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Generalized parton distributions of sea quarks in the proton
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We calculate the spin-averaged generalized parton distributions (GPDs) of sea quarks in the proton at
zero skewness from nonlocal covariant chiral effective theory, including one-loop contributions from
intermediate states with pseudoscalar mesons and octet and decuplet baryons. A relativistic regulator is
generated from the nonlocal Lagrangian where a gauge link is introduced to guarantee local gauge
invariance, with additional diagrams from the expansion of the gauge link ensuring conservation of electric
charge and strangeness. Flavor asymmetries for sea quarks at zero and finite momentum transfer, as well as
strange form factors, are obtained from the calculated GPDs, and results compared with phenomenological

extractions and lattice QCD.
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I. INTRODUCTION

Reconstructing the three-dimensional structure of the
nucleon and other hadrons in terms of their fundamental
quark and gluon (or parton) constituents is one of the
defining problems in modern nuclear physics, and one
which is a major driver of experimental programs at
facilities such as Jefferson Lab and the future Electron-
Ton Collider (EIC) [1,2]. A central element of this endeavor
is the extraction of generalized parton distributions (GPDs),
which, as Fourier transforms of nonforward (and non-
diagonal) matrix elements of nonlocal operators, contain
rich information on the partonic structure of the nucleon.
GPDs interpolate between exclusive form factors, when
integrated over parton momentum fraction x, and parton
distribution functions (PDFs) in the forward limit, and
contain considerably more information about the nucleon’s
internal structure than do PDFs or form factors alone (for
reviews of GPDs see, e.g., Refs. [3.4]).
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The mapping of nucleon GPDs requires a comprehen-
sive program of experimental studies of hard exclusive
processes, such as deeply-virtual Compton scattering
(DVCS) and hard exclusive meson production (HEMP),
over a broad kinematic range. While theoretical tools
have been developed to formally factorize GPDs from
the process-dependent, hard scattering amplitudes [5-7],
the reconstruction of the full functional dependence of the
GPDs, including their flavor and spin dependence, from
limited experimental data is a formidable challenge [8].
Experimental data were obtained at the HERA collider by the
H1 [9,10] and ZEUS [11,12] collaborations and by the
HERMES [13-15] fixed target experiment, as well as by
COMPASS at CERN [16,17]. A rich program of DVCS
and HEMP measurements is also underway at Jefferson Lab
with the 12 GeV energy upgraded, high-luminosity CEBAF
accelerator [18-21].

In addition to the experimental efforts, considerable
progress has also been made on the theoretical front.
Because of the complex, nonperturbative properties of
QCD, it is extremely challenging to calculate GPDs from
first principles. Since parton distributions and other light-
cone correlation functions are defined in Minkowski space, it
has also been very difficult to simulate GPDs on the
Euclidean lattice. Recent breakthroughs, however, have
enabled the x dependence of PDFs to be inferred from
matrix elements of nonlocal operators on the lattice, in the
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form of quasiparton distributions using the large momentum
effective theory [22], pseudo-PDFs [23], and lattice good
cross sections [24,25].

As with PDFs, the simulation of GPDs on the lattice is
still at a relatively early stage of development. Much of the
work on GPDs has focused on finding effective ways to
parametrize their dependence on kinematic variables [26].
From more phenomenological perspectives, characteristics
of GPDs have been studied within nonperturbative
approaches, such as the MIT and cloudy bag models
[27,28], the constituent quark model [29,30], the NJL
model [31], the light-front quark model [32,33], the color
glass condensate model [34], the chiral quark-soliton model
[3,35-39], and the Bethe-Salpeter approach [40,41].

In addition to the phenomenological models, more
systematic approaches using heavy baryon and relativistic
chiral effective field theory (EFT) have been widely used to
study hadron structure at small momentum transfer [42,43].
Perturbative calculations in chiral EFT expand observables
as series in the pseudoscalar meson mass O(m,/A,) or
small external momentum O(q/A,), where A, ~ 1 GeV is
the scale associated with the chiral EFT.

Historically, most formulations of EFT have been based on
dimensional or infrared regularization. Recently, a nonlocal
chiral effective Lagrangian was proposed [44—46], which
makes it possible to extend the range of momentum transfers
over which hadron properties can be described. The method
is arelativistic extension of finite range regularization, which
has been applied extensively to extrapolate lattice QCD
calculations of quantities such as the vector meson mass,
magnetic moments, magnetic and strange form factors,
charge radii, and moments of PDFs and GPDs [47-55] from
unphysically large quark masses to the physical region. The
nonlocal interaction generates both the regulator which
makes the loop integral convergent and the momentum
dependence of the form factors at tree level. The electro-
magnetic and strange form factors of the nucleon obtained in
this approach have been found to be in excellent agreement
with experiment up to values of the four-momentum transfer
squared of ~1 GeV? [45,46). Recently, the method has also
been applied to calculate the d — i flavor asymmetry in the
proton [56], the strange—antistrange PDF asymmetry s — 5
[57-60], and the sea quark Sivers function [61] in the proton.

In this paper we apply the nonlocal chiral effective
theory for the first time to GPDs of sea quarks in the proton.
The study is timely, given the ongoing experimental pro-
gram of DVCS and HEMP measurements at Jefferson Lab,
and plans for future studies of high-Q? exclusive reactions
at the EIC. We begin in Sec. II by introducing the local and
nonlocal chiral Lagrangian, including a derivation of the
currents which couple to the external vector field. The
GPDs may be written as convolutions of splitting functions,
describing the nucleon to meson plus baryon process, with
the GPDs of the bare hadrons. The one-loop nucleon —
meson plus octet and decuplet baryon splitting functions

are derived in Sec. III from the full set of rainbow, Kroll-
Ruderman [62], tadpole, and bubble diagrams. Unlike
the one-dimensional splitting functions relevant for PDFs,
the splitting functions for nonforward GPDs also depend
on the momentum transfer squared, in addition to the
dependence on the longitudinal momentum fraction vari-
able. Taking moments of the nonforward splitting functions
and expanding in powers of the pseudoscalar meson mass,
in Sec. IV we derive their nonanalytic behavior, which
serves as a model-independent constraint on phenomeno-
logical models. The convolution formalism is discussed in
Sec. V, where we present explicit expressions for the
unpolarized electric (H) and magnetic (£) GPDs in terms
of the splitting functions and GPDs of the pseudoscalar
mesons and intermediate state baryons. Numerical results
are presented in Sec. VI for the nonperturbative sea quark
contributions to the H and E GPDs for light quark and
strange flavors, interpolating the corresponding constraints
from the sea quark contributions to PDFs and form factors.
Finally, Sec. VII summarises our results and anticipates
future extensions of this analysis. Explicit formulas for
splitting function integrals are compiled in Appendix.

II. THEORETICAL FRAMEWORK

In this section we introduce the basic chiral Lagrangian
which defines the theoretical basis of our calculations, as well
as its nonlocal generalization which generates the ultraviolet
regulator for loop integrals in a natural way, respecting
Lorentz and gauge invariance. The nonlocal formulation
relevant for PDFs was presented in Refs. [59,60]; here we
generalize the formalism to the case of nonforward matrix
elements needed to compute GPDs.

A. Local chiral effective Lagrangian

We begin by introducing the lowest-order local
Lagrangian of chiral SU(3), x SU(3), effective theory
that describes the interaction of pseudoscalar mesons (¢)
with octet (B) and decuplet (T,) baryons [63,64],

£ = TH[BpP ~ My)B] ~ 5 Te[Byss u,. BY]

F_ ik 1+ ava D\ i
=5 Te[Br*yslu,. B]] + T (iy™*D, — Mgy )T
H T ijk,a kl TH ijl ¢ ijkTilm@ﬂu lijk
_E( /4) 775(”0:) ( ) _5[6 U (”u)
f2
+ He] + - Ti[D,U(D V). (1)

where Mz and M are the octet and decuplet masses, D, F,
C and 'H are the baryon-meson coupling constants, and f =
93 MeV is the pseudoscalar decay constant. The octet-
decuplet transition operator ®* is given by
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where Z is the decuplet off-shell parameter, chosen here to
be 1/2 [65]. We define the tensors y** = 1 [y*, y*| = —ic"
and y** = 1{y*,y"}, and €"/¥ is the antisymmetric tensor
in flavor space. The SU(3) baryon octet fields BY and
decuplet fields T,i,jk are represented by the matrix

1 0 1 +
7 A z p
— 1 50 1
=— =0 _ 2
= = _\/EA

and by symmetric tensors with components

1 1

T111=A++, T“2:—A+, T122=—A0, T222:A_,
V3 V3
1 1 1
T113 :_2*—4-’ T123 :—Z*O, T223 :_2*—’
V3 6 V3
T133 LE*O’ T233 LE*_,
3
¥ =Q-, (4)

respectively. The operator U is defined in terms of the
matrix of pseudoscalar meson fields ¢,

U=u®=exp <i \/?(ﬁ), (5)
where the matrix
%ﬂ'o + \/Lgn v K*
= n —5m+n K (6)
K~ K° —%17

represents the 7z, K and # mesons. The covariant derivatives
of the octet and decuplet baryon fields in Eq. (1) are given
by [66,67]

D,B =0,B+ [I,.B] —i(A°)v)B, (7)

D,T/* = 9,1/ + (U, T,)* = i1/, (8)
respectively, where 02 denotes an external singlet vector
field, A° is the unit matrix, and (- --) represents a trace in
flavor space. For the covariant derivative of the decuplet

field, we employ the shorthand notation

(T,. T,)* = (T)iT/* + (T,)] T + (T )51 (9)

For the meson fields, the covariant derivative is given by
D,U = 0,U + (iUA* — iA"U)v. (10)

The mesons couple to the baryon fields through the vector
and axial vector combinations

r,= —%(ul“uT—Fuuau)vZ, (11)

u (ud,u’ + u'o,u)

N[ =

w, = i(u'0,u —ud,u’) + (u' 2% — udu vl

(12)

where vy; corresponds to an external octet vector field, and
A (a=1,...,8) are the Gell-Mann matrices.

While the unpolarized twist-two GPD H receives con-
tributions from each quark flavor from the lowest-order
Lagrangian in Eq. (1), to compute the effects of meson
loops on the magnetic GPD E requires an additional
contribution to the Lagrangian for the magnetic interaction,
which enters at a higher order. The magnetic Lagrangian at
O(q?) for the octet, decuplet and octet-decuplet transition
interaction is given by [45,46,68-70]

1 - -
Linag = i, (¢1Tr[Bo*{F},. B}| + ¢, Tr[Bo"[F,;,. B]]

+ ¢3Tr[Bo* B]Tr[F,.,])

; .
+ o o e 4B rs (7)o
+ Gijk(’lq)f(T”)kzm}’y?’SBT)

FY b a b
gy )70 000 (2 e (T)°°,

(13)
where we adopt the notation ¢, ¢, and c; for the octet
baryon interaction from Ref. [68] and ¢, for the octet-
decuplet transition, which corresponds to the constant yr in
Refs. [45,46], and following Refs. [45,46] denote by F g the
coupling for the decuplet interaction. In Eq. (13) the
electromagnetic interaction with the individual quark fla-
vors is introduced by the field strength tensor

Ft =

= LW F A uFf ), (14)

N[ =

where Fji, = d,0] — d,vji for the external field v interact-
ing with the quark flavor ¢ = u, d, s with unit charge,
and the matrix 4, is the diagonal quark flavor matrix
defined as A, = diag{d,,.8,4.6,}. At this order, the
magnetic Lagrangian L,,, generates the following quark
flavor decomposition for the proton anomalous magnetic

moment, given by the proton’s Pauli form factor F5 () at
t=0,

Fé’(“)(o) :C1+C2+C3, (158)
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F290) = ¢, (15b)

Fg(s)(O) = C1 —C2+C3. (15C)
Since at tree level there is no strange quark contribution to
the proton, we take c; = ¢, — ¢;. Furthermore, from SU(3)
symmetry one also obtains relationships between the octet
and decuplet constants [45,46],

Within the flavor SU(3) framework, the magnetic moments
of the octet and decuplet baryons, and the transition
moments between the octet and decuplet baryons, can be
expressed in terms of quark magnetic moments, u,. For
example, for the proton and neutron one would have u, =
;—‘ Uy — % ug and p, = % Hag — % 1y, respectively, while for the
AT baryon pp++ = 3u,.

If we include the higher order magnetic Lagrangian L,
in Eq. (13), for consistency in the power counting we also
need to consider the next-to-leading order Lagrangian for the

cq = 4cy, (16a) baryon-meson interaction. Generalizing Eq. (1), and using
the notation from Ref. [71], we therefore include the addi-
FI = ¢, + 3c,. (16b) . oo . .
2 1 2 tional baryon contribution involving two derivatives [71]
|
i - - -
89 = 50" (byTr[Bu, | Tr(u, B] + bioTr[B{ [, u,]. BY] + by Tr[B([u,, w,]. B])). (17)

where the values of the coefficients have been determined to be by = 1.36 GeV~!, b,y = 1.24 GeV~!, and by, =
0.46 GeV~! [71]. Expanding the Lagrangians £ in Eq. (1) and Ly " in Eq. (17), the lowest order baryon-meson interaction

involving the proton can then be written as

(D+F),_ i (D-3F)
Lin = #yspd,n° + V2pytysnd,at) — #yspo
" 57 (Pr"vspoy prtysnd,z™) NGV, Priyspoun
(D—F) . . (D +3F) _
+ V2pytysEta, KO + priys300,Kt) — ——— pytysAo,K°
T (V2pr'ysZto, pr'ysZ°0,KT) NGVT; priysAd,

C
+ = (=2pO" AT 0,7 — V2O A%, xt + V6pOH AT, n

Vizf

— pOE00,K+ + V2pO i+ 9,K0 + H.e.)

