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Chiral symmetry: An analytic SU(3) unitary matrix
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The SU(2) unitary matrix U employed in chiral descriptions of hadronic low-energy processes has both
exponential and analytic representations, related by U = exp [it - #6] = cos 0] + it - # sin §, where 7 are
Pauli matrices and & = (7, 5, 73) is the pion field. One extends this result to the SU(3) unitary matrix
by deriving an analytic expression which, for Gell-Mann matrices A, reads U =exp[iv-4] =
[(F+2G)I + (Hb + %Gﬁ) A4 i(Y+32Z)1+ (XD + %zi;) -Al, with v; = [v, - vg], by = dj 00y
and factors F, ..., Z written in terms of elementary functions depending on v = |v| and i = 20,0, /3.
This result does not depend on the particular meaning attached to the variable v and the analytic expression is
used to calculate explicitly the associated left and right forms. When v represents pseudoscalar
meson fields, the classical limit corresponds to (0[7|0) — 7 — 0 and yields the cyclic structure

U={F(1+2cosv)l + %(—1 +cos )b - A] 4 i(sinv)p - A}, which gives rise to a tilted circumference

with radius /2/3 in the space defined by I, b-A, and - A. For the sake of completeness, the axial
transformations of the analytic matrix are also evaluated explicitly.

DOI: 10.1103/PhysRevD.106.054027

I. MOTIVATION

The considerable progress in low-energy hadron physics
achieved over the last 60 years is closely associated with
chiral symmetry. Quantum chromodynamics (QCD), the
present-day strong theory, involves gluons and six quarks
with different flavors, which have color. Direct applications
to low-energy processes are very difficult owing to gluon-
gluon interactions and one has to resort to either lattice
methods [1] or effective descriptions. The latter depart from
the symmetries of QCD, namely the continuous Poincaré
group, discrete C, P, and T inversions, together electric
charge and baryon number conservation. The quark masses
m, are external parameters and the lightest ones, m,,, my,
and m, can be considered as small in the scale A ~ 1 GeV.
This rationale underlies the idea of chiral symmetry, an
approximate scheme that becomes exact in the ideal limit
m, — 0. In this case, helicity is a good quantum number
and the quark fields g are written as linear combinations of
qr and g, , with spins respectively parallel and antiparallel
to their momenta. As helicity is conserved in interactions,
the fields gp and ¢; do not couple and the Lagrangian is
symmetric under the chiral group U(N)g x U(N),, where
N is the number of flavors. However, owing to the
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U(1), anomaly, the actual group to be considered is
U(1)y x SU(3)g x SU(3), . In effective descriptions, these
symmetries of QCD are associated directly with hadronic
degrees of freedom, bypassing quarks and gluons.

The incorporation of chiral symmetry into hadron
physics precedes QCD and was already being discussed
in 1960. A long-lasting contribution from that year is the
idea that the strong vacuum is not empty, presented by Gell-
Mann and Lévy [2] in a paper introducing both linear and
nonlinear ¢ models for pions and nucleons. The former
relied on the o, a scalar particle proposed earlier by
Schwinger [3], and provided a unique tool for dealing
with the strong vacuum. In the symmetric version, the
model involves just two parameters, usually denoted by u
and 4, whose values determine whether the ground state of
the theory is either empty or contains a classical compo-
nent, associated with a condensate. Almost simultaneously,
in 1961, Nambu and Jona-Lasinio [4] studied the strong
vacuum employing an alternative chiral model inspired by
superconductivity, which also involved a scalar-isoscalar
state. Their model was based on fermionic fields, the pion
being a collective state, and contained a vacuum phase
transition described by a gap equation, controlled by a free
parameter. A common feature of both models is the
indication that chiral symmetry allows the ground state
of strong systems to be realized in two different ways,
namely: (i) the Wigner-Weyl mode, in which states with
opposite parities are degenerate and the vacuum is empty;
(i1) the Nambu-Goldstone mode, in which the pion is a
massless Goldstone boson, the scalar state is massive and
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the vacuum contains a condensate. Also in 1961, Skyrme
succeeded in describing baryons as topological solitons
composed of chiral pions, carrying a well-defined quantum
number [5]. He employed classical pion fields constrained
by a nonlinear condition and assumed the proton to be a
deformation of the strong vacuum, kept stable for topo-
logical reasons. Nowadays, these states are known as
skyrmions but, at the time, they were criticized for not
having spin and deserved little attention. However, about
two decades later, spins were incorporated into the model
by Adkins, Nappi, and Witten [6], and its rich structure
could be properly appreciated.

After QCD became established as the strong theory,
applications of chiral symmetry were aimed mostly at
improving the precision of predictions and nowadays chiral
perturbation theory (ChPT) is employed to tackle low-energy
hadronic processes. This research program was outlined by
Weinberg in 1979 [7] and fully developed by Gasser and
Leutwyler for the SU(2) sector in 1984 [8]. Low-energy
interactions are strongly dominated by quarks # and d and
their small masses are treated as perturbations into a massless
SU(2) x SU(2) symmetric Lagrangian involving effective
pion fields. ChPT is a well-defined theory and allows the
systematic expansion of low-energy amplitudes in powers of
a typical scale ¢ ~ M, < 1 GeV. Nevertheless, while QCD
is fully renormalizable, ChPT can only be renormalized order
by order [7]. The effective Lagrangian consists of strings of
terms possessing the most general structure consistent with
broken chiral symmetry and both its form and the number of
low-energy constants (LECs) associated with renormaliza-
tion depend on the order considered.

