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We propose a measure of quantum state complexity defined by minimizing the spread of the wave
function over all choices of basis. Our measure is controlled by the “survival amplitude” for a state to
remain unchanged, and can be efficiently computed in theories with discrete spectra. For continuous
Hamiltonian evolution, it generalizes Krylov operator complexity to quantum states. We apply our methods
to the harmonic and inverted oscillators, particles on group manifolds, the Schwarzian theory, the SYK
model, and random matrix models. For time-evolved thermofield double states in chaotic systems our
measure shows four regimes: a linear ramp up to a peak that is exponential in the entropy, followed by a
slope down to a plateau. These regimes arise in the same physics producing the slope-dip-ramp-plateau
structure of the spectral form factor. Specifically, the complexity slope arises from spectral rigidity,
distinguishing different random matrix ensembles.
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I. INTRODUCTION

In a classic work, Kolmogorov proposed that the com-
plexity of a sequence could be defined as the length of
the shortest Turing machine program producing it [1]. In
information theory, Rissanen likewise suggested that the
complexity of an ensemble of messages can be defined as
their minimal codelength, averaged over the ensemble [2].
Similarly, complexity of a problem class can be measured
by the size (depth, width, or number of gates) of the
smallest circuit, defined in terms of a fixed gate set, that
performs the computation. The fundamental idea here is
that the complexity of an object, or class of objects, should
be understood as the number of simple components
required to assemble it. As such, there is an ambiguity—
the measure of complexity depends on the basis of simple
components. For this reason, most discussions of complex-
ity in computer science deal with scaling laws, and seek to
establish that, for reasonable choices of basis, these laws
are universal up to polynomial factors.
Similar ambiguities arise in attempts to measure the

complexity of quantum processes. For example, consider
Nielsen’s definition of the complexity of the time evolu-
tion operator UðtÞ ¼ e−iHt as the minimal distance in
the unitary group between the identity and UðtÞ [3].

This definition requires the choice of a “complexity metric”
on the group manifold, penalizing “hard” vs “easy”
operations, typically defined in terms of their degree of
locality. Recent studies [4–11] investigate such choices of
complexity metric for describing physical time evolution,
with consequences for separating integrability and chaos.
In physical systems it is also interesting to quantify

complexity of individual states. A reasonable definition
should regard many-body factorized Gaussian wave func-
tions as “simple,” while widely dispersed, nonlocally
entangled states are “complex.” Dynamically speaking,
we expect chaos to produce inherently complex states,
perhaps even with complexity increasing over exponential
durations, e.g., for processes associated to black hole
formation [12]. It would be natural to quantify the complex-
ity of a quantum state in terms of the spread of the wave
function over some fixed basis. But such schemes face an
ambiguity—what basis should we pick?
We propose a measure of quantum state complexity

that avoids this ambiguity. Suppose we start with an initial
state, and allow it to spread through time evolution over
some basis. Following the spirit of Kolmogorov, we define
the complexity of the state by minimizing the spread of the
wave function over all possible bases. We show that this
minimum is uniquely attained, throughout a finite time
interval for continuous evolution, and for all time for
discrete evolution, by an orthonormal basis produced by
the Lanczos recursion method [13]. We will call it “spread
complexity.”
The notion of spread complexity is controlled by the

“survival amplitude” for a state to remain unchanged, a fact
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we use to develop efficient computational methods. We
apply our techniques analytically to particle dynamics on
group manifolds, and numerically to the Schwarzian
theory, SYK model, and random matrix models. Applied
to chaotic systems including the SYK model and matrix
models, we show that complexity displays four dynamical
regimes: a linearly increasing ramp ending in a peak,
followed by a downward slope terminating in a plateau.
The durations of the ramp and slope, and the heights of
the peak and plateau, are exponential in the entropy.
These effects can be compared to the characteristic
slope-dip-ramp-plateau structure of the spectral form factor
(SFF) [14,15]. The complexity slope, like the SFF ramp,
arises from spectral rigidity [14,16–19], and thus differs
between Gaussian unitary, orthogonal, and symplectic
random matrix ensembles.
Some alternative approaches to state complexity based

on Nielsen’s geometric methods appear in [7,8,20–26], and
proposals targeted to CFTs include [27,28]. A definition in
terms of wave-function spread with respect to the so-called
“computational basis” was considered in [29], and a
proposal based on group cohomology is in [30]. An
interesting direction based on discrete time evolution and
random circuits appears in [31].

II. DEFINING SPREAD COMPLEXITY

Consider a quantum system with a time-independent
Hamiltonian H. Time evolution of a state jψðtÞi is
governed by the Schrödinger equation

i∂tjψðtÞi ¼ HjψðtÞi: ð1Þ

The solution jψðtÞi ¼ e−iHtjψð0Þi has a formal power
series expansion

jψðtÞi ¼
X∞
n¼0

ð−itÞn
n!

jψni; ð2Þ

where jψni ¼ Hnjψð0Þi. The Gram-Schmidt procedure
applied to jψni generates an ordered, orthonormal basis
K ¼ fjKni∶n ¼ 0; 1; 2; � � �g for the part of the Hilbert
space explored by time development of jψð0Þi≡ jK0i.
The basis K, sometimes called the Krylov basis in the
recent literature, may have fewer elements than the dimen-
sion of the Hilbert space, depending on the dynamics and
the choice of initial state.
We expect more complex time evolution will spread

jψðtÞi more widely over the Hilbert space relative to the
initial state jψi. To quantify this idea, we define a cost
function relative to a complete, orthonormal, ordered basis,
B ¼ fjBni∶n ¼ 0; 1; 2; � � �g for the Hilbert space

CBðtÞ ¼
X
n

cnjhψðtÞjBnij2 ≡
X
n

cnpBðn; tÞ; ð3Þ

where the cn are a positive, increasing sequence of real
numbers, and the pBðn; tÞ are probabilities of being in each
basis vector. Completeness of the basis B, together with
the unitarity of time evolution, namely

P
n pBðn; tÞ ¼ 1,

implies that the cost of a wave function increases if it
spreads deeper into the basis. We will generally take cn ¼ n
so that the cost measures the average depth in the basis of
the support of jψðtÞi:
We could try to define a natural notion of complexity as

the minimum of this cost function over all bases B

CðtÞ ¼ min
B
CBðtÞ: ð4Þ

At a time t0, any basis with jB0i ¼ jψðt0Þi will minimize
(4), achieving Cðt0Þ ¼ c0. So performing a minimization at
each time separately is trivial and it does not provide any
information about the spreading dynamics. We seek for a
“functional minimization” encoding information about the
spread of the state over a finite amount of time. We will
show that, under a reasonable choice of functional mini-
mization, there is an essentially unique basis minimizing
(4) across a finite time domain.

To motivate our functional minimization, let CðmÞ
B ≡

CðmÞ
B ð0Þ ¼ dmCBðtÞ=dtmjt¼0, and suppose that the cost

functions for bases B1 and B2 have convergent Taylor
expansions over 0 ≤ t ≤ T. Then, if there is a k such that

CðmÞ
B1

¼ CðmÞ
B2

for m < k and CðmÞ
B1

< CðmÞ
B2

for m ¼ k, then
CB1

ðtÞ < CB2
ðtÞ in a domain 0 ≤ t ≤ τ for some τ < T. We

want to find the basis that minimizes the cost in this sense
in the vicinity of t ¼ 0. We can formalize this condition
in terms of the sequence of derivatives of the cost function
at t ¼ 0:

SB ¼
�
Cð0Þ
B ; Cð1Þ

B ; Cð2Þ
B ; � � �

�
: ð5Þ

Wewrite SB1
< SB2

if there is some k such thatCðmÞ
B1

¼ CðmÞ
B2

for m < k and CðmÞ
B1

< CðmÞ
B2

for m ¼ k.
In what follows, we say that an ordered basis B is a

complete Krylov basis Kc if its initial elements are the
Krylov basis in the correct order. In more detail, say
the Krylov basis has K vectors. K might be smaller than
the Hilbert space dimension, so in such cases the usual
Krylov basis does not span the full Hilbert space. We
call B a complete Krylov basis if jBni ¼ jKni, for
n ¼ 0;…; K − 1. The rest of the basis is unspecified for
the concerns of this definition. This defines a class of bases
for which the number of unspecified elements is the
dimension of the Hilbert space minus the dimension of
the Krylov basis. We will prove that any complete Krylov
basis Kc, as defined above, minimizes the derivative
sequence S and hence has a lower cost than any other
basis, at least in the vicinity of t ¼ 0
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Theorem 1. For any basis B, SK ≤ SB, with equality
only for the complete Krylov bases B ¼ Kc.
Proof: We will prove the theorem by induction by

showing that any orthonormal basis B whose first N
elements coincide with the Krylov basis satisfies SB < SB0

for all bases B0 whose first N elements do not coincide
with K.
The first element of the Krylov basis is jK0i ¼ jψð0Þi.

Suppose now that the first element of B is jB0i ¼ jψ0i.
Then the cost is Cð0Þ

B1
¼ CBð0Þ ¼

P
n cnjhψð0ÞjBnij2 ¼ c0

because jBi>0i are orthogonal to jψð0Þi. Any basis B0
which does not include jψ0i as its first element will have a
higher cost, because, from (3) it will be a weighted average
of cn≥0, and hence be larger than c0 since cn increases
with n.
To prove the induction step we must evaluate time

derivatives of the cost CðmÞ
B ðtÞ ¼ dmCBðtÞ=dtm. Applying

the derivatives to the right side of (3) and using (1) gives

CðmÞ
B ð0Þ ¼Pn cnp

ðmÞ
B ðn; 0Þ, where

pðmÞ
B ðn; tÞ ¼ dmpBðn; tÞ

dtm

¼ im
Xm
k¼0

ð−1Þk
�
m
k

�
hψðtÞjHm−kjBni

× hBnjHkjψðtÞi: ð6Þ

Now, let us assume that the first N elements of B coincide
with the first N elements of K, i.e., jBii ¼ jKii for
i ¼ 0; 1;…N − 1. Following (6), this means that

pðmÞ
B ðn; tÞ ¼ pðmÞ

K ðn; tÞ for basis elements n < N and all
derivatives m. To complete the proof we need two lemmas.
Lemma 1:—Suppose the first N elements B are the first

N elements of K, up to a phase factor. Then pðmÞ
B ðn; 0Þ ¼ 0

for n ≥ N;m < 2N.
Proof:—For k < N, Hkjψð0Þi is a linear combination of

jB0i;…; jBN−1i, since these vectors equal the first N
elements of the Krylov basis. Orthogonality of the basis
B then implies that hψð0ÞjHkjBni ¼ hBnjHkjψð0Þi ¼ 0 for
any n ≥ N and k < N. For m ≤ 2N − 1, we know that
for any integer k, either m − k or k is less than N. Since
every term in (6) involves either hψð0ÞjHkjBni or
hψð0ÞjHm−kjBni (or their conjugates) we conclude that

pðmÞ
B ðn; 0Þ ¼ 0 for n ≥ N with m ≤ 2N − 1.
Lemma 2:—Suppose jBii ¼ jKii for i ¼ 0; � � �N − 1, up

to phases. Then, Cð2NÞ
B ð0Þ ≥ Cð2NÞ

K ð0Þ, with equality when
K contains precisely N vectors, in which case B is a
complete Krylov basis, or when jBNi also equals jKNi up
to a phase factor.
Proof:—Since the first N basis vectors agree between

B and K, Lemma 1 has already shown that for n ≥ N,

pðmÞ
B ðn; 0Þ ¼ 0whenm ≤ 2N − 1. Sowe considerm ¼ 2N.

Examination of (6) shows that for n ≥ N there is a single

nonzero term in pð2NÞ
B ðn; 0Þ, namely

pð2NÞ
B ðn; 0Þ ¼

�
2N
N

�
hψ jHN jBnihBnjHN jψi: ð7Þ

Let jXi, which is not necessarily normalized, be the
component of HN jψi orthogonal to jB0i;…; jBN−1i. By
the definition of the Krylov basis K, jXi ∝ jKNi. Due to
orthogonality, for n ≥ N we have

pð2NÞ
B ðn; 0Þ ¼

�
2N
N

�
hXjBnihBnjXi: ð8Þ

By completeness of bases,
P

nhXjBnihBnjXi ¼ hXjXi. If
jXi ¼ 0, then K only contains N vectors, B is a complete

Krylov basis andCð2NÞ
B ð0Þ¼Cð2NÞ

K ð0Þ. Otherwise, hXjXi>0

and

Cð2NÞ
B ð0Þ ¼

X
n

cnp
ð2NÞ
B ðn;0Þ

¼
XN−1

n¼0

cnp
ð2NÞ
B ðn;0Þþ

�
2N
N

�XD
n¼N

cnhXjBnihBnjXi

≥
XN−1

n¼0

cnp
ð2NÞ
K ðn;0Þþ

�
2N
N

�
cNhXjXi ¼Cð2NÞ

K ð0Þ;

ð9Þ

where D is the dimension of the full Hilbert space, which
could be infinite. In the last line we used the fact that cn is
increasing, that

P
nhXjBnihBnjXi ¼ hXjXi, and that the

first N basis vectors of B and K are equal. Equality is
achieved only when jBNi ∝ jXi ∝ jKNi, up to a phase.
Otherwise we have a strict inequality.
Given these lemmas, suppose that a basis B coincides

with the Krylov basis K up to phases in the first N basis
elements, and deviates thereafter. Lemma 1 tells us that the
first 2N derivatives of the cost function are the same as
those of the Krylov basis, because the other basis elements
contribute zero. Lemma 2 tells us that if jBNi is not jKNi up
to a phase, then its 2Nth derivative will be larger. Since the
first 2N derivatives are equal and the 2Nth derivative of
CBðtÞ is larger, SB > SK, completing the proof of the
theorem.
Corollary 1. Any cost function of the form (3) defined

in terms of an increasing, positive sequence cn and a basis
B is minimized near t ¼ 0 by a complete Krylov basis Kc.
Thus the associated spread complexity function (4) is
CðtÞ ¼ CKðtÞ.
We have arrived at a basis-independent definition for the

complexity, relative to the initial condition, of a quantum
state evolving continuously in time.
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A. Minimization for discrete time evolution