1 _ _ _ _ — —
+ 4—fzpyﬂp[(n+aﬂn -7 0,n")+2(K"0,K~ — K~ 9,K") + (K°9,K" — K°0,K°)]
i B _ —
+ FPG”DP(Z(b]O + b“)aﬂﬂﬂ)yﬂ + (41)]1 + bg)@,K*d,JK + Z(bl() - b”)aﬂKO()DKO). (18)

For the interactions with the external field vy, from the Lagrangian £ in Eq. (1) one can obtain the vector current

1 - D_ .
Jh = ETr By#[ud*u’ + u'A%u, B] + ETr[B;/”;/S{u/I‘luT —u'2%u, B}]

F_ - .
+ 5 Tr[Bytys[ud®u’™ —

u'2%u, B

1 C
+3 T,y"*(udu’ + u'2%, T,) + 3 [T,0% (ul’u’ — u'2u)B + H.c.]

f2

+ T Ui — iaeU") + (Ui = i2* U)oU), (19)

For the SU(3) flavor singlet case, the current coupling to the external field 02 can be written

Jy = (A°)YTr[By*B] + (A°)T,y**T,,. (20)

The magnetic current coupling to the external field v can be obtained from the magnetic Lagrangian in Eq. (13),
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0 _ . _
S mag = m (e1TrBo*{u’ A u + ud u’, B} + ¢, TrBo* [u' A u + ud,u’, B]
T

2M;

(9””96 9”65”)( zjk( )fB{nJ’a}’STflm + €ijk(/1q)fTo,klm7/z/YSB7l)’

+ ¢3TrBo* BTr(u' A u + ud,u’)) —

2 0,((T, )"0 (4,)2(T*)")

lC4

(21)

which satisfies current conservation, d,.J4 mag = 0. The quark flavor currents can be written in terms of the SU(3) singlet

(a = 0) and octet (a = 3, 8), and quark magnetic currents,

1 1 1
S =208+ =I5+ ——=J% + S mag

3707273 T 3

1 1 1
Ja=3T0~ EJﬂ—’_FJ”—’—Jdmag’
PRI [ i
JS :g.’o _%JS +J‘y‘mag-

Using Eqgs. (19), (20), and (22), the quark flavor currents can be written more explicitly in the form

_ — - 1
Jl = 2py"p + fiphn 4+ ApFA + 2T pREt 4 F0pHs0 — e prip(atan +2KYK")
+ 3A++ (l/iﬂAJrJr + 2A+ apu A+ + Aa]/a[}”A;); + 2fz+ya/3ﬂ2};+ + z;oyu/)’ﬂzz()
+i(nd'nt —ntd'nT) +i(K-0*Kt — KT0"K")
(D + F (D + 3F i(D—-F
ChL) dChs )1'97"75/\1(+ _AD-F) )I_JV”}’SZOK+

ﬂf Vizf 2f
(V6pO A *n~ + vV2pe At + pO 5K " + H.c.)

prysnat 4

\/_f

_ 1 _ (c1+¢2) _ Cr—Cp,
wollae, (1 = —g+g—) LT 2 4 pw
d,(po p){ cz< o ) 7 | + o, 0, (iic*"n)

1
+4MB
3C2 —2C1

C C
d, (Ac*x0 d,(Storvyt 2
6MB L, (A E0) +—=0,(Z 6" ZT) +

Cy
2\/§MB MB 2MB

{ (rorsAH —rysAS) + iy, ys A% — pysA)) — ZF (y, 75 — plysZiT)

d,(Ac"™A) +

9,06 30)

4[ 3Mp
V3

_ 1_
- 7/\(7@752*0" —7HrsE0) + 3 20y, 5T — 7"7520)]

FT _ _ _ _
- 672 0,3A Tor AT+ L QAT oM AT - AQt A0 2T F gyt 4 T i3]
T

_ _ _ 1 _

J = py'p + 2iiptn 4 2T P T + TR0 + ApFA + T pytp(ata~ — K°KO)
+ A+ (1/3/4A+ + ZAa}'aﬁ”Ag + 3K(:]/aﬂﬂAE + fzoya/iﬂz;;o + 22;0—7/(1/)’”2;;—
—i(zm o'zt —nt0'n) + i(K°0"K° — K°0#K")

i((D+F) _ i(D-F) _

——=——priysna" ————=pr"

V2f V2f

C
- \}—6f (V3pO At + pO Adzt + pOwEitKO + Hee.)

+ ysZT KO
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1 1
+-=—0,(po"p) [(Cz —c) (2 - ]TQKOKO> + Mﬂ+ﬂ_:| + A;—zau(flaﬂ”n)

4My f? B
+ 3026T_§C1 d,(Ac" A) + AZ—ZB 0,(Z76"X7) + ;723 0,(X%x2%) — > \/cgl My 9,(Ac*x)
- 4\/i§ij s [ﬁ(yyysA“ = 7'rsA0) + i(r,rsA% = pysAD) = Z7(rrsZ T = pHysET)
N \fx(nysz*(’” —7ysE0) — % Z(rysZ% = riysZy 0)]
- % 0,[3850" A~ + 296 A% + Af o AT + 2Ty 4 T0om 50, (23b)

_ _ _ 1 _
JE = SHprst £ 300 1 ApEA + 2 pr*p(2KTK~ + K°K?)

+ Iy Ty — (KK - KT 'K ) — i(K'K° — K°0“K?)

i(D-F) _ i(D—F) _ i(D+3F) _
N 7 " Z+K0+7 " 20K+—4 . AK+
NTARAS TR N TG
iC
_ _®”U2i0K+ _ \/§_®”DZ§+KO 4 He.
J12f (P p )
7 +3¢y) .
+4MBf2 U(PG P)[ V) + (62 Cl) ]+ &, D( p )
(2-c)y s (ca=c1) 3 s ey, (2= 1) o
2 Vg (Shetvyt) 22 TV 5 (oY (=) 5 50 ws0
* 2Mp V(2o )+ XMy L(X70 )+ M, (2o )
ic — B -
- 4\/37;\/[ FZ0(rysZ % — pysZi0) + 7 (rysE T — prysEiT) = T (p s — prysEit),
B
—Fg Sk - 50 0 <
_ ay {Z; oHVIFa | Za ot yr0a Z;J"gﬂvzwra]’ (23(:)
6M

for the u, d and s quark flavors, respectively. As in Ref. [59], terms involving the doubly strange Z*~ and Z**~ hyperons
and the triply strange 2~ baryon do not couple directly to proton states and are not included here.

B. Nonlocal chiral Lagrangian

In this section we outline the generalization of the effective local chiral Lagrangian to the case of nonlocal interactions.
Taking the traces in Egs. (1), (13), and (17) in Sec. Il A, we can write the local Lagrangian density in the form

L0090 (x) = B(x)(iy* D, — M) B(x) + % [p(x)r*7sB(x)Z,p(x) + H.c]

+ T, (x) ("D = Mry™ )T, (x) + % [p(x)0*T,(x)Z,¢(x) + H.c]

+ DN 2,)' (x) + f;i;”"' PO P (2,8) (x) = 2,0 ()]
ic;ﬁqﬁ* = v il
+ 5 P () 2,0() (2. (x)
Cmag mag B
I P PP ) H () + o B0 B ()
(Cr- B(x)y*ysT*(x)F oy #T(x)F 24
+ M (x)y 75 (x) ;w(x) - M a(x)o- ()C) ,uu(x) e, ( )
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TABLE 1. Coupling constants Cp,, and Cr, for the pB¢ and pT¢ interactions, respectively, and C, and C;} " for the pppep’
coupling, and the tree level magnetic moments C"*, C7*, Cjy® and C %, respectively, for all the allowed flavor channels.

B p n Tt X0 - A AX’

Ccp* fai+e —2¢ lei+o fe ler—o -1 %cl

T AT A+ A” A- yet 30 )

cr 3F1 3F1 0 -3F3 3F1 0 -3F3
BT pAT A? DI My T0x-0 AZ po M

Cyt —%64 —%q %64 ﬁczt 1cy 0

B¢ pr’ na’ KO 0K AK*

Cpy 1(D+F) %(D+F) %(D—F) (D-F) —\/%(D+3F)

T Al At A+t KO TOR+

Cry ~Lc ~tc 1 Lc -bc

A ata” K°K° K*K-

Cou' > > 1

C:/,qg 4(byo + byy) 4(by1 = byo) 8byy + 2bg

Ci;;% —3(ci+¢) 0 —C

where the dependence on the space-time coordinate x is
shown explicitly, and for the interaction part we show only
those terms that contribute to the proton GPDs. The
covariant derivatives in Eq. (24) are given by

2,B(x) = [0, — ie%%ﬂ(x)]B(x), (25a)
2,T%(x) = [0, — ief.o ,(x)]T"(x), (25b)
Dy (x) = [0, — iegod , (x)|g(x), (25¢)

where 7, is the electromagnetic gauge field, and e}, e7

and ef’/) denote, respectively, the quark flavor charges of the
octet and decuplet baryons, B and 7', and meson ¢. In the

case of the proton, for instance, one has the flavor charges
|

L (nonloc) ( x)

+ p(x) [% r*ysB(x)

el =2e% =2, e, =0, while for the =% hyperon e%, =

2@%+ =2, eg = 0, and similarly for the other baryons. For

the pion and kaon, the flavor charges are e* v = —ed, =1,
¥

ezo = 0 for all ¢, and e%. =1, e}, =0, with the
values for other mesons obtamed by charge conjugation.
The coe’:fficients Cgp» Cry> Cpyis C:b e Cgag CBag Cmag
and sz in Eq. (24) are given explicitly in Table I for the

_—6

various processes discussed in this work.

Following Ref. [59], we sketch here the derivation of the
nonlocal Lagrangian from Eq. (24). Details of the meth-
odology used here can be found in Refs. [45,46,72-75].
The nonlocal analog of the local Lagrangian (24) can be
written as

= B(x)(iy"Z, = My)B(x) + T,,(x)(iy"* D = My )T, (x)

+ Tt (]9, [ dagyin s+ @F@+ )+ e

+IC‘M) p(x)y*p(x )/d“agq(x x+a)F(a)p(x+a)7, /d“bgq (x + b, x)F(b)p*(x + b)

22 PV

IC;,)(/) = uv 4 q 4 q ¥
+ 2 p(x)o p(x)@ﬂ/d aGy(x,x + a)F(a)p(x + a)_@y/d bGy(x + b, x)F(b)$'(x + b)
+ CgagB(x)o””B(x)F (x) + Clg;gB( YrFysTV (x)F o, (x) — Cr;agT (x)o"*T*(x)F,,(x)

4MB uv 4MB X)VYs 1172 4MT a uv

Cmdg
[ v T

+ M, p(x)c*p /d4 /d4bF Q (x+b,x+a)F(a)F(b)p(x + a)p(x + b)
+ 2,0(x)(2,$)" (x (26)
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where the gauge link gg is introduced for local gauge
invariance,

Gyixon) =exp |-ieg ["azer, @] @

and F(a) is the meson-baryon vertex form factor in
coordinate space. Note that both the nonlocal Lagrangian
in Eq. (26) and the local Lagrangian in Eq. (24) are
invariant under the gauge transformations,

B(x) » B/(x) = B(x) explie0(x)].  (28a)

T,(x) = T,(x) = T,(x) expliez6(x)]. ~ (28b)
P(x) = ¢'(x) = ¢(x) explieg0(x)], (28¢)

for the baryon and meson fields, and
A (x) = of'(x) = " (x) + #0(x)  (28d)

for the electromagnetic field, where 6(x) is an auxiliary
function.

The gauge link (27) can next be expanded in powers of
the charge ey,

1
$(x +b,x+a) :exp{—ie;{)(a—b)/‘/ dre/, (x +at + b(1 —1))

_ q
=1+ 8G9+
using a change of variables z# — x* + a¥t + b*(1 — 1),

5G¢

I
—iefé(a—b)”% dre/,(x + at + b(1 —1)).

0
(29)

(30)

This allows the nonlocal Lagrangian £} in Eq. (26) to be further decomposed into free and interacting parts, with the

latter consisting of purely hadronic (Eh“?inloc

), electromagnetic (Eem

(nonloc)

) and gauge link (Elmk

(nonloc) )Y contributions. The

hadronic and electromagnetic interaction parts of £ are obtained from the first term in Eq. (29), and given by

£ = 90| BptysB(a) +
)y”p(x)/d4a/d4bF(a)F(b
p / d*a / d*b F(a

lC +
2¢§ plx
S

lC’
T Pl

_|_

_|_

and

)¢(x+a)a,g"(x +b)

%@"”Ty(x)} /d4a F(a)o,¢(x +a) +H.c.

- 0,p(x + a)p’(x + b))

)[0,#(x + a)d,¢" (x + b) = 9, ¢(x + a)d,¢p" (x + b)].  (31)

LE) (x) = e4B(x)r*B(x) ,(x) + 4T, ()T, (x) o(x)

+ led,[d"qﬁ(x)t/’ﬂ(x) — ¢(x)0" 9" (x)]

- q-,|Cs
—iegp(x) [¢

f f

X)7p( /d4 /d“bF

€¢C(”/
2f2

mag

41513 B(x)a””B(x)FW(x) 4+ —2

mag
Cf/!?!ﬁt

aM f2p

mag

iCpr B(
4Mpg

x)o* p /d4 /d4bF

+

%) / da / d*b F(a)F ()

(%)

rysB(x) + CT‘ﬁG/‘”TD(x)] / d*a F(a)¢(x + a),(x) + H.c.

)¢ (x + a)g’ (x + b7, (x)

(x +a)d 0" (x + b)ﬂfﬂ(x)

T(x)F,
() 4MT

)7'ys v(x) = = Ta(x)0" T(x)F (x)

)¢(x + a)p (x + b)F,, (x), (32)
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respectively. The second term in Eq. (29), which explicitly depends on the gauge link, gives rise to an additional
contribution to the Lagrangian density that can be expanded as

nonloc . - C D C
£ 00 = =ieypo)| P rsb(a) + T )]

f
y / Lar / da F(a)a"d, (p(x + a) et (x + at)) + H.e.
+e"’2§<’2"” p(x)y* pl / dt / dta / d*b F(a — b)
< 3+ @00 x4+ B) = bl + ) (x-+ )7, (1 + ar + b(1 =) )

Finally, the quark current for the nonlocal theory can be written as a sum of two terms, from the usual electromagnetic
current obtained from Eq. (32) with minimal substitution, JZ,em, and from the additional term associated with the gauge
link, 8J%,

5fd4 nonloc) (y) 5fd4 1:1(])(n100) (y)

Jgem(x) = 5, (%) VAR 57,0 , (34)
where, explicitly,
Jiem(x) = egB(x)p*B(x) + e7To(x)y™ T, (x) + ieg[0"p(x)¢" (x) — p(x) 0@ (x)]
~iey( [ dar@pt [% PrsB0) + 0T, (1) g+ a) + Hic )
- e"’;"? [ #a [ & F@P®R b+ ) b)
mag mag
s ot [ Ear@o, (o p) =1 [ daF@0, T 0o ()
jCmae
+ fM (@ (P57 () = A, (p(0)r#75T (1))
T [ #a [ @t F@FGAGRO P+ @+ ), (33)
8J4(x) = iel /1 dt/d4a F(a)a*o (ﬁ(x — at) [%y/’y B(x —at) + %W”T (x — at)})(b(x +af) +Hec
q s 2 7 5 7 v .C.
- e‘?’;ﬁw / dr / da / d*bF(a — by
x [0,(p(x — at — bT)y” p(x — at — bi)p(x + (a — b)))p' (x — (a — b)1)
= 0,(p(x —ar = bi)y’ p(x — at — bt)p' (x — (a — b)1))p(x + (a — b)7)]. (36)

|
with 7= 1 — ¢. Compared with the local theory, Eqs. (18)  the hadronic splitting functions for protons transitioning to
and (23), the nonlocal formulation in Egs. (31)-(36) baryons and pseudoscalar mesons.
includes the regulator function F(a). In the limit where

4 . -
F(a) = 8% (a), which corresp.onds to taking .thej momen- IIL. NONFORWARD SPLITTING FUNCTIONS
tum space form factor to unity, the local limit can be
obtained from the nonlocal result. In the next section we The GPDs for a quark flavor ¢ in a proton with initial

will apply the nonlocal interaction derived here to compute ~ momentum p and final momentum p’ are defined by the
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Fourier transform of the matrix elements of the quark
bilocal field operators vy, as [6]

 dd —ixA | /|7 1 1
/_mge (P'lw, (Zﬂn>¢wq (—2/%1) |p)

— a(p) [ﬂm (c.&r) 4 7w

]

(37)

where n,, is the light-cone vector which projects the “plus”
component of momenta and 4 is a dimensionless parameter.
From Lorentz invariance, the Dirac (H?) and Pauli (E?)
GPDs are typically written as functions of the light-cone
momentum fraction x of the proton carried by the initial
quark with momentum k, and the skewness parameter &,
which are defined as

I+ AT
_ X —_2 38
Y= S=Tope (38)
where
1 / !
P=§(p+p), A=p —p, (39)

are the average of the initial and final proton momenta and
the momentum difference, respectively. The light-cone
components k™ and k= of any four-vector & are defined
askt = \/ii(ko + k%) and k= = %(k0 — k?). The GPDs are
also functions of the hadronic four-momentum transfer
squared, t = A”. The dependence of the GPDs on the fourth
variable, typically taken to be the four-momentum transfer
squared from the incident lepton, Q, is suppressed.