All approaches to strong interactions mentioned, namely
the models produced by Gell-Mann and Lévy, Nambu, and
Jona-Lasinio, and Skyrme, together with ChPT, did bring
important progress to the area. With hindsight, however,
one realizes that all of them have specific limitations and
none has superseded completely the others. So, in spite of
their differences, they coexist and the relevance of each one
depends on the particular problem considered. A common
feature of these competing strategies is that, in all cases,
early works were performed in the framework of SU(2) for
reasons of simplicity. The basic unitary SU(2) matrix U
can be represented as

U = exp [it - #0] — exponential representation, (1)
where 7 is the direction of the pion field in isospin space
and 6 is the chiral angle. As it is well known, the series
implicit in the exponential can be summed and one gets the
equivalent form

U = cos Ol + it - & sin € — analytic representation (2)

which one calls analytic, for lack of a better name. It is
employed in the nonlinear ¢ model and suited to

comparisons with the linear version, based on the nonuni-
tary matrix

M=ol +it-x. (3)

The simplicity of these structures facilitates comparisons
among different schemes and allows one to study the
mathematical reasons behind their main features.

The various approaches have been generalized to SU(3)
and this version of the ¢ model [9] employs a matrix M
composed by nonets of pseudoscalar and scalar states,
whereas the extended version of ChPT relies on the
exponential form [10]. In the case of the Skyrme model,
the SU(3) group is employed just in the quantization of the
soliton, which is carried out formally [11,12]. The con-
ceptual mobility among these generalizations to SU(3) is
more difficult than in SU(2), partly owing to the absence of
a suitable analytic expression for the matrix U which could
provide a bridge among them. Analytic results based on
Euler angles already exist for this matrix [13—15] and find
applications in many areas of physics dealing with three
state systems, such as color superconductivity [16], optics
[17], geometric phases [18], and quantum entanglement in
computation and communication [19]. However, Euler
angles require a set of external axes and are inconvenient
to applications of chiral symmetry to low-energy processes.
In Sec. II one derives an alternative analytic representation
for the matrix U, written in terms of internal degrees of
freedom and corresponding to an extension of Eq. (2). In
hadron physics, this result may be instrumental to simpli-
fying calculations and studying topological properties of
SU(3), for both flavor and color, in analogy to the case of
the skyrmion. The unitarity of U in analytic form is explo-
red in Sec. 11 and the corresponding left and right forms are
presented in Sec. IV. Its classical limit is discussed in
Sec. V, chiral transformations of are given in Sec. VI,
conclusions are summarized in Sec. VII, and technical
matters are presented in four Appendices.

II. ANALYTIC FORM

The exponential form of U in SU(3) is written in terms
of the Gell-Mann matrices A = [4;,---Ag], satisfying
[Ais 4] = 2if i de and {4;,4;} = 36,1 + 2d,;3A4, coupled

iV ij

with a generic octet v = [vy, - - - vg] as
U=expliv-4]
_[1-Zpap (2. -2p-ap
= _E[v. ] 4. _|_lﬁ[v. ]_ﬁ[v. ] S

with v -4 = vid;, v = /0;0;, and ¥ = v/v.

One uses two auxiliary variables in the derivation of the
analytic form. One of them is the bilinear construct
b=[by.- by,
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b; = dijk”jvkv (5)

with b = \/b;b; = v*/\/3 and b = b/b. The other is

2 2 .
=—D =—=v-b, 6

=33 Wi (6)

where D = v -b = d;j;v;v;v;. The quantity b is even under

v — —v, i is odd, and the latter is a measure of the overlap

between b and v. As v andl; are unit vectors, [ - b| < 1, and

n lies in the interval — \/_ <n<j \/_ The explicit forms of

b; and D are given in Appendix A and shown to satisfy the
conditions

fijkvibe =0, (7)
1,
dijkvjbk = gl) Vi, (8)
1
dijkbjbk = ’7”3Ui - g”zbh (9)

which allow one to write

[b-A)[p- 4] :§I+\%B (10)
[P-AlP-AP-A =v-A+nl (11)

In order to simplify the notation, one defines
A=1V-A4, (12)
B:%H%IS-A, (13)

so that

A?> = AA = B, (14)
A3 =AB=A+1yl, (15)
A* = AAB = BB = B + 5A. (16)
Thus, A% = A(B +nA) = A + 5l + 5B, and so on. These

results mean that, in matrix space, U is a linear combination
of I, A, and B. The matrices I and B are even underv — —v,
whereas A is odd.

The matrix U is written as

0

"
in n
U—g ln!A—

n=0

Ueven + iUoddv (17)

where the labels even and odd refer tov — —v, and one has

TABLE I. Structure of U.,.,, Eq. (20).
n (iv)"/n! fu(xI) 9n(XB) ha(xA)
0 1 1
2 =22 1
4 vt /4! 1 n
6 —29/6!  n? 1 2n
8 v8/8! 22 1472 35
10 =2'9/10! 347 14357 an + P
12 02/120 42+ 14672 5n + 4
14 —o"/140 s +4* 14102+ 65+ 1093
16 0'9/16! 65> + 105" 141552 +55* T+ 200 + 1
oU
T AU (18)
ﬁ = AUeven' (19)
In matrix space, one writes
even Z f2n1 + anB + hZVlA}
n=
F(o, 17)1 + G(v, n)B+ H(v.nA, (20)
1}2n+1
Uoaa = Z( ) 2nt1)! (20414 + Yauri] + 22,418
— X(v.)A + Y(0.0)I + Z(v.7)B. (21)

where the functions F, G, H, X, Y, and Z are determined in
the sequence. In Tables I and II, one displays a few partial
contributions to these series and it is possible to note that
the dependences on » and # do not mix. Even and odd
components are related by the action of the matrix A, which
yields