The above results can be extended to show that, for
discrete time evolution, the Krylov basis minimizes the
cost (3) for all times. Suppose the discrete time evolution is
given by Unjψð0Þi ¼ jψni, for a sequence of unitaries Un
with U0 ¼ 1 and n ¼ 0; 1;…. We define the Krylov basis
by choosing jK0i ¼ jψ0i and then recursively orthogon-
alizing each jψni with all the jKji for j < n. As in the
continuous time proof, we must choose the initial state as
part of the basis that minimizes the cost, i.e., it should be
the first state of the Krylov basis jψ0i ¼ jK0i. Now assume
the first N vectors of certain basis B agree with the Krylov
basis, namely jBii ¼ jKii for i ¼ 0; � � �N − 1. By
assumption

n ≤ N − 1 → jψni ¼
XN−1

j¼0

hKjjψnijKji; ð10Þ

and the costs of both bases are the same until discrete time
n ¼ N − 1. Now we can decompose the next state into a
part belonging to the Krylov subspace jKii, for
i ¼ 0; � � �N − 1, and a part perpendicular to it. Since the
bases are defined up to phases, we necessarily have
something of the form

jψNi ¼ p⊥jKNi þ pkjχki; ð11Þ

where jKNi is the next element of the Krylov basis by
definition, and jχki can be expanded in terms of jKii, for
i ¼ 0; � � �N − 1. A basis different from the Krylov one
would necessarily not include jKNi. Therefore, the cost at
discrete time N would be larger, since we would have to
express jKNi in the new basis, which would require at least
two vectors. Since the contribution to the cost from the part
jχki is the same in both bases, the cost must increase when
we divide jKNi into several contributions, since cn is a
strictly increasing function of n.
This completes the proof that the Krylov basis minimizes

the cost function for all times. In this argument we have
ignored irrelevant phases in the choice of basis elements.
These types of discrete unitary evolutions arise naturally

when considering quantum circuits. Given a computational
task that produces a certain target state from a certain input
state, every protocol performing the task has an assigned
quantum state complexity, as defined here. It would be
interesting to analyze the complexity of known quantum
protocols in this light.

B. Complexity as the exponential of an entropy

It is natural to quantify the spread of the wave function as
the exponential of the entropy of the probability distribu-
tion of weights in an orthonormal basis B. This provides an
alternative definition of complexity

CHB
¼ eHB ; ð12Þ

where

HBðtÞ ¼ −
X
n

pBðn; tÞ logpBðn; tÞ ð13Þ

is the Shannon entropy of the basis weight distribution.
Complexity defined in this way measures the minimum
Hilbert space dimension required to store the probability
distribution of basis weights.
We can again eliminate the basis ambiguity by defining

quantum state complexity as the minimum over all choices
of basis. In fact, this entropic definition of complexity is
also minimized in the Krylov basis. To show this, suppose
that B does not contain the entire Krylov basis. Then for
some N, the first N elements of the Krylov basis are in B,
up to a phase factor, and the ðN þ 1Þth element is not
present. Since the entropy function is independent of the
order of the basis, we can let these be the first N elements
of the basis. Therefore, for n < N we have pBðn; tÞ ¼
pKðn; tÞ for all t. So to see the difference between the
entropies we just need to analyze pBðn; tÞ for n > N.
Now, by Lemma 1, for n ≥ N, the first 2N derivatives

of the probability vanish. More concretely pðmÞ
B ðn; 0Þ ¼

dmpBðn; 0Þ=dtm ¼ 0 for n ≥ N and m < 2N. Expanding
pBðn; tÞ, for n ≥ N as a Taylor series in t around t ¼ 0, the
first nonvanishing term is

pBðn; tÞ ¼
pð2NÞ
B ðn; 0Þt2N
ð2NÞ! þOðt2Nþ1Þ: ð14Þ

The difference in entropy between two bases that agree in
the first N Krylov vectors lies in the sum −

P
n pn logpn,

for n ≥ N. So we now introduce the expansion (14) in the
entropy sum −

P
n≥N pn logpn, and split the logarithm of

pn to obtain two sums, the first involving logðt2NÞ and the

second involving logðpð2NÞ
B ðn; 0Þ=ð2NÞ!Þ.

The first sum, after dropping terms of Oðt2Nþ1 log tÞ
coming from the corrections in (14), is

−
t2N logðtÞ
ð2N − 1Þ!

X
n≥N

pð2NÞ
B ðn; 0Þ: ð15Þ

From the proof of Lemma 2 above, Eq. (8) shows thatP
n≥N pð2NÞ

B ðn; 0Þ ¼Pn≥Nð2NN ÞhXjBnihBnjXi where jXi ∝
jKNi is the component of HN jψi orthogonal to the first N
elements of the Krylov basis. Hence jXi is also orthogonal
to jBn<Ni. Thus we can extend the sum above to getP

n≥Np
ð2NÞ
B ðn;0Þ¼Pn≥0ð2NN ÞhXjBnihBnjXi. By complete-

ness of the basis we can then write
P

n≥N pð2NÞ
B ðn; 0Þ ¼

ð2NN ÞhXjXi. Hence this first term in the sum will not be
affected by the remaining elements of the basis beyond the

BALASUBRAMANIAN, CAPUTA, MAGAN, and WU PHYS. REV. D 106, 046007 (2022)

046007-4



first N elements that were assumed to be the same as those
of the Krylov basis.
The second sum is

−t2N
X
n≥N

pð2NÞ
B ðn; 0Þ
ð2NÞ! log

 
pð2NÞ
B ðn; 0Þ
ð2NÞ!

!
: ð16Þ

For this sum, note that − x
ð2NÞ! logð x

ð2NÞ!Þ is a strictly convex

function for x > 0. Since the probability is always positive,
and for n ≥ N, pBðn; 0Þ ¼ 0, the leading order term in the

Taylor expansion in (14), pð2NÞ
B ðn; 0Þ must be positive.

Since the sequence ðð2NN ÞhXjXi; 0; 0;…Þ majorizes any
sequence of positive numbers that sum to ð2NN ÞhXjXi,
Karamata’s inequality implies that the coefficient of t2N

in the expansion will always be larger than or equal to the

case where pð2NÞ
B ðn; 0Þ ¼ 0 for all n except one particular

n� where pð2NÞ
B ðn�; 0Þ ¼ ð2NN ÞhXjXi. Due to the strict

convexity, this inequality is strict except for the case when
the previous two equations are exactly satisfied, which can
only happen if some element in the basis were proportional
to jXi ∝ jKNi.
Given two functions of the form f0ðtÞ ¼ α0t2N þ

Oðt2Nþ1 log tÞ and f1ðtÞ ¼ α1t2N þOðt2Nþ1 log tÞ with
α0 < α1, there is some t0 such that for t < t0, f0ðtÞ <
f1ðtÞ. Since the first sum (15) is the same for both the
Krylov basis and B, and the second sum (16) has the form
αt2N þOðt2Nþ1 log tÞ there exists some t0 such that
HKðtÞ < HBðtÞ for t < t0.
We conclude that the Krylov basis also minimizes

complexity when defined in terms of the entropy of the
spread of the initial state over a basis. Following the same
line of reasoning, we can also prove that the participation
ratio associated with a given basis B, defined as

PB ¼ 1P
np

2
n
; ð17Þ

is also minimized by the Krylov basis for small times. It
would be interesting to see the interplay of these Krylov
spread measures with related measures of wave function
spread, as the ones studied in [32].

III. COMPUTING SPREAD COMPLEXITY

Following Corollary 1, to calculate the spread complex-
ity we must derive the Krylov basis K. We can do this via
the Lanczos algorithm [13], which recursively applies the
Gram-Schmidt procedure to jψni ¼ Hnjψð0Þi to generate
an orthonormal basis K ¼ fjKni∶n ¼ 0; 1; 2; � � �g:

jAnþ1i ¼ ðH − anÞjKni − bnjKn−1i; jKni ¼ b−1n jAni:
ð18Þ

The Lanczos coefficients an and bn are defined as

an ¼ hKnjHjKni; bn ¼ hAnjAni1=2; ð19Þ

with b0 ≡ 0 and jK0i ¼ jψð0Þi being the initial state.
Observe that the Lanczos algorithm (18) implies that

HjKni ¼ anjKni þ bnþ1jKnþ1i þ bnjKn−1i: ð20Þ

This means that the Hamiltonian becomes a tridiagonal
matrix in the Krylov basis. For finite-dimensional systems,
this is known as the “Hessenberg form” of the Hamiltonian.
It would be interesting to extend this method to time-

dependent Hamiltonians. Numerically for discrete time
evolution, this is straightforward. There is an evolving
Hamiltonian at each time step, and one may orthogonalize
the new state at every step with the states at the previous
steps. The continuum case is more challenging and is
important to tackle in the future, for example for addressing
the evolution of states after a quantum quench.

A. Krylov basis from the Hessenberg form

Numerically stable algorithms for computing the
Hessenberg form of a matrix, using Householder reflec-
tions instead of the Gram-Schmidt procedure, are com-
monly implemented in libraries like SciPy [33,34] and
Mathematica. There are two caveats. First, the “initial
state” used in these implementations is typically fixed at
ð1; 0; 0;…ÞT . To start with an arbitrary initial state, we must
first perform a change of basis so that the desired initial
vector has those special coordinates. Second, the off-
diagonal values bn are sometimes negative in these imple-
mentations. This amounts to a choice of phase in the
definition of the Krylov basis. Taking the absolute value of
all the off-diagonal elements solves this issue, and is
equivalent to multiplying some of the vectors of the new
basis by −1, which does not change the physics. From the
Hessenberg form of the Hamiltonian we can directly
read off the Lanczos coefficients: the an are the diagonal
elements, and the bn are the entries above the diagonal. The
wave function in the Krylov basis can be obtained by
exponentiating the Hessenberg form and applying to the
initial state. This procedure has the advantage of being
numerically stable.

B. Krylov basis from the survival amplitude

We can also devise a more general method for computing
the Lanczos coefficients which remains valid for infinite
dimensional systems and the large N limit of finite dimen-
sional systems. We start by showing how to compute the
Lanczos coefficients from the “survival amplitude,” i.e., the
amplitude that the state at time t is the same as the state at
time zero. Defining the expansion of the evolving state in
the Krylov basis as
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jψðtÞi ¼
X
n

ψnðtÞjKni; ð21Þ

the survival amplitude is just

SðtÞ ¼ hψðtÞjψð0Þi ¼ hψð0ÞjeiHtjψð0Þi ¼ ψ0ðtÞ�; ð22Þ

where we recall that jK0i ¼ jψð0Þi. The survival amplitude
is also the moment-generating function for the Hamiltonian
in the initial state:

μn ¼
dn

dtn
SðtÞ

����
t¼0

¼ hψð0Þj d
n

dtn
eiHtjψð0Þi

����
t¼0

¼ hK0jðiHÞnjK0i: ð23Þ

The particular form of the action of the Hamiltonian H
in the Krylov basis (20) can be conveniently represented by
an un-normalized “Markov chain” with transition weights
given by the Lanczos coefficients, as shown in the upper
panel of Fig. 1. The action of iH on

P
n dnjKni is then

equivalent to the action of the chain transition matrix on a
chain state vector ðd0; d1; � � �Þ. If we start with the vector
ð1; 0; 0;…Þ and iterate the chain n times, the weight of the
ith node will be the weight of jKii in the state ðiHÞnjK0i.
Thus, after n iterations of the chain, the weight of jK0i will
be the moment μn ¼ hK0jðiHÞnjK0i.

If we start with a state localized on jK0i, it is convenient
to “unwrap” the Markov chain as shown in the bottom
panel of Fig. 1. In this representation, the nodes of the jth
vertical column represent the chain after j iterations of the
transition matrix. In each column, labeled by j, the bottom
node (in row 0) corresponds to jK0i, the first node above
(in row 1) corresponds to jK1i, and so on. The transition
weights wðeÞ of edges e between columns represent the
action of iH defined in (20). We define the weight of a path
of concatenated edges P ¼ fe1; e2; � � �g as the product of
the included edge weights: wðPÞ ¼Qe∈P wðeÞ. Finally, we
define the weight of the node 0 to be 1, and the weight of
any other node as a sum of the weights of all paths from 0 to
that node. By construction, the weights in the nth column
are the amplitudes hKjjðiHÞnjK0i, and, specifically, the
weight of the bottom node (labeled n) computes the
moments μn ¼ hK0jðiHÞnjK0i.
For example we have

hK0jðiHÞjK0i ¼ ia0; ð24Þ

since there is only one path from 0 to node 1 with weight
ia0, and

hK0jðiHÞ2jK0i ¼ −a20 − b21; ð25Þ

because there are two paths from node 0 to node 2, one with
weights ia0; ia0 and one with weights ib1; ib1.
Computing the values of μ0;…; μn from an, bn using this

path sum takes Oðn2Þ operations. The weighted path sum
from node 0 to some node X in the graph is the sum of the
weighted path sums of all nodes with a transition to X,
multiplied by the weight of the transition edge. Initializing
the weighted path sum of node 0 to 1 and performing this
operation layer by layer gives the values we need on the
bottom nodes j0in.
Suppose now that we are given the survival amplitude

SðtÞ, or can compute it through other means. By taking
derivatives we can compute the moments μ0;…; μn. From
this data we can calculate the Lanczos coefficients by using
the Markov chain described above. Specifically, suppose
we have already calculated a0;…; ak−1 and b1;…; bk and
the odd moment μ2kþ1. There is a unique path in the
unwrapped Markov chain from node 0 to node 2kþ 1 that
passes through an edge with weight iak (example in Fig. 2).
This follows because any path from 0 to 2kþ 1must follow
precisely 2kþ 1 edges since every step necessarily pro-
gresses one column to the right. This means that no path
can rise to a row higher than k because the need to descend
back to row 0 would make the path too long. For the same
reason, a path that reaches row k must have precisely k
upward diagonal and k downward diagonal edges, allowing
a single horizontal edge in the path. The only way to have
this edge in the kth row is to start with k diagonal upward

FIG. 1. Top: “Markov chain” representation of iH. Bottom:
“Unwrapping” of the Markov chain so that “time” goes from left
to right. In every vertical column of nodes, the bottom node
corresponds to jK0i, the first node above corresponds to jK1i and
so on. The sum of the weights of the blue and red paths gives
hK0jðiHÞ2jK0i.
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edges, then go one step horizontally in the kth row and then
descend k steps diagonally.
By similar reasoning, the remaining paths between nodes

0 and 2kþ 1 lie below the kth row and hence only include
edges with weights a0;…; ak−1, b1;…; bk. Thus we can
compute the path sum for trajectories from node 0 to node
2kþ 1 that do not go through edge with weight iak, and
subtract this sum from μ2kþ1. The remainder is the weight
of the excluded path, namely i2kþ1b21…b2kak. Since we
know the bk’s by assumption, we may divide them out,
leaving us with ak.
Likewise, the even moments μ2k allow us to extract

values of bk. The only path from node 0 to node 2k that
goes through an edge of weight ibk has path weight b21…b2k
(example in Fig. 2). The weights of all the other paths can
be computed using only a0;…; ak and b1;…; bk−1.
To summarize, we can compute the Krylov basis and

Lanczos coefficients efficiently through the following

algorithm: (1) compute the survival amplitude, and use it
to extract the moments of the Hamiltonian in the initial
state, (2) apply the recursive algorithm above to system-
atically compute the Lanczos coefficients to the desired
order. This procedure is potentially sensitive to the accu-
mulation of rounding error, due to the repeated divisions
needed to compute an and bn from their products. In our
numerical analyses we avoided this instability by using the
mpmath [35] library to perform computations to arbitrary
precision.

