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It has been recently pointed out that in certain axion models it is possible to suppress simultaneously
both the axion couplings to nucleons and electrons, realizing the so-called astrophobic axion scenarios,
wherein the tight bounds from SN1987A and from stellar evolution of red giants and white dwarfs are
greatly relaxed. So far, however, the conditions for realizing astrophobia have only been set out in tree-level
analyses. Here we study whether these conditions can still be consistently implemented once renorm-
alization group effects are included in the running of axion couplings. We find that axion astrophobia keeps
holding, albeit within fairly different parameter space regions, and we provide analytical insights into this
result. Given that astrophobic axion models generally feature flavor-violating axion couplings, we also
assess the impact of renormalization group effects on axion-mediated flavor-violating observables.
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I. INTRODUCTION

Nonuniversal axion models, in which the Peccei-Quinn
(PQ) symmetry Uð1ÞPQ [1–4] acts on the different Standard
Model (SM) fermions in a generation-dependent way, have
been often considered in frameworks addressing the SM
flavor puzzle (see, e.g., Refs. [5–7]), as well as in more
phenomenological contexts. For instance, it was recently
pointed out in Ref. [8] that in variants of Dine-Fischler-
Srednicki-Zhitnitsky (DFSZ) [9,10] models with two Higgs
doublets (2HDM) the nonuniversality of the SM quarks PQ
charges is a necessary ingredient to allow a simultaneous
suppression of the axion coupling both to protons and
neutrons. Nucleophobia can then be obtained in parameter
space regions in which the ratio of the two Higgs vacuum
expectation values (VEVs) satisfies certain conditions. This
allows to relax the tight astrophysical bounds on the decay
constant fa (or on the axion massma) from Supernova (SN)
1987A. Still, the bounds are only marginally loosened
because in DFSZ-like models axion couplings to electrons
are generically of Oð1=faÞ, and then limits from white
dwarfs and red giants stars evolution, which are only
moderately weaker than the SN1987A bound (see, e.g.,
Ref. [11] for a recent review) still apply. Axion-electron

decoupling can be either obtained at the price of an extra
tuning with the flavor structure of the lepton rotation
matrices [8] or, more elegantly, it can be implemented
together with nucleophobia, and without extra tuning, in
a three Higgs doublets model, as detailed in Ref. [12]. In
Refs. [8,12] the conditions for nucleo/electrophobia were
formulated in terms of tree-level relations (up to small QCD
running effects [13]) and it is then mandatory to question
whether the resulting suppression of the axion couplings to
nucleons and electron can survive after including the effects
of radiative corrections.
The full one-loop anomalous dimensions for the d ¼ 5

axion effective Lagrangian have been recently computed in
Refs. [14,15], while running effects have been systemati-
cally investigated, within canonical axion models, in
Ref. [16]. For related efforts to include loop effects on
flavor-violating axion couplings, with a nontrivial depend-
ence from the UV completion, see Ref. [17]. The purpose
of this work is to extend the analysis of the running axion
couplings to nonuniversal axion models and to assess, in
particular, the radiative stability under the renormalization
group (RG) evolution of the nucleo/electrophobic condi-
tions set out in Refs. [8,12]. A remarkable consequence of
nonuniversal axion models is the generic occurence of
flavor-violating axion couplings, which can be tested in
low-energy flavor-changing process, such as, e.g.,K → πa,
that will be probed at current and future experimental
facilities [18–20]. We hence complement our study by
assessing the relevance of running effects for flavor off-
diagonal axion couplings.
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II. ASTROPHOBIC AXIONS

We focus first on a specific nonuniversal axion model
introduced in Ref. [12], wherein the nucleo and electro-
phobic conditions can be elegantly realized within certain
regions of the parameter space spanned by the ratios
between the VEVs of the Higgs doublets that couple to
SM fermions.
The model features three Higgs doublets H1;2;3 (hence

we will label it as 3HDM) and a SM singlet complex scalar
Φ. Under the SM gauge group SUð3ÞC × SUð2ÞL × Uð1ÞY
the quantum numbers of the scalars are H1;2;3 ∼
ð1; 2;−1=2Þ and Φ ∼ ð1; 1; 0Þ. The SM quarks couple to
the first two doublets H1;2 and their PQ charges are
characterized by a 2þ 1 structure, namely the first two
generations replicate the same set of charges, while the PQ
charges of the third generation differ. The Uð1ÞPQ charges
are chosen in such a way that all the entries in the up- and
down-type quark Yukawa matrices are allowed, so that
there are no texture zeros. In contrast, all the leptons couple
to the third doublet H3 and feature universal PQ charges.1