A[f2n1+92nB+h2nA] = Kon +92n)A+n92nl+h2nB]
=[x 1A+ Yol + 22,01 B], (22)

TABLE II.  Structure of iU.4q, Eq. (21).

n  (iv)"/n! X, (xA) Ya(XI) 2,(xB)

1 v 1

3 —i*/3! 1 n

5 iv’/50 1 n n

7 =i 1+ n 2n

9 /9 143 n+n 3n

11 ="t /110 1+ 652 n+ 3’ 4+

13 iwB3/130 141082 +90* n+6° 5n+ 4

15 —iv /150 1+ 1592 +5¢* n+ 1003 +5° 65+ 105°

17 07 /170 14219 + 157" n+15¢° + 5¢9° Tn 4200 + 1p°
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Al 1A + Yoyt ] + 22441 B
= [nzons1] + X2011B + (Y2ni1 + 22041)A]
= [fan2l + Goni2B + hypinAl. (23)

Using results (18)—(21), one writes

0
 [FI+GB + HA| = ~[nZI + XB+ (Y + 2)A].  (24)

0
S [XA+YI+ZB) = [(F+G)A+nl + HB], (25
v

and obtains a set of first order differential equations
coupling even and odd components,

oF G oH

— = —nZ, = —=-Y-Z, 26

ov T ov ov (26)
0X oY 0Z
—=F+G, — =G, — =H. 27
ov + ov g ov (27)

A further derivation decouples these sectors, yielding

PF ’ G *H
g7 =M Ga="F-G Go=-nG-H, (23)
PX PY 0’z

In order to get an uncoupled differential equation for F, one
increases the number of derivatives and finds

SF _OF FF
—_— —t— F =0. 30
o’ + ot + v? A (30)

Its general solution is discussed in Appendix B and given by
F = py cos(kiv) + f, cos(kov) + p3 cos(kzv),  (31)

where f; are constants and,
Appendix B, one has

using the results of

ki = %sin(9/6 +5:1/3). (32)

cos(0) =1-2772/2, sin(0) =3V3n\/1-27¢2/4, (33)

and 61 :0, 52 = 1, 53 = —1.

The constants f; are fixed by expanding cos(k;v) in
series and, expressing results in terms of the roots a; = —k?
of the cubic equation & + 2a? + a; + 1> = 0, Eq. (B3),
one has

2
F = (B +p+Ps) +%(/31“1 + proy + Praz)
4
3 (it + B + o)

8 8
+ 52/31“,3 + gZﬂﬂ?
10 12

v
—I—WZﬁﬂ? +@Zﬁia?+'“- (34)

Comparing results for v°, v, and v* with those of Table I,
one learns that

Pitph+p=1, (35)
Bray + pras + pzaz =0, (36)
prai + Pra5 + Pz = 0. (37)

Terms proportional to powers of v > 6 are evaluated using
combinations of Egs. (35)-(37) and (B3). Thus, for
instance

Bl = pil-2a —a; -0 =-n*, (38
Y pidt =) P20 —ai =] =27, (39)
Y bl = pad[-2a —ai—n'] = -3, (40)
D et =) pil-20 —ai =P =4+t (41)

Using these results in Eq. (31), one has

1)6 08 UIO
Fel-Lpylop YV 30
SRR TR TR
U12
+E(4’72+'74)+"' (42)

and the entry in Table I is reproduced.
Expressions (35)—(37) yield directly
a jak

(a; = aj)(ak - a;) ’

pi=-

(43)

with [i, j, k] — cyclic permutations of [1,2, 3]. Alternative
versions are useful in calculations and, employing con-
dition (B3), on has

2
b= ! : (44)

a;(a; — aj)(ak - ;)

The denominator can be simplified using the results of
Appendix B and one finds the set of alternatives
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2

= s, 45
b 2(a? + o) + 3 (45)
2
;= — , 46
P @ )G+ ) o)
B = i+l (47)
t (3(1,' + 1) )
The last expression determines the condition
1

——=0. 48

Result (31) for F and Egs. (26)—(29) determine the set of
functions G, H, X, Y, and Z. Choosing form (47) for the f3;,
one has

(1)
= mcos(klv) +[1-2,3], (49)
1
G= —mcos(klv) +[1=2,3], (50)
1 cos(kyv) +[1 = 2.3,  (51)

(o + DB + 1)

1
X=-—kysin(k 1523, (52
Gk st <1 2.3, ()

n .
= " g sin(k 1-2.3], (53
Z=- 7 ksin(kv) +[1 2.3 (54)

ay(a; +1)(3a; +1)
The parity of these functions under v — —v is determined
by 7 and therefore F, G, and X are even, whereas H, Y, and
Z are odd.