C. Wave function and Complexity

Above, we described an algorithm for computing the
Krylov basis K and the associated Lanczos coefficients
from the survival amplitude. To apply our definition of
spread complexity to a time-evolving state we must expand
it in K as

jψðtÞi ¼
X
n

ψnðtÞjKni; ð26Þ

where unitarity requires
P

n jψnðtÞj2 ≡Pn pnðtÞ ¼ 1.
Applying the Schrödinger equation (1) to this expression,
and then the Lanczos recursion in the form (20) gives

i∂tψnðtÞ ¼ anψnðtÞ þ bnþ1ψnþ1ðtÞ þ bnψn−1ðtÞ: ð27Þ

The survival amplitude is simply the complex conjugate of
ψ0ðtÞ, see (22). Thus, given ψ0ðtÞ ¼ SðtÞ� and the Lanczos
coefficients, (27) defines an algebraic procedure for com-
puting all the ψnðtÞ. We start by noting that b0 ¼ 0 and use
ψ0ðtÞ and its time derivative in (27) to compute ψ1ðtÞ.
Then, given ψ0ðtÞ and ψ1ðtÞ we can compute ψ2ðtÞ and
so on.
Finally, given ψnðtÞ we apply our definition of complex-

ity in (3), (4):

CðtÞ ¼ CKðtÞ ¼
X
n

npnðtÞ ¼
X
n

njψnðtÞj2; ð28Þ

where we took the complexity coefficients in the cost
function (3) to be cn ¼ n. With this definition, spread
complexity measures the average depth of support of a time
evolving state in the Krylov basis. Formally, this quantity is
the expectation value in the evolving state jψðtÞi of a
“complexity operator”

K̂ψ ¼
X
n

njKnihKnj; ð29Þ

such that the spread complexity reads

CðtÞ ¼ hψðtÞjK̂ψ jψðtÞi: ð30Þ

Below we will also consider the entropic definition (13)

FIG. 2. Top: Except for the path in red, the weights of every
path from node 0 to node 3 can be computed with knowledge just
of a0 and b1. The weight of the red path can be computed by
subtracting the weights of every other path from μ3, and can then
be used to compute a1. Bottom: Except for the path in red, the
weights of every path from node 0 to node 4 can be computed
with knowledge just of a0, a1, and b1. The weight of the red path
can be computed by subtracting the weights of every other path
from μ4, and can then be used to compute b2.
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CH ¼ eH ¼ e−
P

n
pn logpn ; ð31Þ

which can also be calculated from the pn ¼ jψnj2. This can
also be understood as the exponential of the entropy of the
algebra generated by the complexity operator. See [36] for
the definition of the entropy of an operator algebra.

D. Survival, TFD, and the partition sum

Wewill find it illuminating to study the growth of spread
complexity for thermofield double (TFD) states. These are
defined as follows. Consider a Hamiltonian H acting on a
Hilbert space H, with eigenstates jni and eigenvalues En.
To purify the thermal ensemble we construct the maximally
entangled TFD state

jψβi≡ 1ffiffiffiffiffiffi
Zβ

p X
n

e−
βEn
2 jn; ni; ð32Þ

in the tensor product of the original Hilbert space with
itself. This state is invariant under evolution with
HamiltonianHL −HR, where HL;R ¼ H act independently
on the left and right copies of H. However, the state is
not invariant under evolution by the action of a single
Hamiltonian, say HL ≡H. Equivalently, we could evolve
by ðHL þHRÞ=2 but these evolutions are equal because the
TFD state is invariant under the action of ðHL −HRÞ=2.
Unitary evolution with a single Hamiltonian gives

jψβðtÞi ¼ e−iHtjψβi ¼ jψβþ2iti: ð33Þ
Notice that the TFD and its time evolution are contained
within the subspace spanned by fjn; nig. As a result, the
finite dimension algorithm for computing the Lanczos
coefficients need only work within this small subspace,
simplifying numerical evaluations. The maximum dimen-
sion of the explored Hilbert space in this time evolution is
therefore the dimension of the original Hilbert space H.
In the AdS=CFT correspondence, such TFD states are

dual to the eternal black hole [37]. The spectrum of the
theory is conveniently packaged in the analytically con-
tinued partition function

Zβ−it ¼
X
n

e−ðβ−itÞEn ; ð34Þ

and the related spectral form factor

SFFβ−it ≡ jZβ−itj2
jZβj2

: ð35Þ

These time-dependent quantities have been extensively
studied in random matrix theory and quantum gravity
[14,15], for example to explore chaotic behavior.
The interesting feature for us is that the survival

amplitude for the time evolved TFD state has a simple
expression in terms of the partition function

SðtÞ ¼ hψβþ2itjψβi ¼
Zβ−it

Zβ
: ð36Þ

The spectral form factor (SFF) is then the survival
probability of a dynamical process, corresponding to the
evolution of the TFD. We can use this fact to extract
the probabilities of the Krylov basis states. The fact that the
survival probability of the TFD is the SFF has been used
in [38] in relation to quantum speed limits. It would
be interesting to understand these speed limits from the
present spread complexity perspective.
Given this survival amplitude, the moments in (23)

μn ≡ dn

dtn
SðtÞ

����
t¼0

¼ 1

Zβ
Trðe−βHðiHÞnÞ; ð37Þ

are thermal expectation values of the Hamiltonian. In
holographic theories, the partition function and the energy
moments have simple geometric duals, and, at least in 2d
gravity [39–44], there are nonperturbative definitions of
these quantities. Since spread complexity is a functional
of the survival amplitude, the relation of the latter to the
partition function provides a path toward understanding the
relation between quantum complexity, geometry and quan-
tum gravity, and perhaps the conjectures relating complex-
ity in quantum field theory to spatial volumes and actions in
a dual theory of gravity [45–47]. Likewise, the relation
between the spectrum of the Hamiltonian and the dynamics
of complexity in TFD states provides a bridge from the
classification of phases of quantum matter via the asso-
ciated partition functions, to a novel characterization in
terms of the dynamics of quantum complexity.
Finally, although we have shown that complexity

dynamics in the TFD state depends only on the spectrum,
if we start with a general quantum state jψð0Þi, complexity
growth will depend both on the spectrum and the structure
of energy eigenstates. Indeed, for a general initial state the
survival amplitude is

hψðtÞjψi ¼
X
n

eiEnthψðtÞjnihnjψð0Þi; ð38Þ

and depends on overlaps between the evolving state and the
eigenstates.

IV. RELATION TO KRYLOV COMPLEXITY

Our approach to state complexity is related to the notion
of Krylov operator complexity, which has been put forward
in [48], and developed in [49–64], based on the Lanczos
approach [13] to operator dynamics in many-body systems.
This approach starts with a Hamiltonian H and a time-
dependent operator OðtÞ, determined by

OðtÞ ¼ eiHtOð0Þe−iHt; ð39Þ
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in terms on the initial operatorOð0Þ≡O. Taylor expanding
in time we obtain

OðtÞ ¼
X∞
n¼0

ðitÞn
n!

Õn; ð40Þ

where we have defined

Õ0 ¼ O; Õ1 ¼ ½H;O�; Õ2 ¼ ½H; ½H;O��;… :

ð41Þ

To define a notion of support of the operator we need to
introduce an inner product. At a technical level we need to
endow the operator algebra with the structure of a Hilbert
space. The choice of such an inner product is one of the
potential ambiguities of this approach.
Concretely, suppose we say jO) is a vector in an auxiliary

Hilbert space corresponding to operator O by considering
the following family of inner products [13]

ðAjBÞgβ ¼
Z

β

0

gðλÞheλHA†e−λHBiβdλ; ð42Þ

where hiβ denotes the thermal expectation value

hAiβ ¼
1

Z
Trðe−βHAÞ; Z ¼ Trðe−βHÞ; ð43Þ

and we require

gðλÞ ≥ 0; gðβ − λÞ ¼ gðλÞ; 1

β

Z
β

0

dλ gðλÞ ¼ 1:

ð44Þ

Once we have chosen an inner product, the Lanczos
approach starts from jÕnÞ and derives an orthonormal basis
jOnÞ, the Krylov basis, by using Gram-Schmidt orthogon-
alization. The Krylov basis is defined recursively as

jAnþ1Þ ¼ LjOnÞ − bnjOn−1Þ; jOnÞ ¼ b−1n jAnÞ: ð45Þ

Here L is the Liouvillian superoperator that produces the
commutator with the Hamiltonian

LjOÞ≡ j½H;O�Þ; ð46Þ

and we have defined the Lanczos coefficients bn as

bn ¼ ðAnjAnÞ1=2: ð47Þ

This iterative process has the initial conditions b0 ≡ 0 and
jK0Þ ¼ jOÞ is the initial state. The Lanczos coefficients
produced in this way are in general different to those

produced by the Hamiltonian of theory acting on states in
the original Hilbert space (18).
We can now expand the time-dependent operator in the

Krylov basis as

jOðtÞÞ ¼
X
n

inφnðtÞjOnÞ: ð48Þ

The amplitudes φnðtÞ can be shown to satisfy the following
Schrodinger equation

∂tφnðtÞ ¼ bnφn−1ðtÞ − bnþ1φnþ1ðtÞ: ð49Þ

With this equation and the Lanczos coefficients bn we
can solve for the amplitudes φnðtÞ with initial condition
φnð0Þ ¼ δn0.
The Lanczos approach suggests a natural measure of

operator complexity, dubbed Krylov complexity in [48]. It
is defined as the average spread of the operator in the
Krylov basis

KO ≡X
n

npnðtÞ ¼
X
n

njφnðtÞj2: ð50Þ

The relation of Krylov complexity to the present spread
complexity is transparent once we have chosen the inner
product. Such a choice maps Heisenberg evolution of the
operator to Schrodinger evolution in the auxiliary Hilbert
space with the Liouvillian acting as the Hamiltonian.
Applying our approach to such a Hilbert space and the
pertinent initial state jOÞ, our notion of spread complexity
becomes Krylov complexity. In other words, any Krylov
complexity can be understood as quantum state complexity
in a certain auxiliary Hilbert space.
However, state complexity, as we defined it, is more

general, and gives more fine-grained information about the
quantum dynamics. Notice that operator growth, at least as
it is conventionally defined, only sees one set of Lanczos
coefficients, namely the bn, while for quantum states we
typically have both sets of Lanczos coefficients an and bn.
Equivalently, not all quantum state complexities can be
understood as Krylov complexities (at least not in a
conventional manner). In this sense, our approach general-
izes Krylov complexity.
As developed in [48,52], many different notions of

operator complexity that have recently appeared in the
literature can be simply understood as notions of the spread
of the operator wave function, but with respect to different
choices of orthonormal basis. We have shown that our
measure of state complexity is distinguished in that it
minimizes the spread of the operator wave function over all
choices of basis, eliminating any basis ambiguity. This idea
can be applied to operator complexity as well.
In fact, however, Krylov operator complexity has a further

ambiguity that is not present in our approach, arising from
the choice of inner product. Starting with [48], recent
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literature [49–64] has mainly focused on the Wightman
inner product

ðAjBÞ ¼ heHβ=2A†e−Hβ=2Biβ; ð51Þ

which corresponds to setting gðλÞ ¼ δðλ − β=2Þ in (42).
With this choice, Krylov complexity in chaotic systems
grows exponentially fast [48], displaying a Lyapunov
exponent that turns out to coincidewith the maximal allowed
value as defined by out-of-time-ordered correlators [65].
From the present perspective, this choice of inner product
measures the quantum state complexity of jψðtÞi ¼
ρ1=4β OLðtÞρ−1=4β jψβi, where we remind that jψβi represents
the TFD state.
But this Wightman inner product choice is arbitrary and

calls for a deeper understanding. In fact, [52] showed that
different choices of inner product can be related to each
other in a simple manner, but that Krylov complexity
behaves differently with respect to each choice. Following
the philosophy of the present paper, we could further
minimize Krylov complexity over the choice of inner
product (42). Although we have not performed this mini-
mization, Ref. [52] actually shows that the Wightman inner
product (51) corresponds to the slowest growth of Krylov
complexity.
Summarizing, the correct Lyapunov exponent arises

precisely after minimizing over all possible choices of
the ambiguous inner product, and over all choices of basis.
This gives further support to our guiding principle that
complexity should be defined via a minimization over the
possible ambiguous choices.
Note that Ref. [48] argued that Krylov complexity also

bounds from above (instead of from below) some other
notions of operator complexity. The bound in [48] is in fact
consistent with our results. Reference [48] demonstrates
their bound for a certain set of highly constrained operator
complexity definitions, that not meet the criteria that we
have set out, such as monotonicity of the cn coefficients.
An interesting example that demonstrates how the notion of
spread complexity that we defined is a lower bound appears
in the results of Ref. [29], where complexity was defined in
terms of spread of the wave-function with respect to the so-
called “computational basis,” e.g., in a spin model the basis
that diagonalize all the spin operators in a chosen direction.
This notion was found to saturate to its maximum value at
time ofOðNÞ, where N is the number of spins. By contrast,
as we will see below, in the Krylov basis the spread
saturates at a time of OðeNÞ. In other words the spread of
the wave function in the Krylov basis is much slower.