The Yukawa sector of the model contains the following
operators:

q̄1u1H1; q̄3u3H2; q̄1u3H1; q̄3u1H2;

q̄1d1H̃2; q̄3d3H̃1; q̄1d3H̃2; q̄3d1H̃1;

l̄iejH̃3; i; j ¼ 1; 2; 3; ð1Þ

where H̃1;2;3 ¼ iσ2H�
1;2;3. Note that the generation label “1”

for quarks denotes both the first and second generation,
which by assumption have the same PQ charges.
We are interested in the axion couplings to the proton,

neutron and electron, which are defined via the effective
interaction

Cψ

2fa
∂μaψ̄γμγ5ψ ; ð2Þ

with ψ ¼ p, n, e, fa ¼ f=ð2NÞ, where fa is the axion
decay constant, f is the scale at which the PQ symmetry is
broken, and 2N is the coefficient of the PQ-QCD anomaly.2

The fundamental couplings Cq of the axion to the quarks
q ¼ u; d;… are also defined by Eq. (2) with the replace-
ment ψ → q. Cp;n can be expressed in terms of Cq using
nonperturbative inputs from nucleon matrix elements (see,
e.g., [13]). For later purposes it is more convenient to
consider the two linear combinations:

Cp þ Cn ¼ 0.52ðCu þ Cd − 1Þ − 2δs; ð3Þ

Cp − Cn ¼ 1.28ðCu − Cd − fudÞ; ð4Þ

where the right-hand sides are obtained by using the
expressions for Cp;n given in Eqs. (A16) and (A17). In
Eq. (4) fud ¼ fu − fd, where fu;d ¼ md;u=ðmd þmuÞ are
the model-independent contributions induced by the axion
coupling to gluons in the physical basis in which the axion
is not mixed with π0. In Eq. (3) is a smallOð5%Þ correction
dominated by the s-quark contribution (see the Appendix).
Neglecting δs, the approximate conditions for astropho-
bia are

Cu þ Cd ≈ 1; ð5Þ

Cu − Cd ≈ fud ≈
1

3
; ð6Þ

Ce ≈ 0: ð7Þ

At tree level, the relevant couplingsC0
u;d ¼ ðXu1;d1 − Xq1Þ=

ð2NÞ and C0
e ¼ ðXe − XlÞ=ð2NÞ can be read off from the

Yukawa operators in Eq. (1). In terms of the PQ charges
X1;2;3 of the three Higgs doublets they read [22]

C0
u ¼−

X1

2N
; C0

d ¼
X2

2N
; C0

t ¼−
X2

2N
; C0

e ¼
X3

2N
; ð8Þ

where for later convenience we have listed also the top-quark
coupling C0

t .
3 Due to the particular 2þ 1 structure of the

quarks PQ charges, the contribution to the PQ anomaly of
the third generation cancels against the contribution of one
of the two light generations, and it is then straight forward
to obtain 2N ¼ P

iðXui þ Xdi − 2XqiÞ ¼ X2 − X1. This
implies that, at tree level, the first condition for nucleophobia
Eq. (5) is always satisfied.
Consider now the following terms in the scalar potential,

which are needed to break the Uð1Þ4 rephasing symmetry
of the kinetic terms of the four scalars down to
Uð1ÞPQ × Uð1ÞY4:

H†
3H1Φ2 þH†

3H2Φ†: ð9Þ

Normalizing the charges toXΦ¼1we derive the conditions:

X1 ¼ X3 − 2; X 2 ¼ X 3 þ 1; ð10Þ

1An alternative Higgs configuration in the lepton sector,
leading to a moderately photophobic axion, is discussed in
Ref. [21].

2For uniformity of notation with studies of running axion
couplings [14–16] in the Appendix we will denote the anomaly
coefficient as cG ¼ 2N.

3In Eq. (8) we have neglected possible corrections to the
diagonal quark couplings arising from fermion mixing. Through-
out this paper we will assume that these mixing corrections
are negligible.