The analytic form of the matrix U, derived from
Egs. (20) and (21), reads

U= (FI+GB+HA)+i(YI + ZB+XA), (55

= [<F+§G>I+ <H9+\}§GIQ> -/1]
+i[<Y+§Z)1+ (Xﬁ—i—\%l@) -,1}. (56)

As there is an overlap between ¥ and b, one might consider
replacing the latter by the unit vector & given by

A 27
b= 3*[ 1 —T”a, (57)

such that ¥ - # = 0. However, this is not especially useful.
In order to deal with a more compact expression, one
defines the quantities

S:<F+§G), 0; = \f(HU if 13), (58)

2 2 1.
w ( +3 ) ; \A( itz bl>, (59)

and expresses the equivalence between exponential and
analytic representations as

U=expliv-4]

- [51+ \EQ-A} —H[WH— \/EP-,I]. (60)

II1. UNITARITY
The matrix U satisfies the SU(3) conditions UTU = I
and det U = 1 irrespective of the representation adopted, as
ensured by result (60). Nevertheless, it is useful to explore
the unitarity condition expressed in analytic form given by
Egs. (55) and (56), since it gives rise to constraints among
the factors F, - - - Z. Explicit multiplication using form (55),
together with Egs. (14)—(16), yields
UTU = CiI + CzB + C4A, (61)
with
C; = F?>+2yGH + Y? + 25X Z, (62)
Cg=G*+H>+2FG+X>+Z7Z*+2YZ, (63)
Cy =nG* +2FH + 2GH + nZ* + 2XY + 2XZ,  (64)
and, in Appendix C, one shows that
Cc,=0. (65)
Alternatively, form (60) gives rise to
U'U=[S*+ Q>+ W+ Pl

3
+ {\/ESQk +5QiQ;diji + VeWP,

3
+SPPidiy -

3
D) QlP]fljk})“k (66)

2
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Definitions (58), (59), with results (5), (8), and (9), allow
one to show that the term within curly brackets is

1 o
<o} =Cyuvp +—=Cpb, = 0. 67
{ } AYk \/§ BYk ( )
Writing
2 2 ,,2.0
(0] :QiQ,-:§G —|—§H + 2nGH, (68)
2 2,2,
one also has
U'U=[S+Q*+ W+ Pl
, 4 2 5,20
= |FF+-FG+-G"+-H"+2yGH
3 3 3
, 4 2 ,,.2.,
2
This means that
U'U=1->8+Q*+W*+P =1, (71)

indicating that the variables S, Q, W, P are constrained to
the surface of a four-dimensional sphere, irrespective of the
values of the free parameters v and 7. This is relevant for
applications of chiral symmetry to low-energy strong
systems, which involve both vector and axial transforma-
tions. In SU(3), the former promotes changes in the labels
of O, and P; while keeping Q = £1/0;0; and P =
++/P;P; invariant. The latter, on the other hand, modifies
all functions S, Q, W, P together and the constraint
imposed by unitarity corresponds to a generalization of
the SU(2) condition 6> + z*> = constant of the nonlinear ¢

model [2]. The dependence of the functions S?, Q2, W2,
and P? on v is displayed in Fig. 1, where full and dashed
curves correspond to # =0 and the arbitrary value
n = 1/v/54 = 0.1361, respectively. As expected from the
explicit results for F, - - - Z in Egs. (49)—(54), just the case
n = 0 yields cyclic structures. It is worth noting that, in this
case, the odd scalar term W vanishes.

The situation in SU(3) contrasts with the SU(2) case,
where the variation of the chiral angle 6 gives rise to
oscillations of scalar and pseudoscalar variables con-
strained to a circle. Denoting the trace by (- - -), one shows
in Fig. 2 the behavior of the components S+ Q2 =
HUZ%en) and (W? 4 P?) =1(U%,) as functions of v,
for =0 and #=0.1361. In the case =0 one has W=0
and these functions oscillate, with values restricted to the
intervals 1> (8> + Q%) >1/3 and 2/3 > P> >0. The
individual scalar contributions S? and Q? do vanish at
specific points, but their sum does not. This interplay
between S and Q within the even sector is a distinctive
feature of the SU(3) case.

IV. LEFT AND RIGHT FORMS

The analytic result for U, Eq. (60), allows one to derive
the left and right forms L* and R¥, defined by

1
Lﬂ:U’I'a_U’ Rﬂ:UaL

ox* oxt (72)

They are related to the vector and axial currents V# and
A" by

Lt = i(VF — AH), R = i(VF + AH) (73)
and, owing to the unitarity condition UTU = I, one has
[LF]T = =L+, [R*]T = —R*. (74)

The left form is evaluated in Appendix D and reads

1
N .
P \
w ’
Q N <
n ] 21 v
FIG. 1. §?, 0%, W2, and P? as functions of » for # = 0 (continuous curves) and 7 = 0.1361 (dashed curves).
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SZ+Q2

W p?

T 2T

FIG. 2.
(82 + Q%) + (W? + P?) =1, as in Eq. (71).

3

LH = 1{5[(Q O”QJ—FPO”P )fuk]
{\[(WP,( Pro'S — Wo'Q + 0r0'W)
3

Writing L# = i(V}, — AY)A, Egs. (D38) and (D40) allow
one to express the currents in terms of the basic functions
F,...,Z as

S A

V’,j:[(H2+X2)@ia4@j+\/%(GH+xz)( b+ b))
#5250 f (76)

1
4

#I\O/—/H

n(FX — HY)—I—in(HZ GX)_ZU’?]W@”’?

