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A modification of the Skyrme model has been recently proposed, which admits an exact self-dual sector
by the introduction of six scalar fields assembled in a symmetric, positive, and invertible 3 × 3 matrix h. In
this paper we study soft manners of breaking the self-duality of that model. The crucial observation is that
the self-duality equations impose distinct conditions on the three eigenvalues of h, and on the three fields
lying in the orthogonal matrix that diagonalizes h. We keep the self-duality equations for the latter, and
break those equations associated to the eigenvalues. We perform the breaking by the addition of kinetic and
potential terms for the h fields, and construct numerical solutions using the gradient flow method to
minimize the static energy. It is also shown that the addition of just a potential term proportional to the
determinant of h leads to a model with an exact self-dual sector and with self-duality equations differing
from the original ones by just an additional coupling constant.
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I. INTRODUCTION

Self-duality plays a prominent role in many areas of
physics, from condensed matter to high energy physics
and cosmology. The key ingredient for the appearance
of self-dual sectors in a given theory is the existence of a
(homotopic) topological charge that admits an integral
representation; i.e., there is a density of topological
charge [1]. The invariance of that charge under any smooth
variation of the fields leads, through the integral repre-
sentation, to local identities which are, in general, second
order partial differential equations satisfied by any smooth
field configuration. Together with the self-duality equa-
tions, which are first order partial differential equations,
those identities imply the second order (dynamical) Euler-
Lagrange equations of a given field theory. In addition, in
many cases the self-duality leads to a lower bound on the
static energy (or Euclidean action) determined by the
topological charge and that is saturated by the self-dual
solutions. Therefore, on each topological sector such self-
dual solutions have the minimum allowed energy and so
they are very stable.

In this paper we want to study the partial breaking of
the self-duality, and try to explore the consequences it has
on the physics of the remaining quasi-self-dual sector. We
shall do that in the context of a Skyrme model in (3þ 1)
dimensions. As it is well known, the original Skyrme model
[2,3] does not possess an exact nontrivial self-dual sector
[4]. Several modifications of the Skyrme model have been
proposed to accommodate a self-dual sector [5–12]. We
shall consider in this paper the model proposed in [13]
defined, in (3þ 1)-dimensional Minkowski space-time, by
the action

S1 ¼
Z

d4x

�
m2

0

2
habRa

μRb;μ −
1

4e20
h−1abH

a
μνHb;μν

�
ð1:1Þ

where, like in the usual Skyrme model, Ra
μ are the

components of the Maurer-Cartan form, i.e., i∂μUU† ≡
Ra
μTa, with U being a group element of SUð2Þ, and Ta

being a basis of its Lie algebra, satisfying

½Ta; Tb� ¼ iεabcTc; TrðTaTbÞ ¼ κδab ð1:2Þ

with κ being a constant depending upon the representation
[κ ¼ 1=2 for the spinor representation, and κ ¼ 2 for the
triplet (adjoint) representation]. Ha

μν is the curl of that
form, i.e., Ha

μν ≡ ∂μRa
ν − ∂νRa

μ, and m0 and e0 are coupling
constants, of the dimension of mass and dimensionless,
respectively. The model possesses, in addition to the three
chiral fields (pions) parametrizing U, six extra scalar fields
assembled in the symmetric and invertible matrix hab, a,
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b ¼ 1, 2, 3. For the static energy associated to (1.1) to be
positive it is required that the eigenvalues of matrix h must
also be positive.
The properties of such a model have been studied in

great detail in [14], and in [15] a modification of it has been
applied to nuclear matter. By coupling it to a fluid theory,
where the order parameter is a fractional power of the
density of baryonic charge, it was possible to reproduce the
bulk behavior of the binding energy and the radii of 265
nuclei. Such a list of nuclei contains all the stable nuclei up
to 208Pb, and above that, nuclei with a half-life greater than
103 years, up to 240Pu. The values of such quantities are
reproduced with an excellent accuracy (about 1% for both
the radius and the binding energy) for the quasistable nuclei
with mass number equal to 20 or greater [15]. The error
increases for light nuclei with mass number below 20. The
main properties of the model (1.1), studied in [14], can be
summarized as follows:

(i) The self-dual sector is defined by the nine self-
duality equations

λhabRb
i ¼

1

2
εijkHa

jk; λ≡�m0e0 ð1:3Þ

where the indices a, b ¼ 1, 2, 3, refer to the group
indices, and i, j, k ¼ 1, 2, 3, to the space coordinates
xi. The self-duality equations (1.3) imply the nine
static Euler-Lagrange equations, three of them as-
sociated to the U fields and also the six equations
associated to the scalar fields assembled in hab.

(ii) The self-dual sector, defined by (1.3), and the static
sector of the theory (1.1) are equivalent; i.e., any
static solution is self-dual and vice-versa.

(iii) The static Euler-Lagrange equations associated
to the scalar fields hab imply the self-duality
equations (1.3) and so indirectly imply also the
static Euler-Lagrange equations associated to the U
fields.

(iv) The introduction of the six scalars hab makes the
static sector of (1.1) invariant under conformal
transformations in R3, i.e., the self-duality equa-
tions (1.3), the nine static Euler-Lagrange equations
associated to (1.1), as well as the static energy

E1 ¼
Z

d3x
�
m2

0

2
habRa

i R
b
i þ

1

4e20
h−1abH

a
ijH

b
ij

�
ð1:4Þ

are all invariant under the conformal group SOð3; 2Þ.
The infinitesimal conformal transformations in R3

are given by δxi ¼ ζi with ∂iζj þ ∂jζi ¼ 2Dδij, with
D vanishing for translations and rotations. It is
constant for dilatations, and it is linear in the xi’s
for the special conformal transformations. The U
fields are scalars under the conformal group,

i.e., δU ¼ 0, and the h fields have conformal
weight −1, i.e., δhab ¼ −Dhab.

(v) The self-duality leads to a lower bound on the static
energy (1.4), and for the self-dual solutions such a
bound is saturated as

EBPS
1 ¼ 48π2

jm0j
je0j

jQj ð1:5Þ

where Q is the topological charge

Q ¼ i
48π2

Z
d3xεijk bTrðRiRjRkÞ ð1:6Þ

which gives the winding number of the maps
S3 → SUð2Þ, where S3 is R3 with the spatial infinity
identified to a point. Remember that in order to have
finite energy solutions the U field must go to a
constant at infinity and so, for topological consid-
erations, one can consider such an identification.
In (1.6) we have used the normalized trace

bTrðTaTbÞ ¼
1

κ
TrðTaTbÞ ¼ δab: ð1:7Þ

In additional, the sign of Q and λ in (1.3) are related
through

signðQλÞ ¼ −1: ð1:8Þ
(vi) An important role is played by the real and sym-

metric matrix

τab ≡ Ra
i R

b
i : ð1:9Þ

If det τ ¼ 0, then the only possible static solution
is U ¼ constant. If det τ ≠ 0, then the self-duality
equations (1.3) imply that the matrix h is determined
from the U-fields configuration by

hBPS ¼
ffiffiffiffiffiffiffiffiffi
det τ

p

jm0e0j
τ−1: ð1:10Þ

That means that the self-duality equations are
satisfied by any nontrivial configuration of the U
fields, and the h fields adjust themselves to solve the
self-duality, taking the form (1.10). For the BPS
(self-dual) field configurations (1.10) the quadratic
and quartic terms in the space-time derivatives
of (1.1) give exactly the same contribution to the
total energy (1.4), i.e.,

m2
0

2

Z
d3xðhBPSÞabRa

i R
b
i ¼

1

4e20

Z
d3xðhBPSÞ−1abHa

ijH
b
ij

¼24π2
jm0j
je0j

jQj ð1:11Þ
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and the topological charge (1.6), can be written in
terms of the eigenvalues of hBPS as

Q ¼ −
λ3

16π2

Z
d3x det hBPS: ð1:12Þ

(vii) As the matrices h and τ are and symmetric, they can
be diagonalized by orthogonal transformations, i.e.,

h ¼MhDMT ; MMT ¼ 1; ðhDÞab ¼ φaδab

τ ¼ NτDNT ; NNT ¼ 1; ðτDÞab ¼ ωaδab

ð1:13Þ

When the self-duality equations (1.3) hold true, and
so (1.10) is valid, we have that the matrices h and τ
commute and so can be diagonalized simultane-
ously; i.e., M ¼ N, and the eigenvalues are
related by

φa ¼
1

jm0e0j
X3
b;c¼1

jεabcj
2

ffiffiffiffiffiffiffiffiffiffiffi
ωbωc

ωa

r
ð1:14Þ

or equivalently

ω1

φ2φ3

¼ ω2

φ1φ3

¼ ω3

φ1φ2

¼ m2
0e

2
0 ð1:15Þ

and so

ω1ω2

φ3

¼ ω1ω3

φ2

¼ ω2ω3

φ1

¼ m4
0e

4
0φ1φ2φ3

ω1φ1 ¼ ω2φ2 ¼ ω3φ3 ¼ m2
0e

2
0φ1φ2φ3 ð1:16Þ

(viii) The action (1.1) is invariant under the global
symmetry SUð2ÞL ⊗ SUð2ÞR defined by the trans-
formations