4Different choices for the scalar operators are possible, but
they do not allow to satisfy simultaneously the nucleo and
electrophobic conditions (see Ref. [12]).
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which yield 2N ¼ X2 − X1 ¼ 3. Substituting the values of
X1;2 in Eqs. (6) and (7) we obtain that, in terms of tree-level
couplings, astrophobia can be realized if the following
conditions on X3 can be simultaneously satisfied:

X3 ¼
1

2
ð1 − 3fudÞ; X 3 ¼ 0: ð11Þ

It is a fortunate numerical accident that the actual value
of fud is indeed very close to 1=3 (corresponding to
md=mu ≈ 2) so that nucleophobia and electrophobia are
mutually compatible.
As a final step let us consider the PQ-hypercharge

orthogonality condition. Let us parametrize the VEVs as
v1¼ vc1c2;v2¼ vs1c2;v3¼ vs2 with v2 ¼ v21 þ v22 þ v23 ≃
ð246 GeVÞ2, c1 ≡ cos β1, c2 ≡ cos β2, etc. By using
Eq. (10) we obtain

X
i¼1;2;3

X iv2i ¼ 0 ⇒ X3 ¼ ð3c21 − 1Þc22: ð12Þ

The condition X3 ≈ 0 then selects a certain region in the
ðβ1; β2Þ plane where the tree-level axion couplings to
nucleons and electrons can be conveniently suppressed
(see Fig. 1 in Ref. [12]).
A simpler astrophobic model with only two Higgs

doublets H1;2 in which the 2þ 1 structure is extended
also to the leptons was originally presented in Ref. [8] (see
also Ref. [11]) and it was labeled “model M1.” The Yukawa
terms for the quarks are as in Eq. (1), while the lepton
Yukawas, the operators involving the two scalar doublets
and the singlet Φ, and the PQ-hypercharge orthogonality
condition now involving only two Higgs doublets (i.e.,
β2 ¼ 0) read, respectively,

l̄1e1H̃1; l̄3e3H̃2; l̄1e3H̃1; l̄3e1H̃2; ð13Þ

H†
2H1Φ ⇒ X2 ¼ X1 þ 1; ð14Þ

X 1v21 þ X 2v22 ¼ 0 ⇒ X1 ¼ −s2β1 : ð15Þ

Since the quarks Yukawa operators are the same as in the
previous model, the expression for the quark couplings in
Eq. (8) is the same, however now with 2N ¼ X2 − X1 ¼ 1.
It is now easy to see that, with fud ≈ 1=3, the nucleophobic
conditions Eqs. (3) and (4) are satisfied at tree level in the
parameter space region where tan2 β1 ≈ 2. Instead, the
electrophobic condition is not satisfied since the charge
assignments give C0

e ¼ X1 ≠ 0. However, given that in this
model the lepton charges are generation dependent, there
are corrections to the mass eigenstate couplings due to
lepton flavor mixing. Since in the lepton sector mixing
effects can be particularly large, as it was pointed out in
Ref. [8] electrophobia can still be enforced at the cost of a
fine-tuned cancellation yielding C0

e þ δmix
e ≈ 0.

III. ASTROPHOBIC AXIONS BEYOND
TREE LEVEL

The leading RG effects on the nucleo and electrophobic
conditions Eqs. (5)–(7) can be understood from the formulas
for the axion running couplings given in Eqs. (A6). The top
Yukawa coupling Yt gives the dominant contribution to the
rhs of these equations. For the first generation fermions, in
the approximation in which all Yukawa couplings except Yt
are neglected, this contribution appears only through the last
term βψγH (ψ ¼ qL; uR; dR;lL; eR). In this approximation
the expression for γH given in Eq. (A7) reduces to
γH ≈ 6Y2

t ðc0tR − c0tLÞ ¼ 6Y2
t c0t , where c0t denotes the axial-

vector coupling of the top. We can now combine Eqs. (A6)
to obtain RG equations (RGEs) for the u, d, e axial-vector
couplings cu;d;e. Recalling the definition of the hypercharge
ratio βψ ¼ Yψ=YH, it is easy to see that the γH term will
appear in these equations, respectively, with coefficients
βu − βq ¼ þ1 and βd − βq ¼ βe − βl ¼ −1.5 Hence, in this
approximation we can write

Cu ≈ C0
u − κtC0

t ; ð16Þ
Cd;e ≈ C0

d;e þ κtC0
t ; ð17Þ

where Cu;d;e ¼ cu;d;e=ð2NÞ are the couplings at the low
scale μ, C0

u;d;e;t ¼ c0u;d;e;t=ð2NÞ are the couplings at the high
scale f defined in terms of the PQ charges in Eq. (8), and the
coefficient κt ∼ 6ðYt=4πÞ2 logðmBSM=μÞ accounts for the
running of the couplings from the high scale mBSM where
the heavy Higgs components are integrated out, down to the
low scale μ.
The first condition for nucleophobia is still satisfied by

the running couplings due to the fact that the correction
proportional to κt cancels in the sum