V. ANALYTICAL MODELS

We will consider a class of models in which the spread
complexity can be computed analytically by exploiting
techniques developed recently in the context of operator

complexity [57]. Suppose that the Hamiltonian belongs to
the Lie algebra of a symmetry group:

H ¼ αðLþ þ L−Þ þ γL0 þ δ1; ð52Þ

where Lþ and L− are raising and lowering ladder operators,
and L0 belongs to the Cartan subalgebra of the Lie algebra
(see [66] for examples of such theories). The identity term
contributes to a phase to the time evolution and so does not
affect the associated quantum complexity. But it can be
used to set the ground state energy. The coefficients α and γ
are model-dependent; their meaning will become clearer in
the specific examples.
Comparing with the action of the Hamiltonian in the

Krylov basis (20), namely

HjKni ¼ anjKni þ bnþ1jKnþ1i þ bnjKn−1i; ð53Þ

we see that, if the initial state is a highest weight state, the
Krylov basis states furnish a representation of the sym-
metry group. In other words, Eq. (53), which provides a
solution to the Lanczos recursion method by putting the
Hamilton in tridiagonal form, also guarantees that the
Krylov basis states form a representation of the symmetry.
Moreover, since the action of the ladder operators and the
elements of the Cartan subalgebra are fixed by symmetry,
we can read off the Lanczos coefficients immediately

αLþjKni ¼ bnþ1jKnþ1i;
αL−jKni ¼ bnjKn−1i;
γL0jKni ¼ anjKni: ð54Þ

Unitary evolution with the Hamiltonian (52) acting on a
highest weight state is determined, up to the irrelevant
phase δ, by a generalized Lie group displacement operator
Dðξ; ξ0Þ

DðξÞ≡ eξLþ−ξ̄L−þξ0L0 ; ð55Þ

for ξ ¼ −iαt, its conjugate ξ̄, and ξ0 ¼ −iγt. When ξ0 ¼ 0
this is a conventional displacement operator [67,68]. Thus,
we can understand the action of the Hamiltonian as
producing generalized coherent states. The amplitudes
ψnðtÞ of the time-evolved state in the Krylov basis jKni
are obtained by expanding these states in an orthonormal
basis. The link with coherent states allows us to geometrize
the notion of spread complexity following [57,59].
Below we study motion on SL(2,R), SU(2) and the

Heisenberg-Weyl group. Wewill see that the an coefficients
can dramatically change state complexity growth. For
example, suppose the bn grow linearly with n. Then
systems with different an can have very different complex-
ity growth patterns such as quadratic or periodic. In fact,
systems with bn ∼ n and an ¼ 0 will have exponentially

BALASUBRAMANIAN, CAPUTA, MAGAN, and WU PHYS. REV. D 106, 046007 (2022)

046007-10



growing complexity, as we see by analogy with the operator
growth analysis in [48].

A. A particle moving in SL(2,R)

We start with SL(2,R), a group previously studied in the
context of operator growth in the SYK model [57]. Here we
will realize it as the symmetry controlling time evolution of
the TFD state of the harmonic oscillator.
Consider a family of Hamiltonians

H ¼ αðL−1 þ L1Þ þ γL0 þ δ1; ð56Þ

where the generators satisfy the SL(2,R) algebra

½L0; L�1� ¼ ∓ L�1; ½L1; L−1� ¼ 2L0: ð57Þ

In the discrete series representation associated with scaling
dimension h, the generators act as

L0jh; ni ¼ ðhþ nÞjh; ni;
L−1jh; ni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þð2hþ nÞ

p
jh; nþ 1i;

L1jh; ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2hþ n − 1Þ

p
jh; n − 1i: ð58Þ

As discussed above, for time evolution starting from a
highest weight state, jh; ni can be interpreted as Krylov
basis elements (56), i.e.,

jh; ni → jKni: ð59Þ

Acting with the Hamiltonian on the Krylov basis yields
Lanczos coefficients

an ¼ γðhþ nÞ þ δ; bn ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2hþ n − 1Þ

p
: ð60Þ

For some choices of the coefficients in the Hamiltonian
(56) this is the time evolution of an oscillator. To see this,
consider the harmonic oscillator with frequency ω, and
neglect the vacuum energy since it has no effect on the
dynamics. The spectrum and partition function are

En ¼ ωn ⇒ ZðβÞ ¼ eβℏω

eβℏω − 1
; ð61Þ

leading to the TFD survival amplitude (36)

SðtÞHO ¼ ð1 − e−βωÞ
1 − e−ðβ−itÞω

: ð62Þ

This expression is generally complex but its norm is
periodic in t. For the inverted harmonic oscillator,
ω → −iω, which is strictly speaking not stable, but which
we will think of in terms of analytical continuation from the
stable oscillator, the norm decays to zero as time increases.

The moments can be easily computed as

μHO
n ¼ ðiωÞn

P
n−1
k¼0 Aðn − 1; kÞekβω

ðeβω − 1Þn ¼ ðiωÞn An−1½eβω�
ðeβω − 1Þn ;

ð63Þ

where Aðn; kÞ and An½t� are the Euler numbers and
polynomials respectively, with the convention μ0 ¼ 1.
Starting with A0ðtÞ ¼ A1ðtÞ ¼ 1, the next nontrivial
Euler polynomials are

A2ðtÞ ¼ 1þ t; A3ðtÞ ¼ 1þ 4tþ t2; � � � : ð64Þ

Using the Lanczos algorithm described above, we can now
compute the two sets of Lanczos coefficients

aHO
n ¼ n

ω

tanh ðβω=2Þ þ
ω

eβω − 1
;

bHO
n ¼ ω

2 sinhðβω=2Þ n: ð65Þ

These results match the SL(2,R) Lanczos coefficients (60)
if we pick the representation h ¼ 1=2 with Hamiltonian
coefficients

γ ¼ ω

tanhðβω=2Þ ; δ ¼ −
ω

2
: α ¼ ω

2 sinhðβω=2Þ : ð66Þ

This identification maps the initial TFD state for the
oscillator to

jψβi ¼ jK0i ¼ jh ¼ 1=2i: ð67Þ

The time evolution of the TFD state is now understood as
a time-dependent generalized coherent state on the group
manifold in the sense of (55):

jΨðtÞi ¼ e−iHtjh ¼ 1=2i: ð68Þ

Using the Baker-Campbell-Hausdorff (BCH) relation, the
unitary evolution operator can be rewritten as

e−iHt ¼ ei
ω
2
teAL−1eBL0eCL1 ; ð69Þ

where we have defined

A¼C¼ 2α

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2−γ2

p
cothðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2−γ2=4

p
Þ−γ

;

B¼−2 log

"
cosh

�
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2−γ2=4

q �
þ
iγ sinh

�
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2−γ2=4

p �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2−γ2=4

p
#
:

ð70Þ

The key quantity is
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α2 − γ2=4 ¼ −
ω2

4
: ð71Þ

By using (66) to choose α and γ, which quantify the growth
rate of the bn’s and an’s respectively, we can discuss the
standard or inverted harmonic oscillator. The transition
between these scenarios occurs when γ ¼ 2α.
Using the BCH relation (69), a general time-dependent

coherent state is given by

jΨðtÞi ¼ ei
ω
2
teBh

X∞
n¼0

An

n!
Ln
−1jhi

¼ ei
ω
2
teBh

X∞
n¼0

An

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð2hþ nÞ
n!Γð2hÞ

s
jh; ni≡X∞

n¼0

ψnjh; ni:

ð72Þ

Using h ¼ 1=2 for the harmonic oscillator gives

jΨðtÞi ¼ ei
ω
2
te

B
2

X∞
n¼0

Anj1=2; ni≡X∞
n¼0

ψnðtÞjKni;

where

ψnðtÞ ¼
1 − e−βω

1 − e−ωðβþitÞ

�
2i sinðωt=2Þ sinh ðω

2
ðβ − itÞÞ

cosðtωÞ − coshðβωÞ
�

n

;

ð73Þ

and the Krylov basis is defined as

jKni ¼ Ln
−1j1=2i: ð74Þ

The amplitudes satisfy the Schrodinger equation (27) and it
is simple to verify that

X∞
n¼0

jψnðtÞj2 ¼ 1: ð75Þ

The complexity for the standard and inverted (ω → −iωi)
oscillators become respectively

CðtÞ ¼ sin2ðωt=2Þ
sinh2ðβω=2Þ ; CðtÞ ¼ sinh2ðωit=2Þ

sin2ðβωi=2Þ
: ð76Þ

We see that complexity is periodic in time for a standard
oscillator, but grows exponentially for the unstable
oscillator—results that make intuitive sense. At large times
we can approximate the inverted harmonic oscillator by

CðtÞ ≃ 1

4 sin2ðβωi=2Þ
eωit ≡ eλðt−t�Þ; ð77Þ

where λ ¼ ωi and t� ¼ 2
ωi
log ð2 sinðβωi=2ÞÞ.

For general representations h we can compute the
probability pn to be

jψnðtÞj2 ¼
Γð2hþ nÞ
n!Γð2hÞ

0
B@ sinh2

�
αt

ffiffiffiffiffiffiffiffi
1− γ2

4α2

q �
cosh2

�
αt

ffiffiffiffiffiffiffiffi
1− γ2

4α2

q �
− γ2

4α2

1
CA

n

 
cosh2

�
αt

ffiffiffiffiffiffiffiffi
1− γ2

4α2

q �
− γ2

4α2

1− γ2

4α2

!2h ; ð78Þ

with complexity

CðtÞ ¼
X∞
n¼0

npn ¼
2h

1 − γ2

4α2

sinh2
 
αt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

γ2

4α2

s !
: ð79Þ

When γ > 2α the square root is imaginary and complexity
is periodic in analogy to the standard oscillator, while when
γ < 2α the system has exponentially growing complexity
like the unstable oscillator. At the transition point ω ¼ 0
between the standard and inverted oscillators, γ ¼ 2α and
we have

an ¼ γn ¼ 2αn ¼ 2bn; ð80Þ

for large n. Taking the limit ω → 0 limit in (79) from either
above or below, we find that the complexity grows
quadratically in time

Cγ¼2αðtÞ ¼ 2hα2t2: ð81Þ

Strictly speaking when ω ¼ 0 the theory is free and the
partition function is not well defined, but we will think
about this setting as an analytical continuation of the stable
oscillator.
We can give a second, more general argument, for this

behavior. We place the sites of the 1d chain in (27) on the
real line with spacing Δxn ¼ 1ffiffiffiffi

bn
p ; the evolution can be

rewritten as

i∂tψ ¼ bnþ1ψnþ1 þ anψn þ bnψn−1 ð82Þ

¼
bnþ1

bn
ψnþ1 þ 2ψn þ ψn−1

Δx2n
þ ðan − 2bnÞψn: ð83Þ

In the large n limit when an − 2bn is a constant V0 and
bnþ1

bn
≈ 1, this equation simplifies to

i∂tψ ¼ ψnþ1 þ 2ψn þ ψn−1

Δx2n
þ V0ψn: ð84Þ

We notice that this bears some similarity to the
discretization of the second derivative of a function
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∂
2
xfðxÞ ¼ fðxþϵÞ−2fðxÞþfðx−ϵÞ

ϵ2
. For large n, the spacing

Δxn → 0, and their ratios Δxn=Δxnþ1 → 1. We instead
choose a Krylov basis with phases of −1 at odd sides, then
in the new bases we can smoothly interpolate the values of
ψn: ψð

P
n ΔxnÞ ¼ ð−1Þnψn. We can then approximate (84)

in the new basis by the Schrodinger equation of a free
particle on a line

i∂tψðxÞ ¼ −∂2xψðxÞ þ V0ψðxÞ: ð85Þ

A free particle travels at a constant velocity, so we
expect hxi ∼ t in the large n limit. Since in the large n
limit, bn ∼ n, the position corresponding to site n is
xn ¼

P
n
i¼1 Δxi ∼

P
n
i¼0

1ffiffi
i

p ∼
ffiffiffi
n

p
, we expect h ffiffiffi

n
p i ∼ t,

and therefore hni ∼ t2.

1. Entropic complexity and variance:

To further characterize the spread of the wave function
across the Krylov basis (78), we can compute the entropic
notion of the complexity in Sec. II B and the variance of the
distribution. In the context of operator growth, these were
studied in [49,59] respectively, where they were dubbed
K-entropy and K-variance.
For h ¼ 1=2 we can compute the entropy in the Krylov

basis analytically

HK ¼ −
x ln xþ ð1 − xÞ lnð1 − xÞ

x
; ð86Þ

where

x ¼ 1 − γ2

4α2

cosh2
�
αt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

4α2

q �
− γ2

4α2

; ð87Þ

Thus for general γ and α the entropy grows linearly at late
times. When γ ¼ 2α, which describes the free limit of the
oscillator, entropy at late times shows slower, logarithmic
growth

HK ∼ 2 logðαtÞ þ 1þOððαtÞ−2Þ: ð88Þ

This implies a quadratic growth of the entropic definition of
complexity

CHK
∼ α2t2; ð89Þ

similar to our original definition in (81), but with
parametrically smaller growth rate for large scaling
dimension h.