U → gLU; Ra
μ → dabðgLÞRb

μ;

hab → dacðgLÞhcddTdbðgLÞ ð1:17Þ

and

U → UgR; Ra
μ → Ra

μ; hab → hab ð1:18Þ

with gL=R ∈ SUð2ÞL=R, and where dðgÞ is the 3 × 3

matrix for the group element g in the adjoint (triplet)
representation of SUð2Þ, i.e.,

gTag−1¼TbdbaðgÞ; dðg1Þdðg2Þ¼dðg1g2Þ ð1:19Þ

In the self-dual model described above, the h fields are
not propagating as they enter into the action (1.1) through

the coupling to theU fields by contracting the group indices,
and there is not kinetic term for them. In this paper we want
to break the self-duality by adding kinetic and potential
terms for the h fields. Note that the 3 × 3 orthogonal matrix
M, diagonalizing h in (1.13), has three independent com-
ponents. Therefore, we can take the six scalar fields
assembled in the matrix h to be those three components
ofM and the three eigenvalues φa, a ¼ 1, 2, 3, introduced in
(1.13). The eigenvalues of h are invariant under the trans-
formations SUð2ÞL ⊗ SUð2ÞR, given in (1.17) and (1.18),
and the M fields are invariant under (1.18) and transform as
M → dðgLÞM under (1.17). In addition, the M fields are
scalars under the conformal group SOð3; 2Þ, and the φ fields
have conformal weight −1, i.e., δφa ¼ −Dφa [see item
(iv) above]. With such a decomposition of fields, a kinetic
term for the h fields takes the form Trð∂μhÞ2 ¼ ð∂μφaÞ2 þ
Trð½MT

∂μM; hD�Þ2. Since φa and MT
∂μM are invariant

under the chiral transformations SUð2ÞL ⊗ SUð2ÞR, given
in (1.17) and (1.18), we shall take an arbitrary linear
combination of those terms. So, we shall consider the theory

S ¼ S1 þ S2 ð1:20Þ

with S1 given in (1.1) and

S2 ¼
Z

d4x

�
μ20
2

�X3
a¼1

κað∂μφaÞ2 þ κ4Trð½MT
∂μM;hD�Þ2

�
− VðφÞ − β23

2
Trð1 −UÞ

�
ð1:21Þ

where μ0 and β3 are coupling constants of dimension of
mass and of mass2, respectively, and κa, a ¼ 1, 2, 3, 4 are
dimensionless parameters. The β3-term is a mass term for
the (pion) U fields.
If β3 ¼ 0, the action (1.21) is invariant under (1.17) and

(1.18). However, if β3 ≠ 0, the symmetry SUð2ÞL⊗SUð2ÞR
is broken to the diagonal subgroup gR ¼ g−1L ≡ g−1, i.e.,
U → gUg−1. The conformal symmetry of the static energy
associated to (1.21), i.e.,

E2 ¼
Z

d3x

�
μ20
2

�X3
a¼1

κað∂iφaÞ2 þ κ4Trð½MT
∂iM; hD�Þ2

�
þ VðφÞ þ β23

2
Trð1 −UÞ

�
ð1:22Þ

is broken by the β3-term, as U is a scalar under SOð3; 2Þ,
and so it does not compensate the transformation of the
volume d3x. The kinetic, and possible mass terms in V,
for the φa fields also break the conformal symmetry, as
the φa fields have conformal weight −1. The potential V
does not break the conformal symmetry only if it is cubic
in the φa fields.
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In this paper we shall break the self-duality only
partially, as we shall impose that the matrices h and τ still
commute [see (1.13)]

½h; τ� ¼ 0 ↔ M ¼ N: ð1:23Þ

Since (1.10) ceases to be true, we have that the eigenvalues
of h and τ will not be related by (1.14), (1.15), and (1.16)
anymore.
From (1.9) we see that the entries of the matrix τ are

functionals of the U fields and their first derivatives.
Consequently, the entries of the orthogonal matrix N
and the eigenvalues ωa, introduced in (1.13), are also
functionals ofU fields and their first derivatives. Therefore,
the condition (1.23) is saying that the three M fields are
determined from the U fields, in a way similar to that
in (1.10), where h is determined from the U fields, when
the full self-duality equations are valid. For that reason
we can consider (1.23) as a quasi-self-duality equation.
As we explain in Sec. II such a condition introduces nice
simplifications in the model.
There are some particular interesting cases of the full

theory (1.20) that break the self-duality in a soft manner, as
we discuss in Sec. III. In addition to the three quasi-self-
duality equations (1.23), one can impose algebraic relations
among the eigenvalues of the matrices h and τ, such that the
variation of the energy functional E1, with respect to the U
fields, becomes proportional to the variation of the topo-
logical charge, and so vanishes identically. In other words,
algebraic relations among the eigenvalues of h and τ solve
the part of the Euler-Lagrange equations associated to theU
fields, coming from E1. A further consequence of such
algebraic relations is that the matrix h becomes propor-
tional to the self-dual matrix hBPS given in (1.10). It then
follows that the variation of density of the energy functional
E1 with respect to the φ fields becomes proportional to the
variation of det h with respect to the same fields. Therefore,
we can solve the Euler-Lagrange equations associated to
the φ fields by restricting the energy functional E2 to
be proportional to det h, i.e., by restricting (1.22) to the
case where κa ¼ 0, a ¼ 1, 2, 3, 4, β3 ¼ 0, and V ¼
β2V
2
det h ¼ β2V

2
φ1φ2φ3, with βV a real dimensionless coupling

constant. So, the static energy of such model becomes

Equasi−sd¼
Z

d3x

�
m2

0

2
habRa

i R
b
i þ

1

4e20
h−1abH

a
ijH

b
ijþ

β2V
2
deth

�
:

ð1:24Þ

The model (1.24) has an exact self-dual sector where the
self-duality equation differs from (1.3) by a multiplicative
parameter, i.e., it is given by

λ

α
habRb

i ¼
1

2
εijkHa

jk; λ≡�m0e0 ð1:25Þ

where α is a monotonically decreasing function of the
strength βV of the potential, with α ¼ 1 for βV ¼ 0 (the
details are given in Sec. III).
Note that

R
d3x det h is invariant under conformal trans-

formations inR3. Therefore, such a soft manner of breaking
the self-duality preserves all the symmetries of the self-
dual Skyrme model (1.1), namely, the global symmetries
SUð2ÞL ⊗ SUð2ÞR defined by the transformations (1.17)
and (1.18), as well as the conformal symmetry in the three-
dimensional space. In addition, note that since h ¼ αhBPS,
with hBPS given in (1.10), the h fields still act as spectators
of theU fields, which in turn remain totally free. Therefore,
such a theory also leads to an infinite number of exact
topological solutions for any value of Q and extends the
results obtained in [14]. The total energy E ¼ E1 þ E2 is
proportional to jQj, but the proportionality constant is a
monotonic increasing function of βV , i.e., the strength of
the potential V.
In order to construct solutions for the full theory (1.20),

subjected to the quasi-self-duality equations (1.23), we
shall work with the so-called rational map ansatz [16–18]
for the U fields, which is described in Sec. IVA. In such an
ansatz, spheres of radius r, in the spatial submanifold R3,
are stereographically projected on a plane parametrized by
a complex coordinate w. The U fields are then given by a
profile function f, depending only on the radial distance r,
and a complex field uwhich is a holomorphic function of w
and a map between two-spheres. In such an ansatz, the first
two eigenvalues of the matrix τ, defined in (1.9), become
equal, and the third one is a function of the radial variable
only, i.e., ω1 ¼ ω2 and ω3 ¼ ω3ðrÞ.
As a consequence of the quasi-self-duality equa-

tions (1.23), the Euler-Lagrange equations for the M fields
become differential equations to be satisfied by the U
fields, in addition to their own Euler-Lagrange equations.
That would be a too restrictive condition on the U fields.
However, we observe that by imposing that the eigenvalues
of the matrix h depend only on the radial distance r, i.e.,
φa ¼ φaðrÞ, and in addition that the first two eigenvalues
are equal, i.e., φ1 ¼ φ2, we solve the Euler-Lagrange
equations for the M fields automatically. Under such
conditions the Euler-Lagrange equations of u and ū fields
are also automatically satisfied.
The drawback of that procedure is that only some special

configurations of the u field with unity topological degree
can be solutions of our quasi-self-dual model, inside the
holomorphic ansatz. Such fixing of the u field imposes
radial symmetry to the topological charge density and
restricts the construction of topological solutions with large
values of Q by choosing properly the boundary conditions
of the profile f function, which may lead to unstable static
solutions for jQj ≥ 2. However, the advantage of the
procedure is that we are left to solve only three ordinary
differential equations, which correspond to the Euler-
Lagrange equations for the profile function fðrÞ, and for
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the φ1ðrÞ (equal to φ2) and φ3ðrÞ fields. Those equations
are solved numerically using the gradient flow method to
minimize the static energy of the system.
Such an analysis of the static sector of the full theory

(1.20) is very important to study the effect of allowing the
scalar fields in the matrix h to be propagating fields. From
the results of Sec. IV C one observes, as the strength of the
kinetic and potential terms for the h fields increases, the
eigenvalues φa of the matrix h tend to grow at the origin
and to fall exponentially faster at large distances.
The paper is organized as follows. In Sec. II we obtain

all nine Euler-Lagrange equations for the static version
of (1.20) inside the quasi-self-dual ansatz (1.23). In Sec. III
we show how some special algebraic relations among the
eigenvalues of the matrices h and τ lead to an exact self-dual
sector of the model (1.24). In Sec. IV we consider the static
version of full theory (1.20), and in Sec. IVA we construct
a holomorphic ansatz for it, compatible with (1.23). In
Sec. IV B we analyze the Euler-Lagrange equations of (1.20)
within the holomorphic and (1.23) ansatz. The numerical
solutions of those equations are constructed in Sec. IVC for
a quadratic potential for the h fields. Our conclusions are
presented in Sec. V. Appendix A presents the proof of the
algebraic relations used in Sec. III, and Appendix B shows
why only the solutions with unity baryonic charge satisfy the
conditions of Sec. IVB. Appendix C presents some details
of our numerical methods.