Cu þ Cd ≈ C0
u þ C0

d ¼ 1: ð18Þ
RG effects modify instead the other two conditions Eqs. (6)
and (7). It is straightforward to see that now they are,
respectively, satisfied for the following values of X3:

X3 ¼
1
2
ð1 − 3fudÞ þ κt

1 − κt
; ð19Þ

X3 ¼
κt

1 − κt
: ð20Þ

We see that the same numerical accident that allows to
enforce astrophobia with the tree-level relations in Eq. (11)
(corresponding to κt → 0) ensures that the same result still
holds after including in the axion couplings the leading RG

5The difference between the right-handed (RH) and left-
handed (LH) hypercharge ratios is proportional to the weak-
isospin of the LH component. This explains the opposite sign
between the u and the d, e coefficients.
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effects. Let us note that this result is independent of the
particular value of κt, that is, it does not depend on any
specific value of the high scale mBSM. Only the value of the
PQ charges that realize the two conditions is affected by
RG corrections, and while at tree level one has X 3 ≈ 0, for
κt ≃ 0.30 one has instead X3 ≈ 0.43. Of course, since the
PQ-hypercharge orthogonality condition in Eq. (12) is now
satisfied for a nonvanishing value of X3, the region in the
ðβ1; β2Þ plane where the axion can exhibit a remarkable
degree of astrophobia gets shifted accordingly, see
Fig. 1. However, except for this modification in the viable
parameter space region, it is a remarkable result that the
astrophobic axion model introduced in Ref. [12] still
maintains its properties after including RG corrections,
without the need of any modification in the theoretical
setup. Finally, it goes without saying that the nucleophobic
property of the 2HDMmodel in Ref. [8] are also preserved,
but for a different VEVs ratio tan2 β1 ≈ 1.2 (see Fig. 2).
Also the suppression of the axion-electron coupling can
still be engineered, but with a corresponding shift in the
value of the mixing correction δmix

e .
The results of this analysis, based on the approximate

expressions Eqs. (16) and (17), are confirmed in Figs. 1
and 2 that are obtained by numerically solving the full RGEs
for the axion couplings given in the Appendix. In Fig. 1
we show the contour lines for different values of Ce

and CSN
N ¼ ðC2

n þ 0.61C2
p þ 0.53CnCpÞ1=2 in the ðβ1; β2Þ

plane. The latter combination of nucleon couplings corre-
sponds to the quadratic form which is bounded by

the SN1987A neutrino burst duration [23]. The lowest value
corresponds to CSN

N ≃ 0.02 which is determined by the cor-
rection δs in Eq. (3) (for comparison in the Kim-Shifman-
Vainshtein-Zakharov [24,25] axion model CSN

N ¼ 0.36).
The hatched region in Fig. 1 denotes the perturbative
unitarity bounds on the Yukawa couplings of the 3HDM
(see, e.g., [26,27]) translated in the ðβ1; β2Þ plane. It is
evident from Fig. 1 that, also in the case of running axion
couplings, electrophobia and nucleophobia occur in over-
lapping regions, so that a single choice of the values of the
relevant parameters can simultaneously enforce all the
astrophobic conditions. Figure 2 instead displays the values
of Cp � Cn as a function of tan β1 in the 2HDM case. As
expected from the approximate expressions in Eqs. (16) and
(17), running effects largely cancel out in the combination
Cp þ Cn, while they sizeably change the value of tan β1 for
which the couplings combination Cp − Cn is maximally

suppressed from tan β1 ≃
ffiffiffi
2

p
to tan β1 ≃ 1.1. Nevertheless

the same level of nucleophobia than in the tree-level
analysis can still be obtained regardless of the running
effects.6
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00

00
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1.5

FIG. 1. Contour lines for Ce (orange) and CSN
N (black, see text)

in the ðβ1; β2Þ plane for the astrophobic 3HDM. Solid lines
include RG corrections for mBSM ¼ 1010 GeV, dashed orange
lines correspond to the tree-level results.
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FIG. 2. The values of axion-nucleon couplings, jCp þ Cnj (red)
and jCp − Cnj (blue) in the nucleophobic 2HDM as a function of
tan β1. Solid lines include RG corrections for mBSM ¼ 1010 GeV,
dashed lines depict the tree-level results.