Similarly, the normalized variance is

δ2n ≡ σ2n
C2

¼
P

nn
2pn − ðPnnpnÞ2
ðPnnpnÞ2

¼ 1

2h

2
641þ 1 − γ2

4α2

sinh2
�
αt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

4α2

q �
3
75: ð90Þ

The variance is also sensitive to representation h and shows
that the distribution is sharply localized around the mean
for “heavy” states. Around γ ¼ 2α, the variance approaches
its large time limit more slowly, i.e., as t−2 instead of
generic exponential of (90).

B. A particle moving in SU(2)

Similarly, consider the SUð2Þ algebra

½J0; J�� ¼ �J�; ½Jþ; J−� ¼ 2J0; ð91Þ

and the associated Hamiltonian

H ¼ αðJþ þ J−Þ þ γJ0 þ δ1: ð92Þ

Then, in the spin-j representation we have the action

J0jj;−jþ ni ¼ ð−jþ nÞjj;−jþ ni;
Jþjj;−jþ ni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þð2j − nÞ

p
jj;−jþ nþ 1i;

J−jj;−jþ ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2j − nþ 1Þ

p
jj;−jþ n − 1i: ð93Þ

Thus we identify the 2jþ 1 Krylov basis vectors jKni ¼
jj;−jþ ni and Lanczos coefficients

an ¼ γð−jþ nÞ þ δ; bn ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2j − nþ 1Þ

p
: ð94Þ

The BCH formula gives the time evolution operator

e−iHt ¼ e−iδteAJþeBJ0eCJ− ; ð95Þ

where

A¼ C¼ 2α

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2 þ γ2

p
cot ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ γ2=4

p
Þ− γ

;

B¼ −2 log

2
64cos�t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2 þ γ2

q �
þ
iγ sin

�
t
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2 þ γ2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2 þ γ2

p
3
75:

ð96Þ

The time evolving state is then
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jψðtÞi ¼ e−iHtjj;−ji

¼ e−iδte−jB
X2j
n¼0

An

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð2jþ 1Þ

n!Γð2j − nþ 1Þ

s
jj;−jþ ni:

This gives the Krylov basis coefficients (26)

ψnðtÞ ¼ e−iδte−jBAn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð2jþ 1Þ

n!Γð2j − nþ 1Þ

s
; ð97Þ

and the complexity

CðtÞ ¼ 2j

1þ γ2

4α2

sin2
 
αt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

4α2

s !
; ð98Þ

which oscillates in time.
These results makes sense because all the representations

of SU(2) are finite dimensional. Thus, complexity growth is
upper bounded by the dimension of the representation. For
the time evolution of highest weight states we have shown
that the support of the state in the Krylov basis oscillates
with time, causing the complexity to be periodic. This
evolution does not show the behavior expected in chaotic
theories where the state should remain spread over the
complete Hilbert for a long period of time, leading to a
plateau in the complexity.

C. A particle moving in the Heisenberg-Weyl group

Finally, consider the Hamiltonian

H ¼ λða† þ aÞ þ ωN þ δ1; ð99Þ

built from the operators of the Heisenberg-Weyl algebra

½a; a†� ¼ 1; ½N; a†� ¼ a†; ½N; a� ¼ −a: ð100Þ

The action of these operators on a representation is given by

a†jni ¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1i; ajni ¼ ffiffiffi
n

p jn − 1i: ð101Þ

Following the procedure described above, we identify the
Lanczos coefficients

an ¼ ωnþ δ; bn ¼ λ
ffiffiffi
n

p
: ð102Þ

Moreover, the unitary evolution operator can be decom-
posed as

UðtÞ ¼ e−iHt ¼ eα4ðtÞa†e−ᾱ4ðtÞae−iωtNeα1ðtÞ; ð103Þ

where

α4ðtÞ ¼ −
λ

ω
ð1 − e−iωtÞ; ð104Þ

α1ðtÞ ¼ −iδtþ λ2

ω2
ðiωt − 1þ e−iωtÞ: ð105Þ

Our time evolving state is then

jψðtÞi ¼ e−iHtj0i ¼ eα1ðtÞ
X∞
n¼0

αn4ffiffiffiffiffi
n!

p jni: ð106Þ

This leads to Krylov basis coefficients (26)

ψnðtÞ ¼ eα1ðtÞ
αn4ffiffiffiffiffi
n!

p ; ð107Þ

that satisfy the Schrodinger equation (27) with an and bn
given by (102). The survival amplitude is

ψ0ðtÞ ¼ exp

�
−iδtþ λ2

ω2
ðiωt − 1þ e−iωtÞ

	
: ð108Þ

The complexity of the TFD state governed by this sym-
metry is

CðtÞ ¼ 4λ2

ω2
sin2
�
ωt
2

�
: ð109Þ

For ω ≠ 0 the complexity oscillates even though there is an
infinite dimensional Hilbert space. This is because the
inclusion of the ωN term in the Hamiltonian (99) produces
a potential energy for excitations, effectively bounding
the system. This fact is realized in the an coefficients
that grow with n when ω ≠ 0, which results ultimately
in the oscillating complexity. When ω → 0, so that the
Hamiltonian does not contain a bounding potential for
excitations, an → constant, and then the complexity grows
quadratically in time without bound.

VI. COMPUTATIONAL MODELS

We now seek to apply our methods to three 0þ 1
dimensional systems with chaotic dynamics. These are
the Schwarzian theory, random matrix models and the SYK
model. The Schwarzian theory appears in the low energy
approximation of the SYK model and particular matrix
models, and also in the boundary description of Jackiw-
Teitelboim (JT) gravity [69–80]. Matrix models and their
relation to two dimensional gravity have been known for a
long time [14,16–19], but new holographic gravity appli-
cations have appeared recently [39–44]. As such, all of
these theories are known to be related via dualities to
gravity in 1þ 1 dimensions, in particular to JT gravity. In
such dualities, eternal black holes in the gravity theory are
related to the TFD state of the dual 0þ 1 system.
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As we described above, the survival amplitude, and
hence the growth of spread complexity, of TFD states is
related to the analytically continued partition function (36).
Previous work [14,15] has shown the spectral form factor
(and hence the partition sum) in the thermal theory of the
models considered here initially slopes from a normalized
value of 1 to an exponentially small magnitude called the
dip. The dip value and its time of occurrence are not
universal in chaotic systems. For Gaussian unitary ensem-
bles the dip time is of OðN1=2Þ. After the dip, the spectral
form factor grows linearly, a regime called the ramp, until it
plateaus after a time exponential in the entropy of the
system at a value that can be computed from the partition
function. The ramp is a feature that can be traced back to
the universal statistics of random matrices and chaotic
models. The plateau persists until the appearance of
Poincaré recurrences in a finite size system.
Below we will use the relation between the survival

amplitude in the TFD state and the partition function (36) to
demonstrate related effects in the state complexity. More
concretely, we find the spread complexity shows an initial
linear ramp that persists for a time exponential in the
system size until a peak, that is followed by a slope down to
a plateau. These four regimes arise from the same physics
that drives the slope, dip, ramp and plateau of the spectral
form factor. The linear growth and plateau demonstrate the
behavior expected for complexity in chaotic systems [12].
However, peak and slope are new features uncovered by
our analysis. The complexity peak has a height aeS, and
occurs when the system reaches the “farthest” states in the
Hilbert space. The subsequent downward slope bring the
complexity to a lower plateau value beS. The peak and
slope are controlled by spectral rigidity, a universal feature
seen in the energy levels of matrix models, and presumably
chaotic systems in general.

A. The Schwarzian theory

The Schwarzian theory is 0þ 1 dimensional
[69,73,77–80], and the thermal Euclidean theory is
defined by the action

S ¼ −c
Z

β

0

dτfF; τg; ð110Þ

where τ ∼ τ þ β, c is the inverse coupling constant (with
inverse energy dimensions), FðτÞ is the degree of freedom
and the brackets stand for the Schwarzian derivative

fF; τg ¼ F000ðτÞ
F0ðτÞ −

3

2

�
F00ðτÞ
F0ðτÞ

�
2

: ð111Þ

The partition function of the Schwarzian theory is given
by [73,77–79]

Zβ ¼ a
1

β
3
2

e
2π2c
β ∝

Z
∞

0

dEρEe−βE; ð112Þ

where a is a nonuniversal constant that depends on the
regularization scheme. However, it disappears in appro-
priately normalized physical observables. The density of
states is

ρE ¼ sinhð2π
ffiffiffiffiffiffiffiffi
2cE

p
Þ: ð113Þ

For this system, the moments of the Hamiltonian in the
TFD state are equal to the moments in the thermal
ensemble, and can be calculated as

μSn ¼ in
TrρβHn

Zβ
¼ 2inffiffiffi

π
p β−nΓ

�
3

2
þ n

�
M

�
−n;

3

2
;−

2cπ2

β

�
;

ð114Þ

where Mða; b; cÞ is the Kummer’s (confluent) hyper-
geometric function. In the semiclassical c

β ≫ 1 limit, the
moments of fixed n become

μSn⟶c
β≫1

inEn

�
1þ nðnþ 1

2
Þ

βE

�
; ð115Þ

where E is the semiclassical one-point function

E ¼ 2cπ2

β2
: ð116Þ

We can combine this with the second moment in (115) to
show that the variance is much smaller than the mean
squared, σ2E ¼ 2E=β ≪ E2, i.e., this is indeed a semi-
classical limit.
We can compute the survival probability from the

analytically continued partition sum. For small times t ≪ β
we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðtÞSðtÞ�

p
∼ e−

Et2
β ¼ e−

σ2
E
t2

2 : ð117Þ

This type of survival probability was studied in [57], where
it was established that

an ¼ 0; bn ¼ σE
ffiffiffi
n

p
: ð118Þ

In our case (117) is an approximation, and thus we expect
some nonzero an and corrections to these values of bn. We
will evaluate these numerically below. However, if we
simply keep the leading dependence (118), then we know
from [57] that the corresponding state complexity growth is

CðtÞ ¼ σ2Et
2: ð119Þ

Namely, complexity grows quadratically in time. Our
arguments have showed this in the semiclassical limit
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for sufficiently small n which is a good approximation for
small times.
We can now consider the opposite limit of the moments,

namely we let n grow to infinity while keeping c=β fixed.
This limit becomes relevant at sufficiently late times where
the power series expansion of the unitary time evolution
operator e−iHt requires many terms to provide a good
approximation. In this limit, Kummer’s hypergeometric
function scales as

M

�
−n;

3

2
;−

2cπ2

β

�
∼
�
2ncπ2

β

�−1
4

: ð120Þ

This means that the scaling of the moments with n is just
controlled by the Gamma function factor in (114):

μSn ∼ β−nn! ∼
�
n
β

�
n
: ð121Þ

In our algorithm in Sec. III, the μn moments were related to
polynomials ofOðnÞ involving ak and bk with k < n. Thus,
to achieve the nn growth of the moments, the an, bn, or both
must scale linearly with n.
The previous observations tell us that we should expect

two regimes for both sets of Lanczos coefficients and for
the spread complexity. In the first regime we should expect
a square root law for the bn’s and quadratically growing
behavior of complexity. In the second regime we should
expect some linear behavior of the Lanczos coefficients. As
we have seen in Sec. V, the growth of complexity is then
going to depend sensitively on how an and bn both grow,
including their coefficients.
Figure 3 uses (114) to numerically evaluate both Lanczos

coefficients for different values of c=β, and displays the two
regimes mentioned earlier. At large n both of them grow
linearly. The relative rate of growth is depicted in Fig. 4,
where it is shown that at large n

an ¼ 2bn: ð122Þ

This was precisely the relation between the Lanczos
coefficients obtained for the TFD of the harmonic oscillator
in the free limit (80). Recall that this was a particular limit
of motion in the SL(2,R) group. Thus, at large times, when
the wave function also has substantial support on Krylov
basis elements jKni for large n, the time evolution of the
TFD in the Schwarzian theory can be approximated by
motion in the SLð2; RÞ group.
In fact, for any n the SLð2; RÞ description becomes

increasingly better in the semiclassical limit as we let
c=β grow. Thus, we see that in the infinite c=β limit,
where the Schwarzian theory is well described by AdS2
[69,73–75,79,80], the evolution of the TFD is well
described by motion in the SLð2; RÞ group at all times,
and the Hamiltonian and complexity operator (29) closes an
SLð2; RÞ “complexity algebra” acting in the physical
Hilbert space, which in turn furnishes a representation
of the group. This notion of complexity algebra has been
recently studied for operator growth [57].
In Sec. VAwe found that when an ¼ 2bn ∼ n complex-

ity grows quadratically in time (81). Thus the large n result
in (122) implies that at large times the Schwarzian theory
has quadratically growing complexity. In (119) we found
this quadratic growth at small times also. Thus we expect
quadratic growth at all times. In Fig. 5 we confirm these
expectations numerically. Figure 5(b) shows that the rate of
growth is controlled by the variance of the energy, namely,

CðtÞ ∝ σ2Et
2: ð123Þ

As we discussed, in the semiclassical limit these relations
become exact because the SLð2; RÞ description becomes
accurate at all times, and we can use the analytical results of
the previous section.
It would be interesting to understand this result from a

bulk point of view. A hint in this direction can be found in
Ref [57], where Krylov operator complexity was found to
be the global energy of AdS2, following the derivation of

FIG. 3. Left: an as a function of n for the TFD state of the
Schwarzian theory at β ¼ 1 and c=β ¼ e−3;…; e7. Right: bn as a
function of n for the same parameters. At large c and n, both the
an and bn can be closely approximated by fitting the an, bn of a
harmonic oscillator.