Integrating the H? and EY GPDs over x, one obtains the
Dirac and Pauli form factors for a given quark flavor ¢,
respectively,

F?(r)_/_idxH‘I(x,é,t), Fg(t)—/_jdeq(x,é,t),

(40)

and summing over the quark flavors gives the nucleon
Dirac, FV, and Pauli, F}', form factors,

FYy (1) = e Fi,(). (41)

The combination of these form factors can generate the
usual Sachs electric and magnetic form factors as

GY(0) = FY() + s FE (). GN(0) = FY () + FY ().
(42)

In our calculations we consider only non-skewed GPDs,
and henceforth set £ =0, in which case the hadron
momenta are parametrized as [76]

1 1
Pl = (P+,P‘,—§A¢>, pH = (P+,P—,§Al>, (43)

where the momentum transfer A* is purely in the transverse
direction.

In the application of our nonlocal EFT framework to
GPDs, we need to compute the nonforward splitting
functions defined by the matrix elements of the hadronic
level currents derived in the previous section. The electro-
magnetic vertex is given by

i A,

2M

(N(P)#IN(p)) = a(p') [}"‘FT(Z) + FY (1) |u(p)

= / d4kT* (k). (44)

where the integrand I* (k) depends on the internal meson
momentum, k. Defining the light-cone momentum fraction
of the target nucleon carried by the interacting hadron,
y =kt /P, the Dirac-like splitting function f(y, ) and
Pauli-like splitting function g(y,?) are related to the
vertex by

i(p') {ﬁf (v, 1) + ia;f =g(. t)} u(p)
— / d4kf+(k)5<y - I’i—i) =TIt (45)

One can easily verify that the integral of the splitting
functions over y leads to the corresponding form factors
in (44).

The diagrams that are relevant for the calculation of the
one-meson loop contributions to GPDs up to the fourth
chiral order are shown in Fig. 1. In the following we outline
the calculation of the corresponding splitting functions,
beginning with the diagrams involving only octet baryons
[Figs. 1(a)-1()], and then presenting results for contribu-
tions with intermediate decuplet baryons. Since the final
results, after integration, for the latter are rather lengthy, we
collect the complete expressions for these in Appendix.

A. Octet baryon intermediate states

Starting with the octet baryon rainbow diagram in Fig. 1(a),
in which the external field couples to the meson, the
contribution of this diagram to the matrix element I'" in
Eq. (45) is given by

054006-10



GENERALIZED PARTON DISTRIBUTIONS OF SEA QUARKS IN ...

PHYS. REV. D 106, 054006 (2022)

/®\ - T~ - T~
7/ A 7/ N\ /7 N\
/ \ / \ / \
l | | ® | | = |
(@) (b) (©)
//_\\ //_\\ //"\\
/ \ / \ / \
S E— ® ' ® :
(d) () (®
PN FEEN PN
// \\ { ) l )
(® (h) (@
-~ PN A
() ) ()
@ (k) @
/®\ - TN ~ T~
/7 N\ /7 AN / N\
/ \ / \ / \
| | | N | } = ]
(m) (n) (0)
//_\\ //—\\ //_\\
/ \ / \ / \
— I &—
(p) (@) (r)
//"\\ //—\\ //‘\\
/ \ / \ / \
! S(\ ' | | ‘
(s) ® (w)

FIG. 1. One-loop diagrams for the proton to pseudoscalar meson (dashed lines) and octet baryon (solid lines) or decuplet baryon
(double solid lines) splitting functions up to the fourth chiral order: (a)—(c) octet baryon rainbow diagrams, (d)—(g) octet baryon Kroll-
Ruderman diagrams, (h)—(j) tadpole diagrams, (k)—(I) bubble diagrams, (m)—(o) decuplet baryon rainbow diagrams, (p)—(q) octet-
decuplet transition rainbow diagrams, (r)—(u) decuplet baryon Kroll-Ruderman diagrams. The crossed circles represent the interaction
with external vector field from the minimal substitution, filled circles denote additional gauge link interaction with the external field,
black squares represent the magnetic interaction in Eq. (13), and gray squares denote the interaction in Eq. (17).

A Chy [ %k ~ i
Fa)—u(p)fz /(Zﬂ)4(k+A)}’5F(k+A)m2k+

i ip—gMy)
D,(K) Dalp=F)

-+

ysmkw(y—l’;)u(p) (46)

- row l6+’/AI/ row
=00 |57 ) + a5 00 o). )

where the propagator factors D, (k) and D (p) are defined as

Dy(k) = k* — mi +ie, Dg(p) = p*>—M%+ie, (48)

and m, is the meson mass. The function F regulates the
ultraviolet divergence in the loop integration, and for sim-
plicity is chosen to be a function of the meson momentum
only (see Sec. VI below). After simplifying the combinations
of Dirac y matrices in Eq. (46), the “Dirac” f((;gw) (v, 1) and

“Pauli” g((/)r,gW> (v, t) splitting functions can be written as
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c2 e _l.F(rbw) o kt
(rbw) B¢ 98
= F(K)F(k+A)5(y——). 49
C2 d4k —iG(er> _ _ kt
(rbw) B¢ ¢8
’ _ F(F(k A)S -—, 49b

where the trace factors in the numerator of the integrand are given by

row 1 T —_—
Fyp' = SyK(4k - P+ 4MMy + y1) = y(2(k- p)? = MM(2k - A+ y1)) + k- p(2k- p/ + yi). (50a)
Gy = —2yM(2yM*My + (M + 2yM)(K* = 2k - p)). (50b)

with My =M + M.
For the baryon rainbow diagram in Fig. 1(b), the photon couples to the intermediate octet baryon through an electric
vertex. The contribution of this diagram to the nonforward matrix element I'" is given by

Gy [k o i =K M) (P — K+ Mp)
F<b>—”<P>?/(zﬂ)4k75F<>D¢<k) Dy(p'=K) " Dplp—K)

yskﬁ<k>5(y—§)u<p>. (51)

(rbw)

Using a similar projection as in Eq. (47), the splitting functions fg;w> (y,1) and gB;’) (v, 1) are obtained as

C3, [ d*k —iF o) ~ i
(rbw) B B4 2
o= [ Fun(r-L)
B¢ ( ) f2 (2”)4DB(p/_k)DB(p_k)Drﬁ(k) ( ) pt ( )
C, [ d*k —iG\o™) _ K+
(rbw) B¢ B¢ 2
gomv (g ¢ _—/ F ké( ——), 52b
np (01) 12 ) (2r)*Dg(p' — k)Dy(p — k)Dy(k) ®) p* (520)

where the trace factors in the integrand are given by
— — 1 —
Fgo') =~k p(ak - p' + yMpAg) + k(4 - P+ Mp(My — 2yM)) — SYM5(yMst + 285k - p') =K', (53a)

w 2MM _
Gy = === 2k AP + yi(dk - p + k- p' — K~ yMMp)). (53b)

with Ag =My — M.
The diagram in Fig. 1(c) involves the magnetic photon-baryon interaction. The contribution of this diagram to I'* can be
written as

+

ysmk)é(y —l’j—+)u<p>. (54)

Ty =a(p')

Chy / Ak o~ i — K Mp) ic A i(P = M)
(c)

7 ) et O oM, Dalp—k) Dy®)

The splitting functions fg:;wmag) (y,1) and gggwma@ (v, 1) in this case are given by

C2 d4k _l.F(rbw mag) _ K+
(rbw mag) B¢ B¢ 2
f .1 =—/ F k5< ——), 55a
w00 =50 | Ga Dy = 0Da(p = 0Dy P T 559
2 dk _l.G(rbw mag) B Kt
(rbw mag) o Btﬁ/ B¢ 2 ( __>
) =— F(k)o , 55b
o0 =52 | Ga by s —RD,m P T 530
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where

Dw m M =V
Faovme) = o QU 8)? 4 yi(2k- P~ k2 — yMMp)). (56a)
B
(rbwmag) _ _ 2M A2 YVi KVi P22
B
— 4tk - pk- p' + tk*(4k - P — My(My + 2yM) + k2)). (56b)

The magnetic coupling constant Ciz*® does not appear in the splitting functions, but rather is included in the input GPDs.

The photon couples to the pseudoscalar meson and nucleon in Figs. 1(d) and 1(e), as first pointed out by Kroll and
Ruderman in their study photo-meson production near threshold [62]. The contribution of these two diagrams to the matrix
element I'" is given by

Cy, [ d*k i(p —f+Mp) i(p—f+Mp) i~ k+
r :-/ﬂ/ B iysyt —iy* d FA (k)5 y—— . (57
@) = #(P) 7 | aor M= T S =k vsk D, (&) (k)s| y o u(p).  (57)
The corresponding Kroll-Ruderman splitting functions fgf/)R) (y,t) and ggf/)R) (v, t) are then defined as
2 g [ —iFXRD _ipkR2) L o
Fig (o) = / . [ st ] F2<k>5< ——+>, (58a)
) @2n)* [Dg(p'—k)  Dp(p—k)] Dy(k) p
2 dk [ —iGERD  _GRY) 1 o
) = [ S S| s Pwe(s =), (580)
f (27)* [Dp(p’ = k) = Dp(p — k)] Dy (k) 4
where the trace factors in the integrands are given by
Fyl) =12 =2k p' + yMMp, (59a)
Fyy? = k2 =2k - p + yMMy, (59b)
MM
Gy = +TB (2k - A - yt), (59¢)
MM
Gyt =~ ; B (2k- A+ yi). (59d)

The additional Kroll-Ruderman diagrams generated from the expansion of the gauge link terms are shown in Figs. 1(f)
and 1(g), and are important to ensure that the renormalized charge of the proton (neutron) is 1 (0). The contribution of these
two additional diagrams with intermediate octet baryons is expressed as

C ko~ i(p - 5) i ikt~ <
i = 0) 2 [ o0 s b ) (= My 2 (Pl 2) = F(0)
=2ik" i(p—K+Mp) i ~ ~ k*
ot B g b s (P 8) = F(6) o= (o) (60)

The respective splitting functions for these gauge link diagrams, & fgff) (v,t) and 6953?) (v, 1), can be written as

_Chy / 4 5<y k+>[i5F§;‘“> F(k—=A)—F(k)  i6Fg " F(k)—F(k+A)
k)

) k L
2 ) o) Dyl p' ) |Dp(p'—k) —2k-A+t  Dy(p—k) 2k-A+1

5f g (v.1) } . (61a)
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(KR 1) (KR 2)

55y 1) = %/ d*k Fug—L sy K i6Gy " F(k—A) - F(k) | 19Gy F(k)=F(k+A) (61b)
By 2] @a)* U Dy(k) pt) |Ds(p —k) —2k-A+t DB(p k) 2k-A+t |
where the numerator factors are given by
5Fy ) = %(4(1« - p):— K24k - P+ AMMy + yi) + 2MM 3 (2k - A — yt) + 2k - p'(2k - p + yt)). (62a)

SFgy Y = %(4(k - p)? = k2(4k - P+ AMMy + yt) — 2MMp(2k - A + yt) + 2k - p(2k - p' + yt)),  (62b)

Gy ) = —2My(My(2k - p' — 2yM?) — K2 (My + yM) + 2yMk - p'), (62¢)

(KR 2)

5Gy, ' =2My(Mp(2k - p —2yM?) — k*(My + yM) + 2yMk - p). (62d)

The contribution to I'* from the tadpole diagram in Fig. 1(h) is given by a relatively simple expression,

o (o Ct/)tﬁ d*k i + 7 k™
Ly = u(p') 7 /(zﬂ)4D¢(k)7 Fz(k)5<y—p—+>u(p)- (63)

The splitting function fgad) (v, 1) in this case can be easily read off from Eq. (63), and is given by

C d*k P~ k*

ad) P 2

i) = 8 [ S s P wa(y 1) (64)
’ 12 ) (2m)* Dy(k) p*

There is no contribution to a Pauli-like splitting function ggad)( y, t) from this diagram. The related tadpole diagram that is

associated with the gauge link in Fig. 1(i) makes a contribution to the I'" matrix element that can be written as

o C¢¢ d*k i 2kt AT _E
= 1) f [ G0 5 o w Pk P35 =55 utp) (65)
with the corresponding splitting function §f ;‘d (v, 1) given by
(tad) o iC¢¢ d*k ~ y(4k - P+ yl) Fi_ _F _ E)
a5 = 8 [ ST RS k- )~ Fpa (v - ). (66)

The tadpole diagram in Fig. 1(j) associated with the magnetic interaction makes a contribution

LGt a0 e, Kt
lﬂ(j)iu(p) fz /(27[)4D¢(k) M (k)5<y_p_>”(P)v (67)

which gives rise to a Pauli-like magnetic tadpole splitting function given by,

oo, _CRE [ R
i ) = [ S Py =) (68)

The contributions of the bubble diagrams are illustrated in Figs. 1(k) and 1(1). For the regular bubble diagram in Fig. 1(k),
one has

oo Con [0 i L Ray
Uy = i) 52 [ i+ AP+ F 0 5otk o (s =1 ulo) ()
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As with the tadpole diagrams, this also generates only a Dirac-like splitting function, ffﬁbUb) (v, 1), which is expressed as

£ (1)

_iCM/ dk  y(dk- P+ yi)
(

~ _ e
T 42 27)’ D, (k+ A)D, (k) F(k+ A)F(k)ﬁ(y - +>. (70)

p

Finally, for the bubble diagram derived from the Lagrangian £/, » 0 Eq. (17) and illustrated in Fig. 1(1), the contribution can
be written as

/ 4 . . +
d*k ~ ~ i i k
rt=a(p 'M'/—'a’l”Aka A)F(k 2k* Sly—— : 71
1) M(p ) 2f2 (2”)41 Aty ( + ) ( )D(p(k + A) D(/)(k) y p+ M(p) ( )
and produces a Pauli-like magnetic bubble splitting function given by
iC! 4 +
(bub) lC(/”/’ / d*k yM(4k - P+ yt) ~ ~ k
1) = Flk+A)F(k)sly——]. 72

B. Decuplet baryon intermediate states

The splitting functions for the diagrams involving decuplet baryons in the intermediate state in Figs. 1(m)—1(u) are
computed in a similar way, although because of the higher spin of the decuplet baryons the expressions are typically
somewhat more involved. Here we give the basic expressions for the contributions from each diagram to the matrix element
'™, with the full results for the numerator trace factors in the decuplet splitting functions given in Appendix.