6We note in passing that also the exponential enhancement of
axion-nucleon couplings in the nucleophilic axion models of
Ref. [28] is not spoiled by running effects. The reason being that
the required cancellation between the QCD anomaly factors of
first and second generation quarks holds at all orders.
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IV. RUNNING EFFECTS ON FLAVOR-VIOLATING
AXION COUPLINGS

Flavor-violating axion couplings are generically expected
in axion model with generation dependent PQ charge
assignments, and it is therefore important to study the
impact of RG corrections on these couplings. We focus
for definiteness on the flavor off-diagonal couplings
between the axion and the quarks in the 2HDM. Since only
the charges of the LH quarks are generation dependent [see
Eq. (A4)] and recalling that cG ¼ 2N ¼ 1, using Eqs. (A9)
and (A10) we can write7

ðCV
d=uÞi≠j ≈ − ðCA

d=uÞi≠j ≈ ðUdL=uLc
0
qLU

†
dL=uL

Þij; ð21Þ

where the LH rotation matrices UdL=uL are defined via

Yu ¼ U†
uLŶuUuR; Yd ¼ U†

dL
ŶdUdR; ð22Þ

with Ŷu;d the diagonalYukawamatrices, and let us recall that
UdL=uL are related to the Cabibbo-Kobayashi-Maskawa

(CKM) matrix via VCKM ¼ UuLU
†
dL
. Here we will consider

the following two flavor ansatze:

CKM-Yu∶Yu¼V†
CKMŶu; Yd¼ Ŷd; ðUuL ¼VCKMÞ; ð23Þ

CKM-Yd∶Yu¼ Ŷu; Yd¼VCKMŶd; ðUdL ¼V†
CKMÞ: ð24Þ

In the CKM-Yu case, ðCV;A
d Þi≠j ¼ 0 at the tree level and the

nonzero ðCV;A
d Þi≠j couplings are radiatively generated. We

remark that the alignment of the flavor structure in the down
sector is not radiatively stable under the RG evolution, and
hence processes like K → πa can still occur with a rate
sufficiently large to be observable. In the CKM-Yd case,
ðCV;A

u Þi≠j ¼ 0 at the tree level, and it remains negligible, i.e.,
at most Oð10−9Þ even after including RG effects. For
fa ≳ 108 GeV all the off-diagonal couplings remain well
below the experimental limits reported in Table I, where the
strongest constraint is jCV

dsj≤3.3×10−2×ðfa=1010GeVÞ
from Ref. [29].
In the CKM-Yu case an interesting feature emerges (see

Fig. 3). The CA;V
qb (q ¼ s, d) couplings are strongly sup-

pressed for tan β1 ≈ 0.65. This cancellation can be under-
stood analytically by keeping only leading top-loop effects.
Employing the CKM-Yu structure and neglecting all
Yukawa couplings except the top one, the RG evolution
of the off-diagonal couplings can be cast in the form

dðc0qLÞi≠j
dlogμ

∝
�ðc0qLÞii

2
þðc0qLÞjj

2
−ðc0tRÞ

�
Y2
t ðV†

CKMÞi3ðVCKMÞ3j;

ð25Þ
where only the diagonal couplings of ðc0qLÞii have been
kept. Since both ðc0qLÞii and ðc0tRÞ are positive, it is possible
to cancel the quantity in the square brackets for i ¼ 3 or
j ¼ 3 at a specific value tan β1. The RG corrections to
ðc0qLÞi≠j are proportional to ðV†

CKMÞi3ðVCKMÞ3j, which
indicates that the off-diagonal axion couplings to the
up-quarks do not receive the corrections, given that the
CKM factors cancel out due to unitarity.
In the CKM-Yd case, on the other hand, flavor mixing

occurs only through the down-quarks Yukawa couplings,
and keeping only the top-loop contribution, the RG

TABLE I. Current experimental bounds on axion flavor-
violating couplings. See Ref. [29] for details.

Coupling Bound ½×ðfa=1010 GeVÞ�
jCV

ucj ≤ 2.1 × 102

jCV
dsj ≤ 3.3 × 10−2

jCV
dbj ≤ 1.8 × 102

jCV
sbj ≤ 61

jCA
ucj ≤ 4.2 × 102

jCA
dsj ≤ 4.5 × 102

jCA
dbj ≤ 1.5 × 103

jCA
sbj ≤ 8.7 × 103

0.0 0.5 1.0 1.5 2.0

10−6

10−5

10−4

10−3

FIG. 3. Flavor off-diagonal axion couplings jðCA;V
u Þijj

and jðCA;V
d Þijj with mBSM ¼ 1010 GeV in the 2HDM for the

CKM Yu. At tree level ðCA;V
d Þij ¼ 0 but nonzero values arise

radiatively, while CA;V
uc ≠ 0 but it does not receive RG corrections.