1 1
+1 272\/_

9 3 7.
+50(FZ~GY) + 51}} by
2 2 )
+ [<F+§G>X—H<Y+§Z>}aﬂyk
1 2 2 .
— | (F+2G6)z-G(v+2z)|o#b
+l(rie)z-a(r+3z) o,

I o

[3 (HY — FX) + %(GX—HZ)

(77)

V. CLASSICAL LIMIT

In the case of spontaneous symmetry breaking, the
variable v may acquire a nonvanishing vacuum expectation

3T 4T V

(S + Q%) and (W? + P?) as functions of v for # =0 (continuous curves) and 7 = 0.1361 (dashed curves); note that

value and become the SU(3) analogous of the SU(2) chiral
angle 0. As the same does not apply for #, which has odd
parity under v — —v, one refers to the situation (0|v|0) # 0
and n — 0 as the classical limit. In this case, one has

ky = n—ay = -1, (78)
kys — £1 +g — a3 — —(1£n), (79)
and finds
F—1, (80)
G — —1 +cosv, (81)
X — sinv, (82)

whereas H,Y,Z — O(n).
In the classical limit W — 0 and the behavior of the
functions

1
S—>§(1+2cosv), (83)
2
- \/T_(—l + cosv), (84)
2 .
P— \/;sm v (85)
is shown in Fig. 3 and the matrix U becomes
U 1(1+2cos )M+ ! (=1 4 cos v)b /1}
= |- v — (- v)b -
3 V3
+i(sinv)v - A. (86)
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1

/

S /P

2T
\%
/
Q \

-1

FIG. 3. Classical S, Q, and P as functions of v.

The unitarity condition (71) constrains S, Q, and P to the
surface of a sphere, since

U'U=1- S+ Q>+ P>=1, (87)

and the variation of v gives rise to a circumference, with
projections over planes PQ, OS, and SP shown in Fig. 4.
Figure 4(b), depicting the two components of Ugyep, 1S
particularly interesting, for it shows the profile of a circle as
a straight line, for Egs. (83) and (84) yield

S=1-20. (88)

Thus, the path determined by » is a tilted circumference,
defined by the intersection of the unit sphere with a plane
orthogonal to the axes Q and S, inclined by an angle
¢ = tan~! v/2, which amounts to sine = \/2/_3, cose =
\/1/_3, and € ~ 54.76°. Performing a rotation around the P
axis, as in Fig. 5, one has

S

A~ e \J LQ
-P

@ (b)

FIG. 5. Projections of the classical circle (in red) over planes
(a) Q'S and (b) Q'P. In both figures, the axis not shown points
out of the page.

N s 1
s_\/Bs \@Q, Q—\[33+\/3Q, (89)

and the equation of the plane containing the circle is
S’ =4/1/3. Tts edge is determined by condition (87),
which now reads Q” + P? = 1 — §"> = 2/3, correspond-

ing to a radius of y/2/3 and to Q' = \/2/3 cosv.

VI. CHIRAL SYMMETRY

One now concentrates on the case of pseudoscalar
mesons ¢ and, making v — ¢, discusses the chiral trans-
formations of the matrix U(¢h) given by Eq. (60). Its vector
transformations are associated with changes in the direc-
tions of (2) and b and need not be written out explicitly.
Concerning axial transformations §%¢b, the most general
nonlinear form has been discussed by Weinberg [20] and is
given by

P

(@)

©

FIG. 4. Projections of the classical circle (in red) over planes (a) PQ, (b) OS, and (c) SP. Panel (b) shows the profile of the circle over
the plane associated with U,,.,, whereas panels (a) and (c) are obtained by rotating it by z/2 along axes Q and S respectively. In all

panels, the axis not shown points out of the page.
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5A¢a = fA((:bz)ﬂa + gA(¢2)ﬂi¢i¢a7 (90)
where f3; are free parameters, f4 is an arbitrary function,

and

2fAf/A + 1

QA:fA

=i .

with f4 = df4/d¢?. The axial transformation of a generic
function w(v,n) is

d
5AW:d<ZI 5A¢a
vl o 2\
|:¢¢a ¢< 3n¢a+\/§ba):|5 bar  (92)

using Eq. (D30). Evaluating the derivatives of (F,---Z)
with the help of Eqgs. (26), (27), and (D11)—(D16), one has

1
1—%712

+ (gnzx —3pY - nzﬂtﬁa

AF = { E (97°G — 3nH)

2 |1
+7§ |:E(_3’YG+H)

+<—%nX+Y+ WZZ)}IA%}EA%,
1 1/ 27 9
el (57 3m)
< X+277Y—|— nZ)]d)a
2 [1/9
75[&(5”6 EH)

9 3 1 N
—X——Y——Z b, »&4
2o

1 {[1 <3 G 27 2H)
[ — ’7 ——
1—%772 ¢ 4

3 9 .
+ <§nX—Y—Z+§nQZ>}¢a
*iH‘
V319

1.9 3 s
+ <—§X+ZnY+ZnZ>}ba}5 ba.

G =

3

AH =

9
G+-nH
+4:1>

(95)

1 1 27
51X _—{ {_ <__ 2X+3nz)
1—24—7172 ¢ 4

+ (F+G—z ZG—3;7H>]¢a
21 a-z)
V3 g \a"
9 3 1 R
+ (—ZnF—ZnG—I—EH)}ba}éA(ﬁa, (96)

1

1

+(311F+77G——;7 >]¢
\%[ (X =3nZ)
+( F——nzG+3nHﬂBa}5A¢a, (97)

| 1 /9
27772{{5 (5

9 3 A
+( 17F——17G+H>}¢a
2

X 27 27
n 2’7

57

2 2
L3422
T A\ T2t
F+

@ ;G - —nH)] Ba}éAq’za, (98)

whereas the two directions transform as

A 1

5 = 5 (0~ Ditha)5* P, (99)
. 2V3
5Abl = 7 (d1./a¢1 \/—b ¢a)6A¢a (100)

One notes that, as expected, axial transformations change
the parities of the functions F, ..., Z, and the directions of (i)
and b, under the operation ¢ — —¢.