Beginning with the decuplet baryon rainbow diagram in Fig. 1(m), the contribution to I'" is expressed in a similar form to
that for the octet baryon rainbow diagram Fig. 1(a) in Egs. (46)-(47),

= -at) 2 [ L a)0nFu )5
(m)*—u<P 7 /(27[)4 + A),; (k+ )D¢(k+A)
i ; o e
Dy —E =gy P ~HORF03 (3 )l 73)
row ; +UAI-/ row
=i(p) {y*ff,;? 'y.1) + sz g™ (. r)]u(p), -

where the octet-decuplet transition operator ®" is defined in Eq. (2), and the spin-3/2 projection operator S, for a particle
of momentum k is given by

Ya¥p Zkak[)’ + y(lk/} - yﬁka

Sap(k) = — 75
a/)’( ) Gop T 3 + 3M:‘} 3M (75)
The corresponding Dirac and Pauli decuplet rainbow splitting functions, fg?w) (v,t) and g(r?W) (v, 1), can be written as
Ch, [ d%k iF . . k*
(rbw) T¢ ¢T
1) = Fk+AF(k)oly——], 76a
145700 =72 [ oty e g T P99 57) e
Ch, [ d*k iGyy" ~ ~ k*
(tbw) _ Trﬁ/ o7 < >
) =— Flk+ A)F(k)o|y—— ], 76b
G 00 = | Gy Drp Dk + D IO 7o

respectively. The explicit expressions for the numerator factors F g;w) and Gg?w) are given in Egs. (Al) of Appendix.

In Fig. 1(n), the photon couples to the decuplet baryon in the intermediate state with an electric vertex. The contribution
of this diagram is given by
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L Chy e i ; o
Iy =-u(p )f2 /( o) Lk, O F(k)DK<k)p,_k_MT5m(p — Ky
~ k+
g Sl = 0O F W (=) )

where the corresponding splitting functions f (Tr};w) (y,1) and g(TrZW) (y,1) are

C2 d*k iF W) _ Kt
(rbw) ¢ T 2
PR Y Fony-E)
o U0 =" | G by (= 0D (p— 0D, ) - MO\ T (782)
C2 d*k iGow) _ Pt
(rbw) T¢p T 2
Jre V5t :—/ F k§< ——). 78b
0 00 =5 | Gy by = 0D (p = 0D, T P\ TR (780)

The factors F ngW) and G(Trzw) in the numerators here are given in Egs. (A2). For the magnetic photon-decuplet baryon
interaction in Fig. 1(0), the contribution to I'" is expressed as

e (T / Ik o) — Sy k) oA
@~ o)™ R T T
i

: m%@ - k>®””kvf“<k>5(y - "—i) u(p). (79)

P

where the corresponding splitting functions f7,, (row mag) (v.1) and gz, (rbw mag) (y, 1) are given by

2 dk l.F(rbw mag) B K
(rbw mag) T T¢ 2
v, — F(k)oly——], 80
#4700 =2 [ i —ion—mmp " W0 7) 50
2 d*k G(rbw mag) _ +
(rbw mag) T¢ T 2
1) =—5- F(k)o|y—— 80b
00 =72 [ o= =—mmm #9057 (50

and the factors F, (rbw m3g) and G;r;w m2¢) are written out in Eqs. (A3).

In Figs. 1(p) and 1 (q), the photon couples to the octet-decuplet transition vertex, whose contribution to the matrix element
I'* can be written as

CpsC
e = 2pr 2 1P )/dk (){ Krs

i
+ _ v
4MBf2 ( 7[) A}/S S /)(p k)®p kl/

V—k—-Mr

p*lfM

l 2 _ v
+ k)’sp, =M, rTysA = k_MT Sip(p — k)®”k,
—k @ﬂy i S " APy T ;
A ﬁl_k_MT I/ﬂ(p ) 4 ysp_k_MBkys
+ k@ﬂv%Sﬁ(p’ — k)A&ys 1 km} i 5<y —E)u(p)- (81)
p—k-Mr P—K—Mp D, (k) p*

The corresponding Dirac and Pauli splitting functions £ ™ (y, ) and g\o" ™ (y, 1) are in this case given by

e Cn.C 41 1 + .F(rbwmagl) .F(rbwmagZ)
e ) = 20518 [P o) o (v ) [ T . | e
4f (27) D¢<k) p Dg(p' = k)Dr(p —k)  Dr(p' —k)Dp(p — k)
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ggr ™ (v.1) _ CroCry / d'k F(k) 5(y k+)[ Gy ™ + Gy ™ ] (82b)
e ’ 4f2 (2”)4 D¢(k) DB(P —k)DT(P—k) DT(FI_k)DB(p_k) ’

with the four numerator factors F (rbw ™e12) and Gg;w meg1.2) given in Eqs. (A4).

For the KR diagrams with decuplet baryon intermediate states in Fig. 1(r) and 1(s), the contribution to I'* is given by the
expression

—+ _ C§"/’ = / d k Lo l / : + TR0 v
Lot =~ Iz u(p') (27)° (k) | k,© msap(l? — k)i®"" —i® Sop(p — K)Ok,

i
P—k-Mr
i

xma(y_l’j—i)u@), (83)

where the corresponding KR splitting functions f (TI;R) (v,t) and g(Tl;m (v, 1) are given by

o2 g T iFURD (p(KR2) | i

Ao =22[ [ o, T }F%k) 5( ——+), (84a)
7 ) et e =0t oro=n) " Po,w°0 5
G, [ dk [ iGRY GRS 1. | e+

.0 = [ A }F%k) 5( ) (84b)
7 ) (2n) (p k) Dr(p—k) D (k) p

and the numerator functions F (rbw m2¢1.2) and Gg?w m3¢12) are in Egs. (AS). Similarly, the additional KR diagrams generated

from the gauge link terms w1th decuplet intermediate states are shown in Figs. 1(t) and 1(u), and their contribution can be
written as

C; d*k i 2ikt - ~
Loy = ;zT u(p') / 2n) [ku(ammsﬂp(l/ — k)@ (k ~ A)zm (F(k—A)—F(k))

=2ikT ~
A)®° —(F(k) - F A
+(k+8),07 2 s (F() = Fk+ )

sty S =00k 5wyt 55

where the gauge link dependent KR splitting functions & f(TI;R) (v, 1) and 59(;;12) (y,1) are given by

578 (1) — 3, / AL BV i5Fy " F(k) = F(k - A) . i6Fy Y F(k) - F(k + A)
o U= ot D0\ T ot D(p—k) 2% A - A DT(p k) 2k-A+AZ |

(86a)

55y — C%¢/ L BN A R oY F(k) - F(k - A) . i5Gy " F(k) - F(k + A)

Iro V=772 [ a0 0\ T p DT(p K 2k-A—A7 Dplp—k) 2k A+ AZ

(86b)
The complete expressmns for the numerator func-  physics that in the current framework is controlled by the
tions 6F 7, R and 5G ) are presented in Egs. (A6) regulator function F, some aspects of their calculation are
of Appendlx in fact model independent. In particular, the moments of the
splitting functions, which can be expanded as a series in the
IV. NONANALYTIC BEHAVIOR pseudoscalar meson mass, My, contain terms that do not
OF SPLITTING FUNCTIONS depend on the regularization method [59,77-79]. These are

_ ' ) o _ the coefficients of the leading nonanalytic (LNA) terms,
While certain features of the hadronic splitting functions  that are determined by the low-energy properties of the
derived in the previous section depend on short-distance  pycleon, such as the hadronic couplings and masses. Since
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the LNA behavior is derived solely from the long-distance
characteristics of the chiral effective theory, understanding
these can place constraints on models of the splitting
functions consistent with the symmetries of QCD.

To explore the LNA terms further, we define the lowest
moments of the splitting functions £ (y, ) and g( )(y, 1)

(3] “ ’ [T} [TaR T}

for the diagram in Fig. 1 (“x”), where =“a u”, as
(x) !

Fi (t)IA dy O (y, 1), (87a)
(x) !

0 = [Tayg ) (370)

which correspond to the Dirac and Pauli electromagnetic
form factors of the nucleon, respectively. Taking the values
at zero four-momentum transfer squared, = 0, we expand

the form factors F (lxg(t =0) in my, keeping only the

nonanalytic (NA) terms in m{Z/), from which the LNA

behavior can be extracted.
For the rainbow diagram in Fig. 1(a), the NA contribu-
tions can be written as

Fi(0)

3C2
B0 {( 3 —2A}) logm},

NA N (4”f)2

Ap— Ry
2AzRpzlog ————— 88
+ BBOgA +RB] (88a)

4C3,
xa (4nf)?

_RB
M+ 4A R104
—( )R log +RB:|

{(MAB +2A% + 2Rp) logmy,

(88b)

where Ry = ,/Aj —mj. If Ay <m,, Rz will be an

imaginary number and the log term will become an
arctangent, according to its definition [59]. The NA terms

of F (1&) are the same as those reported in Eq. (62) of
Ref. [59] if one sums the NA contributions from the on-
shell and & terms of Eqgs. (114) and (117) of [59].

For the baryon rainbow diagram in Fig. 1(b), the NA
behavior is given by

3¢5,
(4nf)?

Agp—R
+2ABR310g73}

b
F(0) g = [w; 283 log m}

89a
+ Rp (892)

4C%4)
(4nf)?
+ 2AgzRp log

b
F(0)jya = — [wz 283 log

ﬂ] (89b)

+Rp

Note that the NA terms of F (O) are identical to those of
1 (O) For the diagram in Fig. 1(c), there is no NA term
for F (IC) (0), while the NA part of F gc) (0) can be written as

Chy
P O)ln = = b |~ 283) logng
Ap — Ry
+ 2AgRplog———— 90
BIp g -l-RB] (90)

For the KR diagrams in Figs. 1(d) and 1(e), the NA
contributions to the Dirac form factor is given by

2CB¢ Ap — Rp
(4 f)2 M Ap+Rp’

o1

d e
FOM(0) |0 =

There is no NA contribution from these two diagrams to the
Pauli form factor. For the tadpole diagrams in Figs. 1(h) and
1(j), the NA terms contain only the LNA contributions,

Cyyp

h

I Ohna = apzmylogmy,  (92)
mag

F(ZJ)(O)|LNA = ﬁmé log m3, (93)

for the Dirac an Pauli form factors, respectively. For the
bubble diagram in Fig. 1(k), the NA behavior also reflects
the simple LNA form for the Dirac form factor,

Cyp

(k) _ T 0 2
Fi7(0)[na = Wm(p log my, (94)
and is in fact identical to the LNA contributions from the
tadpole diagram, Eq. (92), as required by gauge invariance.
The bubble diagram with the magnetic interaction in Fig. 1(1)
gives rise to a contribution to the Pauli form factor given by

C’
1
F(0)na = -2

= Gnf)? 5 Mmj log mj. (95)

Note that the mass dimensions of the couplings C;?5 5 here are

inverse mass, in contrast to all the other couplings which are
dimensionless (see Table I in Sec. IT above). As discussed in
Ref. [59], the additional diagrams in Figs. 1(f), 1(g), and 1(i)
generated from the gauge link yield no NA terms for either
the Dirac or Pauli form factors.

The NA terms for the splitting functions involving
intermediate decuplet baryon states can be obtained in a
similar manner. For the rainbow diagram Fig. 1(m), the NA
behavior is given by
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F\™(0)] _ 2 (m, — 2A2) log }, + 2A,R; log 2T — K7 (96a)
1 NA_(4ﬂ_f)2 nmy, T) 108 my T TogAT+RT ) a
Cc? Ar —R
(m) _ T¢ 2 2 2 T T
The NA behavior for the decuplet baryon coupling rainbow diagram in Fig. 1(n) can be analogously written as
2C? Ar —R
(n) _ T¢ T T
F"(0)|ya = anf)? {(mé — 2A7) log mj 4 2A7Ry log A TRy Rr] , (97a)
8C2 Ar —R
(n) _ T¢ 2 2 2 T T

As in the octet case, the NA term for the Dirac form factor contribution from Fig. 1(n) is identical to that from Fig. 1(m). For
the additional magnetic interaction decuplet baryon rainbow diagram in Fig. 1(0), the contribution to the F, form factor is

given by

10¢2,,

Ar —R
F§°> 0)|ya = ——2 [(mfb —2A7)log mg + 2A7Ry log#] , (98)

9(4rnf)?

while there is no NA term for the Dirac F; form factor.

7+ Ry

For the magnetic octet-decuplet baryon transition diagrams in Figs. 1(p) and 1(q), the combined NA contribution to the

Pauli form factor can be written as

CsCr omj — Ar(Ap +5A7)  Ar—R
F§p>+<q>(0) A= o fﬂf)‘;’ (8mj — 5AL — 6AzAr — 5A7) logmj + Ry ¢ Ty log A; T Ri
6m2 — Ag(Ar + 5A Ag—R
—RB ¢ B( . B) og £ : ’ (99)
AB — AT AB + RB

with again no NA contributions to F(0). Finally, for the KR diagrams with decuplet intermediate states in Figs. 1(r)
and 1(s) the NA behavior of the Dirac and Pauli form factors is given by

4C? Ar —
(r)+(s) _ T¢ 2 2 2 3 T T
F 0 = Ar(m5 —2A%) logm; + 2R3 1 , 100.
1 (0)Ina 3M(4nf) [ 7( & 7) log ) T OgAT RT:| (100a)
16C? Ar—R
(r)+(s) T¢ 2 2 2 3 T T
F 0 =- Ar(3m5 —2A%)logm; + 2R3 1 . 100b
2 (0)Ina OM(4zf)? [ 7( ) 7)log » T OgAT RT:| ( )

As for the octet baryon case, the additional diagrams
derived from the gauge link for the decuplet baryons do
not give rise to any NA terms. Our results for the LNA
terms of the various loop diagrams are consistent with the
results for the Dirac form factor discussed in Ref. [59].
There have also been some attempts made to resum the
leading chiral logarithms to all orders [80,81].

V. CONVOLUTION FORMALISM

Having derived the full set of splitting functions for the
diagrams in Fig. 1 involving the SU(3) octet and decuplet

|
baryon intermediate states, in this section we discuss the
calculation of the GPDs in the proton arising from these
contributions. We derive expressions for the GPDs in terms
of convolutions of the splitting functions and GPDs of quarks
in the various hadronic configurations. Using flavor sym-
metry constraints, we discuss relations for the GPDs in the
hadronic configurations among the various SU(3) baryons.