7Equation (21) is defined at low energy, and thus it holds up to
small corrections from RH mixings induced by running [see
Eq. (A6)], which lift the universality of the RH couplings. These
effects are taken into account in the numerical analysis.
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correction to the off-diagonal couplings vanishes, namely
dðc0qLÞi≠j=d log μ ≈ 0. RG effects are thus captured solely
by the running of the diagonal LH quark couplings ðc0qLÞii
and matching corrections at the electroweak scale [15],
which remain at the level of 1– 4%.

V. CONCLUSIONS

In this work we assessed the impact of RG effects on the
axion couplings, focusing on the case of nonuniversal axion
models. An important application of the RG analysis arises
in the context of the so-called astrophobic axions of
Refs. [8,12], in which the axion couplings to nucleons
and electrons can be simultaneously suppressed, thus
allowing to relax the most stringent astrophysical con-
straints. In the original works the nucleo and electrophobic
conditions were only set out at tree level, and it remained an
important open question whether the conditions for astro-
phobia would still hold after including RG effects. In this
paper we have shown that, perhaps unexpectedly, the
astrophobic features are not spoiled by RG running of
the axion couplings. The only effect is a sizeable shift in the
parameter space regions in which these conditions are
realized.
Since nonuniversal axion models necessarily imply

certain flavor-violating axion couplings, we have also
assessed the impact of running on these latter couplings.
For instance, a tree-level flavor structure aligned in such a
way that off-diagonal couplings in the down sector are
absent, is not stable under RG evolution, and we have
estimated the irreducible contributions to flavor-violating
processes arising from this type of effects.
The tools developed in this work could be applied to

other problems of phenomenological relevance. For in-
stance, it could be interesting to see whether RG corrections
can sizeably modify the fit to the so-called stellar cooling
anomalies, improving on the tree-level analysis in
Refs. [11,30].
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APPENDIX: RGEs FOR AXION EFTs

In order to take into account running effects it is
convenient to adopt the Georgi-Kaplan-Randall (GKR)
field basis [31], where the PQ symmetry is realized non-
linearly, so that under a Uð1ÞPQ symmetry transformation
all fields are invariant except the axion field, which changes
by an additive constant a → aþ αf, that is

LGKR-2HDM
a ¼ 1

2
∂μa∂μaþ

X
A¼G;W;B

cA
g2A
32π2

a
f
FAF̃A

þ ∂μa

f
½cH1

H†
1iD

μ
↔
H1 þ cH2

H†
2iD

μ
↔
H2

þ q̄LcqLγ
μqL þ ūRcuRγ

μuR þ d̄RcdRγ
μdR

þ l̄LclL
γμlL þ ēRceRγ

μeR�; ðA1Þ

where H†
1;2D

μ
↔
H1;2 ≡H†

1;2ðDμH1;2Þ − ðDμH1;2Þ†H1;2 and
cqL ;… are diagonal matrices in generation space. Note
that in the EFT we have neglected the heavy OðfÞ radial
mode ofΦ and we focused for simplicity on the 2HDM (the
generalization to an arbitrary number of Higgs doublets is
straightforward). In order to match an explicit axion model
to the effective Lagrangian in Eq. (A1) at the high scale
μ ∼OðfÞ, we perform an axion dependent field redenfini-
tion: ψ → e−iXψa=fψ , where ψ spans over all the fields, and
Xψ is the corresponding PQ charge. Due to Uð1ÞPQ
symmetry, the nonderivative part of the renormalizable
Lagrangian is invariant upon this field redefinition, while
the d ¼ 5 operators in Eq. (A1) are generated from the
variation of the kinetic terms and from the chiral anomaly.
The couplings are then identified as

cψ ¼ Xψ ; ðA2Þ

cA ¼
X
ψR

2XψR
TrT2

AðψRÞ −
X
ψL

2XψL
TrT2

AðψLÞ; ðA3Þ

where in the second equation cψR;L
refer to the charges of

the chiral fermion fields.8 For the 2HDM introduced in
Sec. II, the charges Xψ , that can be read off from the
Yukawa couplings in Eq. (13) can be set to