Using results (93)—(98) one can, for instance, show that
the functions C;, Cp, and C, given by Egs. (62) and (63)
are invariant under axial transformations by means of
explicit calculations. In the case of classical fields, these
transformations become much simpler and read

SF=0-61=0, (101)
G = X, p, — 5 (=1 + cos )
= —sin s, (102)
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AX =

(F 4 G)p84p, — 8*sing = cosp5*¢p  (103)

using ¢,84¢, = 5*¢. Thus, the axial transformation imple-
ments a rotation along the tilted circumference discussed
in Sec. V.

VII. SUMMARY

One presents an analytic expression for the SU(3)
unitary matrix which, although motivated by low-energy
hadron physics, has a more general validity.

ey

@

3

“)

The SU(2) unitary matrix U is well known to
have two equivalent representations, given by
U =explit-#0] = cos@ + it - Asinh, where =
are Pauli matrices and & = (7, 75, 73) is the pion
field. In Sec. II one extends this result to the SU(3)
case and, for Gell-Mann matrices A, derives the
identity

U =expliv-4]

= {SH \éQ-/'L] +i[WI+ \/gp-,l},
with (S+iW)=[(F+iY)+

2(G+i2)], (Q +iP), =
\/g[(H +iX)bi + 55 (G +iZ)b], v = [v,-- - vg),

b; = d;yv;vg, and functions F,...,Z given by
Eqgs. (49)—(54), depending on v =|v| and n =
2d; 00,0 /3.

Unitarity ~ constrains  the functions S,Q =

+v0,0;,W,P =+/P;P; to the surface of a

four-sphere, since
UU=1-S+Q*>+W?+P>=1,

for all values of » and 7.
The analytic result for U allows the explicit evalu-
ation of the left form, which reads

3
LF = i{2 [(Qi0"Q; + Pi0"P;) ]
[\/ (S0"P;, — Pd"S — Wo*Q, + Q,0"W)
3
5(Q 0'P; — P,0"Q;) ,,k] }lk-

This gives rise to the right form as well as to vector
and axial currents. In Sec. IV, one presents expres-
sions in terms of the functions F, ..., Z, which can be
used in calculations.

In the classical limit, corresponding to # — 0 and
(0]v]0) # 0, one has W — 0 and obtains the simpler
form

(&)

Q)

= [SI+ \égé.x] +i\épﬁ.,1, (104)

with § = 1 (1 +2cosv), Q — ¥ ( 1 + cosv), and
P - %sm v, satisfying S? + Q2 + P2 =1. The
matrix U becomes a cyclic function of v and
oscillates, but its even and odd components under
v — — remain restricted to the intervals 1 > (52 +
Q%) >1/3and2/3 > P? > 0, as indicated in Fig. 2.
The variation of v determines a tilted circumference
with radius 1/2/3 in the space defined by I, b - A,
and ¥ - 4, illustrated in Fig. 4. In terms of the variable
Q' =2S/\/3 + Q/\/3, its edge is given by Q" +
P? =2/3 and, in the case of chiral symmetry, this
corresponds to a generalization of the condition 6> +
7% = constant of the nonlinear SU(2) ¢ model.

In Sec. VI, the generic analytic expression for U is
adapted to low-energy flavor SU(3) by associating
the v; with pseudoscalar fields ¢; and one displays
its axial transformation properties, involving both
the functions F, ..., Z and the directions ¢ and b. In
the classical limit, one has & cos ¢ = —sin pd* ¢
and 84 sin¢ = cos p5¢p, indicating that the axial
transformation corresponds to a rotation along the
tilted circumference.

Results given in Secs. II, III, and IV are generic and
not committed to a particular interpretation of the
variable v. Hence, they may prove to be useful in
problems involving three degrees of freedom or
three state systems. In QCD, one has the lightest
flavors u, d, s and the basic colors, where it might be
instrumental either to study color superconductivity
or to investigate topological properties of the
classical solution, as in the Skyrme model. The
interest of the analytic form of U is not restricted to
hadron physics and it may also be applied in other
areas, such as optics, geometric phases, quantum
computation, and communication.

APPENDIX A: AUXILIARY FUNCTIONS

The explicit components of the vector b are given by

054027-10
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by = —=uv,vg + V406 + V57, Al
1 \/§18 4Y6 597 ( )
by = > + (A2)
= ——UrUg — V4V Vs Vg,
2 \/§28 47 506
bg:ivﬂg —1—1(1)‘2‘—&—1;2—112—11%), (A3)
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b + ! (A4)
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1
bs = v 1V7 + VYV + V3Vs — —= Vs g, A5
5 107 2V6 30s \/§58 (AS)
b + ! (A06)
=0 VyVs — V3V — —= Vg Ug,
6 104 2Vs 3V6 \/§68
b ! (A7)
= D{Vs — VyUy — V307 — —= U7 Vg,
7 10s 2V4 307 \/§78
b8:—1 [v3 + 03 + 03
\/g 1 2 3
1
—E(vi—l—vg—l-vé—l—v%)—vé], (A8)

whereas the function D reads
D = dijkvivjvk

1 1
=V3 v%+v%+v§—§(vi+v§+v%+v%)—§v§ vg

+3’Ul(’l]4’l}6 + ’U51)7) +3’U2(—1}41}7 + 1}51]6)

3
+ = v3(v] + v} — 02— 0v3).

. (49)

Using Jacobi identities [21], one shows that the compo-
nents of b satisfy the conditions

fijkvjbk = 0, (AIO)

y (A11)

djsviby = %vzvi.
Alternatively, it is straightforward to prove these results by
using directly Egs. (A1)—(A8). Multiplying Eq. (A11) by
b;, one finds b> =v*/3. Also, using BB = B + 1A,
Eq. (16), one has (b-2)(b-2) =2/343nd-A—b-1/\/3,
which yields

1
dijkbjbk = 7’]1}37_)i — gﬂzbi. (AIZ)

APPENDIX B: DIFFERENTIAL EQUATION

One considers the differential equation (30), that reads
OF 5 *F  PF

— +n*F =0.