FIG. 4. an − 2bn as a function of n for β ¼ 1 and c=β ¼
e−3;…; e4. an − 2bn approaches a constant for large n, corre-
sponding to the free potential limit of the harmonic oscillator.
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the near horizon symmetries in [81]. We leave this for
future work.

B. Random matrices

A basic conjecture states that the fine grained structure of
the spectrum of a quantum chaotic Hamiltonian is well
approximated by the statistics of random matrices [82,83]
(see the reviews [14,16–18]). Then, given the energy-time
uncertainty principle, we expect that aspects of the long
time dynamics in chaotic systems will be well described
by statistics of nearby eigenvalues of the Hamiltonian in
the random matrix approximation. For example, this was
shown to be the case for the spectral form factor of the
SYK model [15]. Therefore, since we seek to understand
universal aspects of black holes and more general chaotic
systems, it is natural to start by considering random
Hamiltonians. We will study all three universality classes:
the Gaussian unitary ensemble (GUE), the Gaussian
orthogonal ensemble (GOE), and the Gaussian symplectic
ensemble (GSE).
A random matrix theory is defined by the specifying the

probability for finding a particular instance of a matrix in a
given ensemble. The GUE is an ensemble of Hermitian
N × N matrices Hij with gaussian measure

1

ZGUE
e
− N
2E2

0

TrðH2Þ
; ð124Þ

For numerical computations, we chose units so that E0 ¼ 1.
Then ZGUE ¼ 2N=2πN

2=2 is the partition function of the
matrix model and normalizes the probability distribution.
We now perform the following procedure. We take an

instance of a random Hamiltonian from the GUE ensemble,
compute its eigenvalues, and construct the TFD state (32).
Next we study the unitary evolution on one side of the
TFD by applying the recursion method described earlier.

We repeat this computation for different instances of the
random Hamiltonian, different values of N, and different
values of β.
To solve the recursion method described earlier we use

known numerically stable algorithms for computing the
Hessenberg form of any given N × N Hamiltonian [33,34].
As discussed in Sec. III, these algorithms use Householder
reflections instead of the Gram-Schmidt procedure. From
the Hessenberg form we can read off the Lanczos coef-
ficients. To compute the wave function in the Krylov basis,
we exponentiate the Hessenberg form to obtain the matrix
representing unitary evolution, and apply this matrix to the
initial state. This procedure directly provides the wave
function in the Krylov basis. From the wave function, we
can compute the probability of being in any given Krylov
basis state, and hence the complexity.
In Figs. 6 and 7 we plot the full set of Lanczos

coefficients as a function of n=N, for N ¼ f1024; 1280;
1536; 1792; 2048; 2560; 3072; 3584; 4096g and tempera-
tures β ¼ f0; 1; 2; 5; 10g. The figures show the global
structure of the Lanczos coefficients as a function of n,
which indexes the Krylov basis elements from 0 to N − 1,

FIG. 5. Left: spread complexity as a function of time for the
TFD state of the Schwarzian theory with β ¼ 1 and varying
c=β ¼ e−3;…; e4. The complexity grows approximately as
CðtÞ ¼ at2 for some constant a. Right: a (obtained from the
first coefficient of a quadratic fit) vs c on a (natural) log-log scale.
Line with slope 1 for comparison. We see that a ∝ c, and from
(116) σ2E ∝ c, so that a ∝ σ2E.

FIG. 6. Full set of Lanczos coefficients an as a function of n=N
for the time evolution of the TFD state in the GUE ensemble, for
different values of β ¼ f0; 1; 2; 5; 10g and N ¼ f1024; 1280;
1536; 1792; 2048; 2560; 3072; 3584; 4096g. Transition between
regimes analyzed in Fig. 8.

FIG. 7. Full set of Lanczos coefficients bn as a function of n=N
for time evolution of the TFD state in the GUE ensemble, for
different values of β ¼ f0; 1; 2; 5; 10g and N ¼ f1024; 1280;
1536; 1792; 2048; 2560; 3072; 3584; 4096g. Transition between
regimes analyzed in Fig. 9.
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where N is the dimension of the Hilbert space. As expected
for a chaotic model, the Krylov basis expands the full
Hilbert space, and unitary evolution explores the full
Hilbert space. Interestingly, the GUE ensemble includes
all possible Hermitian matrices as Hamiltonians. Hence,
our results show that most unitary theories are chaotic in
this way.
Both sets of Lanczos coefficients show two behaviors as

a function n. For the an there is a linearly growing regime,
followed by a near-plateau (Fig. 6). The plateau for an is
approximately at zero, up to fluctuations. The transition
from the ramp in n to the plateau in n seems to occur at
n ≪ N (Fig. 6). We numerically confirmed that the
transition indeed occurs at n of Oð1Þ in the large N limit
(Fig. 8). The fact that, most of the an ≈ 0 is a significant
simplification for analytical methods.
For the bn we again see a sharp ramp at small values of n

followed by a gradual decay with a slope ofOð1=NÞ to zero
as n → N (Figs. 7 and 9). The transition occurs at n ∼Oð1Þ
(Fig. 9), and in fact in the large N limit the decay to zero is
so slow that for any fixed interval of n, bn is approximately
constant. The decay to zero at n → N occurs because the bn
are hopping coefficients in the one-dimensional Krylov-
basis chain (27). Thus, for any finite system size, bn must
vanish when we reach the edge of the chain. Similar
behavior for the bn has been found in the context of
operator growth [49,54,56], except that the transition
between the ramp and approximate plateau happens
here at n ∼Oð1Þ while for operator growth it occurs at
n ∼OðlogNÞ namely at the order of the entropy.
To understand the behavior of spread complexity, as

described in Sec. V, we need to find the precise relation
between the rate of growth of the an and the rate of growth of
the bn. Figure 10 shows that, in the range of small n where
both Lanczos coefficients grow linearly, an þ d ¼ 2bn
with d a constant, like in the Schwarzian theory. This
relation between an and bn manifests as the first plateau
in the plot of an − 2bn in Fig. 10. The second plateau in this

figure at larger n occurs becausean andbn are both changing
very slowly in this regime.
Recall from (2) and (27) that at short times, the time-

evolving state has most of its support on Krylov basis
elements jKni with small n. As discussed above an þ d ¼
2bn ∼ n in this range, just as in the free limit of the particle
moving in the SL(2,R) group (80). In analogy we expect
that complexity grows quadratically at early times. At later
times the time evolution will acquire support on Krylov
basis elements with larger n. As we discussed above, in
the large N limit an ¼ 0 beyond some n of Oð1Þ, and bn is
roughly constant for any fixed interval of n. Using these
conditions, the Schrodinger equation in the Krylov basis
(27) becomes a free wave equation in one dimension,
whose solutions are plane waves moving at constant speed.
This implies that the mean position in the Krylov basis, and
hence the complexity grows linearly with time. This is the
same regime as the one found in [49,54,56] for operator
growth at large times. This regime was also found in the
context of Nielsen’s complexity in [5]. Using random
quantum circuits it has been found recently in [31].

FIG. 8. The Lanczos coefficients an as a function of n in the
large N limit and for several values of β between 2 and 50, for
the GUE ensemble associated with the time evolution of TFD.
The transition to the plateau occurs at n ∼Oð1Þ. The color bar
indicates the value of β for each curve.

FIG. 9. The Lanczos coefficients bn as a function of n in the
large N limit and for several values of β between 2 and 50, for
the GUE ensemble associated with the time evolution of TFD.
The transition to the plateau occurs at n ∼Oð1Þ. The color bar
indicates the value of β for each curve.

FIG. 10. At small n—between zero and the transition to plateau
behavior—and large enough β, an − 2bn is approximately con-
stant. As shown in Figs. 9 and 8, an, bn grow linearly, so we find
ourselves in the free limit of the harmonic oscillator (80). The
color bar indicates the value of β for each curve.
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These regimes of complexity growth are confirmed in
Fig. 11, where we see a transition from initial quadratic
growth to linear growth at a time of order β3=2 (recall that
we are working in units where E0 ¼ 1). In the quadratic
growth regime, we checked numerically that, just like in the
Schwarzian theory, the growth rate is controlled by the
variance in energy which is of order 1=β2.
As we discussed above, although the bn are approx-

imately constant over any finite interval in n in the large N
limit, over intervals of OðNÞ they do gradually decay to
zero. This is because the Lanczos algorithm must halt when
we reach the dimension of the Hilbert space. This means
the support of the state in the Krylov basis cannot keep
growing, but it is possible for the support to narrow back
again. This means that, at large times, spread complexity
should reach a maximum and then may decay or plateau.
For chaotic systems we indeed expect the maximum in the
complexity to be of OðNÞ and a plateau at this order
as well.
The dark hued curves in Fig. 12 show how state

complexity changes in a variety of GUE ensembles until
times of order the size of the Hilbert space (t=N ∼Oð1Þ). It
is immediately clear that the complexity dynamics displays
a characteristic overall structure: a linear ramp for times
that are exponentially large in the entropy, followed by a
peak, and then a downward slope to saturation at an
exponentially large plateau. The onset times and heights
of the peak and plateau in the complexity are OðNÞ,
i.e., exponentially large in the entropy of the system.
The initial linear ramp and plateau were conjectured for
chaotic systems by [12]. We propose that the subsequent
peak overshooting the plateau, followed by a downward
slope are also universal characteristics of the complexity
dynamics.
The dynamics of state complexity that we have displayed

is related to the behavior of the spectral form factor in
chaotic theories [14,15]. Recall that we showed that the

spectral form factor computes the survival probability of
the TFD state, namely

SFF ¼
����Zβ−it

Zβ

����2 ¼ jhψβþ2itjψij2: ð125Þ

This is also the time-dependent probability of the first state
in the Krylov basis, i.e., the initial TFD state. Figure 13
shows the spectral form factor as a function of time. The
dark blue line, corresponding to the GUE ensemble, shows
a downward slope, that lasts until the dip (i.e., the
minimum), followed by an upward ramp and then a
plateau. The plateau occurs because the system has a

FIG. 11. Spread complexity of the time evolved TFD for small
times, and at infinite N, for several values of β between 2 and 50,
corresponding to the GUE ensemble of random matrices. Com-
plexity starts growing quadratically and transitions to linear
growth at time of order β. The color bar indicates the value of
β for each curve.

FIG. 12. Spread complexity of the time evolved TFD over an
exponentially large period of time for different values of N and β,
as described in the main text. Dark hues: GUE ensemble. Going
from highest (blue) to lowest (yellow) curves we have β ¼
f0; 1; 2; 5; 10g. In each case we have plotted ensembles with
N ¼ f1024; 1280; 1536; 1792; 2048; 2560; 3072; 3584; 4096g.
Complexity grows linearly to a peak, followed by a downward
slope to a plateau. Light hues: Ensemble with the same density of
states as GUE, but without correlations between eigenvalues. In
this case, the curves plateau without reaching a peak followed by
a downward slope.

FIG. 13. Spectral form factor (survival probability of the time
evolved TFD) over an exponentially large period of time for
N ¼ 4096 and β ¼ 1, averaged over 10 samples of the GUE
ensemble. Dark blue: The GUE esemble of random matrices
displays a ramp followed by a plateau. Light blue: For an
ensemble with the same density of states as the GUE but with
no correlations between eigenvalues, the spectral form factor
displays a plateau without a ramp.
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finite, discrete spectrum. From our state evolution perspec-
tive, the time development of the TFD explores the state
space broadly and at late times the distribution over the
Krylov basis is uniform after some coarse-graining over
time. See [84] for a tractable model of why such coarse-
graining is needed. The shape of the ramp is determined by
the universal statistics of random matrices [14]. In particu-
lar, it depends on the universal correlations between
eigenvalues, a structure known as spectral rigidity.
We can argue that the ramp, peak, slope and plateau

of complexity are in analogy to the slope, dip, ramp and
plateau of the spectral form factor. With regard to the
plateau this analogy is transparent. Complexity achieves
the plateau when the Krylov basis probabilities reach
approximate stationarity after some coarse-graining in
time. More precisely, as we will see below, the probabilities
actually continue to fluctuate in the plateau region, but
they are stationary after time averaging, or after averaging
over small neighborhood of n, the Krylov basis index.
The spectral form factor is one of these basis state
probabilities—it is the probability of staying in the initial
TFD state. Thus it must saturate as well. With regard to the
peak and downward slope in the complexity, the analogy is
more subtle. As shown in [15], the dip (i.e., minimum) in
the spectral form factor occurs at a time of Oð ffiffiffiffi

N
p Þ, while

the complexity peak occurs at a time ofOðNÞ (see Fig. 12).
Indeed, since complexity grows linearly, it can only achieve
a size of OðNÞ, as required for the state to acquire support
everywhere on the Hilbert space, at a time of OðNÞ. Thus,
the time of the dip in the spectral form factor and the time of
the peak in the complexity do not scale in the same way
with N. Of course, since the complexity is a sum over all
the Krylov basis probabilities, only one of which is directly
related to the spectral form factor, the timescales in these
quantities need not be same.
Nevertheless, we can show that the downward complex-

ity slope after the peak likely arises from eigenvalue
correlations, just like the ramp in spectral form factor after
the dip. To show this, we construct an ensemble with the
same density of states as the GUE, but without spectral
correlations. To do so we can draw eigenvalues at random
from the Wigner semicircle distribution, rather than from a
specific random Hamiltonian. Alternatively, we can take
sufficiently many instances of random Hamiltonians with
their associated spectra, and then construct another spec-
trum by randomly sampling eigenvalues from the different
Hamiltonians [85]. For the present discussion it is suffi-
cient, and simpler, to draw eigenvalues from the Wigner
semicircle distribution. Complexity growth of the TFD
state assuming such a spectrum is plotted in light hues in
Fig. 12. We see the peak and downward slope disappear. A
related effect can be seen in the spectral form factor, where
the dip and ramp disappear (light blue line in Fig. 13). This
is a strong hint that the downward complexity slope after
the peak is controlled by spectral correlations. Further

evidence arises from the GOE and GSE ensembles con-
sidered below.
We can also characterize the spread of the wave function

across the Krylov basis in terms of the entropic definition
of complexity (31) or the variance of the distribution of
probabilities of the basis states. These quantities are
displayed in Figs. 14 and 15 and also show a ramp, a
peak, slope, and plateau.
It is also illuminating to examine the explicit form of the

wave function in the Krlov basis at different moments of
time. Figures 16 and 17 show the spread of wave function
over the Krylov basis for β ¼ 0, 5 for a range of times from
t ¼ 0 until late times when the complexity has plateaued.
At t ¼ 0 the wave function is localized on the initial TFD
state which is also the first Krylov basis element. The
dynamics then looks like a probability shockwave that
starts on the initial state and propagates outward to higher
basis elements, leaving a tail of probability behind. For
high temperatures (β → 0), the probability is initially
concentrated at the shockwave front, while for intermediate
and low temperatures, the probability distribution over the

FIG. 14. Entropic complexity (13) for the GUE ensemble of
the time evolved TFD state over an exponentially large period of
time for different β ¼ f0; 1; 2; 5; 10g. In each case we have
plotted ensembles with N ¼ f1024; 1280; 1536; 1792; 2048;
2560; 3072; 3584; 4096g.