Xqi ¼ð0;0;X2−X1Þ; Xui ¼−ðX1;X1;X1Þ;
Xdi ¼ðX2;X2;X2Þ; Xli ¼−Xqi ; Xei ¼−Xui ; ðA4Þ
where X1 ¼ −s2β1 and X2 ¼ c2β1 , see Eq. (15), and we have
shifted the charges proportionally to B and L to set
Xq1;2 ¼Xl1;2 ¼0. For the anomaly coefficients in Eq. (A3)
one has ðcG; cW; cBÞ ¼ ð1;−2; 8=3Þ and, in particular,

8Note that our anomaly coefficients cA have opposite sign with
respect to those in Refs. [14–16]. This is due to the fact that we
are using a different convention for the Levi-Civita tensor, namely
ϵ0123 ¼ −1.
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the electromagnetic to QCD anomaly ratio is E=N≡
ðcW þ cBÞ=cG ¼ 2=3. For the 3HDM instead the lepton
charges are Xl ¼ 0;X e ¼ X3, the corresponding anomaly
coefficients read ðcG;cW;cBÞ¼ð3;−9;17Þ and E=N ¼ 8=3.
Running effects induced by Yukawa couplings (and in

particular by the Yukawa of the top which are the most
relevant ones) only occur below the scale of the heavy
radial modes of the 2HDM, that will be denoted as
mBSM≃mH;A;H� , with the heavy scalars assumed to be
degenerate in the decoupling limit (see, e.g., [32]). This is
due to the fact that as long as the complete set of Higgs
doublets appear in the EFT, the PQ current is conserved (up
to anomalous effects) and thus the couplings, which
correspond to PQ charges, do not renormalize. Once the
heavy scalar components are integrated out, the sum rule of
PQ charges set by Uð1ÞPQ invariance breaks down, and
nonvanishing contributions to the running of the couplings
arise (see, e.g., [16]). We can now directly match Eq. (A1)
at the scale μ ¼ OðmBSMÞ with a GKR basis featuring only
one SM-like Higgs doublet

LGKR-SM
a ¼ 1

2
∂μa∂μaþ

X
A¼G;W;B

cA
g2A
32π2

a
f
FAF̃A

þ∂μa

f
½cHH†iDμ

↔
Hþ q̄LcqLγ

μqLþ ūRcuRγ
μuR

þ d̄RcdRγ
μdRþ l̄LclLγ

μlLþ ēRceRγ
μeR�; ðA5Þ

where cH ¼ cH1
c2β þ cH2

s2β, which follows from the pro-
jections on the SM Higgs doublet: H1→cβH and
H2→sβH, consistently with the definition of tan β≡
tan β1 ¼ v2=v1. In particular, by employing global Uð1ÞY
invariance, it is convenient to cast the RG equations in a
form that does not depend explicitly on cH. This can be
achieved via the axion-dependent field redefinition:
ψ → ψ 0 ¼ e−icHβψa=fψ , with βψ ¼ Yψ=YH the ratio of
the corresponding hypercharges, which redefines the effec-
tive couplings as c0ψ ¼ cψ − cHβψ (so in particular
c0H ¼ 0). In this basis the RG equations read:

ð4πÞ2 dc0qL
d logμ

¼ 1

2
fc0qL ;YuY

†
uþYdY

†
dg−Yuc0uRY

†
u−Ydc0dRY

†
d

þ
�
8α2s c̃Gþ

9

2
α22c̃Wþ1

6
α21c̃B

�
1−βqγH1;

ð4πÞ2 dc0uR
d logμ

¼fc0uR;Y†
uYug−2Y†

uc0qLYu

−
�
8α2s c̃Gþ

8

3
α21c̃B

�
1−βuγH1;

ð4πÞ2 dc0dR
d logμ

¼fc0dR;Y
†
dYdg−2Y†

dc
0
qLYd

−
�
8α2s c̃Gþ

2

3
α21c̃B

�
1−βdγH1;

ð4πÞ2 dc0lL
d logμ

¼ 1

2
fc0lL ;YeY

†
eg− Yec0eRY

†
e

þ
�
9

2
α22c̃W þ 3

2
α21c̃B

�
1− βlγH1;

ð4πÞ2 dc0eR
d logμ

¼ fc0eR ;Y†
eYeg− 2Y†

ec0lLYe − 6α21c̃B1− βeγH1;