— Bl
o° + ot + ov? (B1)

Its solution has the general form F = exp(qv), where ¢
satisfies the algebraic equation
¢°+2q¢" + ¢’ +m* =0. (B2)

Defining a = ¢?, one has the cubic equation

@ +20% +a+nt =0, (B3)
which has the solutions
) 2
w=ai=-31-cos0/3) (B4
) 2
a=q5= _§[1 —cos(6/3 + 27/3)], (B5)
5 2
a=q3=—3 [1 —cos(0/3 —2x/3)], (B6)
with
cos(0) = 1 —27%/2, (B7)
sin(9) = 3v/3ny/1 = 272 /4. (B8)
As a; < 0, one defines g; = ik;, and has
Ky =~ sin(6/6) (B9)
= ——sin ,
V3
k 2 sin(0/6 + z/3)
=— 7
VA
1
= cos(0/6) + —=sin(0/6), B10
(6/6) 7 (6/6) (B10)
k 2 sin(0/6 — z/3)
=——si -7
V3
1
= —cos(6/6) + —=sin(0/6). B11
(6/6) 7 (6/6) (B11)
The function F is real and its most general form reads
F = p cos(kyv) + B, cos(kov) + p3cos(ksv), (B12)
where the f3; are constants.
The k; satisfy the constraints
kl :k2+k3, (B13)
ki + k3 + k3 =2, (B14)
kikoky = —n, (B15)

whereas, for the roots of the cubic equation (B3) one has
the usual conditions
a + ) + az = —2, (B16)

[e412%) + ardas + azoy = 1, (B17)
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a0 = —n’. (B18)

Combining (B16) and (B17), one finds the useful result

a? + 2a; —l—a? +2a; +a;a; +1=0, (B19)
that can also be rewritten as
(af + ;) + (oF + ;) = —(a; + 1)(a; + 1).  (B20)

Multiplying it by «; and using (B3), one gets

= a;0;2+ a; + a;) —
=0 (B21)

Zaj + 2a;a; + aia% — 1

and, using (B19) and (B21), one also shows that

(@ +a) (@ +a) =n*(1 +a; +a;). (B22)

APPENDIX C: UNITARITY—PROOF

The unitarity of the matrix U is indicated in Eq. (61) and
here one proves the validity of conditions (65). Using the
shorthand ¢; = cos(k;v) and s; = sin(k;v) in Egs. (49)—(54)
and results from Appendix B, one has

F? = {ficill] + 281 prcico[l] + -}, (C1)
G2:”—Z{ﬁ%c%[—al]—|—2ﬂ1ﬁ201c2[1+a1+a2]+--~}, (C2)
2 {ﬂzcl[al] + 281 prcicrlan] + -}, (C3)
%C=;Aﬁﬁm%+am
+2B1prcic[—(ag + 1)(an + 1)) + -+ -}, (C4)

1
2FH = H{ﬂ%c%[_zal] +2B1prcicr[—(ay +ap)] + -+,

1 2
2GH_—{/3%C% [ -
n

(%4—1)} +2ﬂ1ﬂ2c,c2[_1]+_“}’

1
X = ?{ﬂ%sﬂaﬂ + 2B1pokikasy syl + oy + o] + -,

(€7)

= {ﬂ%S%m +2pfrk i kysy sy [WW} + }

b}

(C8)

1
7 = ?{ﬁ%sﬂ—aﬂ +2B1Bakikysiso[l] + -} (C9)
1
xy -1 {ﬁm (=201 + 281k ikas 152
% {—H—%} + } (C10)

oxz =1 { 252 {720" }
n (a1 +1)

2B akikes 1y [_W] +}
(C11)
2m=%w%m%+m1
+ 281 Pok ks sy —(2 4+ a) + )]+ -}, (C12)

Explicit calculations together with Eqs. (35)-(37) and
(47) yield

C, = F?+23GH + Y? + 24XZ
3a; + 1
N S S R N G
Cy =G>+ H*+2FG+X*+7*+2YZ
1
= ,]_22'5!2[30‘% + ;]

1
= ? E ﬁi((l% + (Xi) = 0, (C14)
Cy=nG?>+2FH+2GH +nZ? +2XY +2XZ
I [ 37 +a 1
:_§ 2 :__E: a;=0. (Cl15
7’, ﬁt|: al+1 :| ’7 ﬁlal ( )

APPENDIX D: LEFT FORM

Direct evaluation of L* by means of Egs. (60), (72), and
condition (74) yields

L' = i[So*W — Wo'S + Q,0"P; — P;0" Q]
3

3

3

3 (5P, — PL'S — WHQ, + 0,0'W)

ﬁw

(Q aﬂP PaFQ]) l]k:| }lk
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In the sequence, one shows that the first term of this
expression vanishes and evaluates the other ones in terms of
the functions F,...,Z. This requires a set of auxiliary
results, presented below.

