emission direction k [inset: the same dependence on φ
magnified in the range near φ ¼ 0.5π]. (b) The expansion parameters [see Eqs. (37), (38), (39)] vs φ for fixed θ ¼ π=2. (c) and (d)R vs
azimuthal angle θ at φ ¼ π=2 and φ ¼ π, respectively. For all the plots we set a0 ¼ 200, p ¼ 198mf1; 0; 0g, ω ¼ 10−5m, k ¼ 0.03m.
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that in this case the terms containing both ξ1 and ξ2, ξ02 [see
Eq. (B1)] contribute to the correction Rð2Þ.
Finally, assume the photon is emitted opposite to p

(φ ≈ π). This implies that k and Pðt1Þ are (almost) parallel,
and since p ≈ma0, one has Eðt1Þ ∼m. Therefore, for
certain values of k the LCFA breakdown condition in
Eq. (52) can be fulfilled. We show such an example in
Fig. 3(d). Notably, for this plot one has Eðt1Þ ≪ ma⊥, so
that ξ1 ≪ 1. This means that in this case LCFA is violated
solely due to ξ2 and ξ02 approaching 1; i.e., the field can still
be considered as locally constant, albeit no longer crossed.

VI. TOTAL EMISSION PROBABILITY

Let us now briefly discuss the total photon emission
probability, which is obtained by integrating the distribu-
tion Eq. (18) over dk. In the present work, we consider only
the total LCFA probability and the leading-order correction
to it.
It is convenient to change the variables fkx; ky; kzg →

fu; τ; t1g, where

u ¼ ϰ

χ − ϰ
; τ ¼ jP⊥ðt1Þj

m
signðα − θÞ: ð53Þ

Note that for convenience we define τ with an additional
signðα − θÞ with respect to jτj defined after Eq. (43). Here
and in the following, we introduce the azimuthal and polar
angles ðθ;φÞ and ðα; βÞ for the vectors k and Pðt1Þ,
respectively, and the following additional notations: δ for
an angle between Pðt1Þ and k, η—between Eðt1Þ and k,
ζ—between Eðt1Þ and x axis, and μ—between E⊥ðt1Þ and
P⊥ðt1Þ [see Fig. 4 for reference]. These angles are related as
follows:

sin α cosðβ − ζÞ ¼ cos δ cos ηþ sin δ sin η cos μ;

cos δ ¼ cos α cos θ þ sin α sin θ cosðβ − φÞ;
cos η ¼ cosðφ − ζÞ sin θ: ð54Þ

Expressing k explicitly in terms of the new variables is
challenging. However, as long as the expansion Eq. (42) for
R is valid, it is enough to find such expressions only to the
same required order in ξ parameters. For our first example,
consider the leading order obtained by inserting Rð0Þ in
Eq. (34) into the probability Eq. (18). Correspondingly, we
keep the leading order in the variable change.
As the particles are assumed ultrarelativistic, we have

P⊥ðt1Þ ≪ Pkðt1Þ, jα − θj ≪ 1, jβ − φj ≪ 1, and δ ≪ 1 and
can expand Eq. (54) in small arguments. It follows from
Eq. (26) that the term

sin δ cos μ ≈ ξ1ξ2
y
2

a⊥ _a⊥
a2⊥

¼ Oðξ1ξ2Þ; ð55Þ

and therefore can be neglected. Thus we obtain

β − φ ≈ ðα − θÞ cot α cotðβ − ζÞ ð56Þ

and

δ ≈ jθ − αj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 α cot2ðβ − ζÞ

q
: ð57Þ

With this, it is now possible to express the old variables
through the new ones explicitly as follows:

k ¼ uχm2

ð1þ uÞa⊥ω
;

θ ≈ α −
mτ

Pðt1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 α cot2ðβ − ζÞ

p ;

φ ≈ β −
mτ cot α cotðβ − ζÞ

Pðt1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 α cot2ðβ − ζÞ

p : ð58Þ

This provides the Jacobian determinant of the transforma-
tion:

				 ∂ðk; θ;φÞ
∂ðu; τ; t1Þ

				 ≈ m2a⊥
Pðt1Þ sin αð1þ uÞ2 : ð59Þ

By taking into account that at the leading order θ ≈ α, we
arrive at the LCFA expression [72,77]