A. GPDs as convolutions

The nth Mellin moments of the generalized quark
distributions HY(x, &, t) and E4(x, ¢, t) are given by [5]
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ft /dxx”lH‘fxit

E((zn)(f, 1) = /_1 dxx"1E(x, &, 1) =

(=28) A (1) + (=28)n (101a)

(t) |neven’

(1) - (=28 (101b)

( )|HCVCI17

where A(qn)i (1), B,(]")i(t) and CS]"> (¢) are the generalized form factors of rank n. The generalized form factors can be related to

the matrix elements of local twist-2 operators (’),E” -t} between nucleon states [5],

(N(p )|O{MM1 Hne '}|N(

'§|

n—1
[ Z A" Dy A . AR prL L Pt}

i=0,even

i n—1

M

i=0, even

~

L
+MC‘I )(t)|n evenA{# e

where the symmetric and traceless operators are defined as

9/”11—1}

OZ{IW]...,,H_I} _ in_ly—/qy{ugm ...D

o (103)
with D = 1 (D — D). The braces {-- -} represent symmet-
rization over the indices pp; ---u, and subtraction of
traces.

In an effective field theory, these quark operators are
matched to hadronic operators with the corresponding set
of quantum numbers [79],

Of,””""”""} _ ZQﬁn—l)Oléﬂﬂl--~ll,x—l}’ (104)
J

where the subscript j labels different types of hadronic

(n—1)

operators. The coefficients O * can be defined through

the nth moments of the generalized parton distributions in

the hadronic configuration j (see Sec. V B below). Matrix

(’)]{-””""””"} can be used

to define the moments of the Dirac-like and Pauli-like
hadronic splitting functions f; and g;, respectively, intro-
duced in Eq. (45),

elements of the hadronic operators

1
£ = /1 dy y" U f (v, 1), (105a)

1
g = /1 dy y"Vg;(v, 1), (105b)

where y is the light-cone momentum fraction of the
nucleon carried by the hadronic state j. Taking the matrix
elements of the matched operators in Eq. (104) between
nucleon states with unequal initial and final momenta, and

Bg">i(t)A,,a’“{”A”‘ o AR PR praa)
Af= u(p), (102)
|
contracting both sides with light-cone vector n,n, ---n,

we then arrive at a relation for the GPD moments in terms
of the moments of the hadronic splitting functions,

Dl hu(p) + 5 B 0P o bl p)
“Sertlr

("))
g 0T ()| (106)

Since Eq. (106) is valid for all moments n, we deduce that
the corresponding convolution relation exists also for the
GPDs as a function of x. Specializing to the case of zero
skewness, £ = 0, we can write the contributions to the HY
and EY GPDs from the hadronic configurations in the form

Hi(x,t) = H(x,£ =0,1) = Z[fj ® q¥](x,1)
= ZA dy A dz6(x = y2)f (0, 04 (z.1),
(107a)
Ei(x,t) = E1(x,E=0,1) =

>l ® 4j)(x. 1)
E2/01dy/oldz5(x—yZ)g,-(y,t)q}’(z, 1),

(107b)

where we define g} (x,1) = q;(x,§ = 0,1) — g;(x,& = 0,1)
as the GPD of the valence quark ¢ in the hadronic
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configuration j evaluated at zero skewness. We should
mention that the above convolutions are only valid when
£=0. The nonzero skewness GPDs have additional
properties, such as H%(x,¢, ) and E9(x,¢, 1) being even
under the transformation ¢ — —¢&. The proof of the poly-
nomiality properties in Eqgs. (101) will also be an important
check for the convolution equations in the nonzero skew-
ness case. Such a proof has been demonstrated in some
nonperturbative approaches [37].

Since the total H? and EY GPDs can each receive
contributions from both Dirac-like and Pauli-like GPDs
of the hadronic configurations, the sum over j in Egs. (107)
includes both electric and magnetic couplings, g; — H;’ or
E;?. Note also that crossing symmetry, g;(—x,& = 0,1) =
—q;(x,£=0,¢), in direct analogy to that for forward
(t = 0) parton distributions, has been used to write the
integrals in Egs. (107) over the interval O to 1.

To illustrate the application of Egs. (107) to chiral loop
contributions to sea quark GPDs in the proton, in this paper
we focus on the asymmetries between the GPDs for d and 7
quarks, and between the s and § quark flavors. Assuming
that the intermediate state octet and decuplet baryons are
flavor symmetric, with mesons ¢ the only source of
antiquarks, the convolution form for the antiquark electric

|

and magnetic GPDs in the proton involves contributions
only from the diagrams in Figs. 1(a), (k), (I), and (m).
Specifically, for the H9 and E9 GPDs at zero skewness, we
have

H(x0) = (£ + 152+ £9) @ H)(x.1). (108a)
¢BT
E/(x.0)= (" + a5 + g ) @ HY)(x.1). (108b)

BT

where H 7 is the electric GPD for quark flavor g in the meson

¢. The splitting functions £/ (/)B ) and gf/fgw)

given in Egs. (49a) and (49b), respectively, the decuplet

recoil splitting functions f qf?w and gﬁw)

given in Eqgs. (76a) and (76b), respectively, and the functions

f ¢b"b and g ¢bub for Figs. 1(k) and (1) are given in Egs. (70)
and (72), respectively.

The convolution form for the quark GPDs received
contributions from all other diagrams in Fig. 1, and so

has a more complicated structure,

for Fig. 1(a) are

for Fig. 1(m) are

H(x, 1) = ZoHy(x ) + Y (£ + 150 + 7)) @ HY + Fag™ @ Hy + Fiyd) ® HES 4 675 @ HE
$BT
+f’;(tlzw ®Hq +f7‘[/, ®Hq +5fr¢ ®Hq +frbwmag ®Eq +frbwmag ®Eq +frbwmag ®E%T
+f(/:ad ® Hq (tad) +5f¢tad ® Hq (tad) }(X, t), (1()93)
Ei(x,1) = Z,E (1) + 3 (g + ggr” + ") @ HY + 35" @ HY + 35,0 @ HY < + o5 @ HY Y
$BT
+ v, @ H+ g @ HIS + 63050 @ HI™Y + g™ ™) @ Ej + 7" ™ @ Ef + 35" ™ @ Ejy
d d)
+g¢ta mag) ® E;q;? ]( ,t), (109b)

where H{ and E{ are the quark GPDs of the bare proton, and
Z, is the wave function renormalization constant associated
with the dressing of the bare proton by the meson loops in
Fig. 1. As shorthand, in Egs. (109) we use the notation
fi(y) = f;(1=y)and g;(y) = g;(1 — y) for the electric and
magnetic splitting functions involving couplings to baryons.
Note that both the electric and magnetic operators contribute
to HY(x, t) and E?(x, 1) at zero and finite momentum transfer.
At zero momentum transfer, however, there is no contribu-
tion from the magnetic term to the matrix element, even
though the GPD EY(x, 0) itself is nonzero.

The expressions for the quark and antiquark GPDs in
Egs. (108) and (109) form the basis for our calculations of
the meson loop contributions to the GPD flavor asymme-
tries. For the case of u and d quarks, the intermediate states
include the nucleon and A baryons and z mesons. For the
strange quark, on the other hand, the intermediate states
that contribute are the hyperons A, ¥ and X* and K mesons.
To compute the quark and antiquark GPDs numerically, we
require information on the GPDs for the various hadronic
configurations that contribute in Egs. (108)—(109), which
we turn to next.
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B. GPDs of hadronic configurations

The twist-two operators associated with the PDFs of the hadronic configurations have been discussed in detail in
Refs. [58,60]. For GPDs at finite momentum transfer ¢, the operators are somewhat more complicated, and we consider first
the intermediate octet baryons as the hadronic configuration as an example. The relevant operator here can be written as

n—1

Ol;/gl---ﬂn—] _ Z

i=0,even

N =

+ o\ Te[By BITe[(u' dgu + ud u’)) A -

n—1

+ Y 41{43 (@ Te[Bom {(u'hyu + udyu), BY] + B2

i=0,even

+ o) Tr[Bo™ BITr[(u' A u + udu’)]) AVAW - .

(@ Te{By# { ("4 + udyu'). BY) + B TelBy (g + d "), B

- AFi PHi+1 .o PHa-
Tr[Bo*[(u 2 u + ud,u'), B]]

AHi PHi+1 ... PHa-1

1 _ .
+ 531 (O e THB{ (W dyu - '), BY] 4 B v B 2 wh ). B
+ O'Cfl |i—even TX[BBITr[(uf A u 4 udyu®)]) AFA# - - Akt (110)
Contracting both sides of Eq. (110) with the light-front unit vectors n,n, ---n,  then gives
1 - 1 - .
g, - ony, (Ol = —a"Tr[Bi{(u"Ayu+ ud,u’), B} + E,BWTr[Byi[(uuqu + ud,u’), B]|
:(n)
1 _ . [0tma - ) +
+ Eo(@Tr[ByiB]Tr[(uuqu + udu’)] —I-WBgTr[Bn”a” A {(u' A u+ ui,u'), B}
lﬂma iagﬁa) — .
+ 2 Tr[Bn,o" A, [(uf A u+ ud,u'), B]) + ——2Tr[Bn,o* A, B|Tr[(u’ A,u + ud,u’)],  (111)
8My 8M "

where for shorthand we define by X () and X,(T'Qg, where
X = a, f or o, the following combinations,

n—1

X0 = 3" (=28 X+ (=28 X e (1122)
i=0,even -
n—1
(—28)ix " — (—2£)nx ) ~ (112b)
i=0,even —even

The nth moments of the GPDs in octet baryons can then be

related to the coefficients X(") and Xmag By expanding the

()

matrices in Eq. (111), one can derive relations between the
quark GPDs of different flavors in the octet baryons. Since
such relations are independent of the momentum transfer
and structure of the y-matrices of the operator, the relations
between the Dirac-like GPDs HY(x, t) will be the same as
those for PDFs obtained in Refs. [58,60]. In the following,
we therefore focus on the derivation of the relations for the
spin-flip GPDs, E(x, t), and examine whether the relations
between the different flavors are the same as those for
the PDFs.

For the magnetic operator, the contraction with the light-
front unit vectors gives

. o(n
nny, -y, lO’;’fﬁag"” 1 [mag Tr[Bn”a"”A,/{(u"'/lqu + u/lquT), B} + lﬁﬂTr[Bnﬂa"”Ay[(uuqu + u/lqlﬂ'), B]]|

4M g 4Mp

io Enﬁ 191(112
+ 2 Tr[Bn, o A, B]Tr[(u' dyu + ud,u' )] = 2 Teen, 0" A, (A]) .. T

AM oM,

) o) B B
- Wmag Ten,ot AT Tr[A]] + % €,k (Ad) i Bnlysn, THH™ — e, (A Bhuty s A, TH™]

T B

tHe. (113)
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The coefficients {a&'gg, ﬂgﬂg,a&gg,égfgg, pﬁngg,wﬁﬂg} are

related to the nth magnetic moments of the quark distri-
butions in the corresponding hadronic configurations. With
the simplification of the flavor matrices, the contracted
magnetic operator can be rewritten in the form

n

1y
Wy My, Offiag

-1 -1 -1
- lema;oB mag + Qgilma;OTmag + Q;_';nTm)agOBTmag

+0U O g (114)
where the hadronic operators are given by
Oprmag = iénlpf‘”AbB, (115a)
Of mag = — iTanﬂdﬂvAyTa, (115b)
OBTmag = —ﬁ (BAVSHﬂT” - Bﬂ}’sAuT”)’ (1150)
Oyt mag = Y] f2 Bn " A,BpgT. (115d)

The coefficients Qﬁ'ﬁ;ﬂg of each of the operators are
defined in terms of the Mellin moments of the correspond-
ing distribution functions in the intermediate hadron

states,

Q%";QQ = /_Idxx"‘lEqB(x, 1), (116a)
Q(Tn@ié = /_1dxx"_1EqT(x, ), (116b)
Q%"T'&g = /_ i dox x" 1 Efr(x, 1), (116¢)
Qf,,"{,,?lrfmg = /_:dxx" 'EG (1), (116d)

where the GPDs correspond to those appearing in the
convolution expressions on the right-hand sides of
Egs. (109).

The moments U] mai,, Dg’m;; and Sglm;g of the u, d and s

quark GPDs in the octet baryons can be expressed in terms

of the coefficients aggg, ﬁg’gg and afﬂg, as listed in

Table II. Solving for the coefficients, one can write these
as linear combinations of the quark GPD moments in the
proton,

TABLE II

Moments Q"

of the u, d and s quark GPDs in

B mag
octet baryons arising from the magnetic interaction.
n—1 n—1 n—1
B U g Doy Sémaé
(n) (n) (n) (n)
p amag + ﬁmag + Omag Omag mag +o0 mag
n 0; r(;lqgg amag + ﬁfrlllag + nillzzg ﬁmag +o0 mag
* amag +ﬂn,111>g + mazg amag /}H,Qg +o mag Ugrrllng
2 al : o aEnig - Snﬁg o
- ar(nag - ﬂmag + r(mgg amag + ﬁfrillgg + 5 mag grillgg
A el ol Latnag + Oinag Lttnae + Oinag
0 n
AX %al(:gg —\/%al(ng 0
w =L s D 117
Omag = 2( pmag T pmag) pmags (117a)
1 -1 .
Bl = 5 (USmad = SSmad), (117b)
-1
oty = DY, (117¢)

Furthermore, assuming the strangeness in the bare nucleon
state to be zero, we have
o _ g )

mag — Mmag — “mag-

(118)

In particular, for n = 1 the relation Eq. (118) is consistent
with the Lagrangian for the magnetic interaction, Eq. (13),
where ¢; = ¢, — ¢y.

The moments of the GPDs in the decuplet baryons,
Q(T”[;;;, for u, d and s quarks can be expressed in terms of

the coefficients Gfﬂg and pr(ﬁgg, which are listed in Table III.

Solving for the coefficients HET'Qg and pg’gg in terms of the

GPD moments in the A" baryon, one has

(m _ 3pn-1) (n=1)y _ (n=1) (n—1)
9£ag—3( o SAn+ )—E(UA”+ —SAn+ ), (119a)
Pl = SUTY. (119b)
TABLE IIl. Moments anmlé of the u, d and s quark GPDs in
decuplet baryons arising from the magnetic interaction.
n—1 n—1 n—1
r Uy mae DY s S} mas
AT e(ngg + /Jl(g;g Pi:gg pr<1’11£2g
AT Qsﬁqgg + pr(nezg 1(1’12g + pmag pr<1’11£2g
OV O O ) o
A~ Pgnzzg egngg + Sr?‘zg Sr?zzg
T 2Ot + P Pinie L0hae + phvae
Y Y Y )
z- ol Lo Aol o+ ol
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Proceeding in analogy with the nucleon case, we assume no
strange quark contribution in the undressed A baryons,
which enables the decuplet coefficients to be written in
terms of the u and d quark GPD moments in the A™,

n n— 3 n— n
O =300 =SULT. =0 (120)

This is also consistent with the effective Lagrangian of
Eq. (13), where only one term for the decuplet magnetic
interaction is included.

The moments of quark GPDs for the octet-decuplet

transition, ngr_li)ag, can be expressed in terms of the

coefficient a)fﬂg defined in Eq. (113), and are given in
Table IV for the allowed configurations. One can write

a)g’a)g in terms of the proton—-A™ transition GPD moments as

C()E:a)g = 3\/§U§:1A_+1) = _3\/§DE7HA_+1)’

(121)
with relations for the other octet-decuplet transitions in
Table IV.