FIG. 15. Variance of the position in the Krylov basis for the
GUE ensemble of the TFD state evolved over an exponentially
large time, for different values of β ¼ f0; 1; 2; 5; 10g. In each
case we have plotted ensembles with N ¼ f1024; 1280; 1536;
1792; 2048; 2560; 3072; 3584; 4096g.
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Krylov basis is more concentrated in the middle of the
distribution. But in both cases, when the shockwave
reaches the last Krylov basis vector, it is far from being
stationary. The wave bounces back and this gives rise to the
downward slope after the peak in state complexity. In the
entropic definition of complexity, there is also a downward
slope after the bounce of the shockwave (Fig. 14) for most
temperatures. However, at infinite temperature the proba-
bility is so concentrated at the shockwave front that the
distribution actually continues to spread after bouncing
from the edge of the Krylov chain so that the entropic
complexity does not show a peak and download slope in
this limit (dark blue line in Fig. 14).

We can repeat our computations for the GOE ensemble,
defined as an ensemble of real symmetric N × N matrices
H with Gaussian measure

1

ZGOEðNÞ
e−

N
4
TrðH2Þ; ð126Þ

and the GSE ensemble, defined as an ensemble of N × N
Hermitian quaternionic matrices with Gaussian measure

1

ZGSEðNÞ
e−NTrðH2Þ: ð127Þ

The details of the computation are the same as for the GUE
ensemble. As reviewed above, these ensembles mainly
differ in the specific universal correlation functions
between nearby and far away energy eigenvalues. In fact,
as described in [14], spectral rigidity of the matrix
ensembles, related to the correlations of far away energy
eigenvalues, controls the ramp in the spectral form factor.
The shape of this ramp and particularly the way it
transitions to the plateau strongly depend on the particular
matrix ensemble (see Fig. 10 in [14]). In particular the
transition to the plateau is sharp for GUE, smooth for GOE,
and displays a kink for the GSE. This was also verified for
SYK models recently [15].
We thus might expect that the universality classes of

matrix models will also differ in the dynamics of complex-
ity. Figures 18 and 19 plot the quantum state complexity of
the time evolved TFD over an exponentially large period of
time for the GOE and GSE ensembles, and the same values
of N and β as those used for the GUE ensemble. The three
ensembles clearly differ, in parallel to the differences that
appear in the ramp structure of the spectral form factor in
these three cases: the transition to the plateau is sharper for
GUE, smoother for GOE, and displays a kink for the GSE.
In particular, following the behavior of the spectral form
factor, and controlled by spectral rigidity, the wave function

FIG. 16. Snapshots of the probability distribution in the Krylov
basis of the time evolved TFD for a range of times as specified
above each panel. This plot corresponds to β ¼ 0, N ¼ 4096 and
the GUE ensemble. The horizontal axis shows the index of the
Krylov basis elements from 1 to 4096 and the y-axis shows the
probability that the initial state has evolved so that it is found in
the given basis state. At t ¼ 0 the y-axis runs from 0 to 1 and all
the probability weight is on the initial state. At t ¼ 40000 the
mean probability is 1=4096. Thus, we arranged the scale of each
panel to better show the spread of the wave function over the
Krylov basis.

FIG. 17. Snapshots of the probability distribution in the Krylov
basis of the time evolved TFD for a range of times as specified
above each panel. This plot corresponds to β ¼ 5, N ¼ 4096 and
the GUE ensemble. The horizontal axis shows the index of the
Krylov basis elements and the y-axis shows the probability that
the initial state has evolved so that it is found in the given basis
state. The y-axis scales differ in each panel (see caption of Fig. 16
for an explanation of this choice).

FIG. 18. Spread complexity of the time evolved TFD state in
the GOE ensemble over exponentially large time, for different
values of β ¼ f0; 1; 2; 5; 10g. In each case we have plotted
ensembles with N ¼ f1024; 1280; 1536; 1792; 2048; 2560;
3072; 3584; 4096g. Notice that after rising to a peak, the com-
plexity decays smoothly to the plateau value.
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of the TFD state in the Gaussian symplectic ensemble, and
hence the complexity, bounces twice before reaching
approximate stationarity. This suggests that the complexity
peak and slope originate in spectral rigidity in the random
matrix model.

C. SYK model

The conjectures of [14,16–18,82,83] tell us that random
matrices are good approximations for the structure of the
fine grained spectrum of chaotic systems. As argued above,
the energy-time uncertainty relation then tells us that these
approximations will work well for describing dynamical
processes at large timescales. But the detailed density of
states in specific models can differ strongly from the
universal statistics of random matrices, and the differences
manifest themselves in different thermalization/relaxation
processes at small times. We might then worry the quantum
state complexity that we have defined will differ dramati-
cally for specific chaotic Hamiltonians as compared to the
random matrix models.
To examine this possibility we considered the SYK

model, which is simultaneously an interesting many-body
quantum system and an accurate model of the dynamics of
2d quantum black holes [69–73,79,80]. The SYK model
is a model of N Majorana fermions ψ i, i ¼ 1;…; N. We
normalize them by

fψ i;ψ jg ¼ ψ iψ j þ ψ jψ i ¼ 2δij: ð128Þ

The SYKmodel is defined by an ensemble of Hamiltonians

H ¼ −
1ffiffiffiffiffiffiffiffiffi�
N
4

�r X
1≤i1<i2<i3<i4≤N

Ji1i2i3i4ψ i1ψ i2ψ i3ψ i4 ; ð129Þ

where the couplings J are real, independently distributed,
Gaussian random variables with zero mean and unit

variance. These conventions were used in [86]. Notice
that the dimension of the Hilbert space here is 2N=2. Below
we will normalize physical quantities by this dimension.
We now follow the same steps as before. We draw

instances of the Hamiltonian from the ensemble and
construct the TFD state. Each instance gives a particular
2N=2 × 2N=2 matrix, and we apply the algorithm for
computing its Hessenberg form [33,34], from which we
read off the Lanczos coefficients. We then exponentiate the
Hessenberg form, apply it to the initial state, and compute
the wave function in the Krylov basis. From the wave
function, we then compute the probabilities of the various
Krylov basis elements, and hence the complexity.
There is an important subtlety relating the SYK to matrix

models [87]: the SYK model displays the different GUE,
the GOE or the GSE ensembles, depending on the number
of Majorana fermions and hence the nature of the particle-
hole symmetry in the model. Concretely, for N mod 8 equal
to 2 or 6 the GUE appears, for N mod 8 equal to zero the
GOE appears, and finally for N mod 8 equal to 4 the GSE
appears. As we described above, the dynamics of complex-
ity depends on the specific ensemble. Thus, for clarity, we
choose SYK models in the GUE universality class and plot
the results for N ¼ 14, 18, 22, 26 in Figs. 20–24. The other
cases that are related to GOE and GSE ensembles proceed
similarly and are not shown here. We have checked that the
results in those cases are consistent with observations in
the previous section about complexity and universality, and
the results of [87].
Figures 20 and 21 show the global structure of Lanczos

coefficients. As before, there are two regimes, one showing
linear growth of Lanczos coefficients and one in which the
an and the bn are approximately zero and constant, respec-
tively. In Figs. 22 and 23 we focus on the small n regime,
to verify that transition between these behaviors occurs at
n ∼Oð1Þ, as before. One can again verify that in the linear
regime an þ d ¼ 2bn ∼ n and the dynamics resembles that
of the free oscillator discussed in earlier sections.

FIG. 19. Spread complexity of the time evolved TFD state in
the GSE ensemble over exponentially large time, for different
values of β ¼ f0; 1; 2; 5; 10g. In each case we have plotted
ensembles with N ¼ f1024; 1280; 1536; 1792; 2048; 2560;
3072; 3584; 4096g. Notice that after rising to a peak, the com-
plexity decays smoothly to the plateau value.

FIG. 20. Full set of Lanczos coefficients an as a function of
n=N for time evolution of the TFD state in the SYK model, and
for different values of N ¼ f14; 18; 22; 26g and temperature
β ¼ f0; 1; 2; 5; 10g. Values of N within the GUE universality
class. Transition between regimes analyzed in Fig. 22.
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Since the behavior of the Lanczos coefficients is parallel
to the GUE matrix model, we also expect that the dynamics
of complexity will behave similarly. We verify this in
Fig. 24, where we analyze temperatures β ¼ f0; 1; 2; 5; 10g

with N ¼ f14; 18; 22; 26g as above. We clearly see the
same regimes as for the matrix model ensembles. We have
an initial period of quadratic growth in time, followed by
a linear ramp which ends at a peak. Next we have an
approximately linear downward slope which ends as com-
plexity equilibrates at a plateau. Given the results of the
previous section, the presence of the slope is signalling that
the SYK model shares the universal Hamiltonian eigenvalue
statistics of random matrix models, as shown previously in
[15,87] using other methods. We also see from the shape of
the slope and the transition to the plateau that we are
analyzing SYK models in the GUE universality class.
It is interesting to compare these results with the analysis

in [29]. There, a similar notion of complexity based on the
spread of the wave function, but in the computational basis,
was studied for SYK. The resulting complexity saturates at a
exponential value at a time of the order of the entropy of the
system, instead of a time exponentially large in the entropy.
This shows the importance of the minimization over all
bases put forward in this article. Also, this gives hope that in
actual physical situations, the minimization performed in
Sec. II is actually good for sufficiently long times.

D. Black holes from collapse

Above, we analyzed complexity growth in the TFD
states of several theories that are related to two dimensional
gravity. The TFD states of these theories are related to the
physics of eternal black holes. We showed above that
Schwarzian theory has a TFD state complexity that grows
quadratically in time for all time, while the matrix model
and SYK theories display a transition to linear behavior
followed eventually by a slope and a plateau.
It is interesting to instead consider states that model

black holes made from collapse. In this case, the energy
band of the system is fixed, although we do not know the
precise microstate—thus, we are in the microcanonical
ensemble, rather that the canonical ensemble. The latter
ensemble is the one modeled by the conventional TFD after
a partial trace. To model a black hole formed by collapse we

FIG. 23. Lanczos coefficients bn for time evolution of the TFD
state in the SYK model, shown as a function of small values of n,
and for different values of N ¼ f14; 18; 22; 26g and temperature
β ¼ f0; 1; 2; 5; 10g. Values of N within the GUE universality
class. The transition to the plateau occurs at n ∼Oð1Þ.

FIG. 22. Lanczos coefficients an for time evolution of the TFD
state in the SYK model, shown as a function of small values of n,
and for different values of N ¼ f14; 18; 22; 26g and temperature
β ¼ f0; 1; 2; 5; 10g. Values of N within the GUE universality
class. The transition to the plateau occurs at n ∼Oð1Þ.

FIG. 21. Full set of Lanczos coefficients bn as a function of
n=N for time evolution of the TFD state in the SYK model, and
for different values of N ¼ f14; 18; 22; 26g and temperature
β ¼ f0; 1; 2; 5; 10g. Values of N within the GUE universality
class. Transition between regimes analyzed in Fig. 23.