W
V4

≈
1

2π

Z2π

0

PLCFAðt1Þdt1; ð60Þ

where
FIG. 4. The electric fieldE, the momentum Pðt1Þ, its projection
to the ðx; yÞ plane P̃, the wave vector k, and the angles involved.
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PLCFAðt1Þ ¼
e2m2n
2πPðt1Þ

Z∞

0

du
ð1þ uÞ2

ZPðt1Þ=m

−Pðt1Þ=m

dτ

�
u
2χ

�1
3

�
−Ai2ðyÞ þ

�
2χ

u

�2
3ðyAi2ðyÞ þ Ai02ðyÞÞ

�
: ð61Þ

Since Pðt1Þ=m ≫ 1, we can further extend the limits of the
integral over τ to �∞ and evaluate it [72,77]. Thus we
obtain the spectral distribution of the emitted photon:

dPLCFA

du
¼ −

e2m2n
4Pðt1Þ

�
Ai1ðzÞ þ

2

z
Ai0ðzÞ

�
; ð62Þ

where z ¼ ðu=χÞ2=3 and Ai1ðzÞ ¼
R∞
z AiðyÞdy.

Let us now consider the first-order correction Rð1Þ.
According to Eqs. (48) and (45) it is proportional to the
scalar product

τ _a⊥ ¼ jτj _a⊥ cos μ1; ð63Þ

where μ1 is the angle between P⊥ðt1Þ and _E⊥ðt1Þ. Let us
introduce the angles ζ1 between _Eðt1Þ and the x axis and η1
between _Eðt1Þ and k. They satisfy the relation

sin θ cosðφ − ζ1Þ cos δþ sin η1 sin δ cos μ1

¼ sin α cosðβ − ζ1Þ; ð64Þ

which is analogous to Eq. (54). By using Eq. (63) in the
ultrarelativistic limit and taking into account that j_a⊥j ¼
j_aðt1Þj sin η1 and Eq. (57), we arrive at

τ _a⊥ ≈
τj_a⊥ðt1Þj cos α

sin η1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 α cot2ðβ − ζÞ

p
× ½cosðβ − ζ1Þ − cotðβ − ζÞ sinðβ − ζ1Þ�: ð65Þ

In virtue of (45) and (65), the first-order correction (48)
to the squared amplitude is odd in τ. This is the reason for
the asymmetric shape of the first-order correction in Fig. 1.
As the correction to the Jacobian determinant from Eq. (59)
is also odd, the first-order correction to the total probability
in Eq. (60) vanishes identically.
Another particular consequence of (65) is that Rð1Þ is

proportional to cos α, meaning that it also vanishes if the
initial momentum p [hence also Pðt1Þ] lies in the same
plane as the electric field.

VII. CONCLUSIONS

We have calculated the probability distribution for photon
emission by a scalar particle in a strong time-dependent

electric field, assuming the field is subcritical, periodic, and
planar. The result is represented by a power series in the
parameters ξ1, ξ2, and ξ02, defined in Eqs. (38) and (39). The
zeroth-order term coincides with the LCFA [see Eq. (34)],
and the corrections can be systematically calculated up to any
required order. In particular, we present the first- and the
second-order corrections to the LCFA modulus-squared
emission amplitude, which determine the differential dis-
tribution of photon emitted with momentumk [see Eqs. (48)
and (B1)].
The expansion parameters Eqs. (38) and (39) depend on

the transverse (with respect to the emission direction)
component of the field strength, quantum dynamical
parameters, and energies of the incoming and outgoing
particles and have a clear physical meaning. Namely,
smallness of ξ1 is equivalent to stating that the time
interval, which contributes to the integral representing
the matrix element [see Eq. (16)], is much smaller than
the period of the external field. Obviously, in such a case
the field can be considered locally constant. The conditions
ξ2 ≪ 1 and ξ02 ≪ 1 mean that the particle is ultrarelativistic
both before and after photon emission, so that the field
appears almost as crossed in the particle reference frame.
We have tested the LCFA and the first two corrections to

it against the numerically evaluated squared emission
amplitude for the case of a uniformly rotating electric
field. In particular, we have investigated angular distribu-
tions at fixed photon energies. As long as the expansion
parameters ξ1, ξ2, and ξ02 are small, the LCFA result is in
perfect agreement with the exact calculation. But as they
approach unity, the discrepancy in the shape of the
distributions becomes visible, and accounting for the
corrections is necessary. By doing so, an excellent agree-
ment with numerical calculations can be reestablished. A
significant deviation from the LCFA is observed for either
very soft or very energetic (those draining almost the entire
energy from the emitting particle) photons, or in emission
at large angles (including backwards) with respect to the
generalized momentum of the particle p. At higher energies
of the photon (yet such to maintain the outgoing particle
ultrarelativistic) LCFA remains a good approximation. The
latter observation is extremely important for simulation of
self-sustained QED cascades [7,60].
Our approach can be generalized for fermions in a

straightforward way. This, along with the analysis of
higher-order corrections to the photon energy spectrum
and the total emission rate, will be addressed elsewhere.