1. Derivatives with respect to 7

For any function (v, 7), one has

Oy _ oy dv, _ (61// ov (D2)

ox*  ov, ox* %ava

n % an \ dv,
ondv, ) oxt’

Derivatives with respect to v are given by Egs. (26) and
(27), whereas for dy/dn one uses

da,» 27’]
T , D3
dk; n
= —k; , D4
dn "aj(a; +1)(3a; + 1) (D4)

together with ¢; = cos(k;v), s; = sin(k;v), and obtains

oF n { 4 }
- = C
on Bay+ 173 [(ag +1)]

on

+mk151+(1 -2.3), (D5)
oG n [ 6 ]
i c
on Ga; +1)° [(a,+1)] !
un
~ (Bay + 1%y (e + 1) b =23, (Do)
oH 1
o _(Ba -1
=~ B = e
v
—mkﬂl‘f‘(l - 2,3), (D7)
17).¢ n (Ba; —1)
Rl s
on Gay + 1) |ay(a; + 1) !
vn
_(3a1+1)2(a1+1)c1+(] —2,3), (D8)
aY 1
o gk
o~ Gar 17 ks
v(ag + 1)
_mcl +(1-273), (DY)
0Z 1 v

Employing Eqgs. (49)—(54), one reexpresses these results as

or_ {(—3;7(; + H)

on
3 9 27
X +Y+n*Z | Qe ——l DI11
+v( SIX+Y 4o )}/( 4n>, (D11)

oG 9 3
= _|(ZnG-ZH
on KZ”G 2 )

1, 9 3 27
0X 9
= |(Znx-z
on [(4" )
9 3 1 27
—ZWF ->yG+~H 1-=272), (D14
+v< A1 =16 +5 )]/( 417>, (D14)
aY

—= {(X —3nZ)

on
9, 3 27 ,
—l—v( F 2" G+§11H>}/<1 Zr/), (D15)

oZ_[(3,.9,
o |\ 727 T2

+v<§F+%G—§nH>}/(1 —¥n2>. (D16)

2. Derivatives of vectors

Various combinations of the unit vectors » and b are also
needed and they are listed below for convenience. Results
from Appendix A yield

by, (D17)
o (D18)

(D19)

For terms involving derivatives, one uses dv/dv; = ¥; and
finds

(D20)

054027-13



M. R. ROBILOTTA PHYS. REV. D 106, 054027 (2022)

a[;s 23/ . This allows one to write
Py :T Ujdjas ——3’Uabs N (DZl) R
a 0 2 dv-b 1 2 .
n_ 2 dh) 1 <—3m>a + bu>, (D30)
_ 0b, o, 33 v, v V3
hy— =0, (D22)
v, N
~ 0Dy _Q on (D31)
.~ 0d, 1 . A S ov 2 ov,’
S = —(=V-bd b,), D23 a a
G =y (bbb (D23) A
ob o0
b, 2 b= V3oL, (D32)
. S S v v
A N — = _A . b/\ b , D24 a a
b= (-0 -bi, + b,) (D24)
and
~ b,
b= ==0. (D25) #v, = (0#0)b, + v0"D,. (D33)
A ov
. 0 L7, [P S, = b, D34
Uja_vadjsk =3 <Ujdajk - 7§Uabk)’ (D26) o, ’ (D34)
~ 0D, 1 1 . ob, .
S . ~AA fry D
bja_vadjsk —;(—%vavk+bjdajk>, (D27) avaa’l”a &by (D35)
A 0
_ob, 11 . T v, = o, (D36)
UjadeSk_; ﬁéak_bjdajk s (D28) a’[)a
. 0b 1/3
j_s jsk _néak - 677Uavk U/da/k
ov 2 3. Results
+ L5, +i;;a@k>. (D29) Recalling Egs. (58), (59), and using 9/dv, — d,,
3 3 d/0v — 0, and d/dn — 0,, one writes

2 2.2 2
[SOUW — WoH'S + Q,0'P; — P;0" Q] = [Fa,, <Y+§Z) +Go, <§Y+§Z+nX> + Ho, (§X+nz>

2 2 2 2
~ Yo, <F+§G> - 79, <§F+§G+UH) ~ X, <§H+17G>}fza
2 2.2 2

+ |Fo,\ Y +3Z ) +Goy( 3V +3Z+nX | + Ho, (X +nZ

2 2 2 2 1

2 1
= |:7’]CB + gCA:| f)a + |:§ UCB:| aan = O, (D37)

after transforming terms involving derivatives into binomials of the basic functions by means of Egs. (26), (27), (D11)—
(D16), and using results from Appendix C.
The vector contribution is obtained by a straightforward calculation and reads

3 . e 1 N 1 PN
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The axial term is

3 3
i [\é(saﬂpk = PLO"S = W' O + QW) + 2 (Q,0" P — P, Q j)d,.jk]

= i{ [(F 4+ G)0,X + Ho,Y + (H +nG)a,Z — (Y + Z)3,H — X0,F — (X + nZ)0,G]¢;

1
+—[(F+G)0,Z + Go,Y + Ho,X —
\/3[( )

[r3e39

(Y +2)0,G — Zd,F — Xo,H]b,

}a D+ —= KFJ%G)Z— <Y—|—§Z)G]aal3k

1 N
+ HZ — GX)(¥; aab —b;0,0;)d;ix 00 v,. D39
5 (HZ-GX) (i i)} (039)
Reexpressing the derivatives by means of (D2) and employing results from Appendix C, one has
1 /3 3
. . 1 9 3 9 R
=1 [l]vkd"v +1_72772 (GY— FZ) +ZT](FX - HY) +ZT’](HZ— GX) —11}7’] ﬂkdﬂﬂ
1 1 3 9 3 74
27 2\/_ (HY FX)+ (GX HZ)+§11(FZ—GY)+§U bio'n
+ F+2G x—m(v2z)|on+ 2| (Fi26)z-c(v+2z)|o
— — — v — — f— —
3 3 T3 3 3 k
\/_(HZ GX)(0;04b; — Biaﬂa,-)d,-jk}_ (D40)
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