II. THE QUASI-SELF-DUALITY

The static energy E1, defined in (1.4), can be written as

E1 ¼
Z

d3x

�
m2

0

2
TrðhτÞ þ 1

4e20
Trðh−1σÞ

�
ð2:1Þ

where τ is defined in (1.9), and where we have introduced
the matrix

σab ≡Ha
ijH

b
ij: ð2:2Þ

The quantities Ri ≡ i∂iUU† ≡ Ra
i Ta satisfy the Maurer-

Cartan equation ∂iRj − ∂jRi þ i½Ri; Rj� ¼ 0, and so we
have that

Ha
ij≡∂iRa

j −∂jRa
i ¼−i bTrð½Ri;Rj�TaÞ¼ εabcRb

i R
c
j : ð2:3Þ

Conjugating both sides of the commutation relations (1.2)
with an SUð2Þ group element g, and using (1.19), one gets
that

εabcddcðgÞ ¼ εdefdeaðgÞdfbðgÞ: ð2:4Þ

The adjoint representation of SUð2Þ is a real and unitary
representation, and so the matrices dðgÞ are orthogonal.
In fact, any orthogonal matrix with determinant 1 (−1) can

be identified with a given matrix dðgÞ ð−dðgÞÞ for some
g ∈ SUð2Þ. Therefore, the orthogonal matrices M and N
(as well as their transposes) satisfy (2.4) with a sign given
by detM ¼ �1, i.e.,

εabcMdcðgÞ ¼ detMεdefMeaðgÞMfbðgÞ ð2:5Þ

and a similar relation for N. So, using that fact, (2.3),
and (1.13) we get that

σab¼ εacdεbefτceτdf¼ εcdeεcdfωcωdNaeNT
fb¼ðNσDNTÞab

ð2:6Þ

where we have defined the matrix

ðσDÞab ¼
X3
c;d¼1

εcdaεcdbωcωd ð2:7Þ

which is diagonal

σD ¼ 2 diag: ðω2ω3;ω1ω3;ω1ω2Þ: ð2:8Þ

So, σ is diagonalized by the same orthogonal matrix N as τ,
and as a consequence of the condition (1.23) we have that

½h; τ� ¼ ½h; σ� ¼ ½τ; σ� ¼ 0: ð2:9Þ

Therefore, when considering variations with respect to the
M fields we have that

δðMÞh¼ ½δðMÞMMT;h�; and δðMÞh−1 ¼ ½δðMÞMMT;h−1�
ð2:10Þ

and so

δðMÞE1¼
Z

d3xTr

�
δðMÞMMT

�
m2

0

2
½h;τ�þ 1

4e20
½h−1;σ�

��
¼0:

ð2:11Þ

We then conclude that the Euler-Lagrange equations
associated to the M fields, coming from E1, are automati-
cally satisfied due to the condition (1.23) which leads to
(2.9). Therefore, the nontrivial Euler-Lagrange equations
associated to the M fields come from the κ4-term in E2,
defined in (1.22), and it is given by

∂i½hD; ½hD;MT
∂iM�� þ ½MT

∂iM; ½hD; ½hD;MT
∂iM��� ¼ 0:

ð2:12Þ

In addition, using (2.1) and (2.8) and the fact that we are
assuming that M ¼ N, we get that the variation of E1 with
respect to φa is given by
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δðφaÞE1 ¼
1

2e20

Z
d3x

�
m2

0e
2
0ωa −

1

2

X3
b;c¼1

jεabcj
ωbωc

φ2
a

�
δφa:

ð2:13Þ
Now, when considering variations with respect to the U

fields we have that δðUÞτ ¼ ½δðUÞNNT; τ� þ NδðUÞτDNT and
a similar relation for σ. Therefore, using (1.23), (2.8),
and (2.9), we get

δðUÞE1 ¼
Z

d3x

�
m2

0

2
TrðhDδðUÞτDÞ þ

1

4e20
Trðh−1D δðUÞσDÞ

�
¼ 1

2e20

Z
d3x

�
m2

0e
2
0

X3
a¼1

φaδ
ðUÞωa

þ 1

2

X3
a;b;c¼1

jεabcj
δðUÞðωbωcÞ

φa

�
ð2:14Þ

In addition, we have, from (1.22), that

δðUÞE2 ¼ −
β23
2

Z
d3xδðUÞTrðUÞ: ð2:15Þ

Consequently, the Euler-Lagrange equations associated to
the U fields, coming from E1 and E2, do not involve theM
fields.
Since M is a 3 × 3 orthogonal matrix, it follows that

MT
∂iM is a matrix in the adjoint representation of the

SUð2Þ Lie algebra. So, we can writeMT
∂iM ¼ iMa

i dðTaÞ
with dabðTcÞ ¼ iεacb. In addition one can show that

½hD; ½hD; dðTaÞ�� ¼
1

2

X3
b;c¼1

jεabcjðφb − φcÞ2dðTaÞ: ð2:16Þ

Therefore

Trð½MT
∂iM; hD�Þ2 ¼ −TrðMT

∂iM½hD; ½hD;MT
∂iM��Þ

ð2:17Þ

¼
X3

a;b;c¼1

jεabcjðφa − φbÞ2Mc
iM

c
i

ð2:18Þ

where we have used the fact that TrðdðTaÞdðTbÞÞ ¼ 2δab.
Consequently, the variation of E2, given in (1.22), with
respect to φa is

δðφaÞE2 ¼
Z

d3x

�
μ20

�
−κa∂2iφa

þ κ4
X3
b;c¼1

jεabcjðφa − φbÞMc
iM

c
i

�
þ δV
δφa

�
δφa:

ð2:19Þ

In some of our applications it will be useful to treat
the quantities Ra

i as a 3 × 3 matrix with the following
ordering of rows and columns: Ra

i ¼ ðRÞia, i ¼ 1, 2, 3, and
a ¼ 1, 2, 3. Therefore

εijkRa
i R

b
jR

c
k ¼ εabcεijkRi1Rj2Rk3 ¼ εabc detR: ð2:20Þ

Then, from (1.7) we have that

εijk bTrðRiRjRkÞ ¼ i3 det R: ð2:21Þ

But from (1.9) we have that det τ ¼ ðdetRÞ2. Therefore, the
topological charge (1.6) can be written as

Q¼ −
ε

16π2

Z
d3x

ffiffiffiffiffiffiffiffiffi
det τ

p
; detR¼ ε

ffiffiffiffiffiffiffiffiffi
det τ

p
; ε¼�1:

ð2:22Þ

Note that the eigenvalues of the matrix τ, given in (1.9), are
all non-negative since if va is an arbitrary real vector then

vTτv ¼
X3
i¼1

ðvaRa
i Þ2 ≥ 0: ð2:23Þ

The topological charge is invariant under any (homotopic)
smooth variation of the U fields, i.e., δðUÞQ ¼ 0, and
consequently the eigenvalues of τ have to satisfyZ

d3xδðUÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω3

p ¼ 0: ð2:24Þ

Such a relation will be very useful, in Sec. III, in the
construction of models that break the self-duality in a soft
manner.

III. THE FIRST TYPE OF QUASI-SELF-DUAL
MODEL

By considering the coefficient of δðUÞωa in (2.14), for
each value of a ¼ 1, 2, 3, we observe that if we impose

m2
0e

2
0φ1 þ

ω3

φ2

þ ω2

φ3

¼ Λ
ffiffiffiffiffiffiffiffiffiffiffi
ω2ω3

ω1

r
m2

0e
2
0φ2 þ

ω3

φ1

þ ω1

φ3

¼ Λ
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω3

ω2

r
m2

0e
2
0φ3 þ

ω2

φ1

þ ω1

φ2

¼ Λ
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

ω3

r
ð3:1Þ

with Λ being an arbitrary constant with dimension of mass,
which is non-negative since the eigenvalues φa and ωa,
a ¼ 1, 2, 3, are non-negative, then, as a consequence
of (2.24), (2.14) becomes
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δðUÞE1 ¼
Λ
e20

Z
d3xδðUÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1ω2ω3

p ¼ 0: ð3:2Þ

In other words, the algebraic relations (3.1) imply that the
part of the Euler-Lagrange equations associated to the U
fields, coming from E1, are satisfied. Therefore, if we drop
the pion mass term from (1.22), i.e., take β3 ¼ 0, we are left
to consider only the Euler-Lagrange equations associated
to the h fields. So, as far as the U fields are concerned,
the algebraic relations (3.1) play the same role, in the theory
(1.20), as the (differential) self-duality equations (1.3) in
the self-dual Skyrme model (1.1).
The solutions of the algebraic equations (3.1) are

constructed in Appendix A. There are basically three types
of solutions, but since we need the eigenvalues of the
matrix h to be positive, only one type is adequate for our
applications. It is given by