NONLINEAR COMPTON SCATTERING IN TIME-DEPENDENT … PHYS. REV. D 106, 056013 (2022)

056013-11



ACKNOWLEDGMENTS

E. G. G. and S.W. were supported by the project
ADONIS (Advanced research using high intensity laser
produced photons and particles) CZ.02.1.01/0.0/0.0/
16_019/0000789 from European Regional Develop-
ment Fund. S.W. was also supported by High Field
Initiative (HiFI)(CZ.02.1.01/0.0/0.0/15_003/0000449) from
European Regional Development Fund. A. A.M. acknowl-
edges funding from the Russian Foundation for Basic
Research (Grant No. 19-32-60084) and from Sorbonne
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APPENDIX A: CALCULATION OF Mμ
s

To evaluate the integral in Eq. (16), we first note that due
to the presence of the δ function in Eq. (18) the integrand
is a periodic function along the horizontal lines in the
complex t-plane since

fðtþ 2πÞ ¼ fðtÞ þ 2πis: ðA1Þ

For this reason we can shift the integration limits to arrive
at Eq. (27).
Then, using Eq. (30), we get

Mμ
s ≈

1

2π
ffiffiffiffiffi
2k

p
Zπ

−π
hμðt1 þ tÞefðt1Þ−

f2
2

2f3
tþf3

6
t3 : ðA2Þ

Note that fðt1Þ is imaginary, so that does not contribute to
the mode square, and that f3 ¼ ijf3j [see Eq. (29)].
According to Fig. 5,

Zπ

−π
hμðt1 þ tÞefð0ÞðtÞdt ¼

Z∞

−∞
hμðt1 þ tÞefð0ÞðtÞdt

þ
Z
C
hμðt1 þ tÞefð0ÞðtÞdt; ðA3Þ

where the integration path C ¼ C1 þ C2 þ C3 þ C4þ
C5 þ C6. The integrals over the remote arcs C1 and C6

vanish and the sum of the integrals over the vertical
segments C3 and C4 is equal to zero because of the 2π
periodicity of the integrand along the real axis. Consider

Z
C5

hμðt1 þ tÞefð0ÞðtÞdt ¼
Z∞
2πffiffi
3

p

hμ
�
t1 þ ρe

iπ
6

�

× efðt1Þ−
jf3 jρ3

6
−

f2
2
ρ

2jf3 je
−iπ
3

dρ; ðA4Þ

where t ¼ ρeiπ=6. The value of the integral is formed at the
lower limit and is exponentially small for a3⊥ ≫ χχ0=ϰ.
Therefore, we neglect the contributions to Mμ

s from C2

and C5.
Finally, by expanding hμðt1 þ tÞ in Eq. (A2) around t1

up to the second-order and using

Z∞

−∞
tkei

f2
2

2jf3 jtþi
jf3 j
6
t3dt ¼ 2πð−iÞk

�
2

jf3j
�kþ1

3 dkAiðyÞ
dyk

; ðA5Þ

where y ¼ ð 2
jf3jÞ1=3

f2
2

2jf3j corresponds to Eq. (33), we obtain

Eq. (32).

APPENDIX B: SECOND-ORDER CORRECTION

For completeness, let us provide the resulting expression
for the second-order correction to the squared emission
amplitude (a derivation goes along the same lines as
described for first-order correction in the main text):

Rð2Þ ¼ ω2

m2χχ0kρ2
½ξ21Rð2Þ

11 þ ξ22R
ð2Þ
22 þ ξ022 R

ð2Þ
2020 þ ξ1ξ2R

ð2Þ
12 þ ξ1ξ

0
2R

ð2Þ
120 þ ξ2ξ

0
2R

ð2Þ
220 �; ðB1Þ

FIG. 5. Integration contour for evaluation of the integral in
Eq. (A2). The lines C2 and C5 make the angles 5π=6 and π=6,
respectively, with the real axis.
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