The moments of the distributions generated by the
tadpole vertex are listed in Table V, where the correspond-

ing moments Q;’;ﬁag of the u, d and s quark GPDs are

expressed in terms of the a,(r'fgg and ﬂg’gg coefficients in

Eq. (117). Note that combinations involving K°K° mesons
do not contribute to the u-quark moments, while those
involving KK~ do not contribute to the d-quark moments,
and contributions from z"z~ configurations to the s-quark
moments also vanish.

Since the above relations for the GPD moments are valid
for all values of n, one can derive from the moments explicit
relations between the input valence GPDs for different quark
flavors in various hadrons. Focusing still on the magnetic
GPD E1, we relate the valence GPDs in the octet baryons to
the GPDs in the proton, denoted by E7= EZ (x,0)=
E}(x,& = 0,1), using the results from Table II,

TABLE IV. Moments E;"T_nll)ag of the u, d and s quark
distributions arising from the magnetic interactions for the
octet-decuplet transition.

-1 -1 -1
BT UE;T m)ag D E;T m>ag S EinT m>ag
pA* Lo -L ol 0
%\/E mag 3\/5 mag
nA° L_gpl) — LM 0
n;ﬁ mag 3\/5 mag
T — s ol 0 L5 ol
03+0 1 (n) 1 (n) 1 (n)
= o3 “mae A B
AT — Lol Lol 0

TABLE V. Moments Q" of the u, d and s quark GPDs

arising from the magnetic interactions involving the BB¢¢

tadpole vertex. For shorthand we define F(i") = af,'fgg + ﬂggg.

Uggms D Sgoms

B 'z K'K-  atm KK’ K'K® K'K~™
T T

AT T g o, T
R R
0 14l 0 lalme  —lalme —labm,
S, g ar rd i
A 0 _law, 0 ~laly Lol Lol

0
AX0 gty Sy — oy — 3ol el — 51z alg

Et=E!  E!=E'. E,=F, (122a)
E'. =E", E{ =FE, E. =E (122b)
EY, :%(E“ +E), E4=EY.  EL,=E  (122¢)
E‘ =FE, E{ =E' EL=E (1224
EY = é(E“ +4E? + EY), E¢ = EX,

ES = %(215" — E? 4+ 2FE°), (122€)

Ej‘\z():%(E”—ZEdnLES), E0=—E%0, Ej5=0.
(122f)

For the GPDs in the SU(3) decuplet baryons, using the
relations in Table I1I these can be written in terms of the GPDs
in the A" baryon, which we denote by E} = Ef. (x,1)=
El (x,£=0,1),

EY.  =E{+E{—-E\, Ei..=E,, E\.=E,, (123a)
EY%, = EX, El, = E%, ES, = E)., (123b)
E‘. =EY, EL, =FE,  E. =E (123¢)
E',=E{. E{, =Ei.  EL,=E{ (123d)
EL. =E,, E{ =E{,  E5. =E{. (123

Interestingly, the relations between the E9 GPDs between
different flavors in the SU(3) octet and decuplet baryon
configurations are identical to those for the PDFs derived in
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Refs. [58,60]. Similar relations will therefore follow also for
the electric HY GPDs.

For the octet-decuplet transition GPDs, from Table IV
one can write each of the transition GPDs in terms of the
u-quark GPD for the p — AT transition,

El\ =E\y.. Elo=-E'\., E =0 (124a)
By =—E'y.. Efy.=0. Ey. =E. . (124b)
u 1 u d 1 u s u
Ezoz*o - EEPAJr’ EzOz*O - EEPA+’ Ezoz*o - _EpA+’
(124c)
El s =0, El,. = El .. Eyy-=-E},. (124d)
u \/§ u d \/g u s
EAZ*OZ_TEPA+’ EAz*():TEpAJr? EAZX():O
(124e)

Finally, for the GPDs associated with the tadpoles, the
distributions can be expressed in terms of GPDs in the
proton. For the case of the nucleon, from Table V we have

u(ta 1 a 1 s(ta
E (t d>:§(Eu—Ed), Eigﬂ‘i)zz(Ed_Eu)’ Eﬂ(t d):O,

(125a)
ph(tad) 1 po_psy, pled g polad) 1 B _ g
K*K’_E( —E°), KtK-— K*K’_E( —E"),
(125b)
u(tad d(tad 1 s s (tad 1 s
B 0. ). E =)
(125¢)

The tadpole GPDs for the other baryons can also be derived
from the relations in Table V.
Turning now to the Dirac-like Hj(x,t) GPDs for the

various hadronic configurations j, we observe that these
have the same relationships as for PDFs [58,60]. Taking the
strange quark flavor as an example, for the strange GPDs in
octet baryons we have

Hj. = H}, = Hy = HY, (126a)

HY == (2H" — H' + 2H"), (126b)

W | =

while for the strange GPDs in decuplet baryons,

Hy.. = Hj, = Hy.- = HY, (127)
with the strange GPDs in all other baryons vanishing.
For the strange GPDs associated with the tadpole

diagram, we find

s ta 1
(H* — HY), H;g;3=§<Hs_Hd). (128)

s(tad)

Hy'y =

N[ =

The strange electric GPDs for the KR diagrams are related
to the magnetic GPDs, which for the octet baryons are
given by

s(KR) _ s(KR) 1 =4 =~
HZ* _HZO —m(H —H), (1293)
s(KR) 1 T 77d 178
= 2H"—H" - H"), 129b
N — ) (1290)
and for the decuplet baryons by
S(KR S(KR L~ o =d | s
HS = 1N = sp (' =20+ H).  (130)

where H? = H%(x,& = 0,1) are the corresponding spin-
dependent GPDs in the proton. Finally, for the antiquark
GPDs in pions and kaons that enter in the convolution
formulas, we have the relations

HY. =H,=HY =Hy = H" =2H", =2HY,.

(131)

In our numerical calculations, we will assume valence
quark dominance for the undressed states, so that for the
proton H®* = E* = 0. The decuplet and transition GPDs
H}, E} and E7 . can be related to the proton GPDs H¢ and

E? using SU(3) flavor symmetry, which constrains the
coefficients according to aﬁ;fgg = af;’a?g + 3ﬁ§fgg. Since HY
and E9 have the same flavor symmetry, the decuplet GPDs
can then be written as

4 2
HY =2H{ = - H" -~ HY, (132)
3 3
4 2
EY =2FE{ =_-E" -~ E“. (133)
3 3
Similarly, the constraint a)gﬁg = 4(15;2}; leads to the relations
for the transition GPDs,
u \/§ u
EPA+ - —EZA+ - T (E - 2Ed) (134)

With these relations, all the GPDs used in the calculation in
the next section can be expressed in terms of the GPDs in
the proton. Note that because the magnetic coefficients
C7* (j=B,T,BT) are not included in the splitting
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functions, the GPDs E/q- (x,7 = 0) need to be normalized to
their magnetic moments with unit charge obtained from c;
and c,.

VI. NUMERICAL RESULTS FOR SEA
QUARK GPDs

In this section we present the numerical results of our
calculation of the meson loop contributions to the sea quark
GPDs of the proton. We begin first by summarizing the
inputs used in the calculation, followed by discussions of
the results for the light antiquark contributions and the
strange quark contributions to the GPDs.

A. Theoretical inputs

For the meson-baryon couplings in our numerical calcu-
lations we use the values D = 0.76 and F' = 0.5 for the octet
baryon couplings (with g, = D + F = 1.26),and C = —-2D
for the octet-decuplet transition coupling under the
assumption of SU(6) symmetry. The loop integrals are
regularized using a covariant regulator of dipole form,

B A2 — 2\ 2
F(k) = <A2 — k;’) :
with A a mass parameter. Such a regulator can suppress the
short distance physics and improve the chiral convergence
[47]. On the other hand, the Taylor expansion of F(k) is a
series in k2, which can be regarded as the resummation of
contributions from higher order meson—baryon interactions.
From previous analyses of nucleon electromagnetic and
strange from factors, we take A = 1.0(1) GeV [45,46].
The parameters ¢; and ¢, are determined by fitting to the
nucleon anomalous magnetic moments, and we find ¢; =
1.40 and ¢, = 0.54 reproduce the empirical values u, =
2.79uy and p, = —1.91py in units of the nucleon magne-
ton, uy = eh/2M.
For the valence quark GPDs in the proton, we follow
Diehl et al. [82] and parametrize the GPDs as products of
forward distributions and #-dependent exponential factors,

(135)

H(x, 1) = q,(x) explif,(x)]. (136a)
E?(x,1) = e, (x)exp[tf,(x)], (136b)
95, 1) = Ag, (1) explif, (0] (136¢)

Here the unpolarized ¢,(x), helicity-flip e,(x), and hel-
icity-dependent Ag,(x) PDFs for the valence quarks are
taken from the parametrizations in Refs. [82-84]. The
profile functions f,(x) and f,(x) parametrize the x
dependence of the average impact parameter of the corre-
sponding quark distribution, which can be seen after
performing a Fourier transform to coordinate space [82].

The valence quark GPD in the pion is parametrized
as a simple factorized product of a pion valence PDF and a
t-dependent elastic form factor,

HA(x.1) = q3(x)F (1), (137)
where ¢7(x) is the pion valence quark PDF. For illustration
purposes we use the parametrization of ¢} from Ref. [85],
while more recent analyses have studied the large-x
behavior in the presence of next-to-leading-log threshold
resummation effects [86]. For the pion elastic electromag-
netic from factor F,(¢) we use a monopole form,

1

Fa(1)

The cutoff parameter A, is tuned to be 0.79 GeV, corre-
sponding to the average of the charge radii for the pion and
kaon [87] (since we use the same inputs for all the meson
valence quark GPDs). The valence quark GPDs in other
hadronic configurations are obtained through the SU(3)
symmetry relations in Sec. V B. With the calculated
splitting functions and the valence quark distributions as
input, we can proceed to evaluate the GPDs of the sea
quarks from the convolution expressions (108)—(109).

B. Light antiquark GPDs

The electric H? and magnetic E9 GPDs for the light
antiquarks in the proton arising from the meson loop
diagrams in Fig. 1 are presented in Fig. 2 as a function of
the parton momentum fraction x and momentum transfer —1,
for the g = @ and d flavors at the input scale Q, = 1 GeV.
For i quarks, the function xH" is positive and peaks at
x = 0.1, roughly independent of the value of 7. For any fixed x
value, xH" falls off monotonically with increasing values of
—t. In contrast, the magnetic xE” distribution is negative,
peaking in absolute value at slightly smaller x compared with
xH", and again decreasing in magnitude with increasing —7 at
fixed x. For the d quarks, the shape of the xH? GPD is similar
to that of the xH" distribution, although at any given x and ¢
the GPD for the d is larger. This flavor asymmetry stems from
the fact that the contribution to H¢ comes from both the octet
and decuplet intermediate states, while only the decuplet
intermediate states contribute to the H* GPD.

The shapes of the magnetic EY GPDs reflect the
important role played by the orbital angular momentum
of the meson in the intermediate state. For octet baryons,
the meson orbital angular momentum tends to be +1,
resulting in positive values of E. For i quarks, on the other
hand, since the intermediate baryons can only be decuplets,
the orbital angular momentum of the meson tends to be —1,
resulting in negative values for E”. The absolute value of
xE“ is also much larger than xE”. Note that the -function
term in the splitting functions does not contribute to the HY
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FIG. 2. Electric and magnetic GPDs for light antiquarks: (a) xH?, (b) xE®, (c) xH ‘_1, and (d) an, versus parton momentum fraction x
and four-momentum transfer squared —¢, for cutoff mass A = 1 GeV at a scale Q, = 1 GeV.

and E9 GPDs, although it does contribute to the lowest
moment of these functions.

Turning now to the light flavor asymmetry of the GPDs,
in Fig. 3 we show the distributions xH%~% and xE%~" versus
x and —z. Both asymmetries are observed to be positive for
all x values, with a peak at x ~ 0.1 that decreases with
increasing four-momentum transfer squared. At the peak,
the magnitude of the magnetic GPD asymmetry xE* " is
about 4 times larger than the electric asymmetry xH? ",

To more clearly illustrate the shape and magnitude of the

d — it asymmetry, in Fig. 4 we plot the xH?" and xE?~"

(a)

distributions at # = 0, with the error bands corresponding to
the 10% uncertainty on the cutoff parameter A that was set
to 1 GeV. The calculated electric asymmetry is compared
with a recent parametrization of the x(d — i) PDF from the
JAM global QCD analysis of world data [88] at a scale
Q =m, = 1.3 GeV. The numerical results are in good
agreement with the phenomenological parametrization of
x(d — @), which is driven mostly by the Drell-Yan proton-
proton and proton-deuteron scattering data [89,90], and has
a maximum of =0.3-0.4 at x~0.05-0.10. Within our
framework, for a cutoff parameter A = 1.0(1) GeV we

FIG. 3. Light antiquark flavor asymmetry for (a) the electric xH =it and (b) magnetic xE4=" GPDs, versus parton momentum fraction x

and four-momentum transfer squared —¢, for A = 1 GeV.
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FIG. 4. Light antiquark asymmetries for the electric xH#—d (red bands) and magnetic xE"d (blue bands) GPDs versus parton
momentum fraction x at four-momentum transfer squared of = 0 [(a), (b)] and ¢ = —0.25 GeV? [(c), (d)], for cutoff parameter
A =1.0(1) GeV. The asymmetries are shown at the input scale Q, = 1 GeV, except for the electric asymmetry at ¢ = 0, which is

compared with the x(d — iz) PDF asymmetry from the JAM global QCD analysis [88] (yellow band) evolved to the scale Q = m,.

find for the integrated values [J dx H"(x,0) = 0.11(2)

and [ dxxHY"(x,0) = 0.009(2). The magnetic GPD
asymmetry xE9"" at t = 0 has a similar shape, but is ~4
times larger than xH~" at the peak. The fact that xE4~%
exceeds xH4" is also consistent with the prediction in the
large-N, limit [3]. After integrating over x, we find
JodxE"(x,0)=1.1(2) and [j dxxE97"(x,0)=0.034(6).
A large magnitude for the magnetic asymmetry augurs
well for future efforts to determine this asymmetry
experimentally.

The xH* " and xE?" GPD asymmetries at finite ¢ are
also shown in Fig. 4, for —t = 0.25 GeV?. As expected
from the 3-dimensional plots in Fig. 3, the distributions are
suppressed at larger —¢ values, with the magnitudes of the
functions about half of those at + = 0. This is consistent
with the GPD inequality H%(x,t) < H9(x,0) [91,92].
The peaks in both functions also shift to slightly larger
x values with increasing four-momentum transfer squared.
We also compare the GPD E“~%(x, t = —0.25 GeV?) with
H"(x,0) in Fig. 5, and find that our results satisfy the
additional inequality E9(x, 1) < %Hq(x, 0) [91].