φa ¼
α

jm0e0j
X3
b;c¼1

jεabcj
2

ffiffiffiffiffiffiffiffiffiffiffi
ωbωc

ωa

r
ð3:3Þ

with α being related to Λ by

α¼1

2

 
Λ

m0e0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2

m2
0e

2
0

−8

s !
with Λ≥2

ffiffiffi
2

p
jm0e0j; α≥0:

ð3:4Þ

Note that (3.3) differs from (1.14) only by the factor α, and
one can check that (3.3), together with (1.23), imply that
the matrix h has the form

h ¼ αhBPS; with hBPS ¼
ffiffiffiffiffiffiffiffiffi
det τ

p

jm0e0j
τ−1: ð3:5Þ

Using the definition of τ in (1.9), one gets that (3.5) leads to

jm0e0jhacRc
i R

b
i ¼ α

ffiffiffiffiffiffiffiffiffi
det τ

p
δab →

jm0e0jhacRc
i ¼ α

ffiffiffiffiffiffiffiffiffi
det τ

p
ðR−1Þai: ð3:6Þ

Using (2.20) and (2.22), one gets that

1

2
εabcεijkRa

i R
b
j ¼ �

ffiffiffiffiffiffiffiffiffi
det τ

p
ðR−1Þck: ð3:7Þ

Combining (3.6) and (3.7) one gets that the h fields must
satisfy a generalized version of the self-dual equations (1.3)
given by

λhabRb
i ¼

α

2
εijkHa

jk; λ≡�m0e0 ð3:8Þ

where we have used (2.3).

Using (3.3) one gets that (2.13) becomes

δðφaÞE1 ¼
m2

0

2

Z
d3x

�
1 −

1

α2

�
ωaδφa

¼ m4
0e

2
0

2

Z
d3x

�
1 −

1

α2

�
1

α2
δ det h
δφa

δφa ð3:9Þ

where, in the last equality, we have used the fact that (3.3)
implies that

ω1

φ2φ3

¼ ω2

φ1φ3

¼ ω3

φ1φ2

¼ m2
0e

2
0

α2
: ð3:10Þ

Therefore, if we choose all the terms in E2, given in (1.22),
to vanish except for the potential term which we take to be
proportional to det h, i.e., we assume (1.24), we solve the
Euler-Lagrange equations associated to the φ fields. Using
the notation of (1.24) we then get that1

β2V ¼ m4
0e

2
0

�
1

α4
−

1

α2

�
; or

αðϑÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϑ

p
s

; with

ϑ≡ β2V
m4

0e
2
0

: ð3:11Þ

The Euler-Lagrange equations for the M fields, given
in (2.12), comes from the κ4-term in E2, given in (1.22).
Since we have dropped that term we do not have such an
equation in this model.
Therefore, the solutions of the modified self-duality

equations (3.8) are static solutions of the theory defined
by the following static energy functional:

Equasi−sd¼
Z

d3x

�
m2

0

2
habRa

i R
b
i þ

1

4e20
h−1abH

a
ijH

b
ijþ

β2V
2
deth

�
:

ð3:12Þ

We have then obtained an extension of the theory (1.4),
by the addition of a potential proportional to det h, which
admits an exact self-dual sector. The self-duality equations
for the two theories differ just by a multiplicative constant
in one of its two terms. Such a particular extension of the
BPS theory (1.4) preserves the conformal invariance in
three spacial dimensions as well the global symmetry
SUð2ÞL ⊗ SUð2ÞR defined by the transformations (1.17)
and (1.18).

1Note that there two solutions for α, namely, α2 ¼
2=ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ϑ
p Þ. But since α and ϑ are non-negative parame-

ters, α is reduced to (3.11).
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Using (2.22), one gets that the static energy (3.12)
evaluated on the solutions of the self-duality equations (3.8)
becomes

Equasi−sd ¼ 24π2
jm0j
je0j

�
αþ 1

α
þ ϑ

3
α3
�
jQj: ð3:13Þ

Writing (3.13) in terms of the BPS static energy EBPS
1 , given

in (1.5), and using (3.11) we obtain

Equasi−sd ¼ EBPS
1

ffiffiffi
2

p

3

2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϑ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ϑ
pp ; with

EBPS
1 ¼ 48π2

jm0j
je0j

jQj ð3:14Þ

which is monotonic increasing on ϑ. In addition, on
the weak coupling regime ϑ ≪ 1 the static energy (3.14)
becomes E ≈ EBPS

1 ð1þ ϑ=6 − ϑ2=8 þ Oðϑ3ÞÞ, and on
the strong coupling regime ϑ ≫ 1 we have E≈
EBPS
1 ð2ϑ1

4=3þ ϑ−
1
4=2 − ϑ−

3
4=16þOðϑ−5=4ÞÞ.

Therefore, the addition of a potential term proportional to
det h to the theory (1.1) does not really break the self-duality.
The self-duality equations (3.8), for the static theory (3.12),
differ from the self-duality equations (1.3) for the static
theory (1.4) by the replacement m0e0 → m0e0=α, with α
given by (3.11). Note from (3.11) that α ¼ 1 implies βV ¼ 0
and so the absence of a potential term. On the other hand, the
limit α → 0 corresponds to strong coupling, i.e., βV → ∞.
In addition, the lower bound on the static energy, saturated
by the self-dual solutions, grows monotonically with the
increase of the potential strength. Note that the U fields are
still totally free, as the h fields still act as spectators. Indeed,
given a U-field configuration, and so a τ matrix, the h fields
get determined in terms of U by Eq. (3.5).

IV. THE SECOND TYPE OF QUASI-SELF-DUAL
MODEL

We now consider the static theory E ¼ E1 þ E2, with E1

given by (1.4) and E2 by (1.22), assuming only the quasi-
self-duality condition (1.23). We shall construct a holo-
morphic ansatz for the U fields, involving a radial profile
function fðrÞ and a complex field u depending upon the
angles of the spherical polar coordinates.

A. The holomorphic ansatz

In order to construct an ansatz for the full theory (1.20)
we shall use the decomposition of the SUð2Þ group element
U in terms of a real scalar field f and a complex scalar
field u, together with its complex conjugate ū, as
follows [13,16,19]:

U ¼W†eifT3W with W ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ juj2

p �
1 iu

iū 1

�
: ð4:1Þ

Through (4.1) the Maurer-Cartan can be written as

Ri ¼ Ra
i Ta ¼ i∂μUU† ¼ −GΣiG† with G ¼ W†eifT3=2

ð4:2Þ

with

Σi ¼ ∂ifT3 þ
2 sin ðf=2Þ
1þ juj2 ½i∂iðu − ūÞT1 − ∂iðuþ ūÞT2�:

ð4:3Þ

From (4.2) we have that the matrix τ, defined in (1.9),
becomes

τab ¼ bTrðΣiG†TaGÞ bTrðΣiG†TbGÞ
¼ dTacðG†Þ bTrðΣiTcÞ bTrðΣiTdÞddbðG†Þ ð4:4Þ

where dTðG†Þ ¼ dðGÞ ¼ dðW†ÞdðeifT3=2Þ is the adjoint
representation of G†, which, using (1.19) and (4.2), gives

dðeifT3=2Þ ¼

0B@ cos f
2

sin f
2

0

− sin f
2

cos f
2

0

0 0 1

1CA ð4:5Þ

and

dðW†Þ

¼ 1

1þjuj2

0B@
1
2
ð2þu2þ ū2Þ 1

2
iðu2− ū2Þ iðu− ūÞ

1
2
iðu2− ū2Þ 1

2
ð2−u2− ū2Þ −ðuþ ūÞ

−iðu− ūÞ uþ ū 1− juj2

1CA:

ð4:6Þ

We now use spherical coordinates, but instead of using
the polar and azimuthal angles we stereographic project
the two-sphere on a plane and parametrize that plane by a
complex coordinate w together with its complex conjugate
w̄. So, we have the coordinate transformation

x1 ¼ r
−iðw− w̄Þ
1þ jwj2 ; x2 ¼ r

ðwþ w̄Þ
1þjwj2 ; x3 ¼ r

jwj2− 1

1þ jwj2
ð4:7Þ

where r is the radial distance. The Euclidean space metric
becomes

ds2 ¼ dr2 þ 4r2

ð1þ jwj2Þ2 dwdw̄ ð4:8Þ

and so
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d3x ¼ ffiffiffiffiffiffi
−g

p
drdwdw̄;

ffiffiffiffiffiffi
−g

p ¼ 2r2

ð1þ jwj2Þ2 : ð4:9Þ

We now use the holomorphic ansatz for the SUð2Þ fields
defined by

f ≡ fðrÞ; u≡ uðwÞ; ū≡ ūðw̄Þ ð4:10Þ

where uðwÞ is a map between two-spheres ðS2Þ. However,
for the uðwÞ field to be a well-defined map between
two-spheres it has to be a ratio of two polynomials, p1

and p2, with no common roots, i.e., the so-called rational
map [16–18]

uðwÞ ¼ p1ðwÞ
p2ðwÞ

: ð4:11Þ

A well-known feature of the rational map (4.11) is that its
algebraic degree, defined as the highest power of w in either
of the polynomials p1 and p2, corresponds exactly to its
topological degree n, which can be writhen in the integral
representation as

n ¼ 1

4π

Z
dΩq ¼ i

2π

Z
dw ∧ dw̄

jp2∂wp1 − p1∂wp2j2
ðjp1j2 þ jp2j2Þ2

ð4:12Þ

where Ω is the solid angle, and we use dΩ ¼ 2idw∧dw̄
ð1þjwj2Þ2 and

the following definition:

q≡ ð1þ jwj2Þ2
ð1þ juj2Þ2 ∂wu∂w̄ū: ð4:13Þ

The topological charge density ρ of (1.6) can be written
using (4.1), (4.10), and (4.13) as