ðA6Þ

where

γH ¼ −2Trð3Y†
uc0qLYu − 3Y†

dc
0
qLYd − Y†

ec0lLYeÞ
þ 2Trð3Yuc0uRY

†
u − 3Ydc0dRY

†
d − Yec0eRY

†
eÞ;

c̃G ¼ cG −Trðc0uR þ c0dR − 2c0qLÞ;
c̃W ¼ cW þTrð3c0qL þ c0lLÞ;

c̃B ¼ cB −Tr

�
1

3
ð8c0uR þ 2c0dR − c0qLÞ þ 2c0eR − c0lL

�
: ðA7Þ

Note that the cA (A ¼ G, W, B) Wilson coefficients in
Eq. (A7) do not run, since in the normalization of Eq. (A1)
the scale dependence of the operator aFAF̃A is accounted
for by the running of the gauge couplings [15,33].
Equation (A5) is matched at the scale μ ¼ OðmZÞ with

the SUð3ÞC × Uð1ÞEM-invariant axion effective Lagrangian
below the electroweak scale

La ⊃
g2s

32π2
a
fa

GG̃þ cγ
cG

e2

32π2
a
fa

FF̃

þ
X

f¼u;d;e

∂μa

2fa
f̄iγμððCV

f Þij þ ðCA
f Þijγ5Þfj; ðA8Þ

where we have introduced the standard QCD normalization
factor for the aGG̃ term and defined the axion decay
constant fa ¼ f=cG, while cγ ¼ cW þ cB. We further have

CV
f ¼ 1

cG
ðUfRc

0
fR
U†

fR
þ UfLc

0
fL
U†

fL
Þ; ðA9Þ

CA
f ¼ 1

cG
ðUfRc

0
fR
U†

fR
−UfLc

0
fL
U†

fL
Þ; ðA10Þ

where UfL;R are the unitary matrices that diagonalize the
SM fermion mass matrices, and c0uL ¼ c0dL ¼ c0qL . After
including matching corrections at the weak scale [15], the
running for μ < mZ is given by
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ð4πÞ2 dðC
A
uÞii

d log μ
¼ −16α2s c̃G −

8

3
α2emc̃γ;

ð4πÞ2 dðC
A
dÞii

d log μ
¼ −16α2s c̃G −

2

3
α2emc̃γ;

ð4πÞ2 dðC
A
e Þii

d log μ
¼ −6α2emc̃γ; ðA11Þ

with

c̃GðμÞ ¼ 1 −
X
q

CA
qðμÞΘðμ −mqÞ; ðA12Þ

c̃γðμÞ ¼
cγ
cG

− 2
X
f

Nf
cQ2

fC
A
f ðμÞΘðμ −mfÞ; ðA13Þ

where ΘðxÞ is the Heaviside theta function, while Nf
c and

Qf denote, respectively, the color number and EM charge
of the fermion f. Note that the off-diagonal couplings
ðCA;V

f Þi≠j do not run below the electroweak scale, while the
diagonal vector couplings ðCV

f Þii can be set to zero thanks
to the conservation of the vector current.
The axion-nucleon couplings, neglecting the tiny con-

tributions of the matrix elements Δt;b;c of the heavy flavors,
can be calculated by using

Cp ¼ CuΔu þ CdΔd þ CsΔs −
�

mdΔu

mu þmd
þ muΔd

mu þmd

�
;

ðA14Þ

Cn ¼ CdΔu þ CuΔd þ CsΔs −
�

muΔu

mu þmd
þ mdΔd

mu þmd

�
;

ðA15Þ
where Cu;d;s ¼ CA

u;d;sð2 GeVÞ [we neglect here for sim-
plicity model-dependent tree-level flavor mixing effects—
see Eq. (A10)] are evaluated by numerically solving the RG
equations, Eqs. (A6) and (A11), starting from the boundary
conditions set at the scale f [cf. below Eq. (A3)]. In
Eqs. (A14) and (A15), Δu;d;s represent the nucleon matrix
elements of the light quarks axial-vector current, whose
numerical values are Δu ¼ 0.897ð27Þ, Δd ¼ −0.376ð27Þ,
Δs¼−0.026ð4Þ, whilemuð2 GeVÞ=mdð2 GeVÞ ¼ 0.48ð3Þ
[13]. With these inputs, we arrive at

Cp ¼ 0.90Cu − 0.38Cd − 0.03Cs − 0.48; ðA16Þ
Cn ¼ 0.90Cd − 0.38Cu − 0.03Cs − 0.04: ðA17Þ

In the calculation, we have employed the two-loop running
for gauge and Yukawa couplings, and the input values
for the SM Yukawa and CKM mixings are extracted
from Ref. [34].
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