C. Strange quark GPDs

The kaon loop contributions to the strange quark GPDs
are shown in Fig. 6. Compared with the GPDs for the light

antiquarks, the strange GPDs are smaller in magnitude, but
display some interesting features. As for the light antiquark
GPDs, the signs of the electric GPDs H® and H® are both
positive. While the shapes of the s and s distributions are
expected to be almost identical perturbatively [93], the
kaon loop contributions to these can be quite different due
to their different origins. Assuming the SU(3) symmetric
relations for the GPDs in the hadronic intermediate states
discussed in Sec. V B, the 5 antiquark GPD arises from
diagrams with a direct coupling to the kaon, as in Fig. 1(a),
while contributions to the s quark GPD come from
couplings to the intermediate state hyperons, such as in
Fig. 1(b) [94.95].

0.15

0.10

0.05

00

0.1

0.2 0.3

X

04 0.5 0.6

FIG. 5. Comparison of the GPDs \2/—’_”—txH3"7(x, 0) (red band)
and xE%"(x, t) (blue band) at —¢ = 0.25 GeV>.
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FIG. 6. Electric and magnetic GPDs for the strange and antistrange quarks: (a) xH*, (b) xE®, (c) xH®, and (d) xE® versus the parton
momentum fraction x and four-momentum transfer squared —¢, for A = 1 GeV, at the scale Q, = 1 GeV.

As evident from Fig. 6, at small values of x the strange
H® GPD is larger than the antistrange H*, while for larger x
values, x = 0.5, the antistrange contribution exceeds the
strange. However, the x integrals of H* and H® at zero
momentum transfer can be shown to be identical with the
inclusion of the d-function term, as is necessary for the
requirement of zero net strangeness in the nucleon. Since
the ¢ dependence of H* is different from that of H*, at finite
values of ¢ the lowest moments of the strange and
antistrange GPDs need not be the same, which corresponds
to nonzero values of the strange electric form factor at
—1 > 0. The behaviors of the magnetic GPDs E* and E® are,
on the other hand, rather different. While the sign of E¥ is

oS
e

S
o

the same as that of E? because of the positive orbital
angular momentum of the meson, the strange GPD E*
changes sign with x, from negative at small x values to
positive at x = 0.3.

In Fig. 7 we show the strange—antistrange asymmetries
xH*5 and xE*° versus x and —t, for a fixed value of
A =1 GeV. At nonzero values of x, the xH® GPD is
generally larger than xH®, with a maximal asymmetry at
x ~ 0.2-0.3. Unlike the individual s and 5 contributions, for
a given value of x the asymmetry xH*~% does not decrease
monotonously with —z, and in fact increases at higher —¢ in
some cases. For the magnetic asymmetry xE*~*, the change
of sign with x is driven by the behavior of the strange

FIG.7. The strange quark asymmetry for (a) the electric xH*~* and (b) magnetic xE*~* GPDs, versus momentum fraction x and four-

momentum transfer squared —¢, for A = 1 GeV.
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Strange quark asymmetry for the xH*" (red bands) and xE*~* (blue bands) GPDs versus x at squared momentum transfers

t =0 [(a), (b)] and —t = 0.25 GeV? [(c), (d)], with the bands corresponding to cutoff mass A = 1.0(1) GeV. The asymmetries are
shown at Q, = 1 GeV, except for the strange electric asymmetry at 7 = 0, which is compared with PDF parametrizations of x(s — 5)
from JAM [88] (yellow band) and NNPDF [96] (green band) evolved to Q = m,.

contribution, xE*. Generally, the s — 5§ asymmetry is much
smaller than the d — & asymmetry in the nucleon for both
the electric and magnetic GPDs.

In analogy with the d — i asymmetry in Fig. 4 above, in
Fig. 8 we show the xH*™* and xE*~ asymmetries at t = 0
and —t=0.25 GeV? for varying cutoff parameters
between A = 0.9 GeV and 1.1 GeV. The change in sign
of xH** is evident, with the asymmetry being positive at
small x, before turning negative at x 2 0.5. The calculated
asymmetry is compared with recent PDF parametrizations
of x(s —5) from the JAM [88] and NNPDF [96] global
QCD analyses, which show very large uncertainties relative
to the magnitude of the computed result. For the lowest

nonzero moment, we find fol dxxH*5(x,0) = 0.00098;

for A =1.0(1) GeV, which is comparable with other
recent estimates of the strange asymmetry [58,60,97].
For the magnetic asymmetry xE*~°, the situation is
reversed, with the asymmetry trending negative at small
x and becoming positive at larger x values, x 2 0.3. For
comparison, the analogous integrated magnetic GPD asym-

metry s i dxxE*(x,0) = 0.0009( for the x-weighted

moment, while for the lowest moment, which corresponds

to the strange quark contribution to the proton’s magnetic

moment, we find [ dx B (x,0) = p, = —0-0338;;'

At nonzero values of ¢, the strange asymmetry is not as
strongly suppressed as the nonstrange d — i asymmetry. At
—t = 0.25 GeV?2, for instance, as also shown in Fig. 8, the
magnetic GPD asymmetry xE*(x,7) is only slightly
smaller in magnitude than that at r = 0, while for electric
GPD asymmetry the peak value of the magnitude of
xH*5(x,t) at —t = 0.25 GeV? is even larger than that
at t = 0.

A more direct representation of the x-integrated strange
GPD asymmetries is given in Fig. 9, where the strange
quark contributions to the proton’s electric and magnetic
form factors as in Eqs. (40)—(42) are plotted versus z. The
uncertainty bands for the computed Gy}, ,,(¢) form factors
correspond to the results with A = 1.0(1) GeV, and the
form factors are compared with recent lattice simulations at
the physical pion mass [98]. While the strange electric form
factor in Fig. 9(a) at t = 0 is normalized to zero, at finite
momentum transfer Gj(¢) is positive and saturates at

054006-30



GENERALIZED PARTON DISTRIBUTIONS OF SEA QUARKS IN ...

PHYS. REV. D 106, 054006 (2022)

0.006
[ chiral loops

0.005 { lattice (yQCD)

0.004]
i
O 0.003
0.002
0.001

0.0 0.2 04

—1(GeV?)

0.6 0.8

“i? : [l chiral loops
—-0.04 } lattice (YQCD)
(b)
0.0 0.2 0.4 0.6 08
—1 (GeV?)

FIG. 9. Strange quark contributions to the (a) electric G}, and (b) magnetic Gj, form factors of the proton versus four-momentum
transfer squared —z, with the uncertainty band corresponding to cutoff values A = 1.0(1) GeV, compared with the lattice simulation

from Ref. [98].
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FIG. 10. Contributions from different intermediate hadronic configurations to (a) the strange electric Gf and (b) strange magnetic G,
form factors, with A = 1.0 GeV, including the octet (dashed lines) and decuplet (dotted lines) states and total (solid lines), for the
regular (red lines) and additional gauge link (blue lines) diagrams.

around +0.004 over the range —¢ < 1 GeV?. The strange
charge radius can be evaluated from the slope of the
electric form factor at 1 = 0,

4G (1)
dr

((rp)) =6 (139)

t=0

~
~

The value found in the present calculation, {((r)?)
—0.003 fm?, is very similar to that reported from the lattice
simulation in Ref. [99].

The strange magnetic form factor Gj,(¢) is shown in
Fig. 9(b) as a function of ¢, also compared with the lattice
calculation from Ref. [98]. As for Gj (1), the absolute
value of the strange magnetic form factor increases with
increasing values of the cutoff A, and decreases with —z,
consistent with the lattice simulations from Ref. [98]. The
radius associated with the strange magnetic form factor is
defined as

dGj, (1)

(g =630

(140)

and is estimated to be ((r},)?) = —0.023(7) fm? for
A =1.0(1) GeV. Our results are also consistent with the

direct calculation of the strange form factors with a non-
local chiral Lagrangian from Ref. [46].

In Fig. 10, we separate the contributions of different
intermediate hadronic configurations to the strange electric
and magnetic form factors for A = 1.0 GeV. Specifically,
the contributions from intermediate state octet and decuplet
baryons are shown, for the regular diagrams and the
additional gauge link interaction diagrams in Fig. 1. For
the strange electric form factor, there is a cancellation
between the contributions from the regular and gauge link
diagrams when # = 0, which is guaranteed in fact by the
gauge invariance of the nonlocal Lagrangian. The result is
that the net strange charge in the proton is zero. For the
strange magnetic form factor, the gauge link contributions
are actually larger in magnitude compared with the regular
diagrams, and some cancellation is found between the
negative octet and positive decuplet terms, resulting in an
overall negative Gj,.

VII. SUMMARY

This paper has presented a detailed account of unpolar-
ized GPDs of sea quark and antiquarks in the proton arising
from pseudoscalar meson loops whose interactions with

054006-31



HE, JI, MELNITCHOUK, THOMAS, and WANG

PHYS. REV. D 106, 054006 (2022)

octet and decuplet baryons are described within a nonlocal
chiral effective theory with a finite range regularization. We
have restricted this initial study to the special case of zero
skewness, & = 0, although the calculation can be straight-
forwardly extended to the & > 0 case. Within the con-
volution formulation, the dependence of the electric
H?=H%(x,£ =0,7) and magnetic E? = E?(x,£=0,1)
sea quark GPDs on the parton momentum fraction x and
four-momentum transfer squared ¢ has been computed from
the derived nonforward hadronic splitting functions and
input GPDs of hadronic configurations constrained by
SU(3) flavor symmetry.

For all light and strange quark flavors the electric, spin-
nonflip GPDs HY are positive. For the magnetic spin-flip
GPDs, the E4 and EF distributions are positive, while the E*
GPD is negative. The strange magnetic GPD E*, on the
other hand, displays nontrivial x dependence with changes
of sign as a function of x. The electric and magnetic
sea quark flavor asymmetries for the light quarks con-
sequently remain positive across all x values, decreasing in
magnitude with increasing momentum transfer squared —z.
Interestingly, the magnetic asymmetry E4~% is some four
times greater than the corresponding electric asymmetry
HY" which presents opportunities for phenomenological
studies of this function with future experiments. The shape
of the electric asymmetry is constrained at t = 0 by Drell-
Yan and other measurements, and is quite comparable with
the d — it PDF asymmetry from global QCD analysis [88].

For the strange quark GPDs, both the electric and
magnetic s — 5 asymmetries are significantly smaller than
for the nonstrange case, and change sign with x. The integral
of xH*~* favors positive values, and has a magnitude at finite
¢ that may be even larger than the value at t = 0. The results
are also qualitatively consistent with current phenomeno-
logical determinations from global QCD analyses, although
within rather large uncertainties. The electric and magnetic
s — 5§ GPD asymmetries, integrated over x, are also broadly
consistent with the strange electromagnetic form factors
as a function of ¢, obtained from recent lattice QCD

|

(rbw) _ _ y
T 12M3

simulations [98] as well as from direct calculations within
nonlocal chiral effective theory [46].

While the present analysis has been performed at zero
skewness, & = 0, in the future it will be important to extend
the GPD calculations to nonzero skewness. Such calcu-
lations will naturally be rather more complicated, but
should provide further insights into the three-dimensional
structure of the nucleon. The current analysis can also be
easily extended to the case of spin-dependent GPDs of sea
quarks in the proton, where we know from similar studies
of helicity PDFs [100] that chiral loops play a somewhat
different role for polarized and unpolarized distributions.
Experimentally, while facilities such as Jefferson Lab are
expected to provide information on GPDs in the valence
quark region at larger values of x, distributions of sea
quarks will be ideally suited for study at the future
Electron-Ion Collider [101].
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APPENDIX: SPLITTING FUNCTION INTEGRALS

In this Appendix, we list the complete set of formulas for
the numerators appearing in the integrals of the splitting

function for the intermediate decuplet states. Starting with
(

the rainbow diagram in Fig. 1(m), the functions F ﬁm and

GE;?W) in Egs. (76) are given by

{4k - pk - p'[4k - P —2M(2M +3M7) + (1 +y)t] + 4M(k - p')*(Ar — M)

+4(k- p)2 MM + M) + 1] + 2k - p'8BM*M; + (1 + y)M(Ap — M)t + 3M2t — 4M>K?]
—2k- p[8MPMy + (1 + 11y)MMyt — 3M%t + 4M?K> — yt(SM? + t)1] + 4MM(4M? = 3(1 — y)1)

— 12yMM2At + 3yM212 4+ 4(1 = 2y)M?tk* — yMM(4M? + 51)tk*},

w) _ YM
Cor = 3M3

(Ala)

{4k - plk- p'(YM +M7) + k- p2My + M7)] + 3MM2.yt + 4k - P[3M%(M; — 2M) + (M — 3M;)k?]

+ 2k - p'M?*[(3 + y)My — 3yM] + 2k - p[yM(SM?* +t) — M7 ((1 + 11y)M? — £)] + M7(4(1 + 3y)M? — 31)k?

— M(8yM?* — t)k* — yM*M(4M? — 12M(2M — M) + 51)},

where My =My +M and Ay = My — M.

(Alb)
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For the electric part of the photon coupling to the decuplet baryon in Fig. 1(n), the functions F (Trzw) and G(Trgw) in Egs. (78)
are given by

(rbw)

(rbw)

1

o =amoa 116k pk-p'(k-A)>+16k-P[((k-p')* + (k- p)*)(3My —2M)M 7

36M%

—k-pk-p'(2M (M7 —2M) +3(2+ y)MZ —2y£?)] +16(k - A)>M*M?3 + 48(k - P)?yM% k>

+4k- pk-p'[4(4M =3M )M M3 —y*(SMMy +3M2)t +6yMy At + 2M3t +6y(3M — M) M2M
+2(4M +OM )M k> = 2(1 +y)tk* + y* 2] +4((k- p')?> + (k- p)?)

X [MyM%(9M 7 —8M) —2y(2M —3M )Mt = 3yM2Mp Ap — 4MMk*) + 4k - P[2y(2M? +3M M7 ) tk?
—12M M tk* = 12(3M — M7 )MAM pk* — 3y*(BM? + M2 My Art® +2y(2M? = TMM 1+ 6M%) M2t

—y2(2M =3M )M 12 + 12y MM2M% A7 — 12M2k* + 49> M2 tk* + 3yM (M + M) (yt —4MM 1) K2

+48yMP MM pk* = 2y* M (8M> M —3M3)tk> + (2M = 3M7)>M%(y*t — 2k*)t

+2y(4M3 My —3MZ.(5M? +3M2 — 2MM 7)) tk* + 24(M — 2M ;) M M2 M%.k>

—2y°M (8M?(M —2M7) +3(2M + M) M2 M%t +2(1 —y) (2M +3M7 ) tk* + 24MM3.(3M +2M7)k*},  (A2a)

M

= {=32k - pk- p'(k - A)2My + 8k - P[(k - A)2(2M + 3M7)k> = 3((k - p')2 + (k- p)*)(2M + M7)M7Ap

OM4t

—2k - pk- p'(My(3M My — 6M? — t) + y(3M + 2M7)t)] — 2(k - A)?[(8M>My — 3(2M + M) M3)k?
+ (8M3 + (3(2M + My)My — 16M?*)M)M2) + 4k - pk - p't[3y(4M? — (M + 2M )M )M — M M3
— yMrt + y*M(8MMy + 3M3%) + y(4M + 3M7)k> + (8M + OM 1) k> — y* M|

+2((k- p")2 + (k- p)2)e[y(10M? = 3(3M + My)Mp)My + (2M — 3M7)M2 + (1 + y)(2M + 3M7)k?]
— 2k - Pt|—6y*M(4M? + 2MM 1 + M2)M;Ar + y(2M — 3M7)(8M? — 4AMM — 3M2)M?>

—y(2My + M7)(2M — Mp)Myt + (4k* — yt) (M7 + 2M7)k* 4+ 2y° M (4M?* + 3(M + Mp)M7)k?
+y(24M? + 32M*M 7 — OM3)K* + 2(8M3 + 2M*M 7 — 21MM3. — 15M3)k?]