ρ≡ i
48π2

εijk bTrðRiRjRkÞ¼−
f0ðrÞ
4π2

sin2 ðfðrÞ=2Þ
r2

q ð4:14Þ

and so due to (4.12) the topological charge (1.6) becomes

Q ¼
½f − sin f�fð0Þfð∞Þ

2π
n: ð4:15Þ

Note that due to (4.14) we get that signðQf0Þ ¼ −1 and
so (1.8) leads to

signðQÞ ¼ −signðλÞ ¼ −signðf0Þ: ð4:16Þ

As a consequence of the holomorphic ansatz (4.10),
the matrix bTrðΣiTaÞ bTrðΣiTbÞ becomes diagonal. Indeed,
from (4.3), (4.8), and (4.10), one gets that

ðτDÞab ≡ bTrðΣiTaÞ bTrðΣiTbÞ ¼ ωaδab ð4:17Þ

with

ω1 ¼ ω2 ¼
4sin2ðf=2Þ

r2
q ω3 ¼ ðf0Þ2 ð4:18Þ

where prime denotes derivatives with respect to r.
Comparing (1.13) and (4.4) we then conclude that

N ¼ dTðG†Þ ¼ dðGÞ ¼ dðW†ÞdðeifT3=2Þ: ð4:19Þ

B. The Euler-Lagrange equations

We start the analysis of the Euler-Lagrange equations, in
the holomorphic ansatz, by noticing that, if one considers u,
ū, ∂wu, and ∂w̄ū, as independent variables, then the quantity
q defined in (4.13) satisfies

δq
δu

− ð1þ jwj2Þ2∂w
�

1

ð1þ jwj2Þ2
δq
δ∂wu

�
¼ 0 ð4:20Þ

together with its complex conjugate.
From (4.18) we have that ω3 depends only on the radial

profile function fðrÞ, and ω1 and ω2 depend upon u and ū
through q only, and they are linear in q. Therefore, from
(2.14) we observe that the variation of E1 with respect to
the u field is

δðuÞE1 ¼
1

2e20

Z
d3xω̂ðrÞ

�
m2

0e
2
0ðφ1 þ φ2Þ

þ ω3ðrÞ
�
1

φ1

þ 1

φ2

�
þ 2ω̂ðrÞ q

φ3

�
δðuÞq ð4:21Þ

where, following (4.18), we have defined

ω̂ðrÞ≡ 4 sin2 ðf=2Þ
r2

: ð4:22Þ

Consequently, if we consider the ansatz

φ1 ¼ φ1ðrÞ; φ2 ¼ φ2ðrÞ; φ3 ¼ φ̂3ðrÞq ð4:23Þ

we get, using (4.9), that (4.21) vanishes as a consequence
of (4.20). For the same reasons one gets that δðūÞE1 ¼ 0.
From (4.1) we see that TrU does not depend upon the fields
u and ū. Therefore, from (4.26) we get that

δðuÞE2 ¼ δðūÞE2 ¼ 0: ð4:24Þ

So, the conditions (4.23) are sufficient for the Euler-
Lagrange equations, associated to the u and ū fields, to
be satisfied within the holomorphic ansatz (4.10).
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Using (4.22) and (4.23) one gets from (2.14) that

δðfÞE1 ¼
1

2e20

Z
d3x

�
m2

0e
2
0ðφ1 þ φ2ÞδðfÞω̂

þ
�
1

φ1

þ 1

φ2

�
δðfÞðω̂ω3Þ

þm2
0e

2
0φ̂3δ

ðfÞω3 þ
δðfÞω̂2

φ̂3

�
q: ð4:25Þ

As q factors out, one observes that the variation E1 with
respect to the profile function f leads to a radial equation
for it. However, from (4.26) and (4.1) one gets that

δðfÞE2 ¼
β23
2

Z
d3x sin

�
f
2

�
: ð4:26Þ

Therefore, for β3 ≠ 0, one has to impose that q must be a
constant, in order to get a radial equation for f.

Let us now analyze the Euler-Lagrange equations for
the M fields given in (2.12). Our quasi-self-dual condition
(1.23) requires M ¼ N, and so (2.12) becomes, in fact,
equations for theU fields. We do not want theU fields to be
subjected to additional equations, besides their own Euler-
Lagrange equations. Therefore, we want (2.12) to be solved
automatically by the holomorphic ansatz, supplemented by
some extra conditions. From (4.19) and the holomorphic
ansatz (4.10) for the U fields we obtain

NT
∂rN ¼ i

2
f0dðT3Þ

NT
∂wN ¼ 1

1þjuj2 ½−ū∂wudðT3Þ− ie−if=2∂wudðT1þ iT2Þ�

NT
∂w̄N ¼ 1

1þjuj2 ½u∂w̄ūdðT3Þ− ieif=2∂w̄ūdðT1− iT2Þ�

ð4:27Þ
where we have used the fact that dabðTcÞ ¼ iεacb.
Therefore, using (2.16), we get that

½hD; ½hD; NT
∂rN�� ¼ i

2
f0ðφ1 − φ2Þ2dðT3Þ

½hD; ½hD;NT
∂wN�� ¼ 1

1þ juj2 ½−ū∂wuðφ1 − φ2Þ2dðT3Þ − ie−if=2∂wu½ðφ2 − φ3Þ2dðT1Þ þ iðφ1 − φ3Þ2dðT2Þ��

½hD; ½hD;NT
∂w̄N�� ¼ 1

1þ juj2 ½u∂w̄ūðφ1 − φ2Þ2dðT3Þ − ieif=2∂w̄ū½ðφ2 − φ3Þ2dðT1Þ − iðφ1 − φ3Þ2dðT2Þ��: ð4:28Þ

It then follows that

∂r½hD; ½hD; NT
∂rN�� þ ½NT

∂rN; ½hD; ½hD; NT
∂rN���

¼ i
2
ðf0ðφ1 − φ2Þ2Þ0dðT3Þ:

But that involves first and second derivatives of the profile
function f, which cannot be canceled by the remaining
terms of (2.12). Therefore, we shall impose, besides (4.23),
the condition φ1ðrÞ ¼ φ2ðrÞ. One can then check that all
the terms in (2.12) vanish except for those involving w
and w̄ derivatives of the φ3 field. Considering the form of
φ3, given in (4.23), those derivatives do not cancel each
other unless we assume that q is constant. However, as
shown in Appendix B the only rational maps (4.11) that
lead to a constant value of q have the form u ¼ eiαw or

u ¼ βðw−jβj−1eiαÞ
wþjβjeiα , where α is a real constant contained in the

interval ½0; 2πÞ and β is an arbitrary complex constant with
β ≠ 0. Note that both of these rational maps leads to q ¼ 1.
Therefore, we are lead to consider the following ansatz for
the φ fields:

φ1 ¼ φ2 ≡ φ1ðrÞ; φ3 ¼ φ3ðrÞ ð4:29Þ

and for the u fields

u¼eiαw or u¼βðw− jβj−1eiαÞ
wþjβjeiα ; and so q¼1: ð4:30Þ

Note that imposing that q must be constant is equivalent to
imposing that the topological charge density inside the
holomorphic ansatz, as given in (4.14), must have radial
symmetry. For the rational maps (4.30), which have
topological degree n ¼ 1, the topological charge (4.15)
becomes

Q ¼
½f − sin f�fð0Þfð∞Þ

2π
: ð4:31Þ

Summarizing, using the holomorphic ansatz (4.10)
together with the conditions (4.29) and (4.30) we get that
the Euler-Lagrange equations for theM, u, and ū fields are
automatically satisfied. We are then left with three radial
equations which are the Euler-Lagrange equations for the
profile function f and for the φ fields.

L. A. FERREIRA and L. R. LIVRAMENTO PHYS. REV. D 106, 045003 (2022)

045003-10



The Euler-Lagrange equation for f is given by

m2
0

�
1

r2
∂rðr2φ3f0Þ − 2φ1

sin f
r2

�
−
β23
2
sin ðf=2Þ þ 1

e20

�
1

r2
∂r

�
8sin2ðf=2Þ

φ1

f0
�
−
16sin3ðf=2Þ cos ðf=2Þ

r4φ3

−
2 sin fðf0Þ2

r2φ1

�
¼ 0:

ð4:32Þ

The Euler Lagrange equations for the φ1 ¼ φ2 and φ3 fields are, respectively,

μ20
r2

½κ1∂rðr2φ0
1Þ − κ42ðφ1 − φ3Þ� −

δV
δφ1

−m2
0

2sin2ðf=2Þ
r2

�
1 −

1

m2
0e

2
0

ðf0Þ2
φ2
1

�
¼ 0 ð4:33Þ

and

μ20
r2

½κ3∂rðr2φ0
3Þ þ κ44ðφ1 − φ3Þ� −

δV
δφ3

−
m2

0

2

�
ðf0Þ2 − 16sin4ðf=2Þ

m2
0e

2
0r

4φ2
3

�
¼ 0: ð4:34Þ

Because of the condition (4.29) we had to assume that the
potential V is symmetric under the exchange φ1 ↔ φ2, and
that the coupling constants κ1 and κ2, introduced in (1.22),
are the same.
In the next section we show how to solve numerically

those three radial equations.