FIG. 24. Spread complexity of the time evolved TFD in the SYK
model over exponentially large period of time and for different
values of N¼f14;18;22;26g and temperature β¼f0;1;2;5;10g.
Values of N within the GUE universality class.
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can consider a “microcanonical TFD” by entangling only
states in a small energy window, all of them weighted with
roughly the same amplitude, namely one over the micro-
canonical degeneracy. This limits the range of energies in
which to compute energy moments.
Alternatively, we can consider a modified Gibbs ensem-

ble, in which we introduce a maximum energy Emax in the
definition of the TFD, so that

jψβEmax
i≡ 1ffiffiffiffiffiffiffiffiffiffiffiffi

ZβEmax

p XnEmax

n

e−
βEn
2 jn; ni; ð130Þ

where

ZβEmax
¼
XnEmax

n

e−βEn: ð131Þ

Following the previous examples, the moments

μSn ¼ in
TrρβEmax

Hn

ZβEmax

; ð132Þ

are expected to have characteristic behaviors in different
ranges. Suppose Emax ≥ E and n ≪ Eβ, where E is the
thermal energy

E ¼ TrρβHn

Zβ
≃
TrρβEmax

Hn

ZβEmax

: ð133Þ

Then, in a theory with a semiclassical limit, we expect the
moments will factorize and can be written in terms of the
variance of the energy in the thermal state.
Equivalently, this corresponds to small times t ≪ β,

where we can approximate the survival probability by

jψ ti ¼ e−iHtjψi⇒ jCtj2≃ e−σ
2
Et

2

⇒Ct≃ e−
σ2
E
t2

2 eiϕt ; ð134Þ

with a time-dependent phase eiϕt . This implies that for
sufficiently short times the system effectively behaves as
if it is a particle moving in the Weyl-Heisenberg group
(see [57] and above). As we discussed in Sec. VA, this
regime is equivalently found within the SLð2; RÞ paradigm.
Then the bn’s satisfy (118) and Krylov complexity grows
quadratically in time (119).
The next regime appears if there is a hierarchical sepa-

ration Emax ≫ E. In such cases we can consider moments
for which Emaxβ ≫ n ≫ Eβ ∼ SðEÞ. We can understand the
behavior of the moments from the moment integralZ

Emax

0

dEeSðEÞ−βEEn ≃
Z

Emax

0

dEe−βEþn logE: ð135Þ

To evaluate this integral by the method of saddlepoints we
can neglect the contribution from the entropy SðEÞ as in the

second expression above since SðEÞ ≪ n in this regime. The
saddlepoint equation is then E ¼ n=β. This gives

μn ∝
�
n
β

�
n
; ð136Þ

implying that the bn’s and/or the an’s grow linearly for
sufficiently large n as discussed earlier. In this regime we
cannot say for sure what is the behavior of complexity,
since to do so we need to find the ratio between both sets
of Lanczos coefficients. In the models studied above
we always found an þ d ¼ 2bn, with d a constant, which
implies quadratic growth of complexity, at least for an
intermediate range of times. We may conjecture that this
quadratic growth is universal, but we do not have an
argument establishing this.
Finally, whenever there is an upper bound to the energy

Emax, there is a further regime in which n ≫ Emaxβ. The
behavior of the moments in this regime is very simple since
the moment integral

R
dE eSðEÞ−βEEn concentrates on the

upper limit. Using this fact, the moments scale as

μn ∼ En
max: ð137Þ

Following our reasoning above, it follows that both an and
bn must saturate to a constant value, implying that com-
plexity grows linearly in time, with a rate of OðEmaxÞ. A
similar phenomenon was noted for operator growth com-
plexity in [49,54,56].
For systems describing black holes made from collapse

we would expect Emax to be of order the thermal energy E,
which in turn should be the mass of the black hole. In this
case, the intermediate window of time with model depen-
dent complexity growth that depends on the precise relation
between the an and bn coefficients is absent. We are left
with two universal regimes—the initial quadratic growth of
complexity controlled by the variance of the energy in the
initial state, and a late regime in which complexity grows
linearly at a rate controlled by the mass of the black hole.
This linear growth lasts for exponentially large times in the
entropy. As argued before, at those times we expect that the
dynamics is well approximated by that of a random matrix,
and displays a peak, followed by a downward slope
terminating at the plateau.

VII. DISCUSSION

We have provided a definition of quantum state com-
plexity that avoids the basis ambiguity present in previous
work by minimizing over all choices of basis. Usually,
quantities defined through minimization are very difficult
to compute. Surprisingly, we showed the minimization
required by our definition can be carried out explicitly via
the Lanczos method for representing quantum dynamics,
and the associated Krylov basis. We show that the quantum
state complexity we defined is intimately related to basic
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physical quantities such as the survival amplitude and the
energy spectrum. We exploited these relations to explore
how quantum complexity of unitary evolution behaves for
chaotic systems, and, in particular, how it is related to
spectral statistics [82,83]. In chaotic systems, we found a
linear growth of complexity for exponential time, followed
by a plateau, as expected from the conjecture in [12],
and further extended the conjecture by demonstrating
finer grained dynamics at exponentially long timescales.
Specifically, the exponential growth overshoots the final
plateau, reaches a peak, and then decays back. Using matrix
models as examples, we show that the form of the decaying
slope and the smoothness with which it merges with the
plateau are controlled by universal statistics, namely
spectral rigidity. Indeed, the form of this complexity decay
to the plateau distinguishes between the three universality
classes of matrix models: the Gaussian unitary, Gaussian
orthogonal, and Gaussian symplectic ensembles.
We have demonstrated an explicit connection between

the dynamics of quantum state complexity and quantum
chaos. It would be interesting to similarly analyze inte-
grable systems, especially ones with finite Hilbert spaces
where our methods can be applied most easily. This would
help to construct a bridge from the classification of phases
of quantum matter via partition functions, to a novel
characterization of these phases in terms of the dynamics
of quantum complexity.
Another important avenue is to explore the structural

complexity of Hamiltonian eigenstates. This complexity
lies at the heart of the black hole information paradox [88],
as explored some time ago in [89]. It is also central to the
eigenstate thermalization hypothesis [90–92] that seeks to
explain why the energy eigenstates of some many-body
systems may be well-described by thermal ensembles.
Indeed, the eigenstate complexity hypothesis of [6]
shows that a quantum system in which energy eigenstates
cannot be easily transported into each other through
simple operations will have linear complexity growth for
an exponentially long time, in Nielsen’s geometric sense
of geodesic lengths [3]. In this vein it is worthwhile to
analyze the relations between eigenstate complexity and the
eigenstate thermalization hypothesis in SYK, expanding
on [93–96].

Finally, it would be interesting to use these results, in
particular the time evolved TFD wave function, to better
understand the physics of the black hole interior, expanding
on [97], and perhaps the conjectures relating complexity in
quantum field theory to spatial volumes and action in dual
theory of gravity [45–47,98]. Concretely, recent work has
suggested that it might be possible to understand the black
hole interior volume as a notion of phase space volume in a
dual mechanical theory [99]. Quantum complexity, as we
have defined it, is by construction the minimal notion of
phase space volume explored by the system, since Hilbert
space equipped with the canonical metric and symplectic
structure can be understood as a phase space, and quantum
dynamics become classical dynamics in this phase space
[100], a feature exploited for quantum complexity in [8]. In
this context, it is natural to explore the connections between
our approach and the ideas in [99]. A related promising
path is to use the geometric approach to Krylov complexity
developed recently in [57], applied to the TFD quantum
state complexity, making the connections between sym-
metries, geometry and complexity manifest. It would also
be interesting to study how the black hole interior may be
sensitive to the quantum chaotic universality class of
the underlying theory, since we have shown that the
exponential time dynamics of complexity differs between
these classes. Finally, another avenue is to analyze from the
present light other types of interior processes, such as
the recently considered collisions in the black hole
interior [101–103].

ACKNOWLEDGMENTS

We are grateful to Alex Streicher for conversations about
numerical evaluation of the Lanczos algorithm. We also
thank Dongsheng Ge, Márk Mezei, Dimitrios Patramanis,
Gábor Sárosi and Joan Simon for interesting discussions.
The work of P. C. is supported by NAWA “Polish Returns
2019” PPN/PPO/2019/1/00010/U/0001 and NCN Sonata
Bis 9 2019/34/E/ST2/00123 grants. The work of Q.W.,
V. B. and J. M. is supported by a DOE QuantISED Grant
No. DE-SC0020360 and the Simons Foundation It From
Qubit collaboration (385592).

[1] A. N. Kolmogorov, Three approaches to the quantitative
definition of information, Probl. Inf. Transm. 1, 157
(1965).

[2] J. Rissanen, Stochastic complexity, and modeling, Ann.
Stat. 14, 1080 (1986).

[3] M. A. Nielsen, A geometric approach to quantum
lower bounds, arXiv:quant-ph/0502070; M. A. Nielsen,

M. R. Dowling, M. Gu, and A. C. Doherty, Quantum
computation as geometry, Science 311, 1133 (2006);
M. R. Dowling and M. A. Nielsen, The geometry of
quantum computation, arXiv:quant-ph/0701004.

[4] A. R. Brown, L. Susskind, and Y. Zhao, Quantum com-
plexity and negative curvature, Phys. Rev. D 95, 045010
(2017).

QUANTUM CHAOS AND THE COMPLEXITY OF SPREAD OF … PHYS. REV. D 106, 046007 (2022)

046007-25

https://doi.org/10.1080/00207166808803030
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1214/aos/1176350051
https://doi.org/10.1214/aos/1176350051
https://arXiv.org/abs/quant-ph/0502070
https://doi.org/10.1126/science.1121541
https://arXiv.org/abs/quant-ph/0701004
https://doi.org/10.1103/PhysRevD.95.045010
https://doi.org/10.1103/PhysRevD.95.045010


[5] J. Magan, Black holes, complexity and quantum chaos,
J. High Energy Phys. 09 (2018) 043.

[6] V. Balasubramanian, M. Decross, A. Kar, and O. Parrikar,
Quantum complexity of time evolution with chaotic
hamiltonians, J. High Energy Phys. 01 (2020) 134.

[7] V. Balasubramanian, M. DeCross, A. Kar, Y. Li, and
O. Parrikar, Complexity growth in integrable and chaotic
models, J. High Energy Phys. 07 (2021) 011.

[8] P. Bueno, J. M. Magan, and C. S. Shahbazi, Complexity
measures in QFT and constrained geometric actions,
J. High Energy Phys. 09 (2021) 200.

[9] F. G. S. L. Brandão, W. Chemissany, N. Hunter-Jones,
R. Kueng, and J. Preskill, Models of quantum complexity
growth, PRX Quantum 2, 030316 (2021).

[10] Vir B. Bulchandani and S. L. Sondhi, How smooth is
quantum complexity?, J. High Energy Phys. 10 (2021)
230.

[11] Adam R. Brown, A quantum complexity lowerbound from
differential geometry, arXiv:2112.05724.

[12] L. Susskind, Computational complexity and black hole
horizons, Fortschr. Phys. 64, 44 (2016).

[13] V. Viswanath and G. Müller, The Recursion Method:
Application to Many-Body Dynamics (Springer Science
Business Media, Berlin, 1994), Vol. 23; C. Lanczos, An
iteration method for the solution of the eigenvalue problem
of linear differential and integral operators, J. Res. Natl.
Bur. Stand. 45, 255 (1950).

[14] Thomas Guhr, Axel Müller-Groeling, and Hans
A. Weidenmüller, Random-matrix theories in quantum
physics: Common concepts, Phys. Rep. 299, 189 (1998).

[15] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad,
S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka,
Black holes and random matrices, J. High Energy
Phys. 05 (2017) 118; Erratum, J. High Energy Phys. 09
(2018) 002.

[16] M. L. Mehta, On the statistical properties of the level-
spacings in nuclear spectra, Nucl. Phys. 18, 395 (1960).

[17] M. Gaudin, Sur la loi limite de l’espacement des valeurs
propres d’une matrice aleatoire, Nucl. Phys. 25, 447
(1961).

[18] F. J. Dyson, Statistical theory of the energy levels of
complex systems. III, J. Math. Phys. (N.Y.) 3, 166 (1962).

[19] P. Di Francesco, P. Ginsparg, and J. Zinn-Justin, 2D gravity
and random matrices, Phys. Rep. 254, 1 (1995).

[20] R. Jefferson and R. C. Myers, Circuit complexity in
quantum field theory, J. High Energy Phys. 10 (2017) 107.

[21] S. Chapman, M. P. Heller, H. Marrochio, and F. Pastawski,
Toward a Definition of Complexity for Quantum Field
Theory States, Phys. Rev. Lett. 120, 121602 (2018).

[22] P. Caputa and J. M. Magan, Quantum Computation as
Gravity, Phys. Rev. Lett. 122, 231302 (2019).

[23] V. Balasubramanian, M. DeCross, A. Kar, and O. Parrikar,
Binding complexity and multiparty entanglement, J. High
Energy Phys. 02 (2019) 069.

[24] J. Erdmenger, M. Gerbershagen, and A. L. Weigel, Com-
plexity measures from geometric actions on Virasoro and
Kac-Moody orbits, J. High Energy Phys. 11 (2020) 003.

[25] N. Chagnet, S. Chapman, J. de Boer, and C. Zukowski,
Complexity for Conformal Field Theories in General
Dimensions, Phys. Rev. Lett. 128, 051601 (2022).

[26] Johanna Erdmenger, Mario Flory, Marius Gerbershagen,
Michal P. Heller, and Anna-Lena Weigel, Exact gravity
duals for simple quantum circuits, arXiv:2112.12158.

[27] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi, and
K. Watanabe, Liouville action as path-integral complexity:
From continuous tensor networks to AdS/CFT, J. High
Energy Phys. 11 (2017) 097; P. Caputa, N. Kundu,
M. Miyaji, T. Takayanagi, and K. Watanabe, Anti-de Sitter
Space from Optimization of Path Integrals in Conformal
Field Theories, Phys. Rev. Lett. 119, 071602 (2017).

[28] Bartłomiej Czech, Einstein Equations from Varying
Complexity, Phys. Rev. Lett. 120, 031601 (2018).

[29] J. M. Magan, Decoherence and microscopic diffusion at the
Sachdev-Ye-Kitaev model, Phys. Rev. D 98, 026015 (2018).

[30] Bartlomiej Czech, Holographic state complexity from
group cohomology, arXiv:2201.01303.

[31] Jonas Haferkamp, Philippe Faist, Naga B. T. Kothakonda,
Jens Eisert, and Nicole Yunger Halpern, Linear growth of
quantum circuit complexity, Nat. Phys. 18, 528 (2022).

[32] D. Villaseñor, S. Pilatowsky-Cameo, M. A. Bastarrachea-
Magnani, S. Lerma-Hernández, and J. G. Hirsch, Quantum
localization measures in phase space, Phys. Rev. E 103,
052214 (2021).

[33] P. Virtanen et al., SciPy 1.0: Fundamental algorithms for
scientific computing in Python, Nat. Methods 17, 261
(2020).

[34] Gregorio Quintana-Ortí and Robert van de Geijn, Improv-
ing the performance of reduction to Hessenberg form,
ACM Trans. Math. Softw. 32, 180 (2006).

[35] F. Johansson et al., mpmath: A PYTHON library for
arbitrary-precision floating-point arithmetic (version
0.18), 2013, http://mpmath.org/.
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