+ tR2yMMy(4M? — IMFM 1)K + 29> M*(8M>My — 3M3)k* — y(4M? — OM3) M 71k>

+ (2M = 3M7)>*M7(2M7k* — y*Mt) + 2y°M?(8M? + (3M (M + M) — 16M*)M ) M7

+2(4M3 — 15SMM?% — OM3)k* 4 2yM (M + 2M7)*k*]}. (A2b)

For the magnetic photon-decuplet baryon diagram in Fig. 1(0), the functions F (Tr;w m3¢) and G(Trgw mag) in Eqgs. (80) are

given by

Te

Trow ma, 1
pliowmag) _ {8k - pk- p'[My(k-A)?* + yk-P(2(1 + y)M + 5M7)1]

- 36M3
+ 8k - P(k- A)2[(2M 4 3M7)K* — M(2M + M7)My)]
+2(k - A)*[AMPM2% + 3(M — 2M ) M2M2 — 2M>M M3 — M7 (4M? — MMy — 12M3%)k?
— (2M 4 3M7) (yt 4 2k K% = 2((k - p')2 + (k- p)2)t[y(2M? + SMMy — 9M3)M + (2M — 3M 1) M>
— (2M + 3M7)k* + 2y°M?(2M — M7)] — 4k - pk - p't[y(4M?* + 2MMy — SM2)Mp — y(1 + y) Mt
- (2M — M7)M% + 2y°M(3M = 2M )My + (2M + 5My + y(2M + 3M7) + 2y>M)k?]
— 2k - Pt{12M3M k> + y*(4M? = 2MM — 3M2)M 1t + y(2M — 3M ;) M3t
—y(M = 2M7)(4M? + 6MMy — 3M3)M3% — 2y’ M?(8M> — OMM?3 — M3.)
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G(rbw mag) _

Te

—y((2M + 3M7)(2k* — t) = 8yM? + (15MM?3. + 12M3 — 16M*M7))K?]
— tk?[4MM(yM(2M — 5M7) + M7 (2M = 3M7)) — 2y*M>(4M? — M%) — y(4M? — OM2)M 1t
+4M(yM — M7)(2M + 3M7)k*] + y*M(4M?* — 8MM; + 3M%2)M2(t — 2M>)t}, (A3a)

{8k - pk-p'[((k-p)*+ (k- p"))(AMpA; + (1 +y)t —2(M?* + k%)) + 4(k - A)’k - P

18M3t
+ 2k pk-p' MMy —4MpAr — (1 = y)t +2k%)] = 8((k- p')* + (k- p) )M (2M — M7)

+ 8k - P[4(k - P)2(4M?(2M? + k*) — MM%(9M + M7))

+ k- pk-p't(2(5M7 — M)Mp + 2y(SM? + 4MMy — 2M2) + 4y>M? — yt +2(1 + y)k?)

= (k- p')> + (k- p)*)e(2(1 + y)M> = M7 ((1 + y)M + 3M7))]

—4(k - A)*M?*[(4M? — 8MM 1 + 3M7)M% + (4M?* — M%)k?]

+2((k- p')? + (k- p)})t[(8MMy + IM%)k* + yM(12M? — 6MM; — 13M2)M — y(2M — 3M ;)M 1t
+4M(M = 2M)M7% + 2yM (4M + 3M7)k* + 4> M3 (2M — M7))

+ 4k - pk - p't[12yMM k* + 4y*M?>(3M — 2M )My + yM(16M? — AMM ; — SM%)M

—2(M?* = 5MMy + 3M3)M% — (2y°M + y(4M — M7) + M7)Mpt + (12M? + 22MM + 9M%)k?

+ 4y’ M?k? — th? + 2k*] — 2k - Pt[2y(4M — 3M7)M%2 At — 2y° M (4M? — 2MM — 3M%)M 1t

+4yM(4M3 — (SM? = 3M A7) Mp)M7 + 4y>M> (8M3 — M%(9M + M7p)) + 16y°M*k?

+4(6M> — AMM3. — OM3) M k> — 8MM ytk> + 4yM(5M + 6M ) (2M? — M7.)k?

— y(4M?* + 10MMy + 3M%)tk> + 12(2M? + 4AMM 7 + 3M%)k* + 4yM(2M + 3M 7 )k*]

+ 1292 M?(2M? — t)(4M? — 8MM; + 3M%2)M7. — (2M — 3M7)*M%1k?

+2(2M = 3M7)(2M? — M*My = 3M3)M2K? + 4y>M*(4M? — M2)k> — 2yM (AMM  — OM%)M tk>

+ 8yM?3(2M? + My (M — 5M7))Mk* + 8yM>(2M + 3M7)k* + (2k* — 1)(2M + 3M;)?k*

+4(AM* + 6MP M — 12M M3 — OM73)k*]}. (A3b)

(rbwmag 1,2)

For the magnetic octet-decuplet transition diagrams in Figs. 1(p) and 1(q), the numerator functions Fy, and

(rbwmag 1,2)
Gry

in Egs. (82) are expressed as

(rbwmagl) 1 e _ ,
F =— {8k -pk-Alk- p'(3M Arg)—k-pM 8k - pk -
BT 12MBM%{ p [k-p'(3M7 + Arp) pMp| + 8k pk- p

X (Mg +Mp)k* + (M? + MpAg = 3M7 + )My + y((1 = y)M + Agp)i]

—4(k- p')*(2M = 3M7)(2M ¢ — Ag)My + 2(2M + 3M 1) k?]

+4(k- p)?[MyMpMy +2(2M7 — Ag)k*] = 2k - pt[yMg(yt + 2My M)

+2y2M(M + 3M )My + 2y(2M + M7)k> + 2(Arg — y*M)k?]

+ 4k p'tlyMr(2MAg + (M = 3Mg)M7) — (2M + 3M7)k* + y*M?(2M — M)

+ 4k - A[2M + 3M7)k* — QMA; My + 3M 7 ArMp + 2MM 7 Apg )k

+ (2y*MM(4M = 3M ) — (2k* — y*t)(2M — 3M1))M gM 1t

+2yM(2M Mg — 4A; My + y(Mg(2M + 3M7) + 4MM7y))tk> + (4M + 6M7)1k*}, (Ada)
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TOwW ma, M
Gbwmagl) ~car gz 16k pk - p'(k - A) = 8(k - p)*k - p/[M(4M + 5My) + 2M (M + 3My) + (3 = y)1 = 27
BET

+8(k - p') k- p[M(5M + Myg) +3MgMy + (1 + y)t — K?] + 8(k - p)*[(M + 3M7)Mp — k?]

—8(k-p' MM — M7)] — 4(k - A)?[(4M = 3M )M MMy + (Mg(2M + 3M7) + 4MM;)K?]

— 4k - pk- p't[(Mg + 5A7) My + 4y*M? — yt + (1 + y)k> + y(Mg(M — 3M7) — M(M + 8M7))]

—4(k- p')*t[(2M = 3M )My + yM(2M — M7)] +4(k - p)*t[(3 = y)k* = (1 = 3y)MsM]

— 4k - Pytk* [Mg(2M + 3M7) + 4MMy] — 6k - AM 7 Apptk®

— 2k - p'tly(2M = 3M )Myt + 2M (2A7 + App)k? — 4y> M3 (2M — M) + yM(2M (3M + SMg)M

—3M3My — 4AMPAy)] — 2k - pt[4y*M*(M + 3M7 )My + yM My (M7 (2M — 3M7) + 1)

+2y°MMgt + 2M(2M — Myp)k* + y(4M(My — yM) + t)k*] + 2M (2y*MM (4M — 3M7)

+y2(2M = 3My)t + dM k> )M gMpt + 4yM?(yMg(2M + 3M7) + 4yMMy — MpgMy — 2MM g)tk?

+y(2M (Mg + M7p) —3MApp) k> + SMMtk*}, (A4b)
Ftwmee2) _ W (=8k- p'k - Alk- p(30y + App) — k- p'Mg] + 8k - pk- p/

x [(Mp + Mp)k? + (M? + MpAr = 3M7 + )My + y((1 = )M + Arp)1]

—4(k- p)*[(2M = 3M7)(2My — Ag)My + 2(2M + 3M 1)K

+4(k- p')[MrMpMy 4 2(2M1 — Ag)K*] — 2k - p't[yMg(yt + 2M 7M7)

+2y°M(M + 3M )My + 2y(2M + M7 )k> + 2(Arg — y*M)K?]

+ 4k - ptlyM;(2MAg + (M —3Mg)My) — (2M + 3M7)k* + y>?M?*(2M — M7))

— 4k - A[(2M + 3M)k* — QMArMy + 3MpAr My + 2MM Az )k?]

+ (2y*MM(4M = 3M ) — (2k* — y*t)(2M — 3M 1) )M yM 1t

+2yM(2M Mg — 4A; My + y(Mp(2M + 3M7) + 4MMy))tk> + (4M + 6M ;) 1k*}, (Adc)

TrOw ma, M
Glbwmae2) _ ~ e {16k - pk - p/ (k- A)? = 8(k- p')?k- p[M(4M + 5My) + 2M »(M + 3My) + (3 — y)t — 2k?]
B T

+8(k - p)*k - p'IM(5M + Myg) +3MgMy + (1 4+ y)t — k*] + 8(k - p')3[(M + 3M ;)M 5 — K?]
—8(k-p)3[M(2M — My)] — 4(k - A)?[(4M = 3M7)MsMgMy + (Mg(2M + 3M7) + AMM7)k?]

— 4k - pk- p't[(Mp +5A7) My +4y2°M? — yt + (1 + y)k*> + y(Mp(M = 3M 1) — M(M + 8M7))]

—4(k- p)*t[(2M = 3M7)My + yM(2M — M7p)] +4(k - p')*1[(3 = y)k* = (1 = 3y)MsM]

— 4k - Pytk*[Mz(2M + 3M7) + 4MM7y) — 6k - AMyApptk® — 2k - pt[y(2M — 3M )Mt

+2M (2A7 + App)k? — 4y M3 (2M — M) + yM(2M(3M + 5M )My — 3M3M g — 4M>Ap))]

— 2k - p't{dy*M*(M +3M )My + yMgM (M7 (2M — 3M7) + t) + 2y*MM gt + 2M(2M — Mpp)k?
+y(4M (M7 — yM) + 1)k*] + 2M (2y> MM (4M — 3M7) + y*(2M — 3M )t + 4M k> )M gM t

+ 4yM?(yM g (2M + 3M7) + 4yMMp — MMy — 2MM ) tk> + y(2M (M g + My) — 3M 7 Arg) k>

+ 8MMtk*}, (A4d)

where we define Ay = My — Mg and M5 = My + Mp.

Finally, for the KR diagrams with decuplet baryon intermediate states in Figs. 1(r) and 1(s), the numerator functions

F(KR 1.2 KR 1.2)

o ) and G(T¢ in Eqs. (84) are expressed as
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krp) _ 1
¢ 12M3

—2k-pl(1 —y)M(2M — My) = 3M%] —8MM k> — y(1 — y)M(2M — M7)t + y(3M2t — 8M*M7)},  (AS5a)

{—4k - p'[2yk- P +3k-p' — k- p] + 2k - p'[4k> + SyMMy + 6(1 + y)M? = 3M A7 + y(1 —y)1]

M _
(KR1) = g7 (2K 'k A(4M +5M ) — k- ARM (2K = 3M7) + 6M (K ~ M) +4M*M]
T

T4
— k- p't2y(2—y)M +3yMy +2M¢] = t3yMM7 — (2M +3M7)k* = y((1 +y)M*M7 +2(2—y)M?)]},  (ASb)
1
FRR? = gz 4k pl2yk P43k p— k- pl) + 2k pl4R* + SyMMy + 6(1 + y)M? ~3MrAp + y(1 = y)i]
T
— 2k p'[(1 = y)M(2M — My) — 3M2) — SMM k2 — y(1 — y)M(2M — M)t + y(3M2t — SM3My;)}.  (A5c)
M _
G = Sy (2K PR AMM £ 5M7) + k- ARM (2K = 3MF) + 6M (K — M3) + 4M*M;]
T

— k- pt2y(2 = y)M + 3yMy 4+ 2M7]| — t[3yMM7 — (2M + 3M7)k* — y((1 +y)M>*M7 = 2(y =2)M?)]}.  (A5d)

For the additional gauge link generated KR diagrams in Figs. 1(t) and 1(u), the functions 6F (TI;Rl’z) and 6G(TI;R1’2) in

Egs. (86) are given by

KR 1 y
SF ) = B {=16k - pk - p'k- P + 4k - pk - p'2M(2M + 3M7) — (1 + y){]

—4(k-p') MMy +2M) + 1] = 4(k - p)>M(My — 2M) + 4k - P[AM>*K* — 3M21] + 4k - AM*(4MM; — t)
+ 2k - p't|6yM?* — (5 — 11y)MMy — yt] + 2k - pMt2yM — (1 + y)M]
+ {12yMM (M My — K?) + 2M?(yt + 2(2 — y)k?) + MM (12k* — yt)]

— 8MPM (2K + yr) — 3yM312}, (A6a)
M _ _
5GoN ") = ;W {4k - p'lk- p'(2M + 3My) + k - p(yM + My)] + 4k - PBM3My — (2M + 3M7)k?)
T
+ 2k - p'l[(yM + Mp)t — (4 + 11y)M>M7 — 2(2 + 3y)M?]
+ 2k - pyM?(My — 2M) + 2yM*[M(4M? — 6M2.) + M(2k* — 1))
+ 4MPM k2 + Mt(3yM3 — 2k%) + yM2M (12K + 1) — 3M71k?}, (A6b)
SF Y = 12?\42 {=16k - pk - p'k - P+ 4k - pk - p'2M(2M + 3M7) — (1 4 y)i] = 4(k - p)*[M(My + 2M) + 1]
T
—4(k - p')2M(My — 2M) + 4k - P[4M?k* — 3M31] — 4k - AM2[4MMy — 1]
+ 2k - pt[6yM? — (5 — 11y) MMy — yt] + 2k - p'Mt2yM — (1 + y)M]
— 8MPM (2K + yr) — 3yM312}, (A6c)
(KR2) _ yM ) . - Vi . 27 2
Gy, gz (4K plle- p(2M 4 3My) + k- p'(yM + My)] + 4k - PBM7My — (2M + 3M7)°]
T

+2k - p[(YM + M)t — (4 + 11y)M>My — 2(2 + 3y)M3] + 2k - p'yM?* (M — 2M)
+ 2yM?[M(4M? — 6M2) + M(2k* — t)] + 4M>M k> + Mt(3yM3 — 2k?)
+ yM?*M(12K> + 1) — 3Mptk*}. (A6d)
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