C. Numerical solutions for a quadratic potential V

Consider the static sector of the theory (1.20) with

V ¼ β2
1

2
Trh2 ¼ β2

1

2

P
3
a¼1 φ

2
a, and κα ¼ 1, α ¼ 1, 2, 3, 4.

As we are working with the ansatz (1.23), (4.10), (4.29),
and (4.30), we shall be concerned with configurations of
unity topological charge only. Therefore, we shall measure
the energy in units of 48π2 jm0j

je0j . That means that the BPS
energy (1.5) of the self-dual configurations (1.10) becomes
EBPS
1 ¼ 1, for Q ¼ 1. We shall measure length in units of

μ20=ðm3
0e0Þ, and rescale the h fields, and so the φ fields, by

the dimensionless factor m2
0=μ

2
0. Therefore, using (1.4) and

(1.22) the total static energy can be rewritten, in terms of
the new units, as

E ¼ 1

96π2

Z
d3x

�
habRa

i R
b
i þ

1

2
h−1abH

a
ijH

b
ij þ Trð∂ihÞ2 þ σ1Trðh2Þ þ σ2Trð1 −UÞ

�
ð4:35Þ

with

σ1 ¼
μ20β

2
1

m6
0e

2
0

; σ2 ¼
μ20β

2
3

m6
0e

2
0

: ð4:36Þ

The Euler-Lagrange equations (4.32), (4.33), and (4.34)
become, respectively,

ΔEf ≡ 1

r2
½∂rðr2AÞ þ 2B sinðfÞ� þ σ2

2
sin ðf=2Þ ¼ 0;

ð4:37Þ

ΔEφ1
≡ φ00

1 þ
2

r
φ0
1 −

2

r2
ðφ1 − φ3Þ − σ1φ1

−
2

r2
sin2ðf=2Þ

�
1 −

ð∂rfÞ2
φ2
1

�
¼ 0; ð4:38Þ

ΔEφ3
≡ φ00

3 þ
2

r
φ0
3 þ

4

r2
ðφ1 − φ3Þ − σ1φ3

−
1

2
ðf0Þ2

�
1 −

16sin4ðf=2Þ
r4φ2

3ð∂rfÞ2
�
¼ 0; ð4:39Þ

where

A≡ −∂rf
�
φ3 þ

8sin2ðf=2Þ
r2φ1

�
;

B≡ φ1

�
1þ ð∂rfÞ2

φ2
1

þ 4sin2ðf=2Þ
r2φ1φ3

�
: ð4:40Þ

Inside ansatz (1.23), (4.10), (4.29), and (4.30) the static
energy (4.35) is reduced to

E¼E1þE2; E1¼E2þE4; E2¼EhþEσ1 þEσ2 ð4:41Þ
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with

E2≡ 1

96π2

Z
d3xhabRa

i R
b
i ¼

1

12π

Z
drr2

�
φ3ð∂rfÞ2

2
þφ1

4sin2 f
2

r2

�
E4≡ 1

192π2

Z
d3xh−1abH

a
ijH

b
ij¼

1

12π

Z
drr2

�
4sin2 f

2

r2

�ð∂rfÞ2
φ1

þ2sin2 f
2

r2φ3

��
Eh≡ 1

96π2

Z
d3xTrð∂ihÞ2¼

1

12π

Z
drr2

�
ð∂rφ1Þ2þ

ð∂rφ3Þ2
2

þ2ðφ1−φ3Þ2
r2

�
Eσ1 ≡

σ1
96π2

Z
d3xTrðh2Þ¼ σ1

12π

Z
drr2

�
φ2
1þ

φ2
3

2

�
Eσ2 ≡

σ2
96π2

Z
d3xTrð1−UÞ¼ σ2

12π

Z
drr2

�
1−cos

f
2

�
: ð4:42Þ

The stability of the solutions of (4.37)–(4.39) under
the scale Derrick’s argument [20,21] imposes relations only
between the terms of E2, since E1 is conformal invariant in
three spatial dimensions. Indeed, since the h fields have
conformal weight −1 by the scaling transformation
x → αx, these fields must transform as h → α−1h, and
so the E2 terms of (4.41) transform as Eh → α−1Eh,
Eσ1 → αEσ1 and Eσ2 → α3Eσ2 . Therefore, the stable solu-
tions under the Derrick’s argument need to satisfy

−Eh þ Eσ1 þ 3Eσ2 ¼ 0; Eh þ 3Eσ2 > 0: ð4:43Þ

The inequality of (4.43) is automatically satisfied and the
first relation imposes that the dimensionless quantity

Derrick≡ j − Eh þ Eσ1 þ 3Eσ2 j
E2

ð4:44Þ

must be zero. Note that the term E2 in the denominator
of the lhs of (4.44) prevents unstable solutions of
(4.37)–(4.39) from leading to small values of the quantity
(4.44) under the weak coupling regime E2 ≪ E1, where all
the terms Eh, Eσ1 , and Eσ2 are small.
The simplest topological solutions that we can construct

are those with Skyrme charge Q ¼ 1, and due to (4.31)
we shall impose the boundary conditions fð0Þ ¼ 2π and
fð∞Þ ¼ 0. So, expanding (4.37), (4.38), and (4.39) in
Taylor series at r ¼ 0 we obtain

TABLE I. The quantities (4.41), (4.42), and (4.44) associated with the solutions of Eqs. (4.37)–(4.39) with Q ¼ 1 for some values
of σ1 and σ2.

Nc σ1 σ2 E Derrick E2 E4 Eh Eσ1 Eσ2

i 0.25 0.25 1.26924 2.48 × 10−3 0.35860 0.70973 0.12606 0.04950 0.02535
ii 0.50 0.50 1.32700 3.11 × 10−3 0.33712 0.75577 0.14222 0.06711 0.02479
iii 1.00 1.00 1.39771 8 × 10−5 0.31419 0.81127 0.15982 0.08873 0.02370
iv 2.00 2.00 1.48360 3.3 × 10−4 0.29045 0.87773 0.17945 0.11419 0.02179
v 4.00 4.00 1.58693 1.3 × 10−4 0.26657 0.95620 0.20139 0.14342 0.01934
vi 0.25 4.00 1.37545 1.1 × 10−4 0.34137 0.76872 0.18433 0.02934 0.05167
vii 4.00 0.25 1.56171 7 × 10−5 0.26615 0.95056 0.17531 0.16689 0.00280

TABLE II. The thicknesses of solutions with Q ¼ 1 of Eqs. (4.37)–(4.39), the size of the lattice rmax, and the quantities ðE1 − 1Þ and
E4=E2 for the values of σ1 and σ2 from Table I.

Nc i ii iii iv v vi vii

tf 0.99040 0.77787 0.60444 0.46323 0.35029 0.53182 0.41235
tφ1

1.23552 0.96684 0.74737 0.56949 0.42818 0.71016 0.48892
tφ3

1.13680 0.89573 0.69698 0.53423 0.40373 0.64507 0.46551
rmax 25 25 14 14 14 25 14
E1 − 1 0.06832 0.09289 0.12547 0.16817 0.22277 0.11010 0.21671
E4=E2 1.9792 2.2418 2.5821 3.0220 3.5870 2.25188 3.5716
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∂
2
rfð0Þ ¼ ∂

4
rfð0Þ ¼ 0; ∂rφað0Þ ¼ ∂

3
rφað0Þ ¼ 0;

φ1ð0Þ ¼ φ3ð0Þ ð4:45Þ

with a ¼ 1, 3. We use the gradient flow method with
adaptive step size to minimize the static energy (4.41)
and to get the solutions of (4.37)–(4.39) with Q ¼ 1, as
described in Appendix C. The coordinate r lies in the
interval ½0; rmax�, where rmax is the size of the lattice. Table I
shows the energies (4.42) corresponding to the solutions of
(4.37)–(4.39) for some pairs of values of σ1 and σ2 labeled
by an index Nc. The highest value of (4.44) is 3.11 × 10−3,
which means that on all numerical solutions presented in
the Tables I and II the term j − Eh þ Eσ1 þ 3Eσ2 j of (4.43) is
equal to or less than 0.311% of E2. So, the relation (4.43)
imposed by the Derrick’s scale argument is satisfied with
quite good precision.
The numerical solutions of fðrÞ and φaðrÞ obtained for

all parameters of Table I are monotonically decreasing (see
examples in Figs. 1–3). The amplitude φað0Þ of the
eigenvalues of h and the thickness t for each of the fields,
defined as the value of r for which the field reaches half of
its value at r ¼ 0, are given in Table II. On Table II and in
Fig. 1 we can see that the thickness of f decreases when σ2
grows and the U fields becomes more massive. The same

follows for the φa fields when σ1 grows and the h fields
becomes more massive, but in contrast their amplitude
increases (see Figs. 1 and 3).
The quadratic and quartic terms of (1.4) in the spatial

derivatives become the same for the self-dual configurations
(1.10) [see (1.12)], and so in the units defined above we
must have EBPS

2 ¼ EBPS
4 ¼ 1=2. In additional, any solutions

of (4.37)–(4.39) must satisfy the Bogomolny bound
E1 ≥ EBPS

1 ¼ 1, which has its lower bound saturated by
(1.10) (see Table II). The self-dual solutions (1.10) are
conformally invariant inR3 and possesses an infinite number
of exact solutions for each value of Q, and so we cannot
directly compare the shape of the BPS configurations with
the solutions of (4.37)–(4.39). However, we can use the
quantity ðE1 − 1Þ and the ratio E4=E2 to measure how far the
static solutions of the full theory (4.35) are from the self-dual
sector of the BPS Skyrme model (1.1). Indeed, from Table I
we see that these two quantities tend to increase, getting
farther and farther from 1, when either σ1 or σ2 grow and are
more sensitive to σ1 than σ2.

V. CONCLUSION

We have proposed extensions of the Skyrme model (1.1)
that allow the breaking of its self-dual sector in a soft manner.
The self-duality equations (1.3) impose that thematrix hmust
be proportional to thematrix τ, as shown in (1.10). Therefore,
the two matrices are diagonalized by the same orthogonal
matrix M, see (1.13), and their eigenvalues are related by
(1.14). We extend the theory (1.1) by introducing kinetic and
potential terms for the h fields, and impose that thematrices h
and τ should still be diagonalized by the same orthogonal
matrix M. These are our conditions (1.23), which we call
quasi-self-duality equations.
We study two distinct cases of the breaking of the self-

duality equations. The first one comes from the observation
that by imposing algebraic relations among the eigenvalues
of the matrices h and τ, given in (3.1), one gets that the part
of the Euler-Lagrange equations associated to the U fields,
coming from E1, given in (1.4), is automatically satisfied,
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σ1 = σ2 = 1.00
σ1 = σ2 = 4.00

FIG. 1. The fðrÞ-field solution of (4.37)–(4.39) corresponding
to Q ¼ 1 for σ1 ¼ σ2 ¼ 0.25, 1.00, 4.00.
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FIG. 2. The φ1ðrÞ-field solution of (4.37)–(4.39) corresponding
to Q ¼ 1 for σ1 ¼ σ2 ¼ 0.25, 1.00, 4.00.
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FIG. 3. The φ3ðrÞ-field solution of (4.37)–(4.39) corresponding
to Q ¼ 1 for σ1 ¼ σ2 ¼ 0.25, 1.00, 4.00.
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since the variation of E1 becomes proportional to the
variation of the topological charge, as shown in (3.2).
The other observation is that the variation of E1 with
respect to the φ fields is proportional solely to the variation
of det h. Therefore, choosing E2 to contain just a potential
term proportional to det h, one solves the Euler-Lagrange
equations for the φ and U fields. We are then led to the
theory (3.12), which is shown to possess an exact self-dual
sector. The corresponding self-duality equations are given
in (3.8), and they differ from the original self-duality
equations (1.3) by a constant α which is a monotonically
decreasing function of the strength of the potential propor-
tional to det h. The theory (3.12) has the same global
symmetry SUð2ÞL ⊗ SUð2ÞR, as (1.1), and it is also
conformally invariant in the three-dimensional spatial
submanifold R3. In addition, the static energy of the
self-dual solutions is proportional to the topological charge
Q, and the proportionality constant grows with the strength
of the potential det h. As in the original theory (1.1), the h
fields act as spectators in the sense that, given a configu-
ration for the U fields, they adjust themselves to solve the
self-duality equations. It is remarkable that a theory like
(3.12) possesses an exact self-dual sector. That may lead to
new interesting applications, especially for nuclear matter
as was done in [15] for the theory (1.1).
The second way of breaking the self-duality of the theory

(1.1), but respecting the quasi-self-duality equations (1.23),
is by introducing kinetic and potential terms for the φ fields.
In order to study such a case we use the holomorphic ansatz
for the U fields, given in (4.1) and (4.10). As a consequence
of (1.23), the Euler-Lagrange equations for the M fields
become extra conditions for the U fields to satisfy. In order
to avoid such strongly restricting conditions, we solve the
equations for the M fields by imposing conditions on the φ
and u fields. We find that all three eigenvalues φa have to
depend only on the radial distance r, φ1 and φ2 have to be
equal, and the complex u field has to correspond to
configurations of unity topological charge. Those conditions
are given in (4.29) and (4.30). In order to construct the
solutions we have to solve therefore just three ordinary
differential equations, corresponding to the Euler-Lagrange
for the profile function fðrÞ and for the eigenvalues φ1ðrÞ
and φ3ðrÞ, of the matrix h. Those equations are solved
numerically using the gradient flow method to minimize the
static energy of the system. We perform the simulations for a
potential which is quadratic in the φ fields, i.e., proportional
to Trh2. Qualitatively, the solutions look similar to the self-
dual solutions. However, the profile function fðrÞ and the
fields φ1ðrÞ and φ3ðrÞ decay exponentially faster, at large
distances, with the increase of the coupling constants
associated to the kinetic and potential terms of the h fields.
In addition, φ1ðrÞ and φ3ðrÞ grow at the origin with the
increase of those same constant constants.
The results we have obtained may shed some light on

the structures underlying the self-duality in models of

type (1.1). It would be interesting to generalize our results
by breaking completely the self-duality, i.e., by not
imposing (1.23), and construct solutions with topological
charges higher than unity, by performing three-dimensional
numerical simulations to minimize the static energy. That
could help to understand better the role of the h fields.
In addition, it could help to improve the applications to
nuclear matter done in [15], by performing the breaking
of the self-duality with the introduction of kinetic and
potential terms for the h fields.
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APPENDIX A: THE SOLUTIONS OF (3.1)

Let us introduce the quantities

α1 ¼ m0e0φ1

ffiffiffiffiffiffiffiffiffiffiffi
ω1

ω2ω3

r
; α2 ¼ m0e0φ2

ffiffiffiffiffiffiffiffiffiffiffi
ω2

ω1ω3

r
;

α3 ¼ m0e0φ3

ffiffiffiffiffiffiffiffiffiffiffi
ω3

ω1ω2

r
; β ¼ Λ

m0e0
: ðA1Þ

Then, Eq. (3.1) can be written as

α1þ
1

α2
þ 1

α3
¼β; α2þ

1

α1
þ 1

α3
¼β; α3þ

1

α1
þ 1

α2
¼β:

ðA2Þ

Subtracting Eq. (A2) in pairs we observe that

α1 −
1

α1
¼ α2 −

1

α2
¼ α3 −

1

α3
: ðA3Þ

In addition, we can write (A2) as

βα1α2 − α1 − α2 ¼ βα2α3 − α2 − α3

¼ βα1α3 − α1 − α3 ¼ α1α2α3: ðA4Þ

Again, subtracting the relations (A4) in pairs we get that

ðβα1 − 1Þðα2 − α3Þ ¼ 0; ðβα2 − 1Þðα1 − α3Þ ¼ 0;

ðβα3 − 1Þðα1 − α2Þ ¼ 0: ðA5Þ

Such equations have three types of solutions:
(1) If we take α1 ¼ α2 ¼ 1=β, then all three Eqs. (A5)

are satisfied. Then (A4) imposes that α3 ¼ −β.
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Doing cyclic permutations of the indices we get
three solutions

α1 ¼ α2 ¼
1

β
and α3 ¼ −β

α1 ¼ α3 ¼
1

β
and α2 ¼ −β

α2 ¼ α3 ¼
1

β
and α1 ¼ −β ðA6Þ

(2) By taking three αa’s equal to 1=β we solve all three
Eqs. (A5). Then (A4) imposes that β2 ¼ −1. So we
get the solution

α1 ¼ α2 ¼ α3 ¼ �i β ¼∓ i ðA7Þ
which is a particular case of (A6).

(3) Finally by taking α1 ¼ α2 ¼ α3 ≡ α we solve all
three Eqs. (A5). Then (A4) leads to

αðα2 − βαþ 2Þ ¼ 0: ðA8Þ
The solution α ¼ 0 should be discarded since
from (A1), it would imply φa ¼ 0, and so a vanish-
ing h matrix. Therefore, we get two solutions

α1 ¼ α2 ¼ α3 ¼
1

2

�
β �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 8

q �
¼

ffiffiffi
2

p �
γ �

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q �
; β ¼ 2

ffiffiffi
2

p
γ: ðA9Þ

Note that, if we consider γ real, we have

γ≥1→γþ
ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

q
≥1 and 0≤γ−

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

q
≤1

γ≤−1→γ−
ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

q
≤−1 and −1≤γþ

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

q
≤0:

Therefore, αa can take any non-negative real value
when γ ≥ 1, and any nonpositive real value when
γ ≤ −1. For −1 ≤ γ ≤ 1 we write γ ¼ cos θ, with
0 ≤ θ ≤ π. Then

γþ
ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

q
¼eiθ; and γ−

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

q
¼e−iθ: ðA10Þ

Therefore, α1¼α2¼α3¼
ffiffiffi
2

p
eiθ, with 0 ≤ θ ≤ 2π.

If we consider γ complex, then the αa’s can, in
principle, be any complex number.

As argued in (2.23), all three eigenvalues ωa of the τ
matrix are non-negative. Therefore, the solutions (A6)
impose that, if β > 0, one eigenvalue φa of the h matrix
is negative, and, if β < 0, that two eigenvalues are negative.
That implies that the energy E1 is not positive definite.
On the other hand, the solutions (A7) imply that the
eigenvalues φa of the h matrix are pure imaginary and
so E1 is pure imaginary too.

