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We use data from the COHERENT CsI[Na] scintillation detector to constrain sub-GeV leptophobic dark
matter models. This detector was built to observe low-energy nuclear recoils from coherent elastic neutrino-
nucleus scattering. These capabilities enable searches for dark matter particles produced at the Spallation
Neutron Source mediated by a vector portal particle with masses between 2 and 400 MeV=c2. No evidence
for dark matter is observed and a limit on the mediator coupling to quarks is placed. This constraint
improves upon previous results by two orders of magnitude. This newly explored parameter space probes
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the region where the dark matter relic abundance is explained by leptophobic dark matter when the
mediator mass is roughly twice the dark matter mass. COHERENT sets the best constraint on leptophobic
dark matter at these masses.

DOI: 10.1103/PhysRevD.106.052004

I. INTRODUCTION

There is overwhelming evidence for the gravitational
effects of dark matter which comprises ≈80% of the matter
in the Universe [1]. Despite several experimental tech-
niques developed to detect dark matter, its particle nature is
still not understood. To resolve this question, several
experimental approaches have been attempted to identify
dark-matter particles using both astroparticle [2–4] and
accelerator-based techniques [5,6].
COHERENT detectors deployed at the Spallation

Neutron Source (SNS) are sensitive to dark-matter particles
produced in the target with masses below the current beam
energy, ≈1 GeV. From cosmological constraints, sub-GeV
dark matter cannot interact directly with standard-model
particles through the weak force [7]. Instead, light dark
matter would consist of hidden sector particles, χ, whose
interactions with standard-model particles are mediated by
a vector portal particle V. Sub-GeV dark matter may be
scalar or fermionic, and there are different channels through
which V could interact with standard-model particles.
Detectors sensitive to low-energy nuclear recoils induced

by coherent elastic neutrino nucleus scattering (CEvNS)
are efficient probes of light dark matter with masses below
≈1 GeV. These detectors would also observe nuclear
recoils induced by coherent χ-nucleus scattering if dark
matter is produced at the SNS. The cross section for this
process is proportional to the square of the nucleon number,
A [8] so that a small detector can yield a result competitive
with constraints from much larger detectors that rely on
inelastic signal channels. Additionally, as accelerator-
produced light dark matter is relativistic, the scattering
cross section is relatively independent of dark matter spin
[9] so that CEvNS detectors can effectively search for both
scalar and fermionic dark matter.

II. COHERENT AT THE SNS

The COHERENT collaboration employs several detec-
tors at the SNS at Oak Ridge National Laboratory [10]. We
measure CEvNS and other low-energy scattering processes
on several types of nuclei and maintain neutron detectors
to understand beam-related backgrounds. Detectors are
placed in a basement hallway, Neutrino Alley, where
neutron backgrounds are low enough to permit these
measurements of low-energy scattering processes about
20 m from the SNS target. The SNS is a π decay-at-rest
(π-DAR) source with a FWHM beam pulse width of 360 ns
offering a prompt νμ flux and delayed νe=ν̄μ flux separated

in time. Having multiple flavors and separation by timing is
ideal for testing beyond-the-standard-model (BSM) scenar-
ios such as lepton flavor universality of the CEvNS cross
section (at tree level) and for searches for hidden sector
particles such as dark matter.
To studyCEvNS,we have built several detectors sensitive

to low-energy nuclear recoils. The COHERENT CsI[Na]
detector was a 14.6 kg, low-background scintillating crystal
commissioned at the SNS which made the first observation
of CEvNS in 2017 [11]. Scintillation light was collected by a
single Hamamatsu R877-100 photomultiplier. Neutron and
γ backgrounds were mitigated by a composite shielding
using both low-activity lead and low-Z materials. The
assembly was surrounded by a plastic scintillator veto to
reject cosmic-induced activity. The detector collected beam
data from 2017 to 2019, recording a total of 3.20 × 1023

protons-on-target during its run. Recently, the full dataset
from the detector, along with improved understanding of the
detector response to nuclear recoils, enabled the most
precise measurement of the CEvNS cross section yet [12]
and placed leading constraints on sub-GeV darkmatter [13].
Additionally, we study CEvNS on Ar with continuing

operation of a liquid argon scintillation detector. This
detector made the first measurement of the CEvNS cross
section on Ar [14] with an active argon mass of 24 kg.
COHERENTis also currently commissioning low-threshold
CEvNSdetectorswithGe andNa targets alongwith a heavy-
water Cherenkov detector to calibrate the neutrino flux at the
SNS [15]. Neutron detectors are currently running to
monitor beam-related backgrounds [16]. COHERENT also
plans for future large-scale detectorswhichwill dramatically
improve precision of measurements on small, first-light
detectors [17].

III. LEPTOPHOBIC DARK MATTER

COHERENT has previously reported a dark-matter con-
straint using these data on a model that predicts a vector
portal particle V that kinetically mixes with the photon and
decays to dark-matter particles χ [13]. A leptophobic, or
baryonic, dark-matter model [18–23] is also viable where V
mediates interactions between χ and quarks described in
terms of the vector mediator, Vμ, and the scalar dark matter
particle, χ, by Lagrangian terms

L ⊃ −gBVμJBμ þ gχVμð∂μχ̄χ − χ̄∂μχÞ; ð1Þ

where JBμ is the baryon current given by
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JBμ ¼ 1

3

X

q

q̄ γμq: ð2Þ

This implies the couplings αB ≡ g2B=4π and αχ ≡ g2χ=4π
describing Vqq and Vχχ vertices, respectively. Production
of leptophobic dark matter can be achieved in π0 decay by
the diagram shown in Fig. 1 with a branching ratio
Brðπ0 → γVÞ ∝ 2αB=α. Coherent χ − A scattering off a
nucleus, A, occurs through simple V exchange with
σðχA → χAÞ ∝ αBαχ .
Though there is no V − γ kinetic mixing in the lepto-

phobic dark matter model at tree level, there is an effective
mixing from the loop diagram shown in Fig. 2 with a
mixing parameter ε ∼ egB=ð4πÞ2. Through this effective
kinetic mixing, the couplings for leptophobic dark matter
can be related to the dark-matter scattering cross section at
freeze-out which determines the modern relic abundance.
There are several current constraints on this model

from Coherent Captain Mills [6], NA62 [24], MiniBooNE
[25,26], and neutron-scattering [27]. There is also a model-
dependent anomalon limit considering the influences of dark
matter on anomalous SM baryonic couplings [28]. These
constraints exclude leptophobic dark matter for all values of
αχ if mV=mχ > 3.
However, there is significant parameter space viable for

mV=mχ ≈ 2. If 0 < mV − 2mχ < Tf ≈mχ=20, with Tf the
freeze-out temperature, then the annihilation rate of dark
matter would have happened on resonance [29] in the
early universe during thermal freeze-out, increasing the
χ̄χ → SM cross section. For a given mχ , this resonant

enhancement is proportional to e−ðmχ=TfÞεR where εR ≡
ðm2

V − 4m2
χÞ=4m2

χ [29]. If ε ≪ 1, the resonant condition
mV − 2mχ < Tf can be approximated by ε < 1=20. As the
annihilation cross section can be determined from the relic
dark matter density, this resonance implies that model
couplings required to produce the observed relic density are
much lower when ε < 1=20. Thus experimental searches
for leptophobic dark matter in experiments must probe
significantly lower couplings if mV=mχ is slightly above 2.
Thus, couplings required to match the relic abundance of
dark matter also depend on εR with decreasing target
couplings as εR → 0. For scalar leptophobic dark matter,
this effect reaches a floor for εR < 10−5 where lower values
of εR do not further suppress expected dark matter
couplings. For fermionic dark matter, however, this effect
is unbounded with εR → 0 driving the coupling required to
match the relic abundance to arbitrarily low values.
The dominant production mechanisms for leptophobic

dark matter at the SNS are π0 → γV and η0 → γV facili-
tated through a Vqq vertex for the SNS beam energy as was
the case with the leptophilic model [13]. A leptophobic
dark matter particle passing through the CsI[Na] detector
can scatter coherently with target nuclei, producing a
nuclear recoil signature with similar energies to those
expected from CEvNS. The differential cross section is
given in terms of the nuclear mass, mN , recoil energy,
Er, nuclear form factor, FðQ2Þ, and momentum transfer,
Q2 ¼ 2mNEr as

dσ
dEr

¼ 4παBαχA2
2mNE2

χ

p2
χðm2

V þQ2Þ2 jFðQ
2Þj2; ð3Þ

where pχ and Eχ are the momentum and energy of the
incident dark-matter particle. Timing of the π-DAR beam
can differentiate the dark matter signal from CEvNS
background as relativistic dark matter [30] produced by
decay-in-flight of mesons in the SNS target would arrive
coincident with the protons-on-target while the neutrino
flux has a prompt νμ and delayed νe=ν̄μ flux. Production
and scattering rates are predicted by the BdNMC event
generator [22].

IV. ANALYSIS AND RESULTS

The COHERENT CsI[Na] detector performance, along
with discussion of event selection and background rates are
presented here and discussed in detail in [12,13]. Using
calibration data from the 59.5-keV γ peak from 241Am, we
measured a light yield of 13.35 PE=keVee, or photoelec-
trons per keV of electronic recoil energy, in the CsI[Na]
detector. Nuclear recoil quenching was modeled by a
polynomial fit to five neutron scattering measurements
using a small CsI[Na] crystal with identical doping [31].
A pulse-finding reconstruction was run on PMTwaveforms
to calculate a recoil time and energy for each event.

FIG. 1. Production of leptophobic dark matter from π0 decay
which may occur at the SNS. The dark matter particles are on-
shell and may subsequently scatter coherently in a COHERENT
detector.

FIG. 2. The γ − V kinetic mixing induced from leptophobic
dark-matter portal through a virtual quark loop and subsequent
V → χ̄χ decay.
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The single photoelectron (SPE) charge was calibrated by
taking the average waveform integral of isolated pulses
found outside the beam window. For each beam spill,
events were selected that have low background scintillation
activity within the crystal prior to the beam spill and ≥ 9
reconstructed pulses. Calibration data were taken with a
133Ba γ source which determined the nuclear recoil thresh-
old by observing Compton electrons. Though these are
electronic recoils, the scintillation decay time is very
similar to that observed for nuclear in CsI[Na] [32].
These requirements resulted in a nuclear recoil threshold

of ≈9 keVnr which was measured using 133Ba calibration
data. A four-parameter function was fit to the 133Ba data and
also used to estimate the uncertainty in the threshold,
≈1 keVnr. The efficiency is shown in Fig. 3 for simulated
mV ¼ 80 MeV=c2 dark matter giving an average selection
efficiency of 21% at this mass.
Beam-unrelated backgrounds account for the majority,

78%, of the total background below 60 PE and were
measured in-situ with data out of time with the beam. Due
to afterglow scintillation activity within the crystal, the
selection efficiency depends on recoil time as later recoils
may be rejected due to spurious background activity earlier in
the waveform. The remaining backgrounds are neutron-
related (2%) whose normalizations were determined with
data from a liquid scintillator housed in theCsI[Na] shielding
collected before commissioning the CEvNS detector and
CEvNSevents (20%). The total systematic uncertainty on the
CEvNS rate was 12% and was dominated by the neutrino
flux uncertainty [33] with additional uncertainty calculated
for quenching, the detection threshold model, form factor
suppression, and background normalizations.
To determine the dark matter content within the observed

data, a binned log-likelihood was developed. All selected
data with Erec < 250 PE and trec < 6 μs were included
and fit in two dimensions, recoil energy and time. This fit
included both prompt and delayed data. Though no dark

matter is expected for trec > 6 μs, these data were included
to improve constraints on nuisance parameters. Nine
nuisance variables were included to incorporate systematic
uncertainties. Four only affected background rate: the
neutrino flux uncertainty, the rate of steady-state back-
ground, and two for neutron backgrounds. There were also
five parameters that affect rate and shape of the prediction
of the dark matter signal and backgrounds: the timing of the
arrival of the neutrino pulse, the detector threshold, the
nuclear form factor, and two covering uncertainty in
quenching determined by a principal component analysis.
The number of dark matter counts is determined by
calculating a profile-logL curve from observed data. As
the expected recoil shape of the dark matter signal depends
on mV , a fit was developed for multiple assumptions on the
mediator mass over the tested region.
The observed data were fit with the best-fit spectra

shown in Fig. 4. For each dark matter mass tested, the
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best-fit parameters suggest no dark matter events with a
χ2=dof of 103=120. A clear timing region of interest is
identified between 0.25 and 0.75 μs where the majority of
dark matter is expected with a background control region at
recoil times above 0.75 μs.
COHERENT data test leptophobic dark matter in the

most conservative scenarios for εR > 0. As such, couplings
that match the relic abundance depend strongly on mV=mχ .
For a fixed mV , the expected dark-matter distribution does
not change with varying mχ for all mχ < mV=2. We thus
show results in terms of mV . For a given value of mV , αχ is
assumed to be 0.5, as smaller values lead to stronger
constraints and the model becomes nonperturbative at
higher values. A confidence interval is constructed for
αB using a log-likelihood spectral fit and the Feldman-
Cousins method [34] at the 90% confidence level. The
resulting contour is shown in Fig. 5 compared to relic

abundance targets with different assumptions of εR for both
scalar and fermionic dark matter. At our strongest con-
straint, mV ¼ 80 MeV=c2, the Feldman-Cousins treatment
of our fit results suggest < 17 dark matter events in the
sample at the 90% confidence level.
The result places the strongest constraint on leptophobic

dark matter over the entire mass range considered,
2 < mV < 400 MeV=c2, improving the αB bound by up
to two orders of magnitude. Throughout the entire
region, the dark-matter relic abundance is excluded for
εR > 0.01 (mV=mχ > 2.01). At the most sensitive mass,
mV ¼ 80 MeV=c2, the scalar result nearly reaches the
εR¼10−5 line, the most conservative scenario for scalar
leptophobic dark matter. This region will be easily acces-
sible with future COHERENT data. This line is excluded
for αχ<0.31 formV¼80MeV=c2. Though there is no lower
bound on the relic abundance in the fermionic case, the data
can exclude the model for εR ¼ 10−6 ðmV=mχ − 2 ≈ 10−6Þ
for 36 < mV < 116 MeV=c2. This constraint probes a dark
matter flux 10000× lower than previous leading constraints,
as many of the most sensitive probes of light dark matter are
insensitive to leptophobic dark matter. This result was the
first performed by a detector sensitive to neutrino-induced
CEvNS recoils in a π-DAR and was achieved with a small,
14.6 kg detector. Future data from COHERENTwill further
probe leptophobic dark matter and can eliminate the model
entirely in the scalar scenario with mV=mχ > 2.

V. CONCLUSION

COHERENT searched for leptophobic dark-matter par-
ticles at the SNS using the full dataset collected by the
COHERENT CsI[Na] detector. No dark matter signal was
found, and strong constraints on the dark matter model are
placed.COHERENTplaces themost stringent limit to date for
all mediator masses 2 < mV < 400 MeV=c2. For scalar dark
matter mediated by a 80 MeV=c2 vector, this result nearly
eliminates the studied dark-matter model for mV=mχ > 2.
Data from future COHERENT CEvNS detectors will
strengthen constraints which can fully probe the scalar model
and severely limit fermionic, leptophobic dark matter.
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