APPENDIX B: THE RATIONAL MAPS
THAT LEAD TO q = const:

In this section we will prove that the only rational
map (4.11) for which the functional qðw; w̄Þ, defined
in (4.13), is constant corresponds to (4.30). Using (4.11)
in (4.13) we obtain

qðw; w̄Þ ¼ Aðw; w̄Þ2jWðwÞj2 ≥ 0; with

Aðw; w̄Þ≡ 1þ jwj2
jp1j2 þ jp2j2

; ðB1Þ

wherewe introduced theWronskianW≡p2dwp1−p1dwp2.
The topological degree n of the u field corresponds exactly
with the highest power of w in either of the polynomials p1

and p2, as mentioned in Sec. II, and so n ≥ 1. Because of its
definition, if bothp1 andp2 are polynomials of degreen, then
the term of order nðn − 1Þ of theWronskian will vanish, and
therefore W is a polynomial of degree nðn − 2Þ or less. In
addition, the denominator of (B1) satisfies jp1j2 þ jp2j2 > 0
for all values of w and w̄, since p1 and p2 has no common
roots. So, it follows from (B1) that qðw; w̄Þ vanishes only
for the values of w that corresponds with the roots of the
Wronskian. Therefore, if W has roots, then q cannot be
constant. On the other hand, if the polynomialW has no root,
then it must be constant, i.e., the rational map (4.11) must
satisfy the condition

WðwÞ ¼ const: ðB2Þ
However, the constant of (B2) cannot be zero, otherwise q
will vanish and the same goes for n, which is written in the
integral representation in (4.12). So it follows from (B2)
and (B1) that if q ¼ const: the function A, which is positive
and finite due the definition (B1), must also be constant.
Suppose that m1 and m2 are, respectively, the degrees of

p1ðwÞ and p2ðwÞ, and let us define m≡max ðm1; m2Þ.
Since the algebraic degree of u is equal to m, i.e., m ¼ n,
we get from (B1) that

A ∼ jwj−2ðn−1Þ for jwj ≫ 1: ðB3Þ
Therefore, the function A cannot be constant for every
value of n ≥ 2. Since q is symmetric by exchange
p1 ↔ p2, the most general rational map u that can be
considered with n ¼ 1 is given by

p1 ¼ βðw − aÞ and p2 ¼ ðw − bÞl; ðB4Þ
where l ¼ 0, 1, the parameters a, b, β are complex
numbers, and β ≠ 0. In addition, since p1 and p2 do not
have common roots, so a ≠ b for l ¼ 1. The quantity
Aðw; w̄Þ of (B1) is the ratio between two polynomials in w
and w̄, with crossed terms. So, since A is constant we can
write (B1) as a polynomial equation and we must consider
two distinct cases:
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(1) The rational map uðwÞ ¼ p1ðwÞ=p2ðwÞ constructed
by the relation (B4) with l ¼ 0. It then follows from
(B1) and (B4) that A will be constant if and only if
the following polynomial equation is satisfied:

1þ ww̄ ¼ Að1þ jβj2jaj2 þ jβj2ðww̄ − aw̄ − āwÞÞ:
ðB5Þ

Note that the quantities w and w̄ are independent. It
results from (B5) that a ¼ 0, jβj ¼ 1. and A ¼ 1,
and therefore

u ¼ eiαw; ∀ α ∈ ½0; 2πÞ; ðB6Þ
with the phase α being constant in the physical
space. Such a phase was already expected since the
function (4.13) has a Uð1Þ global symmetry due to
its invariance by the transformations u → eiαu and
ū → e−iαū. Note that for the rational map (B6) the
Wronskian is the phase itself, i.e., W ¼ eiα, and
therefore satisfies the condition (B2). In addition,
due to the definition (B1), the rational map (B6)
implies q ¼ 1.

(2) The rational map uðwÞ ¼ p1ðwÞ=p2ðwÞ constructed
by the relation (B4) with l ¼ 1. It then follows from
(B1) and (B4) that A will be constant if and only if
the following polynomial equation is satisfied:

1þ ww̄ ¼ A½ðjbj2 þ jβj2jaj2Þ þ ð1þ jβj2Þww̄
− ðbþ ajβj2Þw̄ − ðb̄þ ājβj2Þw�; ðB7Þ

where a ≠ b, which can be written also as

1 ¼ Að1þ jβj2Þ
0 ¼ jβj2aþ b ðB8Þ

1 ¼ Aðjβj2jaj2 þ jbj2Þ: ðB9Þ

Note that since a, b, β are complex numbers and A is
a real number, then the system of algebraic equa-
tions (B8) has only four real equations for fixing
seven real variables. The first and second lines of
(B8) lead to A ¼ 1

1þjβj2 and b ¼ −ajβj2, respectively.
Using such relations, the third line of (B8) leads to
jaj ¼ jβj−1, or equivalently jbj ¼ jβj. Writing a in
the polar form a ¼ jβj−1eiα we have that

p1¼βðw− jβj−1eiαÞ; p2¼wþjβjeiα; A¼ 1

1þjβj2
ðB10Þ

with the phase α being again a constant in the
physical space. Note that due to (B10) the poly-
nomials p1 and p2 do not have common roots and
the Wronskian is a complex constant of nonzero

modulus, i.e., W ¼ β
jβj e

iαð1þ jβj2Þ. However, due
to (B1) all the rational maps of the form (B10) also
lead to q ¼ 1.

It is concluded that only the rational maps (B6) and (B10)
satisfy the condition q ¼ const, and for such maps this
constant is determined and we obtain q ¼ 1.

APPENDIX C: THE GRADIENT FLOW
METHOD APPLIED TO MINIMIZE THE

STATIC ENERGY (4.35)

In this appendix we will discuss the numerical method
used in Sec. IV C. We use the gradient flow method with
adaptive step size to minimize the static energy (4.41) and
to get the solutions of the equations of motion (4.37)–(4.39)
with Q ¼ 1. The range of r considered is ½0; rmax�,
where the value of rmax, and so the size of the lattice,
can depend of σ1 and σ2 and is chosen to ensure that
0 < φaðrmaxÞ < 8 × 10−7, fðrmaxÞ < 4 × 10−8. The inter-
val between neighboring points is Δr ¼ 0.005 and the grid
has p ¼ rmax=Δr points parametrized by an integer k,
where we replace r → Δrk.
We use the discrete version of the equations of motion

(4.37)–(4.39) and the energies (4.42), where the first and
second derivatives are given by the central formula of
fourth order and the integrals are computed with the
trapezoidal rule. In particular, at k ¼ 1 and k ¼ p − 2
the derivatives are calculated with the central formula of
second order and at k ¼ p − 1 we use the first order
backward difference formula.2

The gradient flow method will start with a field con-
figuration with finite energy, called seed configuration,
chosen as the discrete version of the self-dual configuration

fðζÞ ¼ 8 arctanðe−ζÞ; φ1ðζÞ ¼ −f0;

φ3ðζÞ ¼ φ̂3ðζÞ ¼ −
4sin2ðf=2Þ

ζ2f0
ðC1Þ

that satisfies (4.45), which will have its fields successively
modified on each discrete point j ¼ 2;…; p − 1 and
k ¼ 1;…; p − 1 of the grid by

fj → fj − ΔαfΔEf;j;

φb;k → φb;k − Δαφb
ΔEφb;k; b ¼ 1; 3 ðC2Þ

where Δαa represent the finite step size. The field values
f1, φ1;0, and φ3;0 can be estimated from the neighbors
points, once (C2) is done, using

2Because of the Jacobian term r2 only the kinetic term of h
gives a nontrivial contribution to the energy at k ¼ 0, given
by 2 rmax

p ðφ1;0 − φ3;0Þ2, which by (4.45) can only be nonzero
for a field configuration that is not a static solution of
Eqs. (4.37)–(4.39). Therefore, we do not need to compute any
derivative at k ¼ 0.
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f1 ¼
f0 þ f2

2
; φa;0 ¼ φa;4 − 2ðφa;3 − φa;1Þ ðC3Þ

The first equality of (C3) is obtained using f00ð0Þ ¼ 0
where the second derivative is given by the second order
forward formula. The second equality of (C3) is obtained
taking the equality between the central formula of second
and fourth order to the first derivative.3 The method ends

when the maximum value of each jΔEfj; jΔEφ1
j, and

jΔEφ3
j on the grid, restricted to the points considered

in (C2), is smaller than the Derrick < 4 × 10−4.
Once we obtain the solutions of (4.37)–(4.39), where the

fields fðrÞ and φaðrÞ are monotonic, we can compute
the thickness tf, defined as the value of r that satisfies
fðrÞ ¼ fð0Þ=2. First, we get the value rp, which is the
numerical value of r on the grid that minimizes the function
jfð0Þ=2 − fðrÞj, and so by definition jtf − rpj ≤ Δr. So,
the Taylor expansion of fðrÞ at rp valued for t ¼ tf
becomes fðtfÞ ¼ fðrpÞ þ f0ðrpÞðtf − rpÞ þOððΔrÞ2Þ and
then

tf ¼ rp þ
fð0Þ=2 − fðrpÞ

f0ðrpÞ
þOððΔrÞ2Þ: ðC4Þ

We use (C4) to compute tf in first order ofΔr, and the same
follows for getting the thickness of the φa fields. In Table II
of Sec. IV C we present the values of the thickness for each
of the fields and for each of the values of σ1 and σ2 of
